WO2012127778A1 - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
WO2012127778A1
WO2012127778A1 PCT/JP2012/001144 JP2012001144W WO2012127778A1 WO 2012127778 A1 WO2012127778 A1 WO 2012127778A1 JP 2012001144 W JP2012001144 W JP 2012001144W WO 2012127778 A1 WO2012127778 A1 WO 2012127778A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
cladding layer
light emitting
semiconductor light
Prior art date
Application number
PCT/JP2012/001144
Other languages
English (en)
French (fr)
Inventor
秀紀 春日井
折田 賢児
啓 大野
山中 一彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013505786A priority Critical patent/JP5963004B2/ja
Priority to CN201280014025.6A priority patent/CN103444021B/zh
Publication of WO2012127778A1 publication Critical patent/WO2012127778A1/ja
Priority to US14/029,543 priority patent/US8942269B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3214Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities comprising materials from other groups of the periodic system than the materials of the active layer, e.g. ZnSe claddings and GaAs active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to a nitride semiconductor light emitting device, and more particularly to a nitride semiconductor light emitting device with high luminous efficiency and low operating voltage.
  • III-V nitride compound semiconductors represented by gallium nitride (GaN), so-called nitride semiconductors, are attracting attention.
  • a nitride semiconductor is represented by a general formula of In x Ga y Al 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1), and is a group III element indium (In). It is a compound semiconductor composed of at least one of gallium (Ga) and aluminum (Al) and nitrogen (N) which is a group V element.
  • GaN gallium nitride
  • LED Light Emitting Diode
  • a semiconductor laser such as a laser diode (LD) that provides a waveguide on a device and converts carriers injected therein into light by stimulated emission.
  • LD laser diode
  • Light emitting diodes using nitride semiconductors have been actively developed as white light LEDs combined with phosphors as backlight sources for lighting devices and liquid crystal display devices.
  • blue-violet laser diodes that emit laser light having an emission wavelength of 400 to 410 nm are used as light sources for Blu-ray disc recording and playback devices. .
  • nitride semiconductor light-emitting elements whose emission wavelengths have been extended from the blue region to the green region have been developed and produced as display light sources.
  • a nitride semiconductor light emitting device that emits light capable of reducing speckle noise, which is a drawback of laser light, such as a super luminescent diode (SLD) is also developed. It has become like this.
  • a highly efficient light emitting device is realized by generating stimulated emission light in an optical waveguide as described above.
  • the optical confinement factor of the optical waveguide In order to efficiently obtain this stimulated emission light, it is necessary to increase the optical confinement factor of the optical waveguide.
  • As a method for increasing the optical confinement factor for example, in the prior art, there is a method using GaN as the guide layer and Al x Ga 1-x N (0 ⁇ x ⁇ 1) as the cladding layer. In this case, by increasing the Al composition in the Al x Ga 1-x N of the cladding layer, the refractive index is significantly smaller than that of the GaN of the guide layer. As a result, the refractive index difference is increased and the optical confinement factor is increased. can do.
  • Patent Document 1 discloses a laser diode that can achieve high optical confinement and at the same time obtain a low operating voltage.
  • the structure of the conventional laser diode disclosed in Patent Document 1 will be described with reference to FIG.
  • a conventional laser diode 2100 has an n-type contact layer 2110, an n-type lower cladding layer 2130, an n-type lower waveguide layer 2140, a multiple quantum well (MQW) on a substrate 2101 made of a sapphire substrate or the like.
  • MQW multiple quantum well
  • an upper clad layer 2180 made of a transparent conductive film is formed on the p-type upper waveguide layer 2170 above the active region 2155 of the MQW region 2150. Furthermore, a pair of insulating layer portions 2185 are formed to face each other with the upper cladding layer 2180 interposed therebetween.
  • a p-side electrode 2190 made of metal is formed on the upper clad layer 2180 and the insulating layer portion 2185.
  • an n-side electrode 2120 made of metal is formed on the first exposed region of n-type contact layer 2110.
  • the inventors of the present application can reduce the operating voltage in the structure of the conventional laser diode 2100, but stimulated emission can be achieved with an injection current within the range of use. It has been found that a desired light output cannot be obtained because of no occurrence of light.
  • ITO Indium Tin Oxide
  • the bulk resistance is sufficiently low and light absorption of emitted light is achieved. This is because it is difficult to produce a highly crystalline transparent conductive film having a small thickness.
  • the p-type upper waveguide layer 2170 and the upper cladding layer made of the transparent conductive film are formed even when the laser diode 2100 having the structure shown in FIG. There is a problem in that internal loss occurs due to light absorption at the interface with 2180, and the effective efficiency decreases.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a nitride semiconductor light emitting device having high luminous efficiency and low operating voltage.
  • the nitride semiconductor light emitting device is a nitride semiconductor light emitting device having an optical waveguide, and the semiconductor light emitting device includes at least a first cladding layer, an active layer, and a second cladding layer.
  • the second cladding layer includes a transparent conductor layer made of a transparent conductor, and a nitride semiconductor layer made of a nitride semiconductor, which is formed on the active layer side of the transparent conductor layer. It has.
  • the nitride semiconductor layer close to the active layer of the second cladding layer.
  • the transparent conductor layer is composed of a transparent conductive oxide film having low crystallinity, it is compared with a nitride semiconductor light emitting device configured to confine light in a single layer of the transparent conductor layer.
  • an increase in internal loss can be suppressed.
  • the transparent conductor layer in the second cladding layer contributes to vertical light confinement.
  • the nitride semiconductor layer formed on the side close to the active layer can be thinned, the series resistance of the nitride semiconductor layer can be reduced. As a result, it is possible to realize a nitride semiconductor light emitting device that can operate at a low voltage.
  • the nitride semiconductor layer preferably contains at least Al.
  • the nitride semiconductor layer is made of Al x In y Ga 1-xy N (0 ⁇ x ⁇ 0.82, 0 ⁇ y ⁇ 0.18). 0 ⁇ 1-xy ⁇ 1).
  • the nitride semiconductor light emitting device includes a guide layer provided between the active layer and the second cladding layer, and a total film of the guide layer and the second cladding layer.
  • the thickness d is preferably 0.1 ⁇ m ⁇ d ⁇ 0.5 ⁇ m.
  • the optical waveguide has a vertical mesa structure formed by digging from the second cladding layer to a part of the first cladding layer. preferable.
  • the material of the transparent conductor is any one of indium oxide to which tin is added, tin oxide to which antimony is added, and zinc oxide. It is preferable that
  • the thickness of the transparent conductor layer is larger than 100 nm.
  • nitride semiconductor light emitting device According to the nitride semiconductor light emitting device according to the present invention, a nitride semiconductor light emitting device with high luminous efficiency and low operating voltage can be realized.
  • FIG. 1A is a top view of a nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the nitride semiconductor light-emitting device according to the first embodiment of the present invention taken along the line A-A ′ of FIG. 1A.
  • FIG. 2 is a view for explaining the method for manufacturing the nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram comparing calculation parameters and characteristics of six types of nitride semiconductor light emitting devices having different structures.
  • FIG. 4A is a diagram showing a structure for explaining a design example of the second upper cladding layer in the nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 4B is a diagram showing a relationship between the extinction coefficient (K) and the waveguide loss ( ⁇ i) of ITO when the structure of FIG. 4A is used.
  • FIG. 5A is a diagram showing a structure for explaining a design example of an upper guide layer and a first upper cladding layer in the nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 5B is a diagram showing the relationship between the thickness of the second guide layer and the first upper cladding layer and the waveguide loss in the nitride semiconductor light emitting device shown in FIG.
  • FIG. 5A is a diagram showing the relationship between the film thicknesses of the second guide layer and the first upper cladding layer and the optical confinement coefficient in the nitride semiconductor light emitting device shown in FIG. 5A.
  • FIG. 6 is a diagram showing the relationship between the film thickness of the second upper cladding layer and the waveguide loss in the nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 7A is a top view of the nitride semiconductor light-emitting device according to the second embodiment of the present invention.
  • FIG. 7B is a cross-sectional view of the nitride semiconductor light emitting device according to the second embodiment of the present invention taken along line A-A ′ of FIG. 7A.
  • FIG. 8 is a view for explaining the method for manufacturing the nitride semiconductor light emitting device according to the second embodiment of the present invention.
  • FIG. 9 is a diagram comparing calculated parameters and characteristics of six types of nitride semiconductor light emitting devices having different structures.
  • FIG. 10A is a diagram showing a structure of a nitride semiconductor light emitting device used for explaining a design example of the second upper cladding layer.
  • FIG. 10B is a diagram showing the relationship between the extinction coefficient (K) and waveguide loss ( ⁇ i) of ITO when the structure of FIG. 10A is used.
  • FIG. 11A is a diagram showing a structure of a nitride semiconductor light emitting device used for explaining a design example of an upper guide layer and a first upper clad layer.
  • FIG. 11B is a diagram showing the relationship between the thickness of the second guide layer and the first upper cladding layer and the waveguide loss in the nitride semiconductor light emitting device shown in FIG. 11A.
  • FIG. 11C is a diagram showing the relationship between the film thicknesses of the second guide layer and the first upper cladding layer and the optical confinement factor in the nitride semiconductor light emitting device shown in FIG. 11A.
  • FIG. 12A is a top view of a nitride semiconductor light emitting device according to the third embodiment of the present invention.
  • 12B is a cross-sectional view of the nitride semiconductor light-emitting device according to the third embodiment of the present invention taken along the line A-A 'of FIG. 12A.
  • FIG. 12A is a top view of a nitride semiconductor light emitting device according to the third embodiment of the present invention.
  • 12B is a cross-sectional view of the nitride semiconductor light-emitting device according to
  • FIG. 13A shows current-light output characteristics and current-voltage in a nitride semiconductor light emitting device (structure G) manufactured using the parameters shown in FIG. 9 in the nitride semiconductor light emitting device according to the third embodiment of the present invention. It is a figure which shows a characteristic.
  • FIG. 13B shows current-light output characteristics and current-voltage in a nitride semiconductor light emitting device (structure J) manufactured using the parameters shown in FIG. 9 in the nitride semiconductor light emitting device according to the third embodiment of the present invention. It is a figure which shows a characteristic.
  • FIG. 13C shows a current-light output characteristic and a current-voltage in the nitride semiconductor light emitting device (structure K) manufactured using the parameters shown in FIG.
  • FIG. 14 is a cross-sectional view of a nitride semiconductor light emitting device according to the fourth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a nitride semiconductor light emitting device according to the fifth embodiment of the present invention.
  • FIG. 16 is a view for explaining the method for manufacturing the nitride semiconductor light-emitting device according to the fifth embodiment of the present invention.
  • FIG. 17 is a diagram for explaining the structure of a conventional laser diode.
  • the nitride semiconductor light emitting device 100 is a laser diode using a nitride semiconductor, and has an emission wavelength of 390 nm to 420 nm, preferably a center wavelength of 405 nm.
  • FIG. 1A is a top view of the nitride semiconductor light emitting device according to the first embodiment of the present invention
  • FIG. 1B is a cross-sectional view of the nitride semiconductor light emitting device taken along line A-A ′ of FIG. 1A.
  • a nitride semiconductor light emitting device 100 is formed on, for example, an n-type GaN bulk substrate having a (0001) plane, for example, an n-type GaN substrate.
  • Lower cladding layer 102 which is an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer, for example, lower guide layer 103 (first guide layer) which is an n-type GaN layer, for example, InGaN active
  • the electron barrier layer 106 which is a layer, and the upper cladding layer 107 (second cladding layer) have a layer structure in which the layers are sequentially stacked.
  • the upper clad layer 107 includes a plurality of layers, and in this embodiment, has a two-layer structure of a first upper clad layer 108 and a second upper clad layer 109.
  • the first upper cladding layer 108 is made of a nitride semiconductor, and is a nitride semiconductor cladding layer (nitride semiconductor layer) formed closer to the active layer 104 than the second upper cladding layer 109.
  • the first upper cladding layer 108 is formed of, for example, p-type Al x + y In 1-y Ga 1-x N (0 ⁇ x ⁇ 0.82, 0 ⁇ y ⁇ 0.18, 0 ⁇ 1-xy ⁇ 1). Can be configured.
  • the second upper clad layer 109 is composed of a transparent conductive film (transparent conductor), and is formed with a transparent conductor clad layer (transparent conductor layer) formed farther from the active layer 104 than the first upper clad layer 108. It is.
  • the second upper cladding layer 109 can be made of, for example, ITO.
  • the nitride semiconductor light emitting device 100 includes a ridge type optical waveguide 120 having a ridge (projection) formed by deeply digging up to a layer below the active layer 104 by etching.
  • the optical waveguide 120 in the present embodiment is an optical waveguide having a vertical mesa structure formed by deepening from the second upper cladding layer 109 to a part of the lower cladding layer 102.
  • An insulating film 130 made of SiO 2 is formed on the upper surface of the lower cladding layer 102 and the side surface of the ridge of the optical waveguide 120.
  • the p-side electrode 140 is formed on the insulating film 130 and the upper surface of the second upper cladding layer 109 (the contact surface 125 of the convex portion of the optical waveguide 120) so as to cover the ridge of the lower cladding layer 102 and the optical waveguide 120. Is formed.
  • a pad electrode 141 is formed so as to cover the p-side electrode 140.
  • an n-side electrode 150 is formed on the back surface of the substrate 101, that is, the surface opposite to the surface on which the lower cladding layer 102 is formed.
  • the first upper clad layer 108 As described above, in the upper clad layer 107, by providing the first upper clad layer 108 made of a nitride semiconductor immediately below the second upper clad layer 109 made of a transparent conductive film, the first upper clad layer 108 and the immediately lower portion thereof are provided. A refractive index difference occurs between the upper guide layer 105 made of p-type GaN. That is, light confinement can be performed by the first upper cladding layer 108 close to the active layer 104. As a result, even if the second upper cladding layer 109 is composed of a transparent conductive oxide film having low crystallinity and has a high extinction coefficient, an increase in internal loss ( ⁇ i) due to light absorption can be suppressed. . As a result, a nitride semiconductor light emitting device with high luminous efficiency can be realized.
  • the second upper clad layer 109 made of a transparent conductive film also functions as a clad layer for confining light and carriers.
  • the second upper clad layer 109 can perform vertical light confinement.
  • the thickness of the first upper cladding layer 108 made of p-type Al x + y In 1-y Ga 1-x N can be reduced, so that the series resistance of the first upper cladding layer 108 can be reduced. Can do.
  • a nitride semiconductor light emitting device that operates at a low voltage can be realized.
  • the nitride semiconductor light emitting device 100 As described above, according to the nitride semiconductor light emitting device 100 according to the first embodiment of the present invention, it is possible to realize a nitride semiconductor light emitting device with high luminous efficiency and low operating voltage.
  • FIG. 2 is a view for explaining the method for manufacturing the nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • a film of 1.5 ⁇ m of, for example, Al 0.05 Ga 0.95 N doped with Si is formed on the substrate 101 by MOCVD (metal organic chemical vapor deposition).
  • MOCVD metal organic chemical vapor deposition
  • the lower cladding layer 102 is formed by forming a film with a thickness.
  • the lower guide layer 103 made of, for example, Si-doped n-type GaN, for example, multiple In 0.6 Ga 0.94 N well layers / In 0.02 Ga 0.98 N barrier layers (eg, three layers)
  • the formed active layer 104 for example, an upper guide layer 105 (thickness: 100 nm) made of Mg-doped GaN, and an electron barrier layer made of, for example, Mg-doped p-type Al 0.2 Ga 0.8 N 106 (film thickness 10 nm) are sequentially formed.
  • a laminated film of a nitride semiconductor layer and a transparent conductor layer is formed as the upper clad layer 107.
  • a p-type Al 0.05 Ga 0.95 N doped with Mg, for example, with a thickness of 150 nm is formed on the electron barrier layer 106 to form a first upper portion that is a nitride semiconductor layer.
  • the clad layer 108 is formed.
  • the second upper clad layer 109 which is a transparent conductor layer, is formed by taking it out of the growth furnace and depositing, for example, ITO with a film thickness of 200 nm using a sputtering apparatus or an electron beam evaporation apparatus.
  • an SiO 2 film having a thickness of 800 nm is formed on the second upper clad layer 109 using a plasma CVD method. Thereafter, the SiO 2 film is selectively removed by photolithography and etching using hydrofluoric acid to form a SiO 2 mask having a width of, for example, 1.5 ⁇ m, which will later become a ridge-type optical waveguide 120. Thereafter, dry etching is performed using Cl 2 gas, and the region up to the lower cladding layer 102 (part or all) is etched in a region not covered with the SiO 2 mask. Thereby, a convex (ridge) pattern having a width of 1.5 ⁇ m as shown in FIG. 2B is formed.
  • an insulating film 130 is formed by forming a 300 nm thick SiO 2 film by plasma CVD so as to cover the entire upper surface of the substrate 101. Thereafter, by removing the SiO 2 mask, a ridge type optical waveguide 120 having an upper clad layer 107 having a two-layer structure can be formed as shown in FIG.
  • palladium (Pd) having a thickness of 45 nm and platinum (Pt) having a thickness of 50 nm are formed so as to cover the optical waveguide 120 by using photolithography and EB vapor deposition.
  • P-side electrode 140 is formed.
  • a film in which titanium (Ti) with a thickness of 50 nm and gold (Au) with a thickness of 1000 nm are stacked is formed by photolithography and EB vapor deposition, and then the thickness of Au is formed by electrolytic plating. Is increased to 10 ⁇ m, and a pad electrode 141 is formed.
  • the substrate 101 is thinned by polishing to a thickness of about 100 ⁇ m, and then an EB vapor deposition apparatus is used to form Ti having a thickness of 5 nm as the n-side electrode 150 on the back surface of the substrate 101. Pt having a thickness of 10 nm and Au having a thickness of 1000 nm are formed. Thereafter, cleavage is performed to separate the chips, and the nitride semiconductor light emitting device 100 according to this embodiment is manufactured.
  • the upper clad layer 107 As the upper clad layer 107, a first upper clad layer 108 made of a nitride semiconductor formed on the side close to the active layer 104, and a second upper clad layer 109 made of a transparent conductor formed thereon, The reason for the two-layer structure will be described with reference to FIG.
  • FIG. 3 is a diagram comparing calculation parameters and characteristics of nitride semiconductor light emitting devices of six types having different structures (“Structure A” to “Structure F”). In the nitride semiconductor light emitting device having each structure in FIG. 3, the conditions were set so that each layer of each structure corresponds to each layer of the nitride semiconductor light emitting device shown in FIG. 1B.
  • “Structure A” is a structure using only Al 0.05 Ga 0.95 N as the upper cladding layer 107 and is a standard structure not using a transparent conductor layer.
  • “Structure B” is a structure using only the second upper clad layer 109 made of ITO without the first upper clad layer (nitride semiconductor layer) 108.
  • “Structure C” is a structure using GaN as the material of the first upper cladding layer 108 and using ITO as the material of the second upper cladding layer 109.
  • “Structure D” is a structure in which Al 0.05 Ga 0.95 N is used as the material of the first upper cladding layer 108 and ITO is used as the material of the second upper cladding layer 109.
  • “Structure E” is a structure that does not use a transparent conductor layer as in “Structure A”, but is a structure in which the thickness of the upper cladding layer 107 is thin, and Al 1. This is a structure using 05 Ga 0.95 N and not using the second upper cladding layer 109.
