WO2012129748A1 - 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用 - Google Patents

一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用 Download PDF

Info

Publication number
WO2012129748A1
WO2012129748A1 PCT/CN2011/001906 CN2011001906W WO2012129748A1 WO 2012129748 A1 WO2012129748 A1 WO 2012129748A1 CN 2011001906 W CN2011001906 W CN 2011001906W WO 2012129748 A1 WO2012129748 A1 WO 2012129748A1
Authority
WO
WIPO (PCT)
Prior art keywords
escherichia coli
recombinant
gene
coli
ala
Prior art date
Application number
PCT/CN2011/001906
Other languages
English (en)
French (fr)
Inventor
祁庆生
康振
王阳
王倩
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to JP2013550726A priority Critical patent/JP5895004B2/ja
Publication of WO2012129748A1 publication Critical patent/WO2012129748A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids

Definitions

  • the present invention relates to the field of genetic engineering and microbial fermentation, and in particular to a recombinant Escherichia coli and a method of constructing the same, and the use of the recombinant strain in the production of 5-aminolevulinic acid (ALA).
  • ALA 5-aminolevulinic acid
  • 5-aminolevulinic acid which has a molecular formula of C 5 0 3 NH 9 , a molecular weight of 131.. 3, and a melting point of 118 ° C.
  • ALA has important applications in agriculture. Studies have shown that it is a non-polluting natural substance that is biodegradable.
  • 5-Aminolevulinic acid is a new type of pesticide. Because it is easily degraded in the environment, it has no residue and is not toxic to mammals. It has attracted attention as a pollution-free green pesticide.
  • ALA is also widely used in agriculture, mainly in green herbicides, plant growth regulators, pesticides and so on.
  • ALA In addition to its use in agriculture, in the medical field, ALA is gaining popularity as a safe, selective, and permeable photodynamic drug. ALA has been used in the diagnosis and photodynamic therapy (PDT) of skin cancer, bladder cancer, digestive tract cancer, lung cancer, etc.
  • PDT diagnosis and photodynamic therapy
  • ALA production method utilizes the C4- pathway to produce ALA by biotransformation of succinic acid and glycine by expression of ALA synthase.
  • the problem to be solved by the present invention is to provide a recombinant Escherichia coli and a method for its construction and the use of the recombinant strain for the production of 5-aminolevulinic acid (ALA).
  • ALA 5-aminolevulinic acid
  • the technical scheme of the present invention is based on the A5-based C5 pathway, which utilizes overexpression of a mem ⁇ gene mutant derived from Escherichia coli or Salmonella in Escherichia coli and hemL in Escherichia coli, Salmonella serrata or Salmonella typhimurium derived from Escherichia coli.
  • Gene, 5-aminolevulinic acid (ALA) is produced by fermentation with glucose as the sole carbon source in a modified inorganic salt medium.
  • the recombinant Escherichia coli according to the present invention is characterized in that the recombinant Escherichia coli is called recombinant Escherichia coli DALA, and is obtained by the following method: Constructing a co-expression vector p-/ze ⁇ M containing the Zze ⁇ fe Z gene /2ewZ, the expression vector p-rhtA containing the rhtA gene was constructed, and the constructed recombinant plasmids p-hemA M -hemL and p-rhtA were co-transformed into E. coli to simultaneously overexpress the e ⁇ M , hemL and rhtA genes.
  • the / ⁇ is a mutant derived from the /ze/ ⁇ gene of Escherichia coli or Salmonella; the hemL gene is derived from Escherichia coli or Salmonella; and the rthA gene is derived from Escherichia coli.
  • the M is a mutant of the hemA gene derived from Salmonella serrata, and the /zeZ gene is derived from Salmonella.
  • the vector of the ze» 4 M , /z Z or r/z gene is pBluescript SK -, pUC19, pUC18, pCL1920 or pTrc99A; wherein the plasmid pBluescript "SK -, pCL1920 and derived from DSMZ (German Collection), The plasmids pUC19, pUC18 and pTrc99A were derived from famentas.
  • said expression / 1 ⁇ 2m ⁇ (M and preferably pUC19 vector gene; preferably the expression vector pCL1920 r3 ⁇ 4 gene.
  • the above-mentioned starting strain Escherichia coli selected Escherichia coli MG1655, Escherichia coli DH50 Escherichia coli JM109, Escherichia coli W3110 or Escherichia coli XLl-Blue; wherein MG1655, JM109 and W3110 are derived from ATCC (American Type Culture Collection); Escherichia coli DH5 (x E. coli Xll-blue is derived from DSMZ (German Collection).
  • the Escherichia coli is preferably Escherichia coli DH5a.
  • the above recombinant Escherichia coli DALA is preferably pCL1920-r/ ⁇ .
  • the basic approach is hemA mutant gene derived from Escherichia coli or Salmonella / ⁇ / ⁇ M ® into a plasmid vector containing pBluescript SK ⁇ pUC19 hemL gene from E. coli, pUC18, pCL1920 or P Trc99A; and derived from the large intestine or
  • the hemL gene of Bacillus is inserted into the plasmid vector pBluescript SK', pUC19, pUC18, pCL1920 or pTrc99A containing the mutant 2ew M derived from Escherichia coli or Salmonella, thereby obtaining a co-expression vector p of the hemA M and hemL genes.
  • the basic method is to clone the rhtA gene using the E. coli genome as a template, and insert the cloned rhtA into it. Plasmid pBluescript in SK', pUC19, pUC18, pCL1920 or pTrc99A, thereby obtaining the expression vector p-rhtA.
  • the basic method is to co-transform the constructed recombinant plasmids p-hemA M -hemL and p-fhtA into E. coli MG1655, JM109, DH5a, W3110, BL21 or XLl-blue to obtain overexpression / 1 ⁇ 2m ⁇ M , hemL and rhtA Recombinant E. coli DALA.
  • E. coli DALA overexpressing hemA M , hemL and rhtA preferably constructs recombinant E. coli DALA OU5a/ ⁇ JC-hemA M -hemL+ pC 920-rhtA.
  • a further preferred formulation of the above modified inorganic salt medium is: (NH 4 ) 2 S0 4 16 g/L, KH 2 P0 4 3 g/L, Na 2 HP0 4 12H 2 0 16 g/L, MgS0 4 -7H20 1 g/L, MnS0 4 '7H 2 0 0.01 g/L, yeast powder 2 g/L, isopropyl- ⁇ -D-thiogalactoside (IPTG) O.lmM, glucose 35 g/L.
  • Shake flask culture Pick a single colony of the constructed recombinant strain into a 25 mL flask containing 3-5 mL of fermentation medium.
  • the final concentration of ampicillin is 10 (g/mL, and the final concentration of spectinomycin is 50 ⁇ 8 / ⁇ ⁇ , 37 ° C, 225 rpm, cultured for 12 h.
  • the overnight cultured bacteria solution was placed in a 300 mL flask containing 50 mL of fermentation medium at a dose of 0.5-3% (v/v).
  • the final concentration of ampicillin was ⁇ / ⁇ , and the final concentration of spectinomycin was 5.
