WO2012127730A1 - 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム - Google Patents
誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム Download PDFInfo
- Publication number
- WO2012127730A1 WO2012127730A1 PCT/JP2011/075251 JP2011075251W WO2012127730A1 WO 2012127730 A1 WO2012127730 A1 WO 2012127730A1 JP 2011075251 W JP2011075251 W JP 2011075251W WO 2012127730 A1 WO2012127730 A1 WO 2012127730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- induction heating
- current
- frequency
- coil
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/101—Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/44—Coil arrangements having more than one coil or coil segment
Definitions
- the present invention relates to an induction heating device including an inverse conversion device that supplies high-frequency power to an induction heating coil, a method for controlling the induction heating device, and a control program.
- the billet (ingot) Before the billet (ingot) is finished into various products by forging, rolling or extruding, it is necessary to heat and soften the billet to a settling temperature of 1250 ° C, for example. If you try to keep the bar-shaped billet at the set temperature with a single coil, the temperature distribution will be non-uniform, so there will be wasted material that does not reach the specified temperature during transition, such as when shifting from standby to standby to normal heating. There are things to do. Moreover, if it is going to keep both ends to a set temperature, a center part will become high temperature, and the furnace itself may melt
- an induction heating device in which the induction heating coil is divided into a plurality of pieces, and a high frequency power source (for example, an inverter) is individually connected to each of the divided induction heating coils to perform power control.
- a high frequency power source for example, an inverter
- the inverters are in a state of being operated in parallel via the mutual inductance M, and when there is a deviation in the current phase between the inverters, power may be transferred between the inverters. That is, a phase difference occurs in the magnetic field between the divided induction heating coils due to the deviation of the current phase of each inverter. Therefore, the magnetic field is weakened near the boundary between adjacent induction heating coils, and the heat generation density due to the induction heating power is reduced. As a result, temperature unevenness may occur on the surface of the object to be heated (billette or wafer).
- each power supply unit is configured to include a step-down chopper and a voltage source inverter (hereinafter simply referred to as an inverter). And each power supply unit divided
- each inverter in each power supply unit is subjected to current synchronization control (that is, current phase synchronization control) so that the circulating current does not flow between a plurality of inverters by matching the current phase flowing through each inverter.
- current synchronization control that is, current phase synchronization control
- the inverter is configured so that the heat generation density due to the induction heating power does not rapidly decrease near the boundary between the induction heating coils by matching the phase of the current flowing through each of the divided induction heating coils.
- each step-down chopper controls the current amplitude of each inverter by varying the input DC voltage of each inverter, and controls the induction heating power supplied to each induction heating coil.
- the ZCIH technology disclosed in Patent Document 1 controls the power of the induction heating coil for each zone by performing current amplitude control for each step-down chopper, and performs a plurality of current synchronization controls for each inverter.
- the circulation current between the inverters is suppressed, and the heat generation density by the induction heating power near the boundary of each induction heating coil is made uniform.
- control system of the step-down chopper and the control system of the inverter perform individual control, so that the heat generation distribution on the object to be heated can be arbitrarily controlled. That is, rapid and precise temperature control and temperature distribution control can be performed by the ZCIH technique disclosed in Patent Document 1.
- Patent Document 1 connects a resonance capacitor in series with an overheated coil to form a current resonance inverse conversion device, and a single forward conversion device (chopper) as a power source for supplying DC power to a plurality of resonances.
- ZVS by connecting to the type inverse conversion device, changing the power supply voltage commonly applied to the plurality of resonance type inverse conversion devices, and increasing the phase difference between the rising timing of the rectangular wave voltage and the zero crossing timing of the resonance current.
- An inverter circuit that realizes (Zero Voltage Switching) and reduces the recovery loss of the commutation diode is disclosed.
- Patent Document 2 discloses a technique in which DC power is simultaneously supplied to inverters individually connected to a plurality of induction heating coils, and the plurality of induction heating coils are simultaneously operated.
- the rated output voltage during operation at the rated output current the coefficient that gives the ratio of the sum of the rated voltage drop and the rated induced voltage to a specified value or more, and the rated output of the controlled inverter at this time
- the phase angle between the voltage and the rated output current is obtained, and the output frequency of the controlled object inverter is obtained so that the obtained coefficient (2 in the embodiment) and the phase angle can be obtained for the controlled object inverter during arbitrary operation.