  • “Structure F” is a structure using Al 0.2 In 0.1 Ga 0.7 N as the material of the first upper cladding layer 108 and ITO as the material of the second upper cladding layer 109.
  • the nitride semiconductor light emitting device 100 is the structure D and the structure F.
  • the first upper cladding layer 108 has In ( Indium) is not included.
  • FIG. 3 summarizes the values of the optical confinement coefficient ( ⁇ ) and the waveguide loss ( ⁇ i) that determine the current-light output characteristics for the nitride semiconductor light emitting devices having these six types of structures.
  • the nitride semiconductor light emitting devices in the structures D and F that are the structures according to the present embodiment have a higher optical confinement factor than the nitride semiconductor light emitting device of the structure A that is a standard laser structure. And a waveguide loss of the same level as that of the structure A can be obtained.
  • the current-voltage characteristics are improved without degrading the current-light output characteristics as compared with the nitride semiconductor light emitting devices having the standard structure A. be able to.
  • FIG. 4A is a diagram illustrating a structure of a nitride semiconductor light emitting device used for explaining a design example of the second upper clad layer 109.
  • FIG. 4B is a diagram showing the relationship between the extinction coefficient (K) of ITO and the waveguide loss ( ⁇ i) when the structure of FIG. 4A is used, and the extinction coefficient (K) of ITO with respect to the waveguide loss. It is the figure which showed the dependence.
  • the waveguide loss in the nitride semiconductor light emitting device of “structure B” or “structure C” is guided in the nitride semiconductor light emitting device of “structure A”, “structure D”, or “structure F”.
  • the extinction coefficient (K) of the second upper clad layer 109 (ITO) may be reduced to about 10 ⁇ 3 , but it is necessary to increase the crystallinity of ITO. .
  • K the extinction coefficient of the second upper clad layer 109
  • the second upper cladding layer 109 is ITO having low crystallinity, an increase in waveguide loss ( ⁇ i) due to light absorption is suppressed. be able to.
  • the second upper cladding layer 109 made of ITO has a lower refractive index than the first upper cladding layer 108 made of p-type AlGaN, the second upper cladding layer 109 also functions as an optical confinement layer. Thereby, the film thickness of the first upper cladding layer 108 can be reduced, and the series resistance can be lowered. Therefore, a nitride semiconductor light emitting device with high luminous efficiency and low operating voltage can be realized.
  • FIG. 5A is a diagram showing the structure of a nitride semiconductor light emitting device used for explaining a design example of the upper guide layer 105 and the first upper clad layer 108.
  • FIG. 5B is a diagram showing the relationship between the thickness of the second guide layer and the first upper cladding layer and the waveguide loss in the nitride semiconductor light emitting device shown in FIG. 5A.
  • FIG. 5C is a diagram showing the relationship between the film thicknesses of the second guide layer and the first upper cladding layer and the optical confinement factor in the nitride semiconductor light emitting device shown in FIG. 5A.
  • the thickness of the p-type GaN that is the upper guide layer 105 is 100 nm
  • the thickness of the p-type AlGaN that is the first upper cladding layer 108 is 150 nm
  • the thickness of the second upper cladding layer 109 is Was 200 nm.
  • the optical confinement factor ( ⁇ ) and the waveguide loss ( ⁇ i) are the film thickness (T1) of the p-type GaN that is the upper guide layer 105 and the film of the p-type AlGaN that is the first upper cladding layer 108. It is determined from the thickness (T2).
  • the effect of the nitride semiconductor light emitting device according to the present embodiment described above may be obtained. You may not get enough.
  • the thickness of the upper guide layer 105 made of p-type GaN is T1
  • the thickness of the first upper clad layer 108 made of p-type AlGaN is T2.
  • the optical confinement factor ( ⁇ ) and waveguide loss ( ⁇ i) for thickness change were calculated. The calculation results are shown in FIGS. 5B and 5C.
  • a nitride semiconductor having a higher optical confinement factor and lower waveguide loss than the standard structure A optical confinement factor: 3.4%, waveguide loss: 3.5 cm ⁇ 1 .
  • the film thickness (T2) of the first upper clad layer 108 is preferably 150 nm or more.
  • the thickness (T1) of the upper guide layer 105 is 150 nm
  • the thickness (T2) of the first upper cladding layer 108 is preferably 100 nm or more.
  • the film thickness (T1) of the upper guide layer 105 is less than 100 nm or greater than 150 nm, the waveguide loss ( ⁇ i) increases as compared with the standard structure A, and the optical confinement factor decreases.
  • the threshold current characteristic is increased.
  • FIG. 6 is a diagram showing the relationship between the film thickness of the second upper cladding layer and the waveguide loss in the nitride semiconductor light emitting device according to the first embodiment of the present invention.
  • the film thickness of the second upper cladding layer 109 is 200 nm.
  • the standard structure A waveguide loss: 3.5 cm.
  • the thickness of at least the second upper cladding layer 109 is at least 100 nm as shown in FIG. Thereby, the light absorption by the electrode on the contact surface of the second upper cladding layer 109 can be sufficiently reduced.
  • the total film thickness d of the upper guide layer 105 and the upper clad layer 107 (the first upper clad layer 108 and the second upper clad layer 109) is 0.1 ⁇ m ⁇ d ⁇ 0.5 ⁇ m. It is preferable that
  • the case where p-type AlGaN is used as the first upper cladding layer 108 has been mainly described.
  • the first upper cladding layer 108 is a nitride semiconductor layer containing at least Al
  • the effects of the present invention can be obtained.
  • the most preferable Al composition of the first upper cladding layer 108 is when the Al composition x is 0 ⁇ x ⁇ 0.1.
  • the Al composition x is higher than 0.1, the series resistance of the first upper cladding layer 108 is increased and the threshold current characteristics are deteriorated, or the difference in lattice constant from GaN is increased and cracks are generated, resulting in yield. This is because it has an adverse effect.
  • the material of the first upper clad layer 108 is not limited to AlGaN, but p-type AlInN or quaternary mixed crystal p having a refractive index lower than that in the case where the Al composition x of AlGaN is 0 ⁇ x ⁇ 0.1. The same effect can be obtained even if a type of AlInGaN is used.
  • the nitride semiconductor light emitting device 200 according to the second embodiment can further increase the allowable upper limit value for the extinction coefficient of ITO compared to the nitride semiconductor light emitting device 100 according to the first embodiment.
  • the optical confinement factor can be increased. Therefore, a more efficient nitride semiconductor light emitting device can be realized.
  • the light emission wavelength of the nitride semiconductor light emitting device according to this embodiment is, for example, 420 nm to 490 nm, and the center wavelength is preferably 450 nm.
  • FIG. 7A is a top view of the nitride semiconductor light emitting device according to the second embodiment of the present invention
  • FIG. 7B is a cross-sectional view of the nitride semiconductor light emitting device taken along the line A-A ′ of FIG. 7A.
  • a nitride semiconductor light emitting device 200 is formed on, for example, an n-type GaN bulk substrate on a substrate 201, for example, an n-type.
  • a lower clad layer 202 (first clad layer) which is an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer, for example, a lower guide layer 203 (first gamma layer) which is an n-type In 0.02 Ga 0.98 N layer.
  • a second guide layer for example, an electron barrier layer 206 which is a thin p-type Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer, and an upper cladding layer 207 (second cladding layer) are sequentially stacked.
  • an upper guide layer 205 for example, a p-type In 0.02 Ga 0.98 N layer
  • a second guide layer for example, an electron barrier layer 206 which is a thin p-type Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer, and an upper cladding layer 207 (second cladding layer) are sequentially stacked.
  • the upper clad layer 207 includes a plurality of layers, and in the present embodiment, has a two-layer structure of a first upper clad layer 208 and a second upper clad layer 209.
  • the first upper cladding layer 208 is made of a nitride semiconductor, and is a nitride semiconductor cladding layer (nitride semiconductor layer) formed closer to the active layer 204 than the second upper cladding layer 209.
  • the first upper cladding layer 208 is formed of, for example, p-type Al x + y In 1-y Ga 1-x N (0 ⁇ x ⁇ 0.82, 0 ⁇ y ⁇ 0.18, 0 ⁇ 1-xy ⁇ 1). Can be configured.
  • the second upper clad layer 209 is made of a transparent conductive film (transparent conductor), and is formed with a transparent conductor clad layer (transparent conductor layer) formed farther from the active layer 204 than the first upper clad layer 208. It is.
  • the second upper cladding layer 209 can be made of, for example, ITO.
  • the nitride semiconductor light emitting device 200 includes a ridge type optical waveguide 220 having a ridge (projection) formed by deeply digging up to a layer below the active layer 204.
  • the optical waveguide 220 in the present embodiment is a vertical mesa formed by deepening from the first upper cladding layer 208 to a part of the lower cladding layer 202.
  • An insulating film 230 made of SiO 2 is formed on the upper surface of the lower cladding layer 202 and the side surface of the ridge of the optical waveguide 220.
  • a second upper cladding layer 209 is formed on the insulating film 230 and on the upper surface of the first upper cladding layer 208 so as to cover the ridge of the lower cladding layer 202 and the optical waveguide 220.
  • a p-side electrode 240 is formed on the contact surface 225 of the convex portion of the second upper cladding layer so as to cover the second upper cladding layer 209.
  • a pad electrode 241 is formed so as to cover the p-side electrode 240.
  • an n-side electrode 250 is formed on the back surface of the substrate 201.
  • the optical waveguide 220 is bent with a radius of curvature of 3000 ⁇ m or more in the vicinity of the emission end, and the optical waveguide 220 is inclined with respect to the light emission end face.
  • the angle formed between the light emitting end face and the optical waveguide 220 is, for example, 10 degrees.
  • the first upper clad layer 208 made of a nitride semiconductor is provided immediately below the second upper clad layer 209 made of a transparent conductive film.
  • a refractive index difference is generated between the upper cladding layer 208 and the upper guide layer 205 made of p-type InGaN immediately below the upper cladding layer 208. That is, light confinement can be performed by the first upper cladding layer 208 close to the active layer 204.
  • the second upper clad layer 209 is composed of a transparent conductive oxide film having low crystallinity and the extinction coefficient is high, an increase in internal loss ( ⁇ i) due to light absorption can be suppressed. .
  • ⁇ i internal loss due to light absorption
  • the second upper clad layer 209 made of a transparent conductive film also functions as a clad layer for confining light and carriers, and vertical light confinement can be performed by the second upper clad layer 209.
  • the film thickness of the first upper cladding layer 208 made of p-type Al x + y In 1-y Ga 1-x N can be reduced, and the series resistance of the first upper cladding layer 208 can be reduced. Can do.
  • a nitride semiconductor light emitting device that operates at a low voltage can be realized.
  • the nitride semiconductor light emitting device 200 according to the second embodiment of the present invention, it is possible to realize a nitride semiconductor light emitting device with high luminous efficiency and low operating voltage.
  • FIG. 8 is a view for explaining the method for manufacturing the nitride semiconductor light emitting device according to the second embodiment of the present invention.
  • Al 0.05 Ga 0.95 N doped with Si is formed to a thickness of 1.5 ⁇ m on the substrate 201 by MOCVD, thereby forming the lower cladding layer 202.
  • a plurality of (for example, three layers) lower guide layers 203 for example, In 0.02 Ga 0.98 N doped with Si, for example, In 0.15 Ga 0.85 N well layers / GaN barrier layers, are formed.
  • Active layer 204 for example, upper guide layer 205 (thickness 100 nm) made of Mg-doped In 0.02 Ga 0.98 N, and Mg-doped p-type Al 0.2 Ga 0.8 N, for example.
  • the electron barrier layer 206 (film thickness 10 nm) is sequentially formed.
  • the upper clad layer 207 first, for example, a p-type Al 0.05 Ga 0.95 N doped with Mg is formed to a thickness of 150 nm, thereby forming a nitride semiconductor layer. A certain first upper clad layer 108 is formed.
  • an SiO 2 film having a thickness of 800 nm is formed on the first upper cladding layer 208 by plasma CVD. Thereafter, the SiO 2 film is selectively removed by photolithography and etching using hydrofluoric acid, and a SiO 2 mask having a width of, for example, 1.5 ⁇ m, which will later become a ridge-type optical waveguide 220 is formed. Thereafter, dry etching is performed using Cl 2 gas, and the region up to the lower cladding layer 102 (part or all) is etched in a region not covered with the SiO 2 mask. Thereby, a convex (ridge) pattern having a width of 1.5 ⁇ m as shown in FIG. 8A is formed.
  • an insulating film 230 is formed by forming a 300 nm thick SiO 2 film by plasma CVD so as to cover the entire upper surface of the substrate 101. Thereafter, by removing the SiO 2 mask, a ridge-type optical waveguide 220 can be formed as shown in FIG. 8B.
  • the second upper cladding layer 209 having a predetermined shape can be formed by, for example, depositing ITO with a film thickness of 200 nm and patterning using a sputtering apparatus or an electron beam evaporation apparatus. Thereby, as shown in FIG. 8C, an upper clad layer 207 having a two-layer structure can be formed.
  • Pd palladium
  • Pt platinum
  • P-side electrode 240 is formed.
  • a film in which titanium (Ti) with a thickness of 50 nm and gold (Au) with a thickness of 1000 nm are stacked is formed by photolithography and EB vapor deposition, and then the thickness of Au is formed by electrolytic plating. Is increased to 10 ⁇ m, and a pad electrode 241 is formed.
  • the substrate 201 is thinned by polishing to a thickness of about 100 ⁇ m, and then an EB deposition apparatus is used to form Ti having a thickness of 5 nm as an n-side electrode 250 on the back surface of the substrate 201. Pt having a thickness of 10 nm and Au having a thickness of 1000 nm are formed. Thereafter, cleavage is performed to separate the chips, and the nitride semiconductor light emitting device 200 according to this embodiment is manufactured.
  • the upper clad layer 207 As the upper clad layer 207, a first upper clad layer 208 made of a nitride semiconductor formed on the side close to the active layer 204, and a second upper clad layer 209 made of a transparent conductor formed thereon, The reason for the two-layer structure will be described with reference to FIG.
  • FIG. 9 is a diagram comparing the calculation parameters and the characteristics of nitride semiconductor light emitting devices of six types (“structure G” to “structure L”) having different structures.
  • structure G structure G
  • structure L structure L
  • the conditions were set so that each layer of each structure corresponds to each layer of the nitride semiconductor light emitting device shown in FIG. 7B.
  • “Structure G” is a structure using only Al 0.05 Ga 0.95 N as the upper cladding layer 207, and is a standard structure not using a transparent conductor layer.
  • “Structure H” is a structure using only the second upper cladding layer 209 made of ITO without the first upper cladding layer (nitride semiconductor layer) 208.
  • “Structure I” is a structure using GaN as the material of the first upper cladding layer 208 and using ITO as the material of the second upper cladding layer 209.
  • “Structure J” is a structure using Al 0.05 Ga 0.95 N as the material of the first upper cladding layer 208 and ITO as the material of the second upper cladding layer 209.
  • “Structure K” is a structure that does not use a transparent conductor layer like “Structure G”, but the upper cladding layer 207 has a thin film thickness, and the first upper cladding layer 208 has a film thickness as a material. This is a structure using Al 0.05 Ga 0.95 N of 150 nm and not using the second upper cladding layer 209.
  • “Structure L” is a structure in which Al 0.2 In 0.1 Ga 0.7 N is used as the material of the first upper cladding layer 208 and ITO is used as the material of the second upper cladding layer 209.
  • the nitride semiconductor light emitting device 200 has a structure J and a structure L.
  • the first upper cladding layer 208 has In ( Indium) is not included.
  • FIG. 9 summarizes the values of the optical confinement coefficient ( ⁇ ) and the waveguide loss ( ⁇ i) that determine the current-light output characteristics for the nitride semiconductor light emitting devices having these six types of structures.
  • nitride semiconductor light emitting devices in the structures J and L which are the structures according to the present embodiment a higher optical confinement factor than the nitride semiconductor light emitting device in the structure G which is a standard laser structure And a waveguide loss of the same level as that of the structure G can be obtained.
  • the nitride semiconductor light emitting device 200 according to the present embodiment it is possible to obtain current-light output characteristics equivalent to those of the standard structure G nitride semiconductor light emitting device, and to obtain current-voltage characteristics. Can be improved.
  • FIG. 10A is a diagram showing a structure of a nitride semiconductor light emitting device used for explaining a design example of the second upper clad layer 209.
  • FIG. 10B is a diagram showing the relationship between the extinction coefficient (K) of ITO and the waveguide loss ( ⁇ i) when the structure of FIG. 10A is used, and the extinction coefficient (K) of ITO with respect to the waveguide loss. It is the figure which showed the dependence.
  • the waveguide loss in the nitride semiconductor light emitting device of “Structure H” or “Structure I” is guided in the nitride semiconductor light emitting device of “Structure G”, “Structure J” or “Structure L”.
  • the extinction coefficient (K) of the second upper cladding layer 209 (ITO) may be reduced to about 10 ⁇ 3, but this requires that the crystallinity of the ITO be increased. .
  • the first upper clad layer 208 made of AlGaN having a low refractive index contributes to optical confinement, and the second upper clad layer 209. This is because there is almost no oozing of light into the water.
  • the second upper cladding layer 209 is ITO having low crystallinity, an increase in waveguide loss ( ⁇ i) due to light absorption is suppressed. be able to.
  • the second upper cladding layer 209 made of ITO has a lower refractive index than the first upper cladding layer 208 made of p-type AlGaN, the second upper cladding layer 209 also functions as an optical confinement layer. Thereby, the film thickness of the first upper cladding layer 208 can be reduced. Therefore, a nitride semiconductor light emitting device with high luminous efficiency and low operating voltage can be realized.
  • FIG. 11A is a diagram showing a structure of a nitride semiconductor light emitting device used for explaining a design example of the upper guide layer 205 and the first upper clad layer 208.
  • FIG. 11B is a diagram showing the relationship between the thickness of the second guide layer and the first upper cladding layer and the waveguide loss in the nitride semiconductor light emitting device shown in FIG. 11A.
  • FIG. 11C is a diagram showing the relationship between the film thicknesses of the second guide layer and the first upper cladding layer and the optical confinement factor in the nitride semiconductor light emitting device shown in FIG. 11A.
  • the thickness of the p-type InGaN serving as the upper guide layer 205 is set to 100 nm
  • the thickness of the p-type AlGaN serving as the first upper cladding layer 208 is set to 150 nm
  • the thickness of the second upper cladding layer 209 is determined.
  • the optical confinement factor ( ⁇ ) and the waveguide loss ( ⁇ i) are the film thickness (T1) of p-type InGaN that is the upper guide layer 205 and the film thickness of p-type AlGaN that is the first upper cladding layer 208. It is determined from (T2).
  • the effect of the nitride semiconductor light emitting device according to the present embodiment described above may be achieved. You may not get enough.
  • the thickness of the upper guide layer 205 made of p-type InGaN is T1
  • the thickness of the first upper clad layer 208 made of p-type AlGaN is T2.
  • the optical confinement factor ( ⁇ ) and waveguide loss ( ⁇ i) for thickness change were calculated. The results are shown in FIGS. 11B and 11C.
  • a nitride semiconductor having a higher optical confinement factor and a lower waveguide loss than the standard structure G (optical confinement factor: 2.46%, waveguide loss: 3.5 cm ⁇ 1 ).
  • the thickness (T2) of the second upper cladding layer 209 is 50 nm
  • the thickness (T1) of the second guide layer is preferably 200 nm.
  • the film thickness (T1) of the second guide layer is preferably 50 nm or more and 200 nm or less.
  • the thickness (T1) of the second guide layer is preferably 50 nm or more and 150 nm or less.
  • the film thickness (T2) of the second upper cladding layer 209 is 200 nm
  • the film thickness (T1) of the second guide layer is preferably 50 nm or more and 150 nm or less.
  • the film thickness (T1) of the second guide layer is preferably 50 nm or more and 100 nm or less.
  • the waveguide loss ( ⁇ i) increases as compared with the standard structure G. Further, since the optical confinement factor is lowered, the current-light output characteristic is deteriorated.
  • the case where p-type AlGaN is used as the first upper cladding layer 208 has been mainly described.
  • the first upper cladding layer 208 is a nitride semiconductor layer containing at least Al
  • the effects of the present invention can be obtained.
  • the most preferable Al composition of the first upper cladding layer 208 is when the Al composition x is 0 ⁇ x ⁇ 0.1.