  • ( ⁇ g/mL, 37 ° C, 200-280 rpm, fermentation time was 8-56 h. Samples were taken every 2-6 h during the period, and then the concentration of ALA was measured by colorimetry.
  • the ALA assay is: Dilute the sample to 2 mL, add 1 mL of acetate buffer, 0.5 mL of acetylacetone, and then boil for 15 min. After cooling to room temperature, 2 mL of the reaction solution was taken to a new tube, and then 2 mL of the modified Ehrlich's reagent was added and reacted for 20 minutes, and detected by a spectrophotometer at 554 nm.
  • Preparation of seed solution Pick a single colony of recombinant E. coli to a 25 mL flask containing 3-5 mL of fermentation medium, and the final concentration of ampicillin is 10 ( ⁇ g/mL, spectinomycin is 5 ( ⁇ g/mL, 30-39 ° C, 200-250 rpm, culture for 8-16 h.
  • the overnight culture broth was added to a 300 mL flask containing 50 mL of fermentation medium according to the inoculation amount of 0.5-3% (v/v).
  • the final concentration of ampicillin was 100 g/mL, and the final concentration of spectinomycin was 5 ( ⁇ g/mL, 37 ° C, 200-250 rpm, cultured for 6-10 h, to prepare a seed solution.
  • Fermentor culture The prepared seed solution was transferred to a 5 L fermentor containing 3 L of fermentation medium in a volume percentage based on a 2% inoculum.
  • the fermentation temperature is 35 ° C -38 ° C
  • the pH is 6.0-7.0
  • the dissolved oxygen is controlled at 50% or more
  • the fermentation time is 36-60 h. Samples were taken at intervals of 2-6 h, and then the colorimetric method was used to detect the concentration of ALA.
  • the ALA detection method is the same as above.
  • the fermentation temperature is preferably 37 ° C
  • the pH is preferably 6.2
  • the dissolved oxygen is controlled at 50% or more
  • the fermentation time is 60 h.
  • the recombinant Escherichia coli provided by the present invention and its method for producing 5-aminolevulinic acid (ALA) have very important industrial application value. '
  • the ALA yields of the recombinant strains DEX, DEL, DA, DAL and DXAL were 0.016 g/L, 0.024 g/L, 0.176 g/L, 2.05 g/L and 1.32 g/L, respectively.
  • the ALA yield of the recombinant strain DALA of the present invention was 2.86 g/L, which was the highest among all the tested bacteria, and was 179 times that of the strain DEX.
  • the ALA yield of the recombinant E. coli DALA reached 4.13 g/L, and the conversion rate of glucose reached 0.168 g ALA/g glucose. Tips have good industrial development and application prospects.
  • Figure 1 Recombinant E. coli fermenting glucose to produce ALA pathways.
  • Figure 2 Construction of a plasmid expression vector map.
  • the enzymes involved in the examples were purchased from TaKaRa, the plasmid extraction kit was purchased from Tiangen, and the agarose gel recovery DNA fragment kit was purchased from Shenneng Gaming Co., Ltd., and the operation was carried out in full accordance with the corresponding instructions.
  • Gene sequencing in plasmid construction was performed by Huada Gene Company.
  • ALA standard samples and other reagents were purchased from Sigma.
  • DH5a competent cells were purchased from Quanjin Biotechnology Co., Ltd.
  • LB liquid medium (1 L): yeast powder 5, peptone 10, NaCl 10, pH 7.0.
  • LB-ampicile resistant solid medium (1L) : yeast powder 5, peptone 10, NaCl 10 , ampicillin
  • ALA assay Dilute the sample to 2 mL, add 1 mL of acetate buffer, 0.5 mL of acetophenone, and then boil for 15 min. After cooling to room temperature, 2 mL of the reaction solution was taken to a new tube, and then 2 mL of modified Ehrlich's reagent was added and reacted for 20 min, and detected by a spectrophotometer at 554 nm.
  • the acetate buffer was composed of (1 L): 57 mL of glacial acetic acid and 82 g of anhydrous sodium vinegar.
  • the modified Ehrlich's reagent 30 mL of glacial acetic acid, lg-dimethylaminobenzaldehyde, 8 mL of 70% perchloric acid, and then 50 mL of a fixed volume were placed in a 50 mL measuring cylinder.
  • the primers gltX-F 5'-TCCCTGCAGAAAGGAGGATATACATATGAAAATCAAAACTCGCTTCGCGC-3' and gltX-R: 5 '-GGCGTCGACTTACTGCTGATTTTCGCGTTC AGC AATAAAATCC-3 ' were cloned g/t using E. coli genome or colony PCR directly. gene.
  • the cloned g/tJT fragment was digested with the endonucleases Pstl and Sail, respectively, and the plasmid vector pUC19 was also digested with the endonucleases Pstl and Sail, respectively.
  • the digested gltX fragment and the pUC19 plasmid vector were recovered using an agarose gel kit and then ligated using T4 ligase.
  • the connection system is ⁇ :
  • the ⁇ ligation solution was transformed into E. coli DH5ot competent cells.
  • the transformation process is - add ⁇ of the ligation solution to the ⁇ DH5a competent cells and mix. Ice bath for 30 min, heat shock at 42 °C for 90 s, ice bath for 2 min, add 900 ⁇ of LB medium, 37 ° C, 100 rpm, incubate for 1 h, coat ampicillin resistant plates, culture for 16 h, pick up transformants, Extraction plasmid validation. Further sequencing confirmed the correctness of the gene. Thus, the recombinant plasmid pUC-g/t was obtained. '
  • E. coli genomic sequence published by NCBI, use primers hemL-F: 5 '-ACAGGATCCAAAGGAGGATATACATATGAGTAAGTCTGAAAATCTTTACAGCG-3 ' and hemL-R: 5 '- AATGAGCTCTC AC AACTTCGC AAAC ACCCGACGTGC AGC A-3 ' to use E. coli genome or directly use colony PCR, Cloning; ze Z gene.
  • the cloned / ⁇ m£ fragments were digested with the endonucleases ⁇ wzl and Sad, respectively, and the plasmid vector pUC19 was also digested with the endonucleases ⁇ zml and d, respectively.
  • the digested hemL sheet and the pUC19 plasmid vector were recovered using an agarose gel kit and then ligated using T4 ligase.
  • the connection system is ⁇ :
  • the ⁇ ligation solution was transferred to E. coli DH5a competent cells.
  • the transformation process is: Add the ⁇ ligation solution to ⁇ DH5a competent cells and mix. Ice bath for 30 min, heat shock at 42 °C for 90 s, ice bath for 2 min, add 90 ( ⁇ L of LB medium, 37 ° C, 100 rpm, incubate for 1 h, apply ampicillin resistant plate, culture for 16 h, pick The transformant was extracted and the plasmid was verified. Further sequencing confirmed the correctness of the ⁇ mZ gene, thereby obtaining the recombinant plasmid pUC-1 ⁇ 2.
  • AAC-3' and hemA M- R 5 '-AAATCTAGACTACTCC AGCCCGAGGCTGTCGCGC AGA-3 '
  • the gene was cloned in the E. coli genome or directly using colony PCR.
  • the cloned fragments were digested with the endonucleases Scdl and H, respectively, and the plasmid vector pUC19 was also digested with the endonucleases Sail and Xbal, respectively.