- a general induction heating apparatus composed of one zone that does not divide the induction heating coil into a plurality of parts can be operated by following the operation frequency to the natural resonance frequency, and the rise of the output rectangular wave voltage of the inverse conversion apparatus.
- the minimum phase angle operation that improves the power factor could be performed.
- the billet has a change from a magnetic material to a non-magnetic material due to a temperature rise exceeding the Curie point, and a phase angle change (phase angle decrease) due to a shape change (gap change) of an object to be heated.
- the resonance frequency is increased and the resonance current is approximately tripled.
- the inductance L decreases and the natural resonance point increases.
- the inverter voltage Vinv is defeated by the mutual induction voltage Vm (Vinv ⁇ Vm), and a steep reverse phase current (reverse direction current) flows (FIG. 2A).
- the output current decreases, so the phase angle of the maximum output zone (the zone) may be reduced.
- the zero cross timing when the resonance current makes a transition from negative to positive may advance more than the rising timing of the rectangular wave output voltage of the inverter, and ZVS may not be maintained.
- the zone that first reached the settling temperature becomes the minimum current and has not yet reached. A large current continues in the zone. At this time, in the minimum current zone, the output voltage Vinv of the inverter becomes smaller than the mutual induction voltage Vm reached from the adjacent zone, and normal operation cannot be performed.
- an object of the present invention is to provide an induction heating apparatus, a control method for the induction heating apparatus, and a control program that can ensure normal operation of a zone that should output the maximum power.
- one means of the present invention is to control any one or a plurality of inverse conversion devices with a minimum phase angle, and the output voltage (Vinv) of each of the inverse conversion devices is mutually induced.
- the power supply voltage applied to the inverse converter is changed so as to exceed the voltage (Vm).
- the phase angle that prevents the output voltage (high-frequency voltage) of the inverse conversion device from lagging the current (Iin) at any frequency (that is, the resonance current is in the leading phase) is referred to as the minimum phase angle.
- the output voltage (Vinv) is set to a value (Vinv> Vm12, Vinv> Vm32) larger than the mutual induction voltage (Vm12, Vm32) coming from the adjacent zone.
- any one or a plurality of inverters preferably a maximum output inverter and all inverters
- any one or a plurality of inverters preferably a maximum output inverter and all inverters
- the power supply voltage applied to the inverse converter is set so that the output voltage (Vinv) of each of the inverse converters exceeds the mutual induction voltage (Vm) and is up to twice the mutual induction voltage. change.
- the output voltage (Vinv) is set to a value (Vinv> (Vm12 + Vm32)) larger than the sum of the mutual induction voltages (Vm12, Vm32) coming from the adjacent zone.
- the output voltage is a value obtained by dividing the power supply voltage (Vdc) by the square root of 2 and a modulation factor
- the output voltage (Vinv) is defined as a value obtained by multiplying the power supply voltage by a duty ratio (Duty).
- the output voltage (Vinv) is set to a value obtained by multiplying the power supply voltage by a duty factor (Duty) and a waveform distortion factor (0.9).
- the substantially resonant current flowing through each induction heating coil can be set to the phase delay mode by following the natural resonance frequency.
- an inverse conversion device that supplies maximum power can reduce the converter capacity by performing minimum phase angle control.
- FIG. 6 is a frequency-current characteristic diagram for explaining resonance characteristics that are different between a cold material and a HOT material. It is a circuit diagram for demonstrating the forward conversion apparatus of the induction heating apparatus which is one Embodiment of this invention, and a reverse conversion apparatus. It is explanatory drawing for demonstrating an equivalent sine wave voltage and average value control. It is a block block diagram of the control unit which controls an inverse converter.
- FIGS. 1A and 1B are structural diagrams of a billet heater used in an induction heating apparatus according to an embodiment of the present invention
- FIG. 2 is an equivalent circuit diagram and operation of the billet heater
- FIG. 3 is a circuit configuration diagram of the induction heating apparatus.
- a billet heater 10 is provided with a concentric refractory material and a heat insulating material around a columnar billet (ingot) 1 to be heated, and the outer periphery of the heat insulating material.