  • the Al composition x is higher than 0.1, the series resistance of the first upper clad layer 208 is increased and the threshold current characteristics are deteriorated, or the difference in lattice constant from GaN is increased and cracks are generated. This is because it has an adverse effect.
  • the material of the first upper cladding layer 208 is not limited to AlGaN, but AlInN or a quaternary mixed crystal that is equal to or lower than the refractive index when the Al composition x of AlGaN is 0 ⁇ x ⁇ 0.1. Even if AlInGaN is used, the same effect can be obtained.
  • the film thickness of the second upper cladding layer 209 of the present embodiment is 200 nm, it is preferable that the film thickness be at least 100 nm.
  • the basic structure of the nitride semiconductor light emitting device 300 according to this embodiment is the same as that of the nitride semiconductor light emitting devices 100 and 200 according to the first and second embodiments. Therefore, in the present embodiment, the description will be focused on differences from the first and second embodiments.
  • the nitride semiconductor light emitting device will be described by taking a laser diode using a nitride semiconductor as an example.
  • FIG. 12A is a top view of the nitride semiconductor light emitting device according to the third embodiment of the present invention
  • FIG. 12B is a cross-sectional view of the nitride semiconductor light emitting device taken along line A-A ′ of FIG. 12A.
  • a nitride semiconductor light emitting device 300 is formed on, for example, an n-type GaN bulk substrate on a substrate 301, for example, an n-type.
  • a lower cladding layer 302 (first cladding layer) that is an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer, for example, a lower guide layer 303 (first layer) that is an n-type In 0.02 Ga 0.98 N layer.
  • a second guide layer for example, an electron barrier layer 306 which is a thin film p-type Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer, and an upper cladding layer 307 (second cladding layer) are sequentially stacked. It has a layered structure.
  • the upper clad layer 307 is composed of a plurality of layers, and in this embodiment, has a two-layer structure of a first upper clad layer 308 and a second upper clad layer 309.
  • the first upper cladding layer 308 is made of a nitride semiconductor, and is a nitride semiconductor cladding layer (nitride semiconductor layer) formed closer to the active layer 304 than the second upper cladding layer 309.
  • the first upper cladding layer 308 can be made of, for example, p-type Al x + y In 1-y Ga 1-x N.
  • the second upper clad layer 309 is composed of a transparent conductive film (transparent conductor), and is formed with a transparent conductor clad layer (transparent conductor layer) formed farther from the active layer 304 than the first upper clad layer 308. It is.
  • the second upper cladding layer 309 can be made of, for example, ITO.
  • the nitride semiconductor light emitting device 300 includes a ridge-type optical waveguide 320 having a ridge, in which a part or all of the first upper cladding layer 308 has a vertical mesa structure.
  • the surface of the first upper cladding layer 308 other than the uppermost portion of the optical waveguide 320, that is, the surface of the ridge side surface and the flat portion of the first upper cladding layer 308 is covered with an insulating film 330 made of, for example, SiO 2 .
  • the second upper clad layer 309 is formed so as to be joined to the surface of the uppermost first upper clad layer 308 of the optical waveguide 320. Further, the second upper clad layer 309 is formed so as to extend larger in the lateral direction than the upper surface of the convex portion (ridge) of the optical waveguide 320, and the convex portion of the optical waveguide 320 and a part of the surface of the insulating film 330 are formed. It is formed to cover.
  • a p-side electrode 340 is formed on the second upper cladding layer 309 via a contact surface 325. Further, a pad electrode 341 is formed so as to cover the p-side electrode. Further, an n-side electrode 350 is formed on the back surface of the substrate 301.
  • the first upper cladding layer 308 made of a nitride semiconductor is provided immediately below the second upper cladding layer 309 made of a transparent conductive film.
  • a refractive index difference is generated between the upper cladding layer 308 and the upper guide layer 305 made of p-type InGaN immediately below the upper cladding layer 308. That is, light confinement can be performed by the first upper cladding layer 308 close to the active layer 304.
  • the second upper cladding layer 309 is composed of a transparent conductive oxide film having low crystallinity and has a high extinction coefficient, an increase in internal loss ( ⁇ i) due to light absorption can be suppressed. .
  • ⁇ i internal loss due to light absorption
  • the second upper clad layer 309 made of a transparent conductive film also functions as a clad layer for confining light and carriers, and vertical light confinement can be performed by the second upper clad layer 309.
  • the film thickness of the first upper cladding layer 308 made of p-type Al x + y In 1-y Ga 1-x N can be reduced, and the series resistance of the first upper cladding layer 308 can be reduced.
  • the second upper cladding layer 309 is formed larger in the lateral direction than the convex portion of the optical waveguide 320, and the contact surface 325 with the p-side electrode 340 can be set large. Thereby, the contact resistance in the contact surface 325 can be reduced. As a result, a nitride semiconductor light emitting device that can operate at a lower voltage can be realized.
  • the nitride semiconductor light emitting device 300 As described above, according to the nitride semiconductor light emitting device 300 according to the third embodiment of the present invention, it is possible to realize a nitride semiconductor light emitting device with high luminous efficiency and a lower operating voltage.
  • FIGS. 13A to 13C show a nitride semiconductor light emitting device (structure G, structure J, structure K) manufactured using the parameters shown in FIG. 9 in the nitride semiconductor light emitting device according to the third embodiment of the present invention. It is a figure which shows an electric current-light output characteristic and an electric current-voltage characteristic.
  • FIG. 13A shows a nitride semiconductor light emitting device fabricated using only Al 0.05 Ga 0.95 N and using a standard structure G parameter that does not use the second upper cladding layer (ITO). The characteristics are shown.
  • FIG. 13B shows characteristics of a nitride semiconductor light emitting device fabricated using the parameters of the structure J using the first upper cladding layer (nitride semiconductor) and the second upper cladding layer (ITO) as the upper cladding layer. Yes.
  • FIG. 13C shows a nitride semiconductor light emitting device fabricated using Al 0.05 Ga 0.95 N with a thickness of 150 nm as the first upper cladding layer and using parameters of structure K without the second upper cladding layer (ITO). The characteristic of an element is shown.
  • the nitride semiconductor light emitting device corresponding to the structure of this embodiment shown in FIG. 13B has a current-light output compared to the standard nitride semiconductor light emitting device shown in FIG. 13A. It can be seen that although the characteristics are equivalent, the operating voltage can be greatly reduced.
  • the nitride semiconductor light emitting device having a clad layer structure of only Al 0.05 Ga 0.95 N having a film thickness of 150 nm which is not the structure of the present embodiment shown in FIG. 13C, is the standard structure shown in FIG. 13A. It can be seen that, although the operating voltage is reduced with respect to the nitride semiconductor light emitting device, light absorption to the p-side electrode is increased and a desired light output cannot be obtained.
  • the operating voltage can be reduced without deteriorating the current-light output characteristics.
  • FIG. 14 is a cross-sectional view of a nitride semiconductor light emitting device according to the fourth embodiment of the present invention.
  • the nitride semiconductor light emitting device 400 according to the present embodiment has the same basic configuration as the nitride semiconductor light emitting device 300 according to the third embodiment. Therefore, in the present embodiment, a description will be given focusing on differences from the third embodiment.
  • a nitride semiconductor light emitting device 400 has, for example, an n-type Al x Ga on a substrate 401 which is an n-type GaN bulk substrate with a (0001) plane, for example.
  • a lower cladding layer 402 which is a 1-xN (0 ⁇ x ⁇ 1) layer, for example, a lower guide layer 403 (first guide layer) which is an n-type GaN layer, for example, an InGaN active layer
  • the electron barrier layer 406 and the upper cladding layer 407 (second cladding layer) have a layered structure in which they are sequentially stacked.
  • the upper clad layer 407 includes a plurality of layers.
  • the upper clad layer 407 is formed between the first upper clad layer 408, the second upper clad layer 409, and the first upper clad layer 408 and the second upper clad layer 409. This is a three-layer structure of the third upper cladding layer 408a.
  • the first upper cladding layer 408 is made of a nitride semiconductor, and is a nitride semiconductor cladding layer (nitride) formed on the side closer to the active layer 404 than the second upper cladding layer 409 and the third upper cladding layer 408a. Semiconductor layer).
  • the first upper cladding layer 408 can be made of, for example, p-type Al x + y In 1-y Ga 1-x N.
  • the second upper clad layer 409 is made of a transparent conductive film (transparent conductor), and is formed of a transparent conductor clad formed farther from the active layer 404 than the first upper clad layer 408 and the third upper clad layer 408a. Layer (transparent conductor layer).
  • the second upper cladding layer 409 can be made of, for example, ITO.
  • the third upper cladding layer 408a is an n-type contact layer made of a nitride semiconductor and formed on the first upper cladding layer 408.
  • the third upper cladding layer 408a is formed as a tunnel electrode, and can be formed of, for example, an n-type InGaN / GaN superlattice layer doped with Si at a high concentration.
  • the nitride semiconductor light emitting device 400 includes a ridge-type optical waveguide 420 having a ridge in which a part of the first upper cladding layer 408 and the third upper cladding layer 408a has a mesa structure.
  • the region of the optical waveguide 420 other than the ridge, that is, the ridge side surface and flat surface of the first upper clad layer 408 and the side surface of the third upper clad layer 408a are covered with an insulating film 430 made of, for example, SiO 2 .
  • the second upper clad layer 409 is formed so as to be bonded to the surface of the uppermost third upper clad layer 408a of the optical waveguide 420. Further, the second upper clad layer 409 is formed so as to extend larger in the lateral direction than the upper surface of the convex portion (ridge) of the optical waveguide 420, and the convex portion of the optical waveguide 420 and a part of the surface of the insulating film 430 are formed. It is formed to cover.
  • a p-side electrode 440 is formed on the contact surface 425 of the second upper cladding layer 409, and a pad electrode 441 is formed on the p-side electrode 440. Further, an n-side electrode 450 is formed on the back surface of the substrate 401.
  • the first upper cladding layer 408 made of a nitride semiconductor is provided below the second upper cladding layer 409 made of a transparent conductive film.
  • An increase in internal loss ( ⁇ i) due to light absorption can be suppressed, and the series resistance of the first upper cladding layer 408 can be reduced.
  • the second upper clad layer 409 is formed to be larger in the lateral direction than the convex portion of the optical waveguide 420, and the contact surface 425 with the p-side electrode 440 can be set larger. Can be reduced.
  • a third upper cladding layer 408 a is formed between the first upper cladding layer 408 and the second upper cladding layer 409. Accordingly, carriers can be moved by the tunnel current between the first upper cladding layer 408 and the second upper cladding layer 409. As a result, the contact resistance between the second upper cladding layer 409 and the first upper cladding layer 408 can be further reduced.
  • the operating voltage of the nitride semiconductor light emitting device can be further reduced.
  • a nitride semiconductor light emitting device capable of achieving the above can be realized.
  • a high-concentration Si-doped InGaN / GaN superlattice layer is used as the third upper cladding layer 408a.
  • the present invention is not limited to this.
  • a single n-type contact layer of GaN or InGaN with a high concentration of Si may be used as the third upper cladding layer 408a.
  • a nitride semiconductor light emitting device 500 is a buried (RISA) semiconductor laser using a nitride semiconductor, for example, a (0001) plane n-type GaN bulk substrate.
  • a lower clad layer 502 (first clad layer) that is an n-type Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer
  • a lower guide layer that is an n-type InGaN layer 503 (first guide layer)
  • an active layer 504 having a quantum well structure that is an InGaN active layer for example, a first upper guide layer 505a (first second guide layer) that is a p-type InGaN layer, for example, p of a thin film
  • Type electron barrier layer 506 which is an Al x Ga 1-x N (0 ⁇ x ⁇ 1) layer
  • a second upper guide layer 505b (second second guide layer) which is a p-type GaN layer
  • the upper clad layer 507 is composed of a plurality of layers.
  • the upper clad layer 507 is formed between the first upper clad layer 508, the second upper clad layer 509, and the first upper clad layer 508 and the second upper clad layer 509. This is a three-layer structure of the third upper cladding layer 508a.
  • the first upper cladding layer 508 is made of a nitride semiconductor, and a nitride semiconductor cladding layer (nitride) formed on the side closer to the active layer 504 than the second upper cladding layer 509 and the third upper cladding layer 508a. Semiconductor layer).
  • the first upper cladding layer 508 is formed on the first upper guide layer 505a and the current blocking layer 530 so as to fill the opening of the current blocking layer 530.
  • the p-type Al x + y In 1-y Ga 1 is formed. -XN .
  • the second upper clad layer 509 is composed of a transparent conductive film (transparent conductor), and is formed of a transparent conductor clad formed farther from the active layer 504 than the first upper clad layer 508 and the third upper clad layer 508a. Layer (transparent conductor layer).
  • the second upper cladding layer 509 can be made of, for example, ITO.
  • the third upper clad layer 508a is made of a nitride semiconductor, and is an n-type contact layer formed on the first upper clad layer 508.
  • the third upper cladding layer 508a is formed as a tunnel electrode, and can be constituted by, for example, an n-type InGaN / GaN superlattice layer doped with Si at a high concentration.
  • the nitride semiconductor light emitting device 500 includes an embedded optical waveguide 520 formed by embedding a first upper cladding layer 508 in an opening of a current blocking layer 530.
  • a p-side electrode 540 is formed on the contact surface 525 of the second upper cladding layer 509, and a pad electrode 541 is formed on the p-side electrode 440. Further, an n-side electrode 550 is formed on the back surface of the substrate 501.
  • FIG. 16 is a view for explaining the method for manufacturing the nitride semiconductor light-emitting device according to the fifth embodiment of the present invention.
  • Al 0.05 Ga 0.95 N doped with Si is formed to a thickness of 1.5 ⁇ m on the substrate 501 by MOCVD, and the lower cladding is formed.
  • Layer 502 is formed.
  • a first upper guide layer 505a made of InGaN doped with Mg for example, an electron barrier layer 506 made of p-type Al 0.2 Ga 0.8 N doped with Mg, for example, a second upper portion made of GaN doped with Mg
  • a guide layer 505b and a current blocking layer 530 made of, for example, n-type AlGaN are sequentially formed.
  • a SiO 2 mask is formed on the current blocking layer 530 using a sputtering apparatus, and an opening having a width of 1.5 ⁇ m, for example, is formed using photolithography and wet etching. Thereafter, a region to be the optical waveguide 520 is opened using photochemical wet etching, and then the SiO 2 mask is removed with hydrofluoric acid. As a result, as shown in FIG. 16B, it is possible to obtain a configuration in which an opening serving as the optical waveguide 520 is formed in the current blocking layer 530. At this time, the first upper guide layer 505a is exposed in the opening.
  • the first upper cladding layer 508 made of, for example, p-type Al 0.05 Ga 0.95 N is again formed by MOCVD, so as to fill the opening. Formed on the guide layer 505a and the current blocking layer 530, and then on the first upper cladding layer 508, for example, a third upper portion made of an n-type InGaN / GaN superlattice layer doped with Si at a high concentration, for example. A cladding layer 508a is formed.
  • the second upper clad layer 509 is formed by depositing, for example, ITO using an electron beam vapor deposition apparatus or a sputtering apparatus as shown in FIG. Thereby, the upper clad layer 507 having a three-layer structure can be formed.
  • palladium (Pd) having a thickness of 45 nm and platinum (Pt) having a thickness of 50 nm are formed so as to cover the optical waveguide 520 by using photolithography and EB vapor deposition.
  • a p-side electrode 540 is formed.
  • a film in which titanium (Ti) with a thickness of 50 nm and gold (Au) with a thickness of 1000 nm are stacked is formed by photolithography and EB vapor deposition, and then the thickness of Au is formed by electrolytic plating. Is increased to 10 ⁇ m, and a pad electrode 541 is formed.
  • the thickness of the substrate 501 is polished to about 100 ⁇ m, and then thinned, and then using an EB deposition apparatus, Ti having a thickness of 5 nm as an n-side electrode 550 is formed on the back surface of the substrate 501. Pt having a thickness of 10 nm and Au having a thickness of 1000 nm are formed. Thereafter, cleavage is performed to separate the chips, and the nitride semiconductor light emitting device 500 according to this embodiment is manufactured.
  • the nitride semiconductor light emitting device 500 As described above, according to the nitride semiconductor light emitting device 500 according to the fifth embodiment of the present invention, as in the first to fourth embodiments, the nitride is provided below the second upper cladding layer 509 made of the transparent conductive film. Since the first upper cladding layer 508 made of a semiconductor is provided, an increase in internal loss ( ⁇ i) due to light absorption can be suppressed, and the series resistance of the first upper cladding layer 508 can be reduced.
  • the third upper cladding layer 508a is formed between the first upper cladding layer 508 and the second upper cladding layer 509, the second upper cladding layer The contact resistance between the layer 509 and the first upper cladding layer 508 can be further reduced.
  • the buried optical waveguide 520 is configured such that the current blocking layer 530 is made of a nitride semiconductor made of n-type AlGaN having a higher thermal conductivity than an oxide film such as SiO 2 .
  • the current blocking layer 530 is made of a nitride semiconductor made of n-type AlGaN having a higher thermal conductivity than an oxide film such as SiO 2 .
  • Joule heat generated in the light emitting portion near the active layer 104 can be efficiently radiated outside the light emitting portion.
  • the lateral light confinement effect can be enhanced by increasing the Al composition of the current blocking layer 530 made of n-type AlGaN.
  • the film thickness of the cladding layer made of the nitride semiconductor in the present embodiment can be further reduced.
  • the series resistance of the cladding layer can be further reduced, and the current-light output characteristics of the nitride semiconductor light emitting device can be further improved. Therefore, the power-light conversion efficiency can be further improved.
  • an upper cladding layer (third upper cladding layer 508a or first upper cladding layer 508) made of a nitride semiconductor and a cladding layer (second upper cladding layer) made of a transparent conductive film are used. Since the contact area with the cladding layer 509) is large, the contact resistance between the upper cladding layer made of a nitride semiconductor and the cladding layer made of a transparent conductive film can be further reduced.
  • the contact resistance can be further reduced by the tunnel current.
  • nitride semiconductor light-emitting device 500 According to the nitride semiconductor light-emitting device 500 according to the fifth embodiment of the present invention, a nitride semiconductor light-emitting device capable of high luminous efficiency and a low operating voltage can be realized.
  • the present invention is not limited to these embodiments.
  • the semiconductor laser has been described.
  • the present invention can be similarly applied to a superluminescent diode.
  • the present invention can be similarly applied to a structure in which the light emitting end face and the reflection end face are formed by dry etching. .
  • the example of the width of the ridge stripe (stripe width) of the optical waveguide is 1.5 ⁇ m.
  • the present invention is similarly applied to any embodiment as long as the stripe width is 10 ⁇ m or less. be able to.
  • an example of an n-type GaN substrate having the (0001) plane as the main surface of the substrate has been described.
  • the (10-10) plane, (11-20) plane, (10- The same applies to the case where an n-type GaN substrate having the 11) plane, the (11-21) plane or the like as the main surface of the substrate is used.
  • ITO which is indium oxide (InO) to which tin (Sn) is added
  • ITO is used as the material for the transparent conductive film of the second upper cladding layer, but is not limited thereto.
  • ZnO zinc oxide
  • a material such as Ga or Al
  • SnO tin oxide
  • Sb antimony
  • the nitride semiconductor light emitting device according to the present invention can be widely used as various light sources, and in particular, as a light source in an image display device such as a display or a projector, or industrial laser equipment such as laser processing or laser annealing. It is useful as a light source in a device that requires a relatively high light output.
  • Nitride semiconductor light emitting device 101 201, 301, 401, 501, 2101