  • the digested hemA M fragment and the pUC19 plasmid vector were recovered using an agarose gel kit and then ligated using T4 ligase.
  • the connection system is ⁇ :
  • the ligation solution of ⁇ was transformed into E. coli DH5a competent cells.
  • the transformation process is: Add ⁇ ligase to DH5a competent cells of ⁇ and mix. Ice bath for 30 min, heat shock at 42 °C for 90 s, ice bath for 2 min, add 900 ⁇ of LB medium, 37°e, 100 rpm, incubate for 1 h, coat ampicillin-resistant plates, culture for 16 h, pick up transformants, Extraction plasmid validation. Then further sequencing confirmed the correctness of the 7 ⁇ ⁇ gene. Thus, the recombinant plasmid pUC-1 ⁇ 2 ⁇ 4 M was obtained .
  • Example 4 construction of A « 4 M and gene co-expression vector
  • the plasmid pUC-few was digested with the endonucleases Baml and Sacl to obtain a Baml-hemL-Sacl fragment.
  • the plasmid pUC-1 ⁇ 2m M was then digested with endonuclease ⁇ and Sad.
  • the fragment Baml-hemL-Sacl was ligated to pUC-/ze ⁇ M using T4 ligase, and the ligation system was ⁇ :
  • the ligation solution of ⁇ was transformed into E. coli DH5a competent cells.
  • the transformation process is: Add ⁇ ligase to ⁇ DH5a competent cells and mix. Ice bath for 30 min, heat shock at 42 °C for 90 s, ice bath for 2 min, add 90 ( ⁇ L of LB medium, 37 ° (2, 100 rpm, hatch lh, coated ampicillin resistant plate, cultured for 16 h, pick The transformant was taken and the plasmid was verified. Then the sequence of the ⁇ and ⁇ ? ⁇ genes was further sequenced to obtain the recombinant plasmid ⁇ JC-hemA M -hemL.
  • the Psti-ghX-Sa!l fragment was obtained by treating the plasmid pUC-g/t with an endonuclease and Sa/I digestion.
  • the plasmid pUC-/ ⁇ » ⁇ M -1 ⁇ 2 Z was then digested with endonuclease M and Sail.
  • Linking the fragment Pstl-gltX-SaR to the T4 ligase The connection system is ⁇ :
  • the ligation solution of ⁇ was transformed into E. coli DH5a competent cells.
  • the transformation process is: Add the ⁇ ligation solution to ⁇ DH5a competent cells and mix. Ice bath for 30 min, heat shock at 42 °C for 90 s, ice bath for 2 min, add 90 ( ⁇ L of LB medium, 37 ° 0,100 rpm, incubate for 1 h, apply ampicillin resistant plate, culture for 16 h, pick The transformant was extracted and plasmid verified, thereby obtaining a recombinant plasmid pUC ⁇ X-hemA M -hemL.
  • GG-3' and rhtA-R 5'-GCCCTGCAGTTAATTAATGTCTAATTCTTTTATTTTGCTCTC-3'
  • the gene was cloned in the E. coli genome or directly using colony PCR.
  • the cloned r/z fragments were digested with the endonucleases HmflII and M, respectively, and the plasmid vector pCL1920 was also treated with the endonuclease Hmiflll and digestion, respectively.
  • the digested rhtA fragment and the pCL1920 plasmid vector were recovered using an agarose gel kit and then ligated using T4 ligase.
  • connection system is ⁇ :
  • the ⁇ ligation solution was transformed into E. coli DH5a competent cells.
  • the transformation process is: Add the ⁇ ligation solution to ⁇ DH5a competent cells and mix. Ice bath for 30 min, heat shock at 42 °C for 90 s, ice bath for 2 min, add 900 ⁇ of LB medium, 37 ° C, 100 rpm, incubate for 1 h, coat spectinomycin-resistant plate (30 g/rnL), culture At 16h, the transformants were picked and the plasmid was verified. Further sequencing confirmed the correctness of the ra gene. Thus, the overexpressed recombinant plasmid pCL1920- was obtained.
  • Example 8 Construction of recombinant strains and comparison of ALA yields
  • the recombinant plasmid pUC-/zem ⁇ M- /zem£ and the recombinant plasmid pCL1920-r/iL4 were co-transformed into E. coli DH5a competent cells to obtain recombinant strain Oll5 /p C-hemA M -hemL+pC 92 -rhtA (Life 3 ⁇ 4 For DALA).
  • Fermentation comparison of each recombinant strain The constructed recombinant strains DEX, DEL, A, DAL, DXAL and DALA single colonies were picked into a 250 mL flask containing 20 mL of fermentation medium at 37 ° C, 225 rpm. , cultured for 12h. The culture solution was transferred to a 300 mL flask containing 50 mL of fermentation medium at a volume ratio of 1% inoculum, and sampled at 37 ° C, 225 rpm, 4 h, and the fermentation time was 36 h.
  • the fermentation medium components of DEX, DEL, DA, DAL, and DXAL are: (NH4) 2 S0 4 16 g/L, KH 2 P0 4 3 g/L, Na 2 HP0 4 - 12H 2 0 16 g/L , MgS0 4 -7H20 1 g/L, MnS0 4 -7H 2 0 0.01 g/L,.
  • the fermentation medium components of the recombinant strain DALA were: (NH4) 2 S0 4 16 g/L, KH 2 P0 4 3 g/L, Na 2 HP0 4 - 12H 2 0 16 g/L, MgS0 4 -7H20 1 g/L, MnS0 4 7H 2 0 0.01 g/L, yeast powder 2 g/L, 100 g/mL ampicillin, 50 g/mL spectinomycin, IPTG O. lmM, glucose 35 g/L. Among them, the addition of ampicillin and spectinomycin is to maintain the stability of the double plasmid.
  • the ALA detection method is specifically: Dilute the sample to 2 mL, add 1 mL of acetate buffer, 0.5 mL of acetylacetone, and then boil for 15 min. Cool to room temperature. Take 2 mL of the reaction solution into a new tube, then add 2 mL of modified Ehrlich's reagent, react for 20 min, and measure with a spectrophotometer at 554 nm.
  • the ALA yield statistics of each recombinant strain are shown in Figure 3.
  • the ALA yields of the recombinant strains DEX, DEL, DA, DAL and DXAL were 0.016 g/L, 0.024 g/L > 0.176 g/L > 2.05 g/L and 1.32 g/L, respectively.
  • the recombinant strain DALA had the largest ALA yield of 2.86 g/L, which was 179 times that of the strain DEX.
  • Preparation of seed solution The constructed recombinant E. coli single colonies were picked into 25 mL flasks containing 4 mL of fermentation medium, 3TC, 225 rpm, and cultured for 12 hours. The cultured bacterial solution was placed in a 300 mL flask containing 50 mL of fermentation medium at a concentration of 1% (v/v), and cultured at 37 ° C, 225 rpm for 8 hours. Thereby preparing the seed liquid.
  • Fermentor culture The prepared seed solution was transferred to a 5 L fermentor containing 3 L of fermentation medium for 2% (v/v) inoculum.
  • the fermentation temperature was 37 ° C
  • the pH was 6.2
  • the dissolved oxygen was controlled above 50%
  • the fermentation time was 56 h.
  • Samples were taken at 4 h intervals, and then the colorimetric method was used to detect the concentration of ALA.
  • the ALA detection method is a colorimetric method, as described in the general description of the examples.
  • the fermentation medium components of the above recombinant strain DALA are: (NH4) 2 S0 4 16 g KH 2 P0 4 3 g/L, Na 2 HP0 4 - 12H 2 0 16 g/L, MgS0 4 -7H20 1 g/L , MnS0 4 -7H 2 0 0.01 g/L, yeast powder 2 g/L, 100 g/mL ampicillin, 50 g/mL spectinomycin, IPTG O. lmM, glucose 35 g/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