- An induction heating coil is wound around the surface.
- the refractory material and the heat insulating material avoid heat dissipation of the billet heated to a high temperature and prevent the coil wire from fusing.
- the billet 1 has a diameter of 55 mm.
- the induction heating coil is divided into three zones from the first zone to the third zone through a gap, and is composed of the divided induction heating coils 11, 12, and 13. .
- the induction heating coil 12 may be referred to as an induction heating central coil, and the induction heating coils 11 and 13 may be referred to as induction heating adjacent coils.
- the induction heating coils 11, 12, and 13 are equivalently expressed by a series circuit of an equivalent inductor and an equivalent resistor (FIG. 2 (a)). .
- the induction heating coils 11, 12, and 13 are respectively connected to capacitors 21, 22, and 23 in series. Therefore, the series circuit of the induction heating coils 11, 12, 13 and the capacitors 21, 22, 23 is equivalently expressed as an RLC series resonance circuit, and the inverter power supply Einv of the output voltage Vinv is connected to one end thereof, and the other end is connected.
- an AC power supply Em having a mutual induction voltage Vm is connected to the circuit (FIG. 2A).
- the inverter current Iinv (solid arrow) flows, and the mutual induction current Im (broken arrow) flows in the reverse direction.
- the output voltage Vinv of the reverse converters 30, 35, 31 (FIG. 3) must be higher than the mutual induction voltage Vm.
- the billet 1 changes from a magnetic material to a non-magnetic material. For this reason, the natural resonance frequency is increased and the resonance current is approximately tripled. Since the phase of the mutual induction voltage Vm changes by 360 ° depending on the frequency and shows a circular locus (FIG. 2B), the output voltage (inverter voltage Vinv) of the inverter (inverter 35) is delayed at any frequency. In order to prevent the phase (that is, the resonance current from leading), the output voltage (inverter voltage Vinv) is larger than the sum of the mutual induction voltages Vm12 and Vm32 coming from the adjacent zones (1, 3 zones).
- Vinv> (Vm12 + Vm32) Vinv> 2
- an induction heating apparatus 100 includes two sets of billet heaters 10 (10a, 10b), two sets of capacitor units 20 (20a, 20b), and two sets.
- Inverse conversion devices 30 (30a, 30b), 35 (35a, 35b), 31 (31a, 31b), a forward conversion device 40, and a control unit 50 are configured.
- the billet heater 10 includes induction heating coils 11, 12, and 13 having inductances L ⁇ b> 1, L ⁇ b> 2, and L ⁇ b> 3, the mutual inductance of the induction heating coils 11 and 12 is M ⁇ b> 12, and the induction heating coil 12. , 13 is M23. In addition, since the distance between the induction heating coils L1 and L3 is long, the mutual inductance is ignored.
- the capacitor unit 20 includes three capacitors 21, 22 and 23 having capacitances C 01 , C 02 and C 03 .
- the capacitors 21, 22, and 23 are connected in series with the induction heating coils 11, 12, and 13, respectively, and constitute an LC resonance circuit.
- FIG. 4 is a frequency-current characteristic diagram of each zone showing frequency characteristics that change between the billet cold material and the HOT material.
- FIG. 4 (a) shows the characteristics of the 1 and 3 zone cold material
- FIG. 4 (b) shows the characteristics of the 1 and 3 zone HOT material
- FIG. 4 (c) shows the property of the 2 zone cold material.
- FIG. 4 (d) shows the characteristics of the two-zone HOT material. As can be seen from the figure, the current of the HOT material is three times that of the cold material.
- the induction heating apparatus 100 has a natural resonance frequency (350 Hz) at the time of HOT in the 1st and 3rd zones (400 Hz).
- the capacitances C 01 , C 02 and C 03 of the capacitors 21, 22 and 23 are set so as to be lower than ().
- the induction heating device 100 receives a mutual induction voltage (Vm21, Vm31, respectively) from two or three zones in one zone, the output voltage (inverter voltage Vinv) of the reverse conversion device 30 in one zone is 2 ,
- the capacitances of the capacitors 21 and 22 are set so as to be higher than the mutual induction voltages coming from the three zones (Vinv> Vm21 or Vinv> Vm31).