Abstract

 光導波路(120)を有する窒化物半導体発光素子であって、下部クラッド層(102)と、活性層(104)と、上部クラッド層(107)とを少なくともこの順に含み、上部クラッド層(107)は、透明導電体によって構成された第2上部クラッド層(109)と、当該第2上部クラッド層(109)よりも活性層側に形成され、窒化物半導体によって構成された第1上部クラッド層(108)とを有する。

Description

窒化物半導体発光素子
 本発明は、窒化物半導体発光素子に関し、特に、発光効率が高く、動作電圧が低い窒化物半導体発光素子に関する。
 窒化ガリウム(GaN)に代表されるIII-V族窒化物系化合物半導体、いわゆる窒化物半導体が注目を集めている。窒化物半導体は、一般式がInGaAl1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)で表され、III族元素であるインジウム(In)、ガリウム(Ga)及びアルミニウム(Al)の少なくとも1つと、V族元素である窒素(N)とからなる化合物半導体である。これらの窒化物半導体を用いたデバイスにおいて、特に、電気を光に変換する発光素子の開発が盛んに行われている。
 半導体発光素子の種類としては、大きく2種類あり、一つは注入されたキャリア(電子、正孔)を自然放出により光に変換する発光ダイオード(LED:Light Emitting Diode)であり、もう一つは、デバイス上に導波路を設け、その中に注入されたキャリアを誘導放出により光に変換するレーザダイオード(LD:Laser Diode)等の半導体レーザである。
 窒化物半導体を用いた発光ダイオードは、蛍光体と組み合わせた白色LEDとして、照明装置や液晶表示装置のバックライト光源として盛んに開発されている。一方、窒化物半導体を用いた半導体レーザについては、発光波長が400~410nmのレーザ光を出射する青紫色レーザダイオードが、ブルーレイ(Blu-ray)ディスクの記録及び再生装置の光源として用いられている。
 また、近年では、発光波長が青色領域から緑色領域へと長波長化した窒化物半導体発光素子もディスプレイ用光源として開発及び生産されるようになってきた。この用途向けに、スーパールミネッセントダイオード(SLD:Super Luminescent Diode)のような、レーザ光の欠点であるスペックルノイズを低減させることが可能な光を出射する窒化物半導体発光素子も開発されるようになってきた。
 半導体レーザやSLDのような窒化物半導体発光素子においては、前述のように光導波路中で、誘導放出光を生成することで、高効率の発光素子を実現する。この誘導放出光を効率よく得るためには、光導波路の光閉じ込め係数を高くする必要がある。光閉じ込め係数を高くする方法としては、例えば従来技術では、ガイド層としてGaNを用いて、クラッド層としてAlGa1-xN(0<x≦1)を用いる方法が挙げられる。この場合、クラッド層のAlGa1-xNにおいてAl組成を大きくすることで、ガイド層のGaNよりも屈折率を大幅に小さくし、その結果、屈折率差が大きくなり光閉じ込め係数を高くすることができる。
 一方、このようにクラッド層のAl組成を大きくした場合の副作用も上げられる。特に、発光層上方に設けられるp型のクラッド層においては、ドーパントに用いられるMgアクセプタのイオン化エネルギーが、Al組成に比例して増大する。このため、p型のクラッド層に高い正孔濃度を実現することが困難となり、結果的にクラッド層における直列抵抗が増加し、窒化物半導体発光素子の動作電圧が増加する課題がある。
 上記課題に対し、高い光閉じ込めを実現すると同時に、低い動作電圧を得ることができるとされるレーザダイオードが特許文献1に開示されている。以下、図17を用いて、特許文献1に開示された従来のレーザダイオードの構造について説明する。
 図17に示すように、従来のレーザダイオード2100は、サファイア基板等からなる基板2101上に、n型コンタクト層2110、n型下部クラッド層2130、n型下部導波路層2140、多重量子井戸(MQW:Multiple Quantum Well)領域2150、p型閉じ込め層2160、及び、p型上部導波路層2170が形成される。
 また、MQW領域2150の活性領域2155の上方におけるp型上部導波路層2170上には、透明導電膜からなる上部クラッド層2180が形成される。さらに、一対の絶縁層部分2185が、上部クラッド層2180を挟んで向かい合うように形成される。
 また、金属からなるp側電極2190が、上部クラッド層2180上及び絶縁層部分2185上に形成される。一方、金属からなるn側電極2120が、n型コンタクト層2110の第1の露出領域上に形成される。
特開2004-289157号公報
 しかしながら、本願発明者らが上記構成のレーザダイオード2100を作製して検討した結果、従来のレーザダイオード2100の構造では、動作電圧を低くすることはできるが、使用範囲内での注入電流では誘導放出を起こさないために所望の光出力が得られないというということが分かった。
 これは、上部クラッド層2180の透明導電膜の材料として現在最も特性が安定しているITO(Indium Tin Oxide:酸化インジウムスズ)を用いたとしても、バルク抵抗が十分に低くかつ発光光の光吸収が小さい高結晶性の透明導電膜を作製することが難しいからである。
 このように、透明導電膜の結晶性を高くすることが難しいので、図17に示す構造を有するレーザダイオード2100を作製しても、p型上部導波路層2170と透明導電膜からなる上部クラッド層2180との界面において光吸収による内部損失が発生し、発効効率が低下するという問題がある。
 本発明は、このような点を鑑みてなされたものであり、高発光効率で低動作電圧の窒化物半導体発光素子を提供することを目的とする。
 本発明に係る窒化物半導体発光素子の一態様は、光導波路を有する窒化物半導体発光素子であって、当該半導体発光素子は、第1クラッド層と、活性層と、第2クラッド層とを少なくともこの順に含み、前記第2クラッド層は、透明導電体によって構成された透明導電体層と、当該透明導電体層よりも前記活性層側に形成され、窒化物半導体によって構成された窒化物半導体層とを有するものである。
 この構成にすることで、第2クラッド層のうちの活性層に近い窒化物半導体層によって光閉じ込めを行うことができる。これにより、透明導電体層が結晶性の低い透明導電性酸化膜によって構成される場合であっても、透明導電体層の単層で光閉じ込めを行うような構成の窒化物半導体発光素子と比較して、内部損失の増大を抑制することができる。その結果、発光効率が高い窒化物半導体発光素子を実現することが可能となる。
 また、第2クラッド層のうちの透明導電体層は、縦方向の光閉じ込めに寄与する。これにより、活性層に近い側に形成される窒化物半導体層を薄膜化することができるので、当該窒化物半導体層の直列抵抗を低減させることができる。その結果、低い電圧で動作可能な窒化物半導体発光素子を実現することが可能となる。
 さらに、本発明に係る窒化物半導体発光素子の一態様において、前記窒化物半導体層は、少なくともAlを含むことが好ましい。
 さらに、本発明に係る窒化物半導体発光素子の一態様において、前記窒化物半導体層は、AlInGa1-x-yN(0<x≦0.82、0≦y≦0.18、0≦1-x-y<1)からなることが好ましい。
 さらに、本発明に係る窒化物半導体発光素子の一態様において、前記活性層と前記第2クラッド層との間に設けられたガイド層を備え、前記ガイド層と前記第2クラッド層との合計膜厚dは、0.1μm<d<0.5μmであることが好ましい。
 さらに、本発明に係る窒化物半導体発光素子の一態様において、前記光導波路は、前記第2クラッド層から前記第1クラッド層の一部までを掘り込んで形成された垂直メサ構造であることが好ましい。
 さらに、本発明に係る窒化物半導体発光素子の一態様において、前記透明導電体の材料は、錫が添加された酸化インジウム、アンチモンが添加された酸化錫、及び酸化亜鉛のうちのいずれか1つであることが好ましい。
 さらに、本発明に係る窒化物半導体発光素子の一態様において、前記透明導電体層の膜厚は、100nmより大きいことが好ましい。
 本発明に係る窒化物半導体発光素子によれば、高発光効率で低動作電圧の窒化物半導体発光素子を実現することができる。
図1Aは、本発明の第1の実施形態に係る窒化物半導体発光素子の上面図である。 図1Bは、図1AのA-A’線における本発明の第1の実施形態に係る窒化物半導体発光素子の断面図である。 図2は、本発明の第1の実施形態に係る窒化物半導体発光素子の製造方法を説明するための図である。 図3は、構造の異なる6種類の窒化物半導体発光素子における計算パラメータとその特性とを比較した図である。 図4Aは、本発明の第1の実施形態に係る窒化物半導体発光素子において、第2上部クラッド層の設計例を説明するための構造を示す図である。 図4Bは、図4Aの構造を用いたときにおけるITOの消衰係数(K)と導波損失(αi)との関係を示す図である。 図5Aは、本発明の第1の実施形態に係る窒化物半導体発光素子において、上部ガイド層及び第1上部クラッド層の設計例を説明するための構造を示す図である。 図5Bは、図5Aに示す窒化物半導体発光素子において第2ガイド層及び第1上部クラッド層の膜厚と導波損失との関係を示す図である。 図5Cは、図5Aに示す窒化物半導体発光素子において第2ガイド層及び第1上部クラッド層の膜厚と光閉じ込め係数との関係を示す図である。 図6は、本発明の第1の実施形態に係る窒化物半導体発光素子における第2上部クラッド層の膜厚と導波損失との関係を示す図である。 図7Aは、本発明の第2の実施形態に係る窒化物半導体発光素子の上面図である。 図7Bは、図7AのA-A’線における本発明の第2の実施形態に係る窒化物半導体発光素子の断面図である。 図8は、本発明の第2の実施形態に係る窒化物半導体発光素子の製造方法を説明するための図である。 図9は、構造の異なる6種類の窒化物半導体発光素子における計算パラメータとその特性とを比較した図である。 図10Aは、第2上部クラッド層の設計例を説明するために用いた窒化物半導体発光素子の構造を示す図である。 図10Bは、図10Aの構造を用いたときにおけるITOの消衰係数(K)と導波損失(αi)との関係を示す図である。 図11Aは、上部ガイド層及び第1上部クラッド層の設計例を説明するために用いた窒化物半導体発光素子の構造を示す図である。 図11Bは、図11Aに示す窒化物半導体発光素子における第2ガイド層及び第1上部クラッド層の膜厚と導波損失との関係を示す図である。 図11Cは、図11Aに示す窒化物半導体発光素子における第2ガイド層及び第1上部クラッド層の膜厚と光閉じ込め係数との関係を示す図である。 図12Aは、本発明の第3の実施形態に係る窒化物半導体発光素子の上面図である。 図12Bは、図12AのA-A’線における本発明の第3の実施形態に係る窒化物半導体発光素子の断面図である。 図13Aは、本発明の第3の実施形態に係る窒化物半導体発光素子において、図9に示すパラメータを用いて作製した窒化物半導体発光素子(構造G)における電流-光出力特性及び電流-電圧特性を示す図である。 図13Bは、本発明の第3の実施形態に係る窒化物半導体発光素子において、図9に示すパラメータを用いて作製した窒化物半導体発光素子(構造J)における電流-光出力特性及び電流-電圧特性を示す図である。 図13Cは、本発明の第3の実施形態に係る窒化物半導体発光素子において、図9に示すパラメータを用いて作製した窒化物半導体発光素子(構造K)における電流-光出力特性及び電流-電圧特性を示す図である。 図14は、本発明の第4の実施形態に係る窒化物半導体発光素子の断面図である。 図15は、本発明の第5の実施形態に係る窒化物半導体発光素子の断面図である。 図16は、本発明の第5の実施形態に係る窒化物半導体発光素子の製造方法を説明するための図である。 図17は、従来のレーザダイオードの構造を説明するための図である。
 以下、本発明に係る窒化物半導体発光素子の実施形態について、図面を参照しながら説明する。なお、以下の実施形態は一例であって、本発明はこれらの実施形態に限定されず、本発明は請求の範囲の記載に基づいて特定される。よって、以下の実施の形態における構成要素のうち、請求項に記載されていない構成要素は、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。
 (第1の実施形態)
 まず、本発明の第1の実施形態に係る窒化物半導体発光素子100について、図面を参照しながら説明する。本実施形態に係る窒化物半導体発光素子100は、窒化物半導体を用いたレーザダイオードであり、発光波長は390nm~420nmであって、好ましくは中心波長が405nmである。
 図1Aは、本発明の第1の実施形態に係る窒化物半導体発光素子の上面図であり、図1Bは、図1AのA-A’線における同窒化物半導体発光素子の断面図である。
 図1A及び図1Bに示すように、本発明の第1の実施形態に係る窒化物半導体発光素子100は、例えば(0001)面のn型GaNバルク基板である基板101上に、例えばn型のAlGa1-xN(0≦x≦1)層である下部クラッド層102(第1クラッド層)、例えばn型のGaN層である下部ガイド層103(第1ガイド層)、例えばInGaN活性層である量子井戸構造の活性層104、例えばp型のGaN層である上部ガイド層105(第2ガイド層)、例えば薄膜のp型のAlGa1-xN(0≦x≦1)層である電子障壁層106、及び、上部クラッド層107(第2クラッド層)が順次積層された層構造を有する。
 上部クラッド層107は、複数層からなり、本実施形態では、第1上部クラッド層108と第2上部クラッド層109との2層構造である。
 第1上部クラッド層108は、窒化物半導体によって構成されており、第2上部クラッド層109よりも活性層104に近い側に形成された窒化物半導体クラッド層(窒化物半導体層)である。第1上部クラッド層108は、例えばp型のAlx+yIn1-yGa1-xN(0<x≦0.82、0≦y≦0.18、0≦1-x-y<1)によって構成することができる。
 第2上部クラッド層109は、透明導電膜(透明導電体)によって構成されており、第1上部クラッド層108よりも活性層104から離れて形成された透明導電体クラッド層(透明導電体層)である。第2上部クラッド層109は、例えばITOによって構成することができる。
 本実施形態に係る窒化物半導体発光素子100は、活性層104の下の層までをエッチングによって深く掘り込むことによって形成されたリッジ(凸部)を有するリッジ型の光導波路120を備える。本実施形態における光導波路120は、第2上部クラッド層109から下部クラッド層102の一部までを深堀りすることによって形成された垂直メサ構造の光導波路である。
 下部クラッド層102の上面と光導波路120のリッジの側面とには、SiOからなる絶縁膜130が形成されている。また、下部クラッド層102と光導波路120のリッジを覆うようにして、絶縁膜130上及び第2上部クラッド層109の上面(光導波路120の凸部のコンタクト面125)には、p側電極140が形成されている。また、p側電極140を覆うようにパッド電極141が形成されている。さらに、基板101の裏面、すなわち、下部クラッド層102が形成されている面とは反対側の面には、n側電極150が形成されている。
 このように、上部クラッド層107において、透明導電膜からなる第2上部クラッド層109の直下に、窒化物半導体からなる第1上部クラッド層108を設けることによって、第1上部クラッド層108とその直下のp型のGaNからなる上部ガイド層105との間に屈折率差が発生する。すなわち、活性層104に近い第1上部クラッド層108によって光閉じ込めを行うことができる。これにより、第2上部クラッド層109が結晶性の低い透明導電性酸化膜によって構成されて消衰係数が高い場合であっても、光吸収による内部損失(αi)の増大を抑制することができる。その結果、高発光効率の窒化物半導体発光素子を実現することが可能となる。
 また、透明導電膜からなる第2上部クラッド層109は、光やキャリアを閉じ込めるクラッド層としても機能し、第2上部クラッド層109によって縦方向の光閉じ込めを行うことができる。これにより、p型のAlx+yIn1-yGa1-xNからなる第1上部クラッド層108の膜厚を薄膜化することができるので、第1上部クラッド層108の直列抵抗を低減することができる。その結果、低電圧動作の窒化物半導体発光素子を実現することができる。
 このように、本発明の第1の実施形態に係る窒化物半導体発光素子100によれば、高発光効率及び低動作電圧の窒化物半導体発光素子を実現することが可能となる。
 次に、本実施の第1の実施形態に係る窒化物半導体発光素子100の製造方法について、図2を用いて説明する。図2は、本発明の第1の実施形態に係る窒化物半導体発光素子の製造方法を説明するための図である。
 図2の(a)に示すように、まず、MOCVD法(有機金属気相成長法)により、基板101上に、例えばSiをドープしたAl0.05Ga0.95Nを1.5μmの膜厚で成膜し、下部クラッド層102を形成する。続いて、例えばSiをドープしたn型のGaNである下部ガイド層103、例えばIn0.6Ga0.94N井戸層/In0.02Ga0.98N障壁層が複数(例えば3層)成膜された活性層104、例えばMgをドープしたGaNである上部ガイド層105(膜厚100nm)、及び、例えばMgをドープしたp型のAl0.2Ga0.8Nである電子障壁層106(膜厚10nm)を順次成膜する。