说 明 书 一株重组大肠杆菌及其在生产 5-氨基乙酰丙酸中的应用 技术领域
本发明涉及基因工程和微生物发酵领域, 具体地说, 涉及一株重组大肠杆菌及其构 建方法以及该重组菌株在生产 5-氨基乙酰丙酸(ALA)中的应用。
背景技术
5-氨基乙酰丙酸(ALA), 其分子式为 C503NH9,分子量为 131.. 3, 熔点为 118 °C, ALA在农业上具有重要的应用。 研究表明它是无公害的天然物质, 具有生物降解性。 5-氨基乙酰丙酸是一种新型农药, 由于其在环境中易降解,无残留,对哺乳动物无毒性, 因其作为一种无公害的绿色农药而受到关注。 ALA在农业领域应用也非常广泛, 主要 应用于绿色除草剂、 植物生长调节剂、 杀虫剂等方面。 除了在农业上的应用, 在医学领 域, ALA作为一种安全、 选择、 渗透性好的光动力学药物逐渐受到青睐。 ALA已经应 用于皮肤癌、 膀胱癌、 消化道癌、 肺癌等的诊断与光动力治疗 (PDT) 中。
目前, ALA的生产方法集中在化学合成。 关于 δ-ALA化学合成方法的报道最早文 献出自上世纪 50年代, 进入 20世纪 90年代, 有关化学合成的研究最为活跃。 相关化 学合成主要集中在以马尿酸和琥珀酸为原料的合成工艺研究、以糠醛等杂环物质为原料 的合成工艺研究及以乙酰丙酸或其衍生物为原料的合成工艺研宄。由于化学合成反应步 骤多、 副产物多、 分离提纯难、 ALA 的得率低等问题, 从而造成生产成本高。 除此之 外, 由于化学合成中涉及很多有毒试剂, 从而对环境也会造成污染。^所以随着社会和科 学技术的发展。 以廉价的可再生资源为底物, 利用微生物发酵生产 ALA已是未来的趋 势。目前市场上,葡萄糖价格为 4500元 /吨, ALA价格为 80000000元 /吨。 即使 ALA-HC1, 其价格也极为昂贵, 达到 4, 000, 0000元 /吨。 所以利用葡萄糖廉价底物为原料发酵生 产 ALA, 成本上具有极大的优势。
Figure imgf000002_0001
sphaeroides) 诱变, 筛选 ALA高产菌株。 通过发酵工艺, ALA产量达到了 7.2 g/L。 然而由于光合细 菌发酵中采用光照,从而增加了成本,不适合大规模工业发酵生产。大肠杆菌 (E. coli)作 为生产工业产物的宿主由于其遗传背景清楚、 易操作、 生长速率快、 易培养、 可利用无 机盐培养基培养及可利用多种碳源,而受到越来越多的重视。随着基因工程技术的成熟, 人们已经采用基因重组技术将 sphaeroides 中的 ALA合成酶基因 hemA 在野生型 大肠杆菌中表达。 Mariet和 Zeikus获得大肠杆菌 (Escherichia 重组菌株, ALA发 酵产量达到了 3.79 g/L。 L. Xie et al.等利用含有 R sphaeroides的 AfeA合成酶基因的重 组大肠杆菌, 经过发酵优化, ALA产量达到 5.2 g/L。 上述 ALA生产方法是利用 C4-途 径, 即通过表达 ALA合成酶生物转化琥珀酸和甘氨酸生产 ALA。
目前由于琥珀酸主要是通过化学合成法制备,所以琥珀酸和甘氨酸为底物生物转化 ALA成本较高, 同时由于髙浓度的甘氨酸(> 1.7g/L) 即造成对菌体生长的抑制, 所以 生物转化工艺相对复杂。 同时, 生物转化中所用培养基为昂贵的 LB培养基, 所以这也 成为 ALA工业化的瓶颈。如何降低发酵成本以及简化发酵工艺,成为 ALA大工业生产 的关键问题。 只有降低生物法生产 ALA的成本, 同时简化发酵工艺, 利用微生物工业 化生产 ALA才有望代替目前的化学合成方法。
发明内容
针对目前 ALA生产中的缺陷, 本发明要解决的问题是提供一株重组大肠杆菌及其 构建方法以及该重组菌株在生产 5-氨基乙酰丙酸(ALA)中的应用。
本发明的技术方案是基于 ALA的 C5途径,采用在大肠杆菌中过量表达来源于大肠 杆菌或沙门氏菌中的中 fem^ 基因突变体和来源于大肠杆菌的大肠杆菌、亚利桑那沙门 氏菌或伤寒沙门氏菌中的 hemL基因, 在改良无机盐培养基内以葡萄糖为唯一碳源发酵 生产 5-氨基乙酰丙酸(ALA)。
本发明所述重组大肠杆菌, 其特征在于, 所述重组大肠杆菌名为重组大肠杆菌 DALA, 由如下方法制得: 构建含 Zze^^^f e Z基因的共表达载体 p-/ze^M-/2ewZ, 再构建含 rhtA基因的表达载体 p-rhtA, 将所构建的重组质粒 p-hemAM-hemL和 p-rhtA 共转化大肠杆菌中, 得同时过量表达 e^M、 hemL 和 rhtA 基因的重组大肠杆菌 DALAo
其中, 所述 /^Μ是来源于大肠杆菌或沙门氏菌的 /ze/^基因的突变体; 所述 hemL基因来源于大肠杆菌或沙门氏菌; 所述 rthA基因来源于大肠杆菌。
进一步优选的是,所述 ^ M是来源于亚利桑那沙门沙门氏菌的 hemA基因的突 变体; 所述/ ze Z基因来源于沙门氏菌。
上述表达; ze» 4M、 /z Z或 r/z 基因的载体为 pBluescript SK -、 pUC19、 pUC18、 pCL1920或 pTrc99A; 其中质粒 pBluescript"SK -、 pCL1920和来源于 DSMZ (德国微生 物保藏中心), 质粒 pUC19、 pUC18 和 pTrc99A来源于 famentas 公司。
其中, 所述表达 /½m^(M和 基因的载体优选 pUC19; 所述表达 r¾ 基因的 载体优选 pCL1920。
上述出发菌株大肠杆菌选大肠杆菌 MG1655、大肠杆菌 DH50 大肠杆菌 JM109、 大肠杆菌 W3110或大肠杆菌 XLl-Blue; 其中 MG1655、 JM109和 W3110来源于 ATCC (美国典型菌种保藏中心);大肠杆菌 DH5(x、大肠杆菌 Xll-blue来源于 DSMZ (德 国微生物保藏中心)。
其中, 所述出大肠杆菌优选大肠杆菌 DH5a。
上述重组大肠杆菌 DALA优选是
Figure imgf000003_0001
pCL1920-r/^。
本发明所述重组大肠杆菌的构建步骤:
1. Aem^M和 hemL基因的共表达载体的构建
基本方法是将来源于大肠杆菌或沙门氏菌的 hemA基因的突变 /^/^M®入到含 有来自大肠杆菌 hemL基因的质粒载体 pBluescript SK\ pUC19、 pUC18、 pCL1920或 PTrc99A中; 或者将来源于大肠杆菌的 hemL基因插入含有来源于大肠杆菌或沙门氏菌 的^^基因的突变体 /2ew M的质粒载体 pBluescript SK'、 pUC19、 pUC18、 pCL1920 或 pTrc99A中, 从而获得 hemAM和 hemL基因的共表达载体 p-hemAM-hemL0
2. rhtA基因表达载体的构建
基本方法是以大肠杆菌基因组为模板, 克隆 rhtA基因, 将所克隆获得的 rhtA插入 质粒 pBluescript SK'、 pUC19、 pUC18、 pCL1920或 pTrc99A中, 从而获得 的表达 载体 p-rhtA。
3. ALA发酵重组菌株的构建
基本方法是将所构建的重组质粒 p-hemAM-hemL 和 p-fhtA 共转化大肠杆菌 MG1655、 JM109、 DH5a、 W3110、 BL21或 XLl-blue中, 从而获得过量表达/ ½m^M、 hemL和 rhtA的重组大肠杆菌 DALA。
上述过量表达 hemAM、 hemL和 rhtA的重组大肠杆菌 DALA优选构建重组大肠杆 菌 DALA OU5a/≠JC-hemAM-hemL+ pC 920-rhtA。
本发明所述重组大肠杆菌在生产 5-氨基乙酰丙酸中的应用,其特征在于,所述应 用是以所述重组大肠杆菌在改良的无机盐培养基中发酵葡萄糖来生产 5-氨基乙酰丙 酸; 其中, 所述改良无机盐培养基配方为: 葡萄糖 5-50 g/L, (NH4)2S04 10-30 g/L, KH2P04 1-8 g/L, Na2HP04- 12H20 10-30 g/L, MgS04 7H20 0.1-1.5g/L, MnS04-7H20 0.001-0.1 g/L, 酵母粉 0.5-3 g/L, 异丙基 -fi-D-硫代半乳糖苷(IPTG) 0.05-lmM; 所 述发酵中培养基中添加浓度为 50-100 g/mL的氨苄青霉素和浓度为 30-50 g/mL的壮 观霉素。
上述改良无机盐培养基进一步优选的配方为: (NH4)2S04 16 g/L, KH2P04 3 g/L, Na2HP04 12H20 16 g/L, MgS04-7H20 1 g/L, MnS04'7H20 0.01 g/L,酵母粉 2 g/L, 异 丙基 -β-D-硫代半乳糖苷 (IPTG) O.lmM, 葡萄糖 35 g/L。