- the output voltage (inverter voltage Vinv) of the inverse conversion device 31 in the three zones is higher than the mutual induction voltage coming from the second and first zones (Vinv> Vm23 or Vinv> Vm13).
- the capacitances of the capacitors 22 and 23 are set so that
- the induction heating device 100 is unique in each zone while maintaining the same inverter voltage Vinv.
- the resonance current in each zone can be made equal. That is, in the induction heating apparatus 100, when the cold material having a natural resonance point of 400 Hz is heated and becomes a HOT material in two zones, the resonance current increases three times and the natural resonance point rises to 550 Hz. By following the natural resonance point of 550 Hz, the resonance current is reduced, and the resonance current can be controlled to be equal to the resonance current of the cold material.
- the natural resonance frequency is set to be low at 350 Hz in the first and third zones, but the resonance current is further reduced because it is driven at 550 Hz, which is the same frequency as the second zone. That is, since the mutual induction voltage received from the 2nd zone to the 1st and 3rd zones does not change, the output voltage (inverter voltage Vinv) of the inverse conversion devices 30 and 31 is reduced.
- the inverse conversion device 30 (31) shown in FIG. 3 includes electrolytic capacitors C F1 and C F2 connected in series, and two IGBTs (Insulated Gate Bipolar Transistors) Q11 and Q12 (Q31 and Q32), and is a half bridge.
- a circuit is configured and power is supplied to the induction heating coils 11 and 13 via the capacitors 21 and 23.
- the emitter end of the transistor Q11 and the collector end of the transistor Q12 are connected, and a DC voltage Vdc is applied between the collector end of the transistor Q11 and the emitter end of the transistor Q12, so that they are connected in series.
- the DC voltage Vdc is applied to the electrolytic capacitors C F1 and C F2 .
- a connection point between the emitter end of the transistor Q11 and the collector end of the transistor Q12 and one end of the capacitor 21 are connected, and the other end of the capacitor 21 and one end of the induction heating coil 11 are connected.
- the other end of the heating coil 11 and the connection point P of the electrolytic capacitors C F1 and C F2 are connected.
- the reverse conversion device 35 includes a single electrolytic capacitor CF3 and four transistors Q21, Q22, Q23, and Q24, constitutes a full bridge circuit, and is connected to the induction heating coil 12 via the capacitor 22 with the reverse conversion device. Electric power larger than 30, 31 is supplied.
- the emitter end of the transistor Q21 and the collector end of the transistor Q22 are connected, the emitter end of the transistor Q23 and the collector end of the transistor Q24 are connected, and the collector ends of the transistors Q21 and Q23 and the transistors Q22 and Q24.
- a DC voltage Vdc is applied to the emitter end of the capacitor, and a DC voltage Vdc is applied to the electrolytic capacitor CF3.
- a connection point between the emitter end of the transistor Q23 and the collector end of the transistor Q24 and one end of the capacitor 22 are connected, and the other end of the capacitor 22 and one end of the induction heating coil 12 are connected.
- the connection point between the emitter end of the transistor Q21 and the collector end of the transistor Q22 and the other end of the induction heating coil 12 are connected.
- the inverse conversion device 31 has the same configuration as the inverse conversion device 30, and the inverse conversion devices 30b, 35b, 31b have the same configuration as the inverse conversion devices 30a, 35a, 31a.
- the forward conversion device 40 includes a diode bridge 41 and a chopper 45 (FIG. 5).
- the forward conversion device 40 generates a DC voltage Vdc using a commercial power supply AC and generates a first reverse conversion device aggregate (inverse conversion devices 30a and 35a). 31a) and the second inverse converter assembly (inverse converters 30b, 35b, 31b).
- the forward conversion device 40 applies the same DC voltage Vdc to the reverse conversion devices 30a, 35a, and 31a.
- the capacitors 21, 22, and 23 have the HOT natural resonance frequency in the 1 and 3 zones lower than the cold natural resonance frequency in the maximum power zone (2 zones).
- the capacitances C 01 , C 02 and C 03 are set as follows.
- FIG. 5 is a circuit diagram for explaining the forward conversion device and the reverse conversion device of the induction heating device according to the embodiment of the present invention.