 その後、上部クラッド層107として、窒化物半導体層と透明導電体層との積層膜を成膜する。具体的には、電子障壁層106上に、例えばMgをドープしたp型のAl0.05Ga0.95Nを150nmの膜厚で成膜することにより、窒化物半導体層である第1上部クラッド層108を形成する。その後、成長炉から取り出し、スパッタ装置又は電子ビーム蒸着装置などを用いて、例えばITOを200nmの膜厚で成膜することにより、透明導電体層である第2上部クラッド層109を形成する。
 次に、第2上部クラッド層109の上に、プラズマCVD法を用いて厚さ800nmのSiO膜を形成する。その後、フォトリソグラフィー及びフッ酸を用いたエッチングにより、SiO膜を選択的に除去して、後にリッジ型の光導波路120となる幅が例えば1.5μmのSiOマスクを形成する。その後、Clガスを用いてドライエッチングを行い、SiOマスクに覆われていない領域について下部クラッド層102(一部あるいは全部)までをエッチングをする。これにより、図2の(b)に示すような幅が1.5μmの凸型(リッジ)のパターンが形成される。
 次に、基板101の上方の全面を覆うように、プラズマCVD法により、厚さ300nmのSiO膜を形成して絶縁膜130を形成する。その後、SiOマスクを除去することにより、図2の(c)に示すように、2層構造の上部クラッド層107を有するリッジ型の光導波路120を形成することができる。
 次に、図2の(d)に示すように、フォトリソグラフィー及びEB蒸着法を用いて、光導波路120を覆うように、厚さが45nmのパラジウム(Pd)と厚さが50nmの白金(Pt)とからなるp側電極140を形成する。続いて、フォトリソグラフィー及びEB蒸着法を用いて、厚さが50nmのチタン(Ti)と厚さが1000nmの金(Au)を積層させた膜を形成した後、電解メッキ法によりAuの厚さを10μmまで増やし、パッド電極141を形成する。
 その後、ダイヤモンドスラリーを用いて、基板101の厚さを100μm程度まで研磨することにより薄片化した後、EB蒸着装置を用いて、基板101の裏面にn側電極150として厚さが5nmのTi、厚さが10nmのPt及び厚さが1000nmのAuを形成する。その後、劈開を行うことによりチップ分離され、本実施形態に係る窒化物半導体発光素子100が製造される。
 ここで、上部クラッド層107として、活性層104に近い側に形成される窒化物半導体からなる第1上部クラッド層108と、その上に形成される透明導電体からなる第2上部クラッド層109との2層構造とする理由について、図3を用いて説明する。
 図3は、構造の異なる6種類(「構造A」~「構造F」)の窒化物半導体発光素子における計算パラメータとその特性とを比較した図である。なお、図3における各構造の窒化物半導体発光素子は、各構造の各層を図1Bに示す窒化物半導体発光素子の各層に対応させて条件を設定した。
 「構造A」は、上部クラッド層107として、Al0.05Ga0.95Nのみを用いた構造であって、透明導電体層を用いない標準的な構造である。「構造B」は、第1上部クラッド層(窒化物半導体層)108がなく、ITOからなる第2上部クラッド層109のみを用いた構造である。「構造C」は、第1上部クラッド層108の材料としてGaNを用い、且つ、第2上部クラッド層109の材料としてITOを用いた構造である。「構造D」は、第1上部クラッド層108の材料としてAl0.05Ga0.95Nを用い、第2上部クラッド層109の材料としてITOを用いた構造である。「構造E」は、「構造A」と同様に透明導電体層を用いない構造であるが、上部クラッド層107の膜厚が薄い構造であり、第1上部クラッド層108の材料としてAl0.05Ga0.95Nを用い、かつ第2上部クラッド層109を用いない構造である。「構造F」は、第1上部クラッド層108の材料としてAl0.2In0.1Ga0.7Nを用い、第2上部クラッド層109の材料としてITOを用いた構造である。
 なお、図3の6種類の構造のうち本発明の第1の実施形態に係る窒化物半導体発光素子100は、構造D及び構造Fであり、構造Dでは、第1上部クラッド層108にIn(インジウム)が含まれていない。
 図3において、これらの6種類の構造の窒化物半導体発光素子に対して、電流-光出力特性を決定付ける光閉じ込め係数(Γ)と導波損失(αi)の値をまとめている。
 図3に示す結果より、本実施形態に係る構造である構造D及び構造Fにおける窒化物半導体発光素子においては、標準的なレーザ構造である構造Aの窒化物半導体発光素子よりも高い光閉じ込め係数を得ることができるとともに、当該構造Aと同等レベルの導波損失を得ることができる。この結果、本実施形態に係る窒化物半導体発光素子100によれば、標準的な構造Aの窒化物半導体発光素子と比べて、電流-光出力特性を低下させることなく電流-電圧特性を向上させることができる。
 次に、上記の「構造A」~「構造F」(「構造E」を除く)に関し、第2上部クラッド層109の材料であるITOと窒化物半導体発光素子の特性との関係について、図4A及び図4Bを用いて説明する。図4Aは、第2上部クラッド層109の設計例を説明するために用いた窒化物半導体発光素子の構造を示す図である。図4Bは、図4Aの構造を用いたときにおけるITOの消衰係数(K)と導波損失(αi)との関係を示す図であり、導波損失に対するITOの消衰係数(K)の依存性を示した図である。
 図4Bに示すように、「構造B」又は「構造C」の窒化物半導体発光素子における導波損失を「構造A」又は「構造D」や「構造F」の窒化物半導体発光素子における導波損失と同等レベルにするには、第2上部クラッド層109(ITO)の消衰係数(K)を10-3程度にまですればよいが、これにはITOの結晶性を高くする必要がある。しかしながら、現状では、そのようなレベルの結晶性の高いITOを成膜することは非常に困難である。
 これに対し、「構造D」又は「構造F」の窒化物半導体発光素子では、第2上部クラッド層109(ITO)の消衰係数(K)の値が10-2と比較的に大きくても、「構造A」と同等レベルの導波損失(αi)とすることができる。すなわち、第2上部クラッド層109が結晶性の低いITOであったとしても、「構造A」の窒化物半導体発光素子と同等レベルの導波損失(αi)を実現することができる。これは、「構造D」又は「構造F」の窒化物半導体発光素子では、屈折率の低いAlGaNで構成された第1上部クラッド層108が光閉じ込めに寄与しており、第2上部クラッド層109への光の染み出しがほとんど無いためである。
 このように、本実施形態に係る窒化物半導体発光素子100によれば、第2上部クラッド層109が結晶性の低いITOであっても、光吸収による導波損失(αi)の増大を抑制することができる。また、ITOからなる第2上部クラッド層109は、p型のAlGaNからなる第1上部クラッド層108よりも屈折率が低いので、第2上部クラッド層109は光閉じ込め層としても機能する。これにより、第1上部クラッド層108の膜厚を薄膜化することが可能となり、直列抵抗を低くすることが可能となる。従って、高発光効率及び低動作電圧の窒化物半導体発光素子を実現することができる。
 次に、本実施形態に係る窒化物半導体発光素子100における上部ガイド層105の好ましい膜厚について、図5A、図5B及び図5Cを用いて説明する。
 図5Aは、上部ガイド層105及び第1上部クラッド層108の設計例を説明するために用いた窒化物半導体発光素子の構造を示す図である。図5Bは、図5Aに示す窒化物半導体発光素子において、第2ガイド層及び第1上部クラッド層の膜厚と導波損失との関係を示す図である。図5Cは、図5Aに示す窒化物半導体発光素子において、第2ガイド層及び第1上部クラッド層の膜厚と光閉じ込め係数との関係を示す図である。
 上述の構造では、上部ガイド層105であるp型のGaNの膜厚を100nmとし、第1上部クラッド層108であるp型のAlGaNの膜厚を150nmとし、第2上部クラッド層109の膜厚を200nmとした。
 ここで、光閉じ込め係数(Γ)や導波損失(αi)は、上部ガイド層105であるp型のGaNの膜厚(T1)と、第1上部クラッド層108であるp型のAlGaNの膜厚(T2)とから決まる。
 このため、上部ガイド層105であるp型のGaNの膜厚及び第1上部クラッド層108であるp型のlGaNの膜厚次第では、上記の本実施形態に係る窒化物半導体発光素子の効果が十分に得られないことがある。
 そこで、図5Aの構造に示すように、p型のGaNからなる上部ガイド層105の膜厚をT1とし、p型のAlGaNからなる第1上部クラッド層108の膜厚をT2として、これらの膜厚の変化に対する光閉じ込め係数(Γ)及び導波損失(αi)を計算した。その計算結果を図5B及び図5Cに示す。
 図5B及び図5Cに示すように、標準的な構造A(光閉じ込め係数:3.4%、導波損失:3.5cm-1)よりも高い光閉じ込め係数かつ低い導波損失の窒化物半導体発光素子を得るためには、上部ガイド層105の膜厚(T1)が100nmの場合においては、第1上部クラッド層108の膜厚(T2)は、150nm以上にすることが好ましい。
 同様に、上部ガイド層105の膜厚(T1)が150nmの場合には、第1上部クラッド層108の膜厚(T2)は、100nm以上にすることが好ましい。
 上部ガイド層105の膜厚(T1)及び第1上部クラッド層108の膜厚(T2)の組み合わせを図5B及び図5Cに示す範囲内とすることによって、ITOの消衰係数が大きい場合であっても導波損失(αi)の増大を抑制することができるとともに、所望の光閉じ込め係数を得ることができる。
 なお、上部ガイド層105の膜厚(T1)を、100nm未満又は150nmよりも大きくすると、標準的な構造Aよりも導波損失(αi)が増大し、また、光閉じ込め係数の低下が起こるので閾値電流特性が増大する。
 次に、本実施形態に係る窒化物半導体発光素子100における第2上部クラッド層109の好ましい膜厚について、図6を用いて説明する。図6は、本発明の第1の実施形態に係る窒化物半導体発光素子において、第2上部クラッド層の膜厚と導波損失との関係を示す図である。
 上述の構造では、第2上部クラッド層109(ITO)の膜厚は200nmとしたが、本実施形態の構造である構造D又は構造Fにおいて、標準的な構造A(導波損失:3.5cm-1)と同等の導波損失とするためには、図6に示すように、少なくとも第2上部クラッド層109の膜厚は100nm以上することが好ましい。これにより、第2上部クラッド層109のコンタクト面上の電極による光吸収を十分小さくすることができる。
 以上の膜厚の計算結果から、上部ガイド層105と上部クラッド層107(第1上部クラッド層108及び第2上部クラッド層109)との合計膜厚dは、0.1μm<d<0.5μmとすることが好ましい。
 以上、本実施形態では、第1上部クラッド層108としてp型のAlGaNを用いた場合を中心に説明した。この場合、第1上部クラッド層108は、少なくともAlを含む窒化物半導体層であれば、本発明の効果を得ることができる。第1上部クラッド層108の最も好ましいAl組成は、Al組成xが0<x≦0.1の場合である。Al組成xが0.1より高くなると、第1上部クラッド層108の直列抵抗が高くなって閾値電流特性が劣化したり、また、GaNとの格子定数差が大きくなりクラックが発生して歩留まりに悪影響を及ぼしたりするからである。
 また、第1上部クラッド層108の材料としては、AlGaNに限らず、AlGaNのAl組成xが0<x≦0.1の場合の屈折率よりも低くなるp型AlInN又は4元混晶のp型のAlInGaNを用いても同様の効果を得ることができる。
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る窒化物半導体発光素子200について、図面を参照しながら説明する。
 上述の第1の実施形態に係る窒化物半導体発光素子100では、下部ガイド層103及び上部ガイド層105の材料としてGaNを用いたが、第2の実施形態では、下部ガイド層203及び上部ガイド層205の材料としてInGaNを用いた。これにより、第2の実施形態に係る窒化物半導体発光素子200は、第1の実施形態に係る窒化物半導体発光素子100に対して、ITOの消衰係数に対する許容上限値を更に高くすることができるとともに、光閉じ込め係数を増大させることができる。従って、より高効率の窒化物半導体発光素子を実現させることが可能となる。
 なお、第2の実施形態に係る窒化物半導体発光素子としては、窒化物半導体を用いたスーパールミネッセントダイオードを例にとって説明する。本実施形態に係る窒化物半導体発光素子の発光波長は、例えば420nm~490nmであり、好ましくは、中心波長が450nmである。
 図7Aは、本発明の第2の実施形態に係る窒化物半導体発光素子の上面図であり、図7Bは、図7AのA-A’線における同窒化物半導体発光素子の断面図である。
 図7A及び図7Bに示すように、本発明の第2の実施形態に係る窒化物半導体発光素子200は、例えば(0001)面のn型GaNバルク基板である基板201上に、例えばn型のAlGa1-xN(0≦x≦1)層である下部クラッド層202(第1クラッド層)、例えばn型のIn0.02Ga0.98N層である下部ガイド層203(第1ガイド層)、例えばIn0.15Ga0.85N/GaN活性層である量子井戸構造の活性層204、例えばp型のIn0.02Ga0.98N層である上部ガイド層205(第2ガイド層)、例えば薄膜のp型のAlGa1-xN(0≦x≦1)層である電子障壁層206、及び、上部クラッド層207(第2クラッド層)が順次積層された層構造を有する。
 上部クラッド層207は、複数層からなり、本実施形態では、第1上部クラッド層208と第2上部クラッド層209との2層構造である。
 第1上部クラッド層208は、窒化物半導体によって構成されており、第2上部クラッド層209よりも活性層204に近い側に形成された窒化物半導体クラッド層(窒化物半導体層)である。第1上部クラッド層208は、例えばp型のAlx+yIn1-yGa1-xN(0<x≦0.82、0≦y≦0.18、0≦1-x-y<1)によって構成することができる。
 第2上部クラッド層209は、透明導電膜(透明導電体)によって構成されており、第1上部クラッド層208よりも活性層204から離れて形成された透明導電体クラッド層(透明導電体層)である。第2上部クラッド層209は、例えばITOによって構成することができる。
 本実施形態に係る窒化物半導体発光素子200は、活性層204の下の層までを深く掘り込むことによって形成されたリッジ(凸部)を有するリッジ型の光導波路220を備える。但し、本実施形態における光導波路220は、第1の実施形態における光導波路120と異なり、第1上部クラッド層208から下部クラッド層202の一部までを深堀りすることによって形成された垂直なメサ構造の光導波路である。すなわち、本実施形態では、第2上部クラッド層209は、リッジを覆う構成となっている。
 下部クラッド層202の上面と光導波路220のリッジの側面とには、SiOからなる絶縁膜230が形成されている。また、下部クラッド層202と光導波路220のリッジを覆うようにして、絶縁膜230上及び第1上部クラッド層208の上面には、第2上部クラッド層209が形成されている。また、第2上部クラッド層209を覆うように、第2上部クラッド層の凸部のコンタクト面225にはp側電極240が形成されている。また、p側電極240を覆うようにパッド電極241が形成されている。さらに、基板201の裏面上にはn側電極250が形成されている。
 そして、本実施形態では、図7Aに示すように、光導波路220は出射端近傍にて曲率半径3000μm以上で曲がっており、光導波路220は光出射端面に対して傾斜している。本実施形態において、光出射端面と光導波路220とのなす角度は、例えば10度としている。
 このように、本実施形態においても、上部クラッド層207において、透明導電膜からなる第2上部クラッド層209の直下に窒化物半導体からなる第1上部クラッド層208が設けられているので、第1上部クラッド層208とその直下のp型のInGaNからなる上部ガイド層205との間に屈折率差が発生する。すなわち、活性層204に近い第1上部クラッド層208によって光閉じ込めを行うことができる。これにより、第2上部クラッド層209が結晶性の低い透明導電性酸化膜によって構成され、消衰係数が高い場合であっても、光吸収による内部損失(αi)の増大を抑制することができる。その結果、高発光効率の窒化物半導体発光素子を実現することが可能となる。
 また、透明導電膜からなる第2上部クラッド層209は、光やキャリアを閉じ込めるクラッド層としても機能し、第2上部クラッド層209によって縦方向の光閉じ込めを行うことができる。これにより、p型のAlx+yIn1-yGa1-xNからなる第1上部クラッド層208の膜厚を薄膜化することができるので、第1上部クラッド層208の直列抵抗を低減することができる。その結果、低電圧動作の窒化物半導体発光素子を実現することができる。
 このように、本発明の第2の実施形態に係る窒化物半導体発光素子200によれば、高発光効率及び低動作電圧の窒化物半導体発光素子を実現することが可能となる。
 次に、本実施の第2の実施形態に係る窒化物半導体発光素子200の製造方法について、図8を用いて説明する。図8は、本発明の第2の実施形態に係る窒化物半導体発光素子の製造方法を説明するための図である。
 まず、MOCVD法により、基板201上に、例えばSiをドープしたAl0.05Ga0.95Nを1.5μmの膜厚で成膜し、下部クラッド層202を形成する。続いて、例えばSiをドープしたIn0.02Ga0.98Nである下部ガイド層203、例えばIn0.15Ga0.85N井戸層/GaN障壁層が複数(例えば3層)成膜された活性層204、例えばMgをドープしたIn0.02Ga0.98Nである上部ガイド層205(膜厚100nm)、及び、例えばMgをドープしたp型のAl0.2Ga0.8Nである電子障壁層206(膜厚10nm)を順次成膜する。