本发明所述重组大肠杆菌在生产 5-氨 ί乙酰丙酸中的应用, 具体方法是:
1.摇瓶培养及 ALA检测
摇瓶培养:挑取所构建的重组菌株单菌落至装有 3-5mL的发酵培养基的 25mL的三 角瓶中, 氨苄青霉素终浓度为 10( g/mL, 壮观霉素终浓度为 50μ8/ηΛ, 37°C , 225转 / 分, 培养 12h。
将过夜培养的菌液按照 0.5-3% (v/v)的接种量接入装有 50mL发酵培养基的 300mL 的三角瓶中,氨苄青霉素终浓度为 ΙΟΟμ /πιΐ,壮观霉素终浓度为 5(^g/mL,37°C, 200-280 转 /分, 发酵时间为 8-56h。 期间每 2-6h取样, 然后利用比色法检测 ALA的浓度。
ALA检测方法是: 将样品稀释至 2mL, 加入 lmL的乙酸盐缓冲液, 0.5mL的乙酰 丙酮, 然后煮沸 15min。 冷却至室温, 取 2mL的反应液至新管中, 然后加入 2mL的改 良 Ehrlich's试剂, 反应 20min, 利用分光光度计 554nm下检测。
2.发酵罐培养及 ALA检测
种子液的制备: 挑取所构建的重组大肠杆菌单菌落至装有 3-5mL 的发酵培养基的 25mL 的三角瓶中, 氨苄青霉素终浓度为 10(^g/mL, 壮观霉素终 度为 5(^g/mL, 30-39°C , 200-250转 /分, 培养 8-16h。
将过夜培养的菌液按照 0.5-3% (v/v)的接种量接入装有 50mL发酵培养基的 300mL 的三角瓶中,氨苄青霉素终浓度为 lOO g/mL,壮观霉素终浓度为 5(^g/mL,37°C, 200-250 转 /分, 培养 6-10h, 制得种子液。
发酵罐培养: 将制备好的种子液以体积百分比计按照 2%的接种量转接装有 3L 发酵培养基的 5L发酵罐中进行培养。 发酵溘度为 35°C-38°C, pH为 6.0-7.0, 溶氧控 制在 50%以上, 发酵时间为 36-60h。间隔 2-6h取样, 然后利用比色法检测 ALA的浓 度。
ALA检测方法同上。 上述重组大肠杆菌在生产 5-氨基乙酰丙酸的应用中, 发酵温度优选 37°C, pH优选 6.2, 溶氧控制在 50%以上, 发酵时间为 60h。
本发明所提供的重组大肠杆菌及其生产 5-氨基乙酰丙酸 (ALA)的方法, 具有非常 重要的工业应用价值。 '
通过实验比较发现, 本发明所述的重组菌株 DALA的 ALA的 量最高。
其中,摇瓶培养中,进行实验的重组菌株 DEX、 DEL、 DA、 DAL和 DXAL的 ALA 产量分别是 0.016 g/L, 0.024 g/L, 0.176 g/L、 2.05 g/L和 1.32 g/L, 而本发明所述的重 组菌株 DALA的 ALA产量为 2.86 g/L, 在所有参试菌中最高, 为菌株 DEX的 ALA产 量的 179倍。 发酵罐培养中, 进行实验的重组大肠杆菌 DALA 的 ALA产量达到了 4.13g/L, 葡萄糖的转化率达到了 0.168g ALA/g葡萄糖。 提示具有很好的工业开发和应 用前景。
附图说明
图 1. 重组大肠杆菌发酵葡萄糖生产 ALA的途径。
图 2. 构建质粒表达载体图谱。
图 3. 各重组菌株 ALA产量的比较。
图 4. 发酵罐培养重组菌株生产 ALA。 - 具体实施方式
一般性说明: 实施例所涉及的酶均购自 TaKaRa公司, 质粒提取试剂盒购自天根公 司, 琼脂糖凝胶回收 DNA片段试剂盒购自申能博彩公司, 操作完全按照相应说明述进 行。质粒构建中基因测序由华大基因公司完成。 ALA标准样品及其他试剂均购自 Sigma 公司。 DH5a感受态细胞购自全式金生物技术有限公司。
LB液体培养基 (1L ) : 酵母粉 5, 蛋白胨 10, NaCl 10, pH 7.0。
LB-氨苄抗性固体培养基 (1L ) : 酵母粉 5, 蛋白胨 10, NaCl 10 , 氨苄青霉素
Figure imgf000005_0001
ALA检测方法: 将样品稀释至 2mL, 加入 lmL的乙酸盐缓冲液, 0.5mL的乙酰丙 酮, 然后煮沸 15min。 冷却至室温, 取 2mL的反应液至新管中, 然后加入 2mL的改良 Ehrlich's试剂, 反应 20min, 利用分光光度计 554nm下检测。
所述乙酸盐缓冲液组成为 (1L) : 57mL冰乙酸, 82g无水醋 钠。
所述改良 Ehrlich's试剂: 在 50mL的量筒中加入 30mL的冰乙酸, lg对-二甲氨基 苯甲醛, 8mL 70%高氯酸, 然后定容 50mL。
实施例 1、 g/W基因表达载体的构建
根据 NCBI 公布 的大肠杆菌基 因 组序列 , 利 用 引 物 gltX-F : 5'-TCCCTGCAGAAAGGAGGATATACATATGAAAATCAAAACTCGCTTCGCGC-3' 和 gltX-R: 5 '-GGCGTCGACTTACTGCTGATTTTCGCGTTC AGC AATAAAATCC-3 ' 以大肠 杆菌基因组或直接采用菌落 PCR, 克隆 g/t 基因。 将克隆的 g/tJT片段分别利用核酸内 切酶 Pstl和 Sail消化处理, 同时将质粒载体 pUC19也分别利用核酸内切酶 Pstl和 Sail 消化处理。 将消化处理的 gltX片段和 pUC19质粒载体利用琼脂糖凝胶试剂盒回收, 然 后利用 T4连接酶连接。 连接体系为 ΙΟμΙ^:
片段: 6 L
pUC19载体: 2 L lOxBuffer: Ιμί
Τ4连接酶: Ιμί
16°C连接 12h后, 将 ΙΟμΙ^的连接液转化大肠杆菌 DH5ot感受态细胞。转化过程为- 将 ΙΟμί的连接液加入 ΙΟΟμί的 DH5a感受态细胞细胞中, 混匀。 冰浴 30min, 42°C热 击 90s, 冰浴 2min, 加入 900μί的 LB培养基, 37°C, 100转 /分, 孵化 lh, 涂布氨苄青 霉素抗性平板, 培养 16h, 挑取转化子, 提取质粒验证。 然后进一步测序验证 基因 的正确。 从而获得重组质粒 pUC-g/t 。 '
实施例 2、 hemL基因表达载体的构建
根据 NCBI 公布 的大肠杆菌基因组序列 , 利用 引 物 hemL-F: 5 '-ACAGGATCCAAAGGAGGATATACATATGAGTAAGTCTGAAAATCTTTACAGCG-3 ' 和 hemL-R: 5 '- AATGAGCTCTC AC AACTTCGC AAAC ACCCGACGTGC AGC A-3 ' 以 大肠杆菌基因组或直接采用菌落 PCR, 克隆; ze Z基因。 将克隆的/^ m£片段分别利用 核酸内切酶^ wzl和 Sad消化处理,同时将质粒载体 pUC19也分别利用核酸内切酶^ zml 和 d消化处理。 将消化处理的 hemL片 和 pUC19质粒载体利用琼脂糖凝胶试剂盒 回收, 然后利用 T4连接酶连接。 连接体系为 ΙΟμΙ^:
hemL 片段: 6 i
pUC19载体: 2μ
lOxBuffer: ΙμΙ
Τ4连接酶: l L
16°C连接 12h后, 将 ΙΟμί的连接液转 大肠杆菌 DH5a感受态细胞。转化过程为: 将 ΙΟμΙ^的连接液加入 ΙΟΟμί的 DH5a感受态细胞中,混匀。冰浴 30min, 42°C热击 90s, 冰浴 2min, 加入 90(^L的 LB培养基, 37°C, 100转 /分, 孵化 lh, 涂布氨苄青霉素抗性 平板, 培养 16h, 挑取转化子, 提取质粒验证。 然后进一步测序验证 ^mZ基因的正确。 从而获得过重组质粒 pUC-½ 。
实施例 3、 ^基因的突变及表达载体的构建
根据 NCBI 公布的沙 门 氏菌基因组序列 , 利用 引 物 hemAM-F:
AAC -3'和 hemAM-R: 5 '-AAATCTAGACTACTCC AGCCCGAGGCTGTCGCGC AGA-3 ' 以大肠杆菌基因组或直接采用菌落 PCR, 克隆 基因。 将克隆 片段分别 利用核酸内切酶 Scdl和 H消化处理, 同时将质粒载体 pUC19也分别利用核酸内切酶 Sail和 Xbal消化处理。将消化处理的 hemAM片段和 pUC19质粒载体利用琼脂糖凝胶试 剂盒回收, 然后利用 T4连接酶连接。 连接体系为 ΙΟμΙ^:
hemAM片段: 6 L
pUC19载体: 2μί
lOxBuffer: ΙμΙ
T4连接酶: ΙμΙ^