- the forward conversion device 40a includes a diode bridge 41, an electrolytic capacitor 42, transistors (IGBT) Q41 and Q42 as switching elements, a commutation diode, and a smoothing reactor L.
- the diode bridge 41 full-wave rectifies the AC voltage of the commercial power supply.
- the electrolytic capacitor 42 smoothes the DC voltage rectified by the diode bridge 41.
- the transistors Q41 and Q42 and the commutation diode intermittently change the voltage Vdc0 across the electrolytic capacitor 42 at a predetermined DUTY ratio to generate a rectangular wave voltage.
- the smoothing reactor L smoothes the rectangular wave voltage generated by the IGBTs Q41 and Q42.
- the reverse conversion device 35a has the same configuration as described above, but a film capacitor (capacitor CF4) having a small capacity may be used instead of the electrolytic capacitor CF3.
- the DC voltage Vdc is the voltage across the capacitors CF3 and CF4.
- the control unit 50 generates a gate signal for controlling the gates of the transistors (IGBT) in the inverse converters 30, 31, and 35, and includes a ROM (Read Only Memory), a RAM (Random Access Memory), and a CPU (Central The following functions are realized when the CPU executes a predetermined program stored in a storage medium.
- the control unit 50 causes the inverse converters 30, 35, and 31 to function as PWM non-resonant inverters. Specifically, since the inverse conversion devices 30, 35, and 31 need to realize ZVS, a rectangular wave shape obtained by PWM-modulating a rectangular wave voltage having a predetermined carrier frequency with a sine wave signal (Sin ⁇ t) having a predetermined operating frequency. Equivalent sine wave voltage (in FIG. 6 (a) in the case of the inverse conversion device 35 which is a full bridge circuit). This equivalent sine wave voltage is averaged by the LR time constant ((L1-C01) R time constant), and a coil current having a substantially sine waveform flows through the induction heating coils 11, 12, and 13.
- the equivalent sine wave voltages of the inverse conversion devices 30, 35, and 31 are feedback-controlled so as to be in phase.
- the target phase is a phase between a zero cross point where a sine wave signal for generating an equivalent sine wave makes a transition from negative to positive and a zero cross point where a coil current having a substantially sine waveform makes a transition from negative to positive.
- control unit 50 generates an equivalent sine wave signal with an operating frequency of 1 kHz using a triangular wave signal with a carrier frequency of 8 kHz by PWM control, and controls the gates of the IGBTs in the inverse conversion devices 30, 35, and 31. I have control.
- the two-zone inverse converter 35 that outputs maximum power performs minimum phase angle control while following the natural resonance frequency.
- the minimum phase angle control will be described. Control is performed so that the minimum phase angle (for example, 30 °) of the maximum output zone (2 zones) is obtained.
- the minimum phase angle is larger than the sum of the mutual induction voltages Vm12 and Vm32 in which the output voltage (inverter voltage Vinv) comes from the adjacent zones (1, 3 zones) (Vinv> ( Vm12 + Vm32)).
- the zone that outputs at the maximum ratio with respect to the rated power has the minimum phase angle.
- the capacitance is set so as to be lower than that (FIG. 2A).
- the coil voltage is low, so there is no need for a capacitor.
- FIG. 7 is a block diagram of the control unit 50a that controls the inverse converters 30, 31, and 35.
- FIG. 7 is a block diagram of the control unit that controls the first and third zones. It is the same.
- the control unit 50a includes an A / D converter to the outside, to detect the coil current i L.
- the control unit 50a includes an amplitude calculator 201, a target current generator 202, an adder 203, PI calculators 204 and 208, a zero cross detector 205, a current synchronization reference phase signal generator 206, and a synchronization shift.
- Detector 207 voltage command value calculator 209, triangular wave comparator 210, frequency setter 211, phase angle comparator 215, 30 ° reference value generator 216, comparators 217 and 219, and PI controller 218.
- Amplitude calculator 201 calculates the amplitude of the converted value I L to the coil current i L converted A / D.
- Target current generator 202 generates a target value of the coil current i L.
- the adder 203 subtracts the output waveform of the amplitude calculator 201 from the output value of the target current generator 202 and outputs an error signal.
- the PI controller 204 performs a proportional integral operation on the error signal output from the adder 203.