 その後、上部クラッド層207を構成する1つの層として、まず、例えばMgをドープしたp型のAl0.05Ga0.95Nを150nmの膜厚で成膜することにより、窒化物半導体層である第1上部クラッド層108を形成する。
 次に、第1上部クラッド層208の上に、プラズマCVD法を用いて厚さ800nmのSiO膜を形成する。その後、フォトリソグラフィー及びフッ酸を用いたエッチングにより、SiO膜を選択的に除去して、後にリッジ型の光導波路220となる幅が例えば1.5μmのSiOマスクを形成する。その後、Clガスを用いてドライエッチングを行い、SiOマスクに覆われていない領域について下部クラッド層102(一部あるいは全部)までをエッチングをする。これにより、図8の(a)に示すような幅が1.5μmの凸型(リッジ)のパターンが形成される。
 次に、基板101の上方の全面を覆うように、プラズマCVD法により、厚さ300nmのSiO膜を形成して絶縁膜230を形成する。その後、SiOマスクを除去することにより、図8の(b)に示すように、リッジ型の光導波路220を形成することができる。
 その後、スパッタ装置又は電子ビーム蒸着装置などを用いて、例えばITOを200nmの膜厚で成膜してパターニングすることによって、所定形状の第2上部クラッド層209を形成することができる。これにより、図8の(c)に示すように、2層構造の上部クラッド層207を形成することができる。
 次に、図8の(d)に示すように、フォトリソグラフィー及びEB蒸着法を用いて、光導波路220を覆うように、厚さが45nmのパラジウム(Pd)と厚さが50nmの白金(Pt)とからなるp側電極240を形成する。続いて、フォトリソグラフィー及びEB蒸着法を用いて、厚さが50nmのチタン(Ti)と厚さが1000nmの金(Au)を積層させた膜を形成した後、電解メッキ法によりAuの厚さを10μmまで増やし、パッド電極241を形成する。
 その後、ダイヤモンドスラリーを用いて、基板201の厚さを100μm程度まで研磨することにより薄片化した後、EB蒸着装置を用いて、基板201の裏面にn側電極250として厚さが5nmのTi、厚さが10nmのPt及び、厚さが1000nmのAuを形成する。その後、劈開を行うことによりチップ分離され、本実施形態に係る窒化物半導体発光素子200が製造される。
 ここで、上部クラッド層207として、活性層204に近い側に形成された窒化物半導体からなる第1上部クラッド層208と、その上に形成された透明導電体からなる第2上部クラッド層209との2層構造とする理由について、図9を用いて説明する。
 図9は、構造の異なる6種類(「構造G」~「構造L」)の窒化物半導体発光素子における計算パラメータとその特性とを比較した図である。なお、図9における各構造の窒化物半導体発光素子は、各構造の各層を図7Bに示す窒化物半導体発光素子の各層に対応させて条件を設定した。
 図9において、「構造G」は、上部クラッド層207として、Al0.05Ga0.95Nのみを用いた構造であって、透明導電体層を用いない標準的な構造である。「構造H」は、第1上部クラッド層(窒化物半導体層)208がなく、ITOからなる第2上部クラッド層209のみを用いた構造である。「構造I」は、第1上部クラッド層208の材料としてGaNを用い、且つ、第2上部クラッド層209の材料としてITOを用いた構造である。「構造J」は、第1上部クラッド層208の材料としてAl0.05Ga0.95Nを用い、第2上部クラッド層209の材料としてITOを用いた構造である。「構造K」は、「構造G」と同様に透明導電体層を用いない構造であるが、上部クラッド層207の膜厚が薄い構造であり、第1上部クラッド層208の材料として膜厚が150nmのAl0.05Ga0.95Nを用い、かつ第2上部クラッド層209を用いない構造である。「構造L」は、第1上部クラッド層208の材料としてAl0.2In0.1Ga0.7Nを用い、第2上部クラッド層209の材料としてITOを用いた構造である。
 なお、図9の6種類の構造のうち本発明の第2の実施形態に係る窒化物半導体発光素子200は、構造J及び構造Lであり、構造Jでは、第1上部クラッド層208にIn(インジウム)が含まれていない。
 図9において、これらの6種類の構造の窒化物半導体発光素子に対して、電流-光出力特性を決定付ける光閉じ込め係数(Γ)と導波損失(αi)の値をまとめている。
 図9に示す結果より、本実施形態に係る構造である構造J及び構造Lにおける窒化物半導体発光素子においては、標準的なレーザ構造である構造Gの窒化物半導体発光素子よりも高い光閉じ込め係数を得ることができるとともに、当該構造Gと同等レベルの導波損失を得ることができる。この結果、本実施形態に係る窒化物半導体発光素子200によれば、標準的な構造Gの窒化物半導体発光素子と同等の電流-光出力特性を得るとことができるとともに、電流-電圧特性を改善することができる。
 次に、上記の「構造G」~「構造L」(「構造K」を除く)に関し、第2上部クラッド層209の材料であるITOと窒化物半導体発光素子の特性との関係について、図10A及び図10Bを用いて説明する。図10Aは、第2上部クラッド層209の設計例を説明するために用いた窒化物半導体発光素子の構造を示す図である。図10Bは、図10Aの構造を用いたときにおけるITOの消衰係数(K)と導波損失(αi)との関係を示す図であり、導波損失に対するITOの消衰係数(K)の依存性を示した図である。
 図10Bに示すように、「構造H」又は「構造I」の窒化物半導体発光素子における導波損失を「構造G」又は「構造J」や「構造L」の窒化物半導体発光素子における導波損失と同等レベルにするには、第2上部クラッド層209(ITO)の消衰係数(K)を10-3程度にまですればよいが、これにはITOの結晶性を高くする必要がある。しかしながら、現状では、そのようなレベルの結晶性の高いITOを成膜することは非常に困難である。
 これに対し、「構造J」又は「構造L」の窒化物半導体発光素子では、第2上部クラッド層209(ITO)の消衰係数(K)の値が10-2と比較的に大きくても、「構造G」と同等レベルの導波損失(αi)とすることができる。すなわち、第2上部クラッド層209が結晶性の低いITOであったとしても、「構造G」の窒化物半導体発光素子と同等レベルの導波損失(αi)を実現することができる。これは、「構造J」又は「構造L」の窒化物半導体発光素子では、屈折率の低いAlGaNで構成された第1上部クラッド層208が光閉じ込めに寄与しており、第2上部クラッド層209への光の染み出しがほとんど無いためである。
 このように、本実施形態に係る窒化物半導体発光素子200によれば、第2上部クラッド層209が結晶性の低いITOであっても、光吸収による導波損失(αi)の増大を抑制することができる。また、ITOからなる第2上部クラッド層209は、p型のAlGaNからなる第1上部クラッド層208よりも屈折率が低いので、第2上部クラッド層209は光閉じ込め層としても機能する。これにより、第1上部クラッド層208の膜厚を薄膜化することが可能となる。従って、高発光効率及び低動作電圧の窒化物半導体発光素子を実現することができる。
 次に、本実施形態に係る窒化物半導体発光素子200における上部ガイド層205の好ましい膜厚について、図11A、図11B及び図11Cを用いて説明する。
 図11Aは、上部ガイド層205及び第1上部クラッド層208の設計例を説明するために用いた窒化物半導体発光素子の構造を示す図である。図11Bは、図11Aに示す窒化物半導体発光素子において、第2ガイド層及び第1上部クラッド層の膜厚と導波損失との関係を示す図である。図11Cは、図11Aに示す窒化物半導体発光素子において、第2ガイド層及び第1上部クラッド層の膜厚と光閉じ込め係数との関係を示す図である。
 上述の構造では、上部ガイド層205であるp型のInGaNの膜厚を100nmとし、第1上部クラッド層208であるp型のAlGaNの膜厚を150nmとし、第2上部クラッド層209の膜厚を200nmとした。
 ここで、光閉じ込め係数(Γ)や導波損失(αi)は、上部ガイド層205であるp型のInGaNの膜厚(T1)と第1上部クラッド層208であるp型のAlGaNの膜厚(T2)とから決まる。
 このため、上部ガイド層205であるp型のInGaNの膜厚及び第1上部クラッド層208であるp型のAlGaNの膜厚次第では、上記の本実施形態に係る窒化物半導体発光素子の効果が十分に得られないことがある。
 そこで、図11Aの構造に示すように、p型のInGaNからなる上部ガイド層205の膜厚をT1とし、p型のAlGaNからなる第1上部クラッド層208の膜厚をT2として、これらの膜厚の変化に対する光閉じ込め係数(Γ)及び導波損失(αi)を計算した。その結果を図11B及び図11Cに示す。
 図11B及び図11Cに示すように、標準的な構造G(光閉じ込め係数:2.46%、導波損失:3.5cm-1)よりも高い光閉じ込め係数かつ低い導波損失の窒化物半導体発光素子を得るためには、第2上部クラッド層209の膜厚(T2)が50nmの場合、第2ガイド層の膜厚(T1)は、200nmにすることが好ましい。また、第2上部クラッド層209の膜厚(T2)が100nmの場合、第2ガイド層の膜厚(T1)は、50nm以上200nm以下にすることが好ましい。また、第2上部クラッド層209の膜厚(T2)が150nmの場合、第2ガイド層の膜厚(T1)は、50nm以上150nm以下にすることが好ましい。また、第2上部クラッド層209の膜厚(T2)が200nmの場合、第2ガイド層の膜厚(T1)は、50nm以上150nm以下にすることが好ましい。また、第2上部クラッド層209の膜厚(T2)が300nmの場合、第2ガイド層の膜厚(T1)は、50nm以上100nm以下にすることが好ましい。
 上部ガイド層205の膜厚(T1)及び第1上部クラッド層208の膜厚(T2)の組み合わせを図11B及び図11Cに示す範囲内にすることによって、ITOの消衰係数が大きい場合であっても導波損失(αi)の増大を抑制することができるとともに、所望の光閉じ込め係数を得ることができる。
 なお、上部ガイド層205の膜厚(T1)及び第1上部クラッド層208の膜厚(T2)が上記の範囲外の場合、標準的な構造Gよりも導波損失(αi)が増大し、また、光閉じ込め係数の低下が起こるので電流-光出力特性が悪くなる。
 以上、本実施形態では、第1上部クラッド層208としてp型のAlGaNを用いた場合を中心に説明した。この場合、第1上部クラッド層208は、少なくともAlを含む窒化物半導体層であれば、本発明の効果を得ることができる。第1上部クラッド層208の最も好ましいAl組成は、Al組成xが0<x≦0.1の場合である。Al組成xが0.1より高くなると、第1上部クラッド層208の直列抵抗が高くなって閾値電流特性が劣化したり、また、GaNとの格子定数差が大きくなりクラックが発生して歩留まりに悪影響を及ぼしたりするからである。
 また、第1上部クラッド層208の材料としては、AlGaNに限らず、AlGaNのAl組成xが0<x≦0.1の場合の屈折率と同等かそれよりも低くなるAlInN又は4元混晶のAlInGaNを用いても同様の効果を得ることができる。
 また、本実施形態(構造J)の第2上部クラッド層209の膜厚は200nmとしたが、少なくとも100nmより厚くすることが好ましい。第2上部クラッド層209を厚膜化することにより、第2上部クラッド層209の上に形成する電極による光吸収を小さくすることができる。
 (第3の実施形態)
 次に、本発明の第3の実施形態に係る窒化物半導体発光素子300について、図面を参照しながら説明する。
 本実施形態に係る窒化物半導体発光素子300は、第1及び第2の実施形態に係る窒化物半導体発光素子100、200と基本構成は同じである。従って、本実施形態では、第1及び第2の実施形態と異なる点を中心に説明する。
 なお、第3の実施形態に係る窒化物半導体発光素子としては、窒化物半導体を用いたレーザダイオードを例にとって説明する。
 図12Aは、本発明の第3の実施形態に係る窒化物半導体発光素子の上面図であり、図12Bは、図12AのA-A’線における同窒化物半導体発光素子の断面図である。
 図12A及び図12Bに示すように、本発明の第3の実施形態に係る窒化物半導体発光素子300は、例えば(0001)面のn型GaNバルク基板である基板301上に、例えばn型のAlGa1-xN(0≦x≦1)層である下部クラッド層302(第1クラッド層)、例えばn型のIn0.02Ga0.98N層である下部ガイド層303(第1ガイド層)、例えばIn0.15Ga0.85N/GaN活性層である量子井戸構造の活性層304、例えばp型のIn0.02Ga0.98N層である上部ガイド層305(第2ガイド層)、例えば薄膜のp型のAlGa1-xN(0≦x≦1)層である電子障壁層306、及び、上部クラッド層307(第2クラッド層)が順次積層された層構造を有する。
 上部クラッド層307は、複数層からなり、本実施形態では、第1上部クラッド層308と第2上部クラッド層309との2層構造である。
 第1上部クラッド層308は、窒化物半導体によって構成されており、第2上部クラッド層309よりも活性層304に近い側に形成された窒化物半導体クラッド層(窒化物半導体層)である。第1上部クラッド層308は、例えばp型のAlx+yIn1-yGa1-xNによって構成することができる。
 第2上部クラッド層309は、透明導電膜(透明導電体)によって構成されており、第1上部クラッド層308よりも活性層304から離れて形成された透明導電体クラッド層(透明導電体層)である。第2上部クラッド層309は、例えばITOによって構成することができる。
 本実施形態に係る窒化物半導体発光素子300は、第1上部クラッド層308の一部又は全てを垂直なメサ構造にした、リッジを有するリッジ型の光導波路320を備える。光導波路320の最上部以外の第1上部クラッド層308の表面、すなわち、第1上部クラッド層308のリッジ側面及び平坦部の表面は、例えばSiOからなる絶縁膜330によって覆われている。
 また、光導波路320の最上部の第1上部クラッド層308の表面と接合するように、第2上部クラッド層309が形成される。さらに、第2上部クラッド層309は、光導波路320の凸部(リッジ)上面よりも横方向に大きく広がるように形成されており、光導波路320の凸部と絶縁膜330の表面の一部を覆うように形成される。
 また、第2上部クラッド層309の上部には、コンタクト面325を介してp側電極340が形成される。さらに、p側電極を覆うようにパッド電極341が形成されている。さらに、基板301の裏面上にはn側電極350が形成されている。
 このように、本実施形態においても、上部クラッド層307において、透明導電膜からなる第2上部クラッド層309の直下に窒化物半導体からなる第1上部クラッド層308が設けられているので、第1上部クラッド層308とその直下のp型のInGaNからなる上部ガイド層305との間に屈折率差が発生する。すなわち、活性層304に近い第1上部クラッド層308によって光閉じ込めを行うことができる。これにより、第2上部クラッド層309が結晶性の低い透明導電性酸化膜によって構成され、消衰係数が高い場合であっても、光吸収による内部損失(αi)の増大を抑制することができる。その結果、高発光効率の窒化物半導体発光素子を実現することが可能となる。
 また、透明導電膜からなる第2上部クラッド層309は、光やキャリアを閉じ込めるクラッド層としても機能し、第2上部クラッド層309によって縦方向の光閉じ込めを行うことができる。これにより、p型のAlx+yIn1-yGa1-xNからなる第1上部クラッド層308の膜厚を薄膜化することができるので、第1上部クラッド層308の直列抵抗を低減することができる。しかも、本実施形態では、第2上部クラッド層309は、光導波路320の凸部よりも横方向に大きく形成されており、p側電極340とのコンタクト面325を大きく設定することができる。これにより、コンタクト面325におけるコンタクト抵抗を低減することができる。その結果、より低い電圧で動作可能な窒化物半導体発光素子を実現することができる。
 以上、本発明の第3の実施形態に係る窒化物半導体発光素子300によれば、高発光効率で、より低動作電圧である窒化物半導体発光素子を実現することが可能となる。
 次に、本発明の第3の実施形態に係る窒化物半導体発光素子300の作用効果について図13A~図13Cを用いて説明する。図13A~図13Cは、本発明の第3の実施形態に係る窒化物半導体発光素子において、図9に示すパラメータを用いて作製した窒化物半導体発光素子(構造G、構造J、構造K)における電流-光出力特性及び電流-電圧特性を示す図である。
 具体的に、図13Aは、Al0.05Ga0.95Nのみを用い、第2上部クラッド層(ITO)を用いない標準的な構造Gのパラメータを用いて試作した窒化物半導体発光素子の特性を示している。図13Bは、上部クラッド層として第1上部クラッド層(窒化物半導体)と第2上部クラッド層(ITO)とを用いた構造Jのパラメータを用いて試作した窒化物半導体発光素子の特性を示している。図13Cは、第1上部クラッド層として膜厚150nmのAl0.05Ga0.95Nを用い、第2上部クラッド層(ITO)を用いない構造Kのパラメータを用いて試作した窒化物半導体発光素子の特性を示している。
 図13A~図13Cを比較すると、図13Bに示される本実施形態の構造に相当する窒化物半導体発光素子は、図13Aに示される標準的な窒化物半導体発光素子に対して、電流-光出力特性は同等であるが、動作電圧については大幅に低減できていることがわかる。