16°C连接 12h后, 将 ΙΟμΙ^的连接液转化大肠杆菌 DH5a感受态细胞。转化过程为: 将 ΙΟμί的连接液加入 ΙΟΟμΙ^的 DH5a感受态细胞中,混匀。冰浴 30min, 42°C热击 90s, 冰浴 2min, 加入 900μί的 LB培养基, 37°e, 100转 /分, 孵化 lh, 涂布氨苄青霉素抗性 平板,培养 16h,挑取转化子,提取质粒验证。然后进一步测序验证 7^Μ基因的正确。 从而获得重组质粒 pUC-½^4M
实施例 4、 A« 4M和 基因共表达载体的构建 利用核酸内切酶 Baml和 Sacl消化处理质粒 pUC-few ,获得 Baml-hemL-Sacl 片段。 然后利用核酸内切酶 Βωηΐ和 Sad消化处理质粒 pUC-½m M。 利用 T4连接酶将片段 Baml-hemL-Sacl连接至 pUC-/ze^M, 连接体系为 ΙΟμΙΙ:
hemL JtS: 6μL
pUC-Zzew^M载体: 2μί
lOxBuffer: ΙμΙ^
Τ4连接酶: Ιμί
16°C连接 12h后, 将 ΙΟμΙ^的连接液转化大肠杆菌 DH5a感受态细胞。转化过程为: 将 ΙΟμί的连接液加入 ΙΟΟμί的 DH5a感受态细胞中,混匀。冰浴 30min, 42°C热击 90s, 冰浴 2min, 加入 90(^L的 LB培养基, 37°(2, 100转 /分, 孵化 lh, 涂布氨苄青霉素抗性 平板, 培养 16h, 挑取转化子, 提取质粒验证。 然后进一步测序验 ^^ ^!^^和;^/?^基 因的正确从而获得重组质粒≠JC-hemAM-hemL。
实施例 6、 gltX、 /^/ii^M和 ^ 基因共表达载体的构建
利用核酸内切酶 和 Sa/I消化处理质粒 pUC-g/t 获得 Psti-ghX-Sa!l 片段。 然 后利用核酸内切酶 M和 Sail消化处理质粒 pUC-/^»^M-½ Z。 利用 T4连接酶将片段 Pstl-gltX-SaR 连接至
Figure imgf000007_0001
连接体系为 ΙΟμί:
g/t 片段: 6 L "
pUC-/zem M-^mZ载体: 2 L
lOxBuffer: \ i
T4连接酶: Ιμί
16°C连接 12h后, 将 ΙΟμΙ^的连接液转化大肠杆菌 DH5a感受态细胞。转化过程为: 将 ΙΟμΙ^的连接液加入 ΙΟΟμί的 DH5a感受态细胞中,混匀。冰浴 30min, 42°C热击 90s, 冰浴 2min, 加入 90(^L的 LB培养基, 37°0,100转 /分, 孵化 lh, 涂布氨苄青霉素抗性 平板,培养 16h,挑取转化子,提取质粒验证。从而获得重组质粒 pUC^X-hemAM-hemL。
实施例 7、 rhtA表达载体的构建
根据 NCBI 公布 的 大肠杆菌基 因 组序列 , 利用 引 物 rhtA-F:
GG-3'和 rhtA-R: 5'- GCCCTGCAGTTAATTAATGTCTAATTCTTTTATTTTGCTCTC-3' 以大肠杆菌基因组或直接采用菌落 PCR, 克隆 基因。 将克隆的 r/z 片段分别利用 核酸内切酶 H mflII和 M消化处理, 同时将质粒载体 pCL1920也分别利用核酸内切酶 Hmiflll和 消化处理。将消化处理的 rhtA片段和 pCL1920质粒载体利用琼脂糖凝胶 试剂盒回收, 然后利用 T4连接酶连接。
连接体系为 ΙΟμΙ^:
rhtA 片段: 6μί
pCL1920载体: 2 L
lOxBuffer: ΙμΙ
T4连接酶:
16°C连接 12h后, 将 ΙΟμί的连接液转化大肠杆菌 DH5a感受态细胞。转化过程为: 将 ΙΟμΙ^的连接液加入 ΙΟΟμ 的 DH5a感受态细胞中,混匀。冰浴 30min, 42°C热击 90s, 冰浴 2min, 加入 900μί的 LB培养基, 37°C,100转 /分, 孵化 lh, 涂布壮观霉素抗性平 板(30 g/rnL), 培养 16h, 挑取转化子, 提取质粒验证。 然后进一步测序验证 r a基因 的正确。 从而获得过量表达 的重组质粒 pCL1920- 。 实施例 8、 重组菌株的构建及 ALA产量的比较
重组菌株的构建: 分别将上述所构建的质粒 pUC-g/tX、 ≠5C-hemL ^ C-hemAu, ≠JC-hemAM-hemL以及 p\ C-gltX-hemAM-hemL转化大肠杆菌 DH5a感受态细胞,分别获 得重组菌株 DH5a/pUC-g/t (命名为 DEX)、 DH5a/pUC-¾emZ (命名为 DEL)、
Figure imgf000008_0001
(命名为 DA)、 OU5a/pVC-hemAM-hemL (命名为 DAL)以及 OU5 /pUC-gltX-hemAM-hemL (命名为 DXAL)。 将重组质粒 pUC-/zem^M-/zem£和重组质 粒 pCL1920-r/iL4 共转化大肠杆菌 DH5a 感受态细胞, 获得重组菌株 Oll5 /p C-hemAM-hemL+pC 92 -rhtA (命 ¾为 DALA)。
各重组菌株的发酵比较: 挑取所构建的重组菌株 DEX、 DEL、 A、 DAL, DXAL 以及 DALA单菌落至装有 20mL的发酵培养基的 250mL的三角瓶中, 37°C, 225转 /分, 培养 12h。 按照体积比 1%的接种量将培养液转接装有 50mL发酵培养基的 300mL的三 角瓶中, 37°C, 225转 /分, 4h取样, 发酵时间为 36h。 其中 DEX、 DEL、 DA、 DAL、 DXAL的发酵培养基组分为: (NH4)2S04 16 g/L, KH2P04 3 g/L, Na2HP04- 12H20 16 g/L, MgS04-7H20 1 g/L, MnS04-7H20 0.01 g/L,。酵母粉 2 g/L, 100 g/mL氨苄青霉素, IPTG O.lmM, 葡萄糖 35 g/L。 其中, 氨苄青霉素的添加是为了维持质粒的稳定。 而重组菌株 DALA的发酵培养基组分为: (NH4)2S04 16 g/L, KH2P04 3 g/L, Na2HP04- 12H20 16 g/L, MgS04-7H20 1 g/L, MnS04 7H20 0.01 g/L, 酵母粉 2 g/L, 100 g/mL氨苄青霉素, 50 g/mL壮观霉素, IPTG O. lmM, 葡萄糖 35 g/L。其中, 氨苄青霉素和壮观霉素的添加是 为了维持双质粒的稳定。
ALA检测方法具体是: 将样品稀释至 2mL, 加入 lmL的乙酸盐缓冲液, 0.5mL的 乙酰丙酮, 然后煮沸 15min。 冷却至室温,。取 2mL的反应液至新管中, 然后加入 2mL 的改良 Ehrlich's试剂, 反应 20min, 利用分光光度计 554nm下检测
各重组菌株 ALA产量统计见图 3。其中,重组菌株 DEX、 DEL, DA、 DAL和 DXAL 的 ALA产量分别是 0.016 g/L、 0.024 g/L> 0.176 g/L > 2.05 g/L和 1.32 g/L。 而重组菌株 DALA的 ALA产量最大, 为 2.86 g/L, 为菌株 DEX的 ALA产量的 179倍。
实施例 9、 重组菌株 coft' DALA分批发酵生产 ALA
种子液的制备: 挑取所构建的重组大肠杆菌单菌落至装有 4mL 的发酵培养基的 25mL的三角瓶中, 3TC , 225转 /分, 培养 12h。将培养的菌液按照 1% (v/v)的接种量 接入装有 50mL发酵培养基的 300mL的三角瓶中, 37°C, 225转 /分, 培养 8h。 从而制 备好种子液。
发酵罐培养: 将制备好的种子液按照 2% (v/v)的接种量转接装有 3L发酵培养 基的 5L发酵罐中进行培养。 发酵温度为 37°C , pH为 6.2, 溶氧控制在 50%以上, 发 酵时间为 56h。 间隔 4h取样, 然后利用比色法检测 ALA的浓度。
ALA检测方法为比色法, 详见实施例一般性说明。
上述重组菌株 DALA的发酵培养基组分为: (NH4)2S04 16 g KH2P04 3 g/L, Na2HP04- 12H20 16 g/L, MgS04-7H20 1 g/L, MnS04-7H20 0.01 g/L, 酵母粉 2 g/L, 100 g/mL氨苄青霉素, 50 g/mL壮观霉素, IPTG O. lmM, 葡萄糖 35 g/L。
发酵结果如图 4所示,重组大肠杆菌 DALA的 ALA的产量达到 4.13 g/L,葡萄糖的 转化率达到了 0.168g ALA/g葡萄糖。