- Zero-crossing detector 205 the coil current i L by using the converted value I L obtained by converting A / D, to calculate the zero-cross point when the coil current i L is changed from negative to positive.
- the current synchronization reference phase signal generator 206 outputs a reference value of a phase difference from the target current generator 202 in order to synchronize the coil currents flowing through the induction heating coils 11, 12, and 13. This reference value is set to a minimum phase angle of 30 ° in the case of two zones, and may be a value larger than the minimum phase angle in the case of the first and third zones because power consumption is small.
- the synchronization deviation detector 207 detects a difference (synchronization deviation) between the output value of the current synchronization reference phase signal generator 206 and the output value of the zero cross detector 205.
- the PI controller 208 performs a proportional integral operation on the output deviation of the synchronization deviation detector 206.
- the voltage command calculator 209 generates a voltage command value Vinv * indicating a sine waveform with an operating frequency of 1 kHz based on the output signals of the PI controllers 204 and 208 and the frequency command value f * .
- the frequency setter 211 outputs a value having a carrier frequency of 8 kHz.
- the triangular wave comparator 210 compares the voltage command value Vinv * with the triangular wave signal having the carrier frequency set by the frequency setting unit 211, and generates a PWM control signal.
- the PWM control signal is input to the inverse conversion devices 30, 35, and 31, and the coil current i L flowing through the induction heating coils 11, 12, and 13 is fed back as the A / D conversion value I L , whereby the coil current i L.
- the output voltage Vinv of the inverse converters 30, 35, and 31 is obtained by inverting the positive and negative of the rectangular wave voltage when the voltage command value Vinv * is zero-crossed, the transition timing before and after the positive and negative inversion at the origin 0, and the zero-cross point.
- the times T1 and T2 coincide with each other.
- the phase angle comparator 215 compares the output phase of the zero cross detector 205 with the phase of the voltage command value Vinv * output from the voltage command value calculator 209. That is, the phase angle comparator 215 calculates the phase difference between the sine wave signal and the coil current i L of the voltage command value Vinv *, voltage - output current phase difference .theta.v *.
- the 30 ° generator 216 outputs a value of 30 ° which is the minimum phase angle.
- the comparator 217 compares the voltage-current phase difference ⁇ v * output from the phase angle comparator 215 with a value of 30 °. When the value of the voltage-current phase difference ⁇ v * is larger than 30 °, the comparator 217 When the value of the voltage-current phase difference ⁇ v * is smaller than 30 °, a positive constant value is output. At this time, the comparator 217 compares the voltage-current phase difference from other zones (2, 3 zones) with the value of 30 °.
- the PI controller 218 performs a proportional-integral operation on the output signal of the comparator 217 and outputs a frequency command value f * of about 1 kHz to the voltage command value calculator 209.
- the comparator 219 compares the voltage command value Vinv * with twice (2 Vm) the mutual induction voltage Vm from another zone, and outputs the comparison result to the voltage command value calculator 209.
- the voltage command value calculator 209 performs control in a minor loop so as to increase the value of the voltage command value Vinv * .
- FIG. 8 is a block diagram of a control unit that controls the chopper.
- the control unit 50b In order to control the chopper 45, the control unit 50b generates a pulse width control signal DUTY based on the two-zone coil current i L2 and the DC voltage Vdc after smoothing the output rectangular wave voltage of the chopper 45.
- the control unit 50 b includes gain units 255 and 259, an adder 256, a voltage controller 257, and a pulse width signal generator 258.
- the gain unit 255 multiplies the A / D conversion value I L2 of the coil current i L in the two zones by twice the mutual induction coefficient M (2M), and outputs 2MI L2 .
- Mutual induction voltage Vm so MI L2 the gain unit 255 outputs 2Vm.
- the gain unit 259 multiplies the DC output voltage Vdc of the chopper 45 by a waveform distortion rate 0.9.
- the adder 256 subtracts the output value of the gain unit 259 from
- Voltage controller 257 calculates DC voltage command value Vdc * using the deviation output from adder 256.
- the pulse width signal generator 258 generates a pulse width control signal DUTY by comparing the DC voltage command value Vdc * with a triangular wave signal having a fixed frequency. By inputting this pulse width control signal DUTY as the gate signal of the chopper 45, the chopper 45 is feedback-controlled so as to output a DC voltage that is twice the mutual induction voltage of the two zones.