 一方、図13Cに示される本実施形態の構造ではない、膜厚150nmのAl0.05Ga0.95Nのみのクラッド層構造である窒化物半導体発光素子は、図13Aに示される標準的な窒化物半導体発光素子に対して、動作電圧は低減されるものの、p側電極への光吸収が大きくなり所望の光出力が得られないことがわかる。
 以上の結果から、本実施形態に係る構造の窒化物半導体発光素子300によれば、電流-光出力特性を劣化させることなく、動作電圧を低減することができる。
 (第4の実施形態)
 次に、本発明の第4の実施形態に係る窒化物半導体発光素子400について、図14を用いて説明する。図14は、本発明の第4の実施形態に係る窒化物半導体発光素子の断面図である。
 本実施形態に係る窒化物半導体発光素子400は、第3の実施形態に係る窒化物半導体発光素子300と基本構成は同じである。従って、本実施形態では、第3の実施形態と異なる点を中心に説明する。
 図14に示すように、本発明の第4の実施形態に係る窒化物半導体発光素子400は、例えば(0001)面のn型GaNバルク基板である基板401上に、例えばn型のAlGa1-xN(0≦x≦1)層である下部クラッド層402(第1クラッド層)、例えばn型のGaN層である下部ガイド層403(第1ガイド層)、例えばInGaN活性層である量子井戸構造の活性層404、例えばp型のGaN層である上部ガイド層405(第2ガイド層)、例えば薄膜のp型のAlGa1-xN(0≦x≦1)層である電子障壁層406、及び、上部クラッド層407(第2クラッド層)が順次積層された層構造を有する。
 上部クラッド層407は、複数層からなり、本実施形態では、第1上部クラッド層408と、第2上部クラッド層409と、第1上部クラッド層408と第2上部クラッド層409との間に形成された第3上部クラッド層408aの3層構造である。
 第1上部クラッド層408は、窒化物半導体によって構成されており、第2上部クラッド層409及び第3上部クラッド層408aよりも活性層404に近い側に形成された窒化物半導体クラッド層(窒化物半導体層)である。第1上部クラッド層408は、例えばp型のAlx+yIn1-yGa1-xNによって構成することができる。
 第2上部クラッド層409は、透明導電膜(透明導電体)によって構成されており、第1上部クラッド層408及び第3上部クラッド層408aよりも活性層404から離れて形成された透明導電体クラッド層(透明導電体層)である。第2上部クラッド層409は、例えばITOによって構成することができる。
 第3上部クラッド層408aは、窒化物半導体によって構成されており、第1上部クラッド層408上に形成されたn型コンタクト層である。第3上部クラッド層408aは、トンネル電極として形成され、例えば高濃度にSiがドープされたn型のInGaN/GaN超格子層によって構成することができる。
 本実施形態に係る窒化物半導体発光素子400は、第1上部クラッド層408及び第3上部クラッド層408aの一部をメサ構造にした、リッジを有するリッジ型の光導波路420を備える。光導波路420のリッジ以外の領域、すなわち、第1上部クラッド層408のリッジ側面及び平坦部の表面と第3上部クラッド層408aの側面は、例えばSiOからなる絶縁膜430によって覆われている。
 また、光導波路420の最上部の第3上部クラッド層408aの表面と接合するように、第2上部クラッド層409が形成される。さらに、第2上部クラッド層409は、光導波路420の凸部(リッジ)上面よりも横方向に大きく広がるように形成されており、光導波路420の凸部と絶縁膜430の表面の一部を覆うように形成される。
 また、第2上部クラッド層409のコンタクト面425上にはp側電極440が形成されており、そのp側電極440の上部にはパッド電極441が形成されている。さらに、基板401の裏面上にはn側電極450が形成されている。
 このように、本実施形態においても、第3の実施形態と同様に、透明導電膜からなる第2上部クラッド層409の下方に窒化物半導体からなる第1上部クラッド層408が設けられているので、光吸収による内部損失(αi)の増大を抑制することができるとともに、第1上部クラッド層408の直列抵抗を低減することができる。しかも、第2上部クラッド層409は、光導波路420の凸部よりも横方向に大きく形成されて、p側電極440とのコンタクト面425を大きく設定することができるので、コンタクト面425におけるコンタクト抵抗を低減することができる。
 さらに、本実施形態では、第1上部クラッド層408と第2上部クラッド層409との間に第3上部クラッド層408aが形成されている。これにより、第1上部クラッド層408と第2上部クラッド層409との間において、トンネル電流によってキャリアを移動させることができる。この結果、第2上部クラッド層409と第1上部クラッド層408との間のコンタクト抵抗をさらに低減させることができる。
 以上、本発明の第4の実施形態に係る窒化物半導体発光素子400によれば、窒化物半導体発光素子の動作電圧をより低減させることが可能となるので、高発光効率で、さらに低動作電圧を可能とした窒化物半導体発光素子を実現することができる。
 なお、本実施形態において、第3上部クラッド層408aとして、高濃度SiドープのInGaN/GaN超格子層を用いたが、これに限らない。第3上部クラッド層408aとしては、例えば高濃度SiドープのGaN又はInGaNの単層のn型コンタクト層を用いてもかまわない。
 (第5の実施形態)
 次に、本発明の第5の実施形態に係る窒化物半導体発光素子500について、図15を用いて説明する。
 図15に示すように、本実施形態に係る窒化物半導体発光素子500は、窒化物半導体を用いた埋め込み型(RISA型)の半導体レーザであって、例えば(0001)面のn型GaNバルク基板である基板501上に、例えばn型のAlGa1-xN(0≦x≦1)層である下部クラッド層502(第1クラッド層)、例えばn型のInGaN層である下部ガイド層503(第1ガイド層)、例えばInGaN活性層である量子井戸構造の活性層504、例えばp型のInGaN層である第1上部ガイド層505a(第1の第2ガイド層)、例えば薄膜のp型のAlGa1-xN(0≦x≦1)層である電子障壁層506、例えばp型のGaN層である第2上部ガイド層505b(第2の第2ガイド層)、第2上部ガイド層505b上部に開口部を有する例えばn型のAlGaNである電流ブロック層530、及び、開口部を埋めるように電流ブロック層530上に形成された上部クラッド層507(第2クラッド層)が順次積層された層構造を有する。なお、電流ブロック層530は、Al組成比が高い高Al組成のAlGaNによって構成されている。
 上部クラッド層507は、複数層からなり、本実施形態では、第1上部クラッド層508と、第2上部クラッド層509と、第1上部クラッド層508と第2上部クラッド層509との間に形成された第3上部クラッド層508aの3層構造である。
 第1上部クラッド層508は、窒化物半導体によって構成されており、第2上部クラッド層509及び第3上部クラッド層508aよりも活性層504に近い側に形成された窒化物半導体クラッド層(窒化物半導体層)である。第1上部クラッド層508は、電流ブロック層530の開口部を埋めるように、第1上部ガイド層505a及び電流ブロック層530上に形成されており、例えばp型のAlx+yIn1-yGa1-xNによって構成することができる。
 第2上部クラッド層509は、透明導電膜(透明導電体)によって構成されており、第1上部クラッド層508及び第3上部クラッド層508aよりも活性層504から離れて形成された透明導電体クラッド層(透明導電体層)である。第2上部クラッド層509は、例えばITOによって構成することができる。
 第3上部クラッド層508aは、窒化物半導体によって構成されており、第1上部クラッド層508上に形成されたn型コンタクト層である。第3上部クラッド層508aは、トンネル電極として形成され、例えば高濃度にSiがドープされたn型のInGaN/GaN超格子層によって構成することができる。
 本実施形態に係る窒化物半導体発光素子500は、電流ブロック層530の開口部に第1上部クラッド層508が埋め込まれることによって形成された埋め込み型の光導波路520を備える。
 また、第2上部クラッド層509のコンタクト面525にはp側電極540が形成されており、そのp側電極440の上部にはパッド電極541が形成されている。さらに、基板501の裏面上にはn側電極550が形成されている。
 次に、本発明の第5の実施形態に係る窒化物半導体発光素子500の製造方法について、図16を用いて説明する。図16は、本発明の第5の実施形態に係る窒化物半導体発光素子の製造方法を説明するための図である。
 図16の(a)に示すように、まず、MOCVD法により、基板501上に、例えばSiをドープしたAl0.05Ga0.95Nを1.5μmの膜厚で成膜し、下部クラッド層502を形成する。続いて、例えばSiをドープしたn型のInGaNである下部ガイド層503、例えばIn0.15Ga0.95N井戸層/GaN障壁層が複数(例えば3層)成膜された活性層504、例えばMgをドープしたInGaNである第1上部ガイド層505a、例えばMgをドープしたp型のAl0.2Ga0.8Nである電子障壁層506、例えばMgをドープしたGaNである第2上部ガイド層505b、及び、例えばn型のAlGaNである電流ブロック層530を順次成膜する。
 その後、スパッタ装置を用いてSiOマスクを電流ブロック層530上に形成し、フォトリソグラフィー及びウェットエッチングを用いて、例えば幅1.5μmの開口部を形成する。その後、フォトケミカルウェットエッチングを用いて光導波路520となる領域を開口し、その後フッ酸によりSiOマスクを除去する。これにより、図16の(b)に示すように、電流ブロック層530に光導波路520となる開口部が形成された構成を得ることができる。なお、このとき、開口部内には第1上部ガイド層505aが露出している。
 その後、図16の(c)に示すように、再度MOCVD法により、例えばp型のAl0.05Ga0.95Nからなる第1上部クラッド層508を、開口部を埋めるように第1上部ガイド層505a及び電流ブロック層530の上に形成し、続けて、第1上部クラッド層508の上に、例えば高濃度にSiがドープされたn型のInGaN/GaN超格子層からなる第3上部クラッド層508aを成膜する。
 その後、成長炉から取り出して、同図に示すように、電子ビーム蒸着装置又はスパッタ装置を用いて、例えばITOを成膜することにより、第2上部クラッド層509を成膜する。これにより、3層構造の上部クラッド層507を形成することができる。
 その後、図16の(d)に示すように、フォトリソグラフィー及びEB蒸着法を用いて、光導波路520を覆うように、厚さが45nmのパラジウム(Pd)と厚さが50nmの白金(Pt)とからなるp側電極540を形成する。続いて、フォトリソグラフィー及びEB蒸着法を用いて、厚さが50nmのチタン(Ti)と厚さが1000nmの金(Au)を積層させた膜を形成した後、電解メッキ法によりAuの厚さを10μmまで増やし、パッド電極541を形成する。
 その後、ダイヤモンドスラリーを用いて、基板501の厚さを100μm程度まで研磨することにより薄片化した後、EB蒸着装置を用いて、基板501の裏面にn側電極550として厚さが5nmのTi、厚さが10nmのPt及び厚さが1000nmのAuを形成する。その後、劈開を行うことによりチップ分離され、本実施形態に係る窒化物半導体発光素子500が製造される。
 以上、本発明の第5の実施形態に係る窒化物半導体発光素子500によれば、第1~第4の実施形態と同様に、透明導電膜からなる第2上部クラッド層509の下方に窒化物半導体からなる第1上部クラッド層508が設けられているので、光吸収による内部損失(αi)の増大を抑制することができるとともに、第1上部クラッド層508の直列抵抗を低減することができる。
 また、本実施形態では、第4の実施形態と同様に、第1上部クラッド層508と第2上部クラッド層509との間に第3上部クラッド層508aが形成されているので、第2上部クラッド層509と第1上部クラッド層508との間のコンタクト抵抗をさらに低減させることができる。
 さらに、本実施形態では、埋め込み型の光導波路520であって、電流ブロック層530がSiOなどの酸化膜よりも熱伝導率の高いn型のAlGaNなどからなる窒化物半導体で構成される。これにより、活性層104付近の発光部で発生するジュール熱を効率良く発光部外に放熱させることができる。また、n型のAlGaNで構成された電流ブロック層530のAl組成を高くすることによって、横方向の光閉じ込め効果を高めることができる。これにより、本実施形態における窒化物半導体で構成されたクラッド層の膜厚をさらに薄膜化することができる。この結果、クラッド層の直列抵抗を一層低減することができるので、窒化物半導体発光素子の電流-光出力特性をさらに向上させることができる。従って、電力-光変換効率を一層向上させることができる。
 さらに、本実施形態では、他の実施形態と比べて、窒化物半導体からなる上部クラッド層(第3上部クラッド層508a又は第1上部クラッド層508)と透明導電膜からなるクラッド層(第2上部クラッド層509)との接触面積が大きいので、窒化物半導体からなる上部クラッド層と透明導電膜からなるクラッド層との間のコンタクト抵抗をさらに低減させることができる。
 しかも、本実施形態では、第1上部クラッド層508と第2上部クラッド層509との間に第3上部クラッド層508aが形成されているので、トンネル電流によってコンタクト抵抗をさらに低減させることができる。
 このように、本発明の第5の実施形態に係る窒化物半導体発光素子500によれば、高発光効率で、さらに低動作電圧を可能とした窒化物半導体発光素子を実現することができる。
 以上、本発明に係る窒化物半導体発光素子について、実施形態に基づいて説明したが、本発明は、これらの実施形態に限定されるものではない。
 例えば、第1、第3~5の実施形態では半導体レーザについて述べたが、スーパールミネッセントダイオードについても同様に適用することができる。
 また、第1、第3~第5の実施形態では、直線状の光導波路の例を示したが、第2の実施形態のように、曲線部分を含む曲線状の光導波路であっても同様に適用することができる。
 また、上述の実施形態では、劈開を用いて共振器端面を形成する例を示したが、ドライエッチングによって光出射端面及び反射端面を形成するような構造であっても同様に適用することができる。
 また、上述の実施形態においては、光導波路のリッジストライプの幅(ストライプ幅)として1.5μmの例を示したが、10μm以下のストライプ幅であれば、いずれの実施形態にも同様に適用することができる。
 また、上述の実施形態においては、基板として(0001)面を基板の主面としたn型GaN基板の例を示したが、(10-10)面、(11-20)面、(10-11)面、(11-21)面などを基板の主面としたn型GaN基板を用いた場合でも同様に適用することができる。
 また、上述の実施形態においては、基板としてn型GaN基板を用いた例を示したが、サファイア、SiC、Siなど他の基板を用いた場合でも同様に適用することができる。
 また、上述の実施形態においては、第2上部クラッド層の透明導電膜の材料として、錫(Sn)が添加された酸化インジウム(InO)であるITOを用いたが、これに限らない。例えば、第2上部クラッド層の透明導電膜の材料としては、Ga又はAlなどの材料をドープしたZnO(酸化亜鉛)、あるいは、アンチモン(Sb)が添加された酸化錫(SnO)などを用いることができる。これらの透明導電膜は、所望の屈折率に合わせて用いることができる。
 その他、本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を本実施形態に施したものも本発明の範囲内に含まれる。また、本発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。
 本発明に係る窒化物半導体発光素子は、様々な光源として広く利用することができ、特に、ディスプレイ若しくはプロジェクターなどの画像表示装置における光源として、又は、レーザ加工若しくはレーザアニールなどの産業用のレーザ機器などの比較的高い光出力が必要な装置における光源として有用である。
 100、200、300、400、500 窒化物半導体発光素子
 101、201、301、401、501、2101 基板
 102、202、302、402、502 下部クラッド層
 103、203、303、403、503 下部ガイド層
 104、204、304、404、504 活性層
 105、205、305、405 上部ガイド層
 106、206、306、406、506 電子障壁層
 107、207、307、407、507、2180 上部クラッド層
 108、208、308、408、508 第1上部クラッド層
 109、209、309、409、509 第2上部クラッド層
 120、220、320、420、520 光導波路
 125、225、325、425、525 コンタクト面
 130、230、330、430 絶縁膜
 140、240、340、440、540、2190 p側電極
 141、241、341、441、541 パッド電極
 150、250、350、450、550、2120 n側電極
 408a、508a 第3上部クラッド層
 505a 第1上部ガイド層
 505b 第2上部ガイド層
 530 電流ブロック層
 2100 レーザダイオード
 2110 n型コンタクト層
 2130 n型下部クラッド層
 2140 n型下部導波路層
 2150 多重量子井戸領域
 2155 活性領域
 2160 p型閉じ込め層
 2170 p型上部導波路層