Claims

权 利 要 求 书
1 . 一株重组大肠杆菌, 其特征在于, 所述重组大肠杆菌名为重组大肠杆菌 DALA, 由 如下方法制得: 构建含 /^ ^^tl /zewZ基 @的共表达载体 p-/ze ^M-/ie Z, 再构建含 基因的表达载体 p-rhtA,将所构建的重组质粒 p-hemAM-hemL和 p-r^?共转化大肠杆菌中, 得同时过量表达 hemAM、 hemL和 r A基因的重组大肠杆菌 DALA。
2. 如权利要求 1所述的重组大肠杆菌, 其特征在于, 所述/ zem M是来源于大肠杆菌或 沙门氏菌的 ^基因的突变体; 所述 ZzemZ基因来源于大肠杆菌或沙门氏菌; 所述 rt/ 4 基因来源于大肠杆菌。 „
3. 如权利要求 2所述的重组大肠杆菌, 其特征在于, 所述 /zem^M是来源于亚利桑那沙 门沙门氏菌的 hemA基因的突变体; 所述 fwmL基因来源于沙门氏菌。
4. 如权利要求 1所述的重组大肠杆菌, 其特征在于, 所述表达/ ze ^M、 Z/e Z或 r 基 因的载体为 pBluescript SK -、 pUC19、 pUC18、 pCL1920或 pTrc99A。
5.如权利要求 4所述的重组大肠杆菌,其特征在于,所述表达 ftem^M和 fte Z基因的载 体选 pUC19; 所述表达 基因的载体选 pCL1920。
6.如权利要求 1所述的重组大肠杆菌,其特征在于,所述大肠杆菌选大肠杆菌 MG1655、 大肠杆菌 DH5a、 大肠杆菌 JM109、 大肠杆菌 W3110或大肠杆菌 XL1-Blue。
7. 如权利要求 6所述的重组大肠杆菌, 其特征在于, 所述大肠杆菌选大肠杆菌 DH5a。
8. 如权利要求 1 所述的重组大肠杆菌, 其特征在于, 所述重组大肠杆菌 DALA为 DH5a/pUC-he AM-hemL+ pCLl 920-rhtA。
9. 权利要求 1所述重组大肠杆菌在生产 5-氨基乙酰丙酸中的应用, 其特征在于, 所述 应用是以所述重组大肠杆菌在改良的无机盐培养基中发酵葡萄糖来生产 5-氨基乙酰丙酸; 其中, 所述改良无机盐培养基配方为: 葡萄糖 5-50 g/L, (NH4)2S04 10-30 g/L, ΚΗ2Ρ04 1-8 g/L, Na2HP04 12H20 10-30 g/L, MgS04-7H20 0.1-1.5 g/L, MnS04 7H20 0.001-0.1 g/L, 酵 母粉 0.5-3 g/L, 异丙基 -β-D-硫代半乳糖苷(IPTG) 0.05-lmM; 所述发酵中培养基中添加 浓度为 50-100 g/mL的氨苄青霉素和浓度为 30-50 g/mL的壮观霉素。
10. 如权利要求 9所述重组大肠杆菌在生产 5-氨基乙酰丙酸中的应用, 其特征在于, 所 述重组大肠杆菌在改良的无机盐培养基中发酵葡萄糖的发酵条件为: 菌种接种量以体积百 分比计为 2%〜5%, 发酵温度为 35°C〜38°C, pH为 6.0〜7.0, 溶氧控制在 50%以上, 发酵 时间为 36〜60h。
PCT/CN2011/001906 2011-03-31 2011-11-14 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用 WO2012129748A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013550726A JP5895004B2 (ja) 2011-03-31 2011-11-14 組み換え大腸菌及び5−アミノレブリン酸の生産におけるその応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110079886.X 2011-03-31
CN201110079886XA CN102206606B (zh) 2011-03-31 2011-03-31 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用