Claims (7)

  1.  光導波路を有する窒化物半導体発光素子であって、
     当該半導体発光素子は、第1クラッド層と、活性層と、第2クラッド層とを少なくともこの順に含み、
     前記第2クラッド層は、透明導電体によって構成された透明導電体層と、当該透明導電体層よりも前記活性層側に形成され、窒化物半導体によって構成された窒化物半導体層とを有する
     窒化物半導体発光素子。
  2.  前記窒化物半導体層は、少なくともAlを含む
     請求項1に記載の窒化物半導体発光素子。
  3.  前記窒化物半導体層は、AlInGa1-x-yN(0<x≦0.82、0≦y≦0.18、0≦1-x-y<1)からなる
     請求項1又は2に記載の窒化物半導体発光素子。
  4.  前記活性層と前記第2クラッド層との間に設けられたガイド層を備え、
     前記ガイド層と前記第2クラッド層との合計膜厚dは、
     0.1μm<d<0.5μmである
     請求項1に記載の窒化物半導体発光素子。
  5.  前記光導波路は、前記第2クラッド層から前記第1クラッド層の一部までを掘り込んで形成された垂直メサ構造である
     請求項1に記載の窒化物半導体発光素子。
  6.  前記透明導電体の材料は、錫が添加された酸化インジウム、アンチモンが添加された酸化錫、及び酸化亜鉛のうちのいずれか1つである
     請求項1に記載の窒化物半導体発光素子。
  7.  前記透明導電体層の膜厚は、100nmより大きい
     請求項1に記載の窒化物半導体発光素子。
     
PCT/JP2012/001144 2011-03-24 2012-02-21 窒化物半導体発光素子 WO2012127778A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013505786A JP5963004B2 (ja) 2011-03-24 2012-02-21 窒化物半導体発光素子
CN201280014025.6A CN103444021B (zh) 2011-03-24 2012-02-21 氮化物半导体发光元件
US14/029,543 US8942269B2 (en) 2011-03-24 2013-09-17 Nitride semiconductor light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011066507 2011-03-24
JP2011-066507 2011-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/029,543 Continuation US8942269B2 (en) 2011-03-24 2013-09-17 Nitride semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
WO2012127778A1 true WO2012127778A1 (ja) 2012-09-27

Family

ID=46878961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001144 WO2012127778A1 (ja) 2011-03-24 2012-02-21 窒化物半導体発光素子

Country Status (4)

Country Link
US (1) US8942269B2 (ja)
JP (1) JP5963004B2 (ja)
CN (1) CN103444021B (ja)
WO (1) WO2012127778A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157176A1 (ja) * 2012-04-16 2013-10-24 パナソニック株式会社 半導体発光素子
WO2015092992A1 (ja) * 2013-12-20 2015-06-25 パナソニックIpマネジメント株式会社 半導体発光素子
TWI511327B (zh) * 2012-12-27 2015-12-01 Genesis Photonics Inc 氮化物半導體結構及半導體發光元件
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
US9780255B2 (en) 2012-11-19 2017-10-03 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
WO2018083896A1 (ja) * 2016-11-01 2018-05-11 ソニーセミコンダクタソリューションズ株式会社 半導体素子、半導体レーザ及び半導体素子の製造方法
WO2018203466A1 (ja) * 2017-05-01 2018-11-08 パナソニックIpマネジメント株式会社 窒化物系発光装置
US20210111030A1 (en) * 2016-10-28 2021-04-15 Osram Oled Gmbh Method of producing a semiconductor laser and semiconductor laser
WO2022163176A1 (ja) * 2021-01-28 2022-08-04 ウシオ電機株式会社 窒化物半導体発光素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157852A (ja) * 2013-02-14 2014-08-28 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子およびその製造方法
US9488779B2 (en) 2013-11-11 2016-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method of forming laser chip package with waveguide for light coupling
JP2015226045A (ja) * 2014-05-30 2015-12-14 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
CN112750927A (zh) * 2019-10-31 2021-05-04 山东浪潮华光光电子股份有限公司 一种具有特定图形的发光二极管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974249A (ja) * 1995-09-06 1997-03-18 Toshiba Corp 半導体発光装置
JP2004289157A (ja) * 2003-03-20 2004-10-14 Xerox Corp レーザダイオード構造およびその製造方法
JP2006041491A (ja) * 2004-06-21 2006-02-09 Matsushita Electric Ind Co Ltd 半導体レーザ素子及びその製造方法
JP2007129236A (ja) * 2005-11-03 2007-05-24 Samsung Electronics Co Ltd 窒化物半導体レーザ素子及びその製造方法
JP2010016261A (ja) * 2008-07-04 2010-01-21 Sharp Corp 窒化物半導体レーザ素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312921A1 (de) * 2003-03-22 2004-10-14 Sma Regelsysteme Gmbh Schaltungsanordnung, Zusatzmodul und Solaranlagen-System
US7279751B2 (en) 2004-06-21 2007-10-09 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and manufacturing method thereof
CN102099976B (zh) * 2008-05-30 2013-06-12 加利福尼亚大学董事会 在降低的温度下制造的(Al、Ga、In)N二极管激光器
JP4566253B2 (ja) 2008-07-09 2010-10-20 シャープ株式会社 窒化物半導体レーザ素子
US7856040B2 (en) * 2008-09-24 2010-12-21 Palo Alto Research Center Incorporated Semiconductor light emitting devices with non-epitaxial upper cladding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974249A (ja) * 1995-09-06 1997-03-18 Toshiba Corp 半導体発光装置
JP2004289157A (ja) * 2003-03-20 2004-10-14 Xerox Corp レーザダイオード構造およびその製造方法
JP2006041491A (ja) * 2004-06-21 2006-02-09 Matsushita Electric Ind Co Ltd 半導体レーザ素子及びその製造方法
JP2007129236A (ja) * 2005-11-03 2007-05-24 Samsung Electronics Co Ltd 窒化物半導体レーザ素子及びその製造方法
JP2010016261A (ja) * 2008-07-04 2010-01-21 Sharp Corp 窒化物半導体レーザ素子

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608815B2 (ja) * 2012-04-16 2014-10-15 パナソニック株式会社 半導体発光素子
JPWO2013157176A1 (ja) * 2012-04-16 2015-12-21 パナソニック株式会社 半導体発光素子
US9472741B2 (en) 2012-04-16 2016-10-18 Panasonic Intellectual Property Management Co., Ltd. Semiconductor light-emitting device
WO2013157176A1 (ja) * 2012-04-16 2013-10-24 パナソニック株式会社 半導体発光素子
US9640712B2 (en) 2012-11-19 2017-05-02 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
US9685586B2 (en) 2012-11-19 2017-06-20 Genesis Photonics Inc. Semiconductor structure
US9780255B2 (en) 2012-11-19 2017-10-03 Genesis Photonics Inc. Nitride semiconductor structure and semiconductor light emitting device including the same
TWI511327B (zh) * 2012-12-27 2015-12-01 Genesis Photonics Inc 氮化物半導體結構及半導體發光元件
JP2020021959A (ja) * 2013-12-20 2020-02-06 パナソニックIpマネジメント株式会社 半導体発光素子
WO2015092992A1 (ja) * 2013-12-20 2015-06-25 パナソニックIpマネジメント株式会社 半導体発光素子
JPWO2015092992A1 (ja) * 2013-12-20 2017-03-16 パナソニックIpマネジメント株式会社 半導体発光素子
US20210111030A1 (en) * 2016-10-28 2021-04-15 Osram Oled Gmbh Method of producing a semiconductor laser and semiconductor laser
US11935755B2 (en) * 2016-10-28 2024-03-19 Osram Oled Gmbh Method of producing a semiconductor laser and semiconductor laser
JPWO2018083896A1 (ja) * 2016-11-01 2019-09-19 ソニーセミコンダクタソリューションズ株式会社 半導体素子、半導体レーザ及び半導体素子の製造方法
WO2018083896A1 (ja) * 2016-11-01 2018-05-11 ソニーセミコンダクタソリューションズ株式会社 半導体素子、半導体レーザ及び半導体素子の製造方法
US11121524B2 (en) 2016-11-01 2021-09-14 Sony Semiconductor Solutions Corporation Semiconductor device, semiconductor laser, and method of producing a semiconductor device
JP7107849B2 (ja) 2016-11-01 2022-07-27 ソニーセミコンダクタソリューションズ株式会社 半導体素子の製造方法
US11876349B2 (en) 2016-11-01 2024-01-16 Sony Semiconductor Solutions Corporation Semiconductor device, semiconductor laser, and method of producing a semiconductor device
WO2018203466A1 (ja) * 2017-05-01 2018-11-08 パナソニックIpマネジメント株式会社 窒化物系発光装置
JPWO2018203466A1 (ja) * 2017-05-01 2020-03-12 パナソニックIpマネジメント株式会社 窒化物系発光装置
US11322908B2 (en) 2017-05-01 2022-05-03 Nuvoton Technology Corporation Japan Nitride light emitter
JP7150705B2 (ja) 2017-05-01 2022-10-11 ヌヴォトンテクノロジージャパン株式会社 窒化物系発光装置
WO2022163176A1 (ja) * 2021-01-28 2022-08-04 ウシオ電機株式会社 窒化物半導体発光素子

Also Published As

Publication number Publication date
US20140023103A1 (en) 2014-01-23
JP5963004B2 (ja) 2016-08-03
CN103444021A (zh) 2013-12-11
JPWO2012127778A1 (ja) 2014-07-24
US8942269B2 (en) 2015-01-27
CN103444021B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5963004B2 (ja) 窒化物半導体発光素子
JP4328366B2 (ja) 半導体素子
KR101698629B1 (ko) 질화물 반도체 레이저 다이오드
JP6947386B2 (ja) 半導体発光素子および半導体発光素子の製造方法
JP6152848B2 (ja) 半導体発光素子
JP2013038394A (ja) 半導体レーザ素子
WO2018083896A1 (ja) 半導体素子、半導体レーザ及び半導体素子の製造方法
JP2007214221A (ja) 窒化物半導体レーザ素子
JP4566253B2 (ja) 窒化物半導体レーザ素子
JP2001210915A (ja) 半導体発光装置
JPWO2017017928A1 (ja) 窒化物半導体レーザ素子
US8536603B2 (en) Optoelectronic semiconductor chip and method of producing an optoelectronic semiconductor chip
JP5223531B2 (ja) 半導体レーザ素子
JP2012134327A (ja) 窒化物半導体発光素子
JP2013102043A (ja) 半導体レーザ素子、及び、半導体レーザ素子の作製方法
JP2016066670A (ja) 半導体レーザ
JPH1146038A (ja) 窒化物半導体レーザ素子及びその製造方法
JP2002094190A (ja) 窒化物系半導体発光素子
JP2011258883A (ja) 半導体レーザ
JP4890509B2 (ja) 半導体発光素子の製造方法
JP4254373B2 (ja) 窒化物半導体素子
JP2005101536A (ja) 窒化物半導体レーザ素子
WO2015001692A1 (ja) 半導体発光素子
JP2012104764A (ja) 半導体発光素子
JP2013033921A (ja) 窒化物系発光ダイオード素子およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280014025.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760423

Country of ref document: EP

Kind code of ref document: A1