Publications (1)

Publication Number Publication Date
WO2012129748A1 true WO2012129748A1 (zh) 2012-10-04

Family

ID=44695669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001906 WO2012129748A1 (zh) 2011-03-31 2011-11-14 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用

Country Status (3)

Country Link
JP (1) JP5895004B2 (zh)
CN (1) CN102206606B (zh)
WO (1) WO2012129748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769748A (zh) * 2023-07-07 2023-09-19 江南大学 一种5-氨基乙酰丙酸合成酶突变体及产b12前体ala的大肠杆菌

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206606B (zh) * 2011-03-31 2013-02-27 山东大学 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用
CN103981203B (zh) 2013-02-07 2018-01-12 中国科学院天津工业生物技术研究所 5‑氨基乙酰丙酸高产菌株及其制备方法和应用
CN104004701B (zh) * 2014-06-18 2017-02-15 江南大学 一种构建高产5‑氨基乙酰丙酸大肠杆菌工程菌株的方法
CN104017767B (zh) * 2014-06-18 2016-07-06 江南大学 一种利用组合调控策略提高5-氨基乙酰丙酸产量的方法
CN104561158B (zh) * 2015-01-13 2018-01-16 江南大学 一种添加Fe2+提高大肠杆菌工程菌合成5‑氨基乙酰丙酸的方法
JP6499510B2 (ja) * 2015-05-07 2019-04-10 国立大学法人神戸大学 遺伝子組み換え酵母及びそれを用いた5−アミノレブリン酸の製造法
CN104830748B (zh) * 2015-06-02 2018-04-06 江南大学 一种弱化hemB基因表达提高大肠杆菌合成5‑氨基乙酰丙酸的方法
CN104928226A (zh) * 2015-07-17 2015-09-23 山东大学 一株重组谷氨酸棒杆菌及其在生产5-氨基乙酰丙酸中的应用
CN107287173B (zh) * 2016-04-13 2021-01-05 南京诺云生物科技有限公司 一种胸苷磷酸化酶蛋白突变体
CN107287221B (zh) * 2016-04-13 2021-01-05 南京诺云生物科技有限公司 人工合成的编码胸苷磷酸化酶蛋白的基因及其应用
CN112831483B (zh) * 2018-03-08 2022-11-04 中国科学院天津工业生物技术研究所 5-氨基乙酰丙酸合成酶突变体及其宿主细胞和应用
CN108517327B (zh) * 2018-04-20 2020-10-30 中国科学院天津工业生物技术研究所 5-氨基乙酰丙酸高产菌株及其制备方法和应用
CN114134184B (zh) * 2021-11-25 2023-11-28 南宁汉和生物科技股份有限公司 一种添加维生素b6提高大肠杆菌工程菌合成5-氨基乙酰丙酸的方法
CN117701480B (zh) * 2022-12-30 2024-10-01 山东大学 一种产5-氨基乙酰丙酸菌的高通量筛选系统、方法及其应用
CN118064475B (zh) * 2024-04-19 2024-07-09 天津科技大学 一种5-氨基乙酰丙酸生产菌株及其构建方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322132C (zh) * 2005-04-19 2007-06-20 浙江大学 生产5-氨基乙酰丙酸的工程菌及其构建方法
CN101115832A (zh) * 2004-11-26 2008-01-30 协和发酵工业株式会社 工业上有用的微生物
CN102206606A (zh) * 2011-03-31 2011-10-05 山东大学 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101115832A (zh) * 2004-11-26 2008-01-30 协和发酵工业株式会社 工业上有用的微生物
CN1322132C (zh) * 2005-04-19 2007-06-20 浙江大学 生产5-氨基乙酰丙酸的工程菌及其构建方法
CN102206606A (zh) * 2011-03-31 2011-10-05 山东大学 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IKEMI, M. ET AL.: "Cloning and characterization of genes involved in the biosynthesis of 8-aminolevulinic acid in Escherichia coli.", GENE, vol. 121, no. 1, 2 November 1992 (1992-11-02), pages 127 - 132 *
KANG, ZHEN ET AL.: "Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose.", METABOLIC ENGINEERING, vol. 13, no. 5, 30 September 2011 (2011-09-30), pages 492 - 498 *
LIVSHITSA, V.A. ET AL.: "Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli.", RESEARCH IN MICROBIOLOGY, vol. 154, no. 2, 22 February 2003 (2003-02-22), pages 123 - 125 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769748A (zh) * 2023-07-07 2023-09-19 江南大学 一种5-氨基乙酰丙酸合成酶突变体及产b12前体ala的大肠杆菌

Also Published As

Publication number Publication date
JP5895004B2 (ja) 2016-03-30
CN102206606B (zh) 2013-02-27
JP2014504878A (ja) 2014-02-27
CN102206606A (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2012129748A1 (zh) 一株重组大肠杆菌及其在生产5-氨基乙酰丙酸中的应用
CN106190937B9 (zh) 一种构建重组大肠杆菌生物合成2’-岩藻乳糖的方法
CN109666658B (zh) 用于制备nmn的烟酰胺磷酸核糖转移酶、编码基因、重组载体及应用
WO2015120775A1 (zh) 一种产l-氨基酸的重组菌、其构建方法及l-氨基酸生产方法
CN111019878B (zh) L-苏氨酸产量提高的重组大肠杆菌及其构建方法与应用
CN112501095B (zh) 一种合成3-岩藻乳糖的重组大肠杆菌构建方法及其应用
CN113549588B (zh) 用于产生5-羟基色氨酸的基因工程菌及其构建方法与应用
CN111979163B (zh) 一种重组罗氏真氧菌及其制备方法和应用
CN104195190B (zh) 一种利用重组大肠杆菌厌氧生产5‑氨基乙酰丙酸的方法
CN113122490B (zh) 双基因缺陷型工程菌及其在提高n-乙酰氨基葡萄糖产量的应用
CN104928226A (zh) 一株重组谷氨酸棒杆菌及其在生产5-氨基乙酰丙酸中的应用
CN107201374B (zh) 光学纯meso-2,3-丁二醇高产工程菌株的构建方法及应用
CN108998401B (zh) 一种生产3-氨基异丁酸的方法
CN113583925B (zh) 一种代谢工程大肠杆菌发酵制备广藿香醇的方法
CN111394289B (zh) 一种基因工程菌及其应用,生产前列腺素e2的方法
US10480003B2 (en) Constructs and systems and methods for engineering a CO2 fixing photorespiratory by-pass pathway
CN107201375B (zh) 生产(r,r)-2,3-丁二醇基因工程菌株的构建方法及其应用
CN112852847B (zh) 一种重组酿酒酵母菌株及其构建方法与应用
CN114891707A (zh) 重组菌株及其全细胞催化生产胆红素的方法
CN113832090A (zh) 一种高产维生素k2的重组纳豆枯草芽孢杆菌,制备方法和用途
WO2017059626A1 (zh) 氨基转移酶和异构酶在催化形成L-allo-Ile中的应用
CN113493758A (zh) 一株缩短发酵周期的产酪醇重组大肠杆菌及其应用
CN108795832B (zh) 一种内源l-门冬酰胺酶ii基因敲除的宿主菌、其制备方法及其应用
CN112458108A (zh) 一种在谷氨酸棒状杆菌中利用木糖生成谷氨酸的合成路径的构建方法
CN115960874B (zh) 一种谷氨酸棒杆菌内源GlcNAc6P磷酸酶及提高GlcNAc产量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862009

Country of ref document: EP

Kind code of ref document: A1