- the inverse conversion device 35 targeted for the maximum output zone (2 zones) includes the rising timing of the rectangular wave voltage of the inverse conversion device output and the zero cross timing when the resonance current transitions from negative to positive. Is controlled so that the phase angle between is minimum. This minimum phase angle is obtained when the mutual induction voltages (Vm12, Vm32) are received from the adjacent zones (1, 3 zones), and the output voltage (inverter voltage) of the reverse conversion device 35 in the central zone (2 zones) which is the maximum output zone. Vinv) is set to a value (Vinv> (Vm12 + Vm32)) larger than the sum of the mutual induction voltages (Vm12, Vm32) coming from the first and third zones.
- 23 capacitance is set. That is, when the mutual induction voltage (Vm21, Vm31) is received from the second zone or the third zone, the output voltage Vinv of the inverse conversion device 30 in one zone is higher than the mutual induction voltages Vm21, Vm31 (Vinv> Vm21 or Vinv>
- the capacitances of the capacitors 21, 22, and 23 are set so as to be Vm31).
- the equivalent sine wave voltage is PWM controlled. That is, the inverse conversion devices 30, 35, and 31 function as a PWM resonance type inverter.
- the inverse converter 35 that supplies the maximum power can reduce the converter capacity by performing control so that the resonance current phase delay mode is set and minimum phase angle control. Therefore, it is possible to achieve high power factor operation, increase efficiency, and reduce the capacity of the reverse conversion device (contain it within the rated capacity).
- FIG. 9 is a diagram showing a temperature change in each zone.
- the current rapidly decreases.
- the zone that first reaches the settling temperature has the minimum current, and the high current continues in the non-reached zone.
- the output voltage Vinv of the inverter is smaller than the mutual induction voltage Vm reached from the adjacent zone.
- the output voltage of the chopper 45 is increased so as to be Vm to 2 Vm.
- FIG. 10 is a circuit diagram of an inverse conversion device using an IPM module and a billet heater.
- the IPM module is a generalized module in which six IGBTs and six commutation diodes are modularized for the purpose of driving a three-phase motor.
- the IPM module 60 includes power supply terminals V +, V ⁇ , output terminals U, V, W, and a gate terminal.
- the induction heating apparatus 101 is a three-bridge configuration of a half bridge circuit using one IPM module 60 for each of the three induction heating coils 11, 12, 13 and includes power supply terminals V +, Electrolytic capacitors C F1 and C F2 connected in series are connected to both ends of V ⁇ , and a DC voltage Vdc is applied.
- the output terminals U, V, and W are connected to one ends of capacitors 24, 25, and 26, respectively, and the other ends of the capacitors 24, 25, and 26 are connected to one ends of induction heating coils 11, 12, and 13, respectively.
- the other ends of the capacitors 11, 12, and 13 are connected to one ends of the capacitors 27, 28, and 29, and the other ends of the capacitors 27, 28, and 29 are collectively connected to the connection point P of the electrolytic capacitors C F1 and C F2. Yes.
- the capacitances of the capacitors 24, 25, 26, 27, 28, and 29 are twice the capacitances of the capacitors 21, 22, and 23 (FIG. 2).
- the IPM module 60 By using the IPM module 60, a simple and small ZCIH can be realized, which is suitable for use in heating a semiconductor substrate.
- FIG. 11 is a circuit diagram around an inverse conversion device using an IPM module and a billet heater.
- the induction heating device 102 includes two IPM modules 60a and 60b, electrolytic capacitors C F1 and C F2 , capacitors 24a, 25a and 26a, capacitors 27, 28 and 29, capacitors 24b, 25b and 26b, and induction heating. Coils 11, 12, and 13 are provided.
- the IPM modules 60a and 60b are connected to electrolytic capacitors C F1 and C F2 connected in series at both ends of the power supply terminals V + and V ⁇ , and a DC voltage Vdc is applied thereto.
- the output terminals U1, V1, and W1 of the IPM module 60a are connected to one ends of capacitors 24a, 25a, and 26a.
- the other ends of the capacitors 24a, 25a, and 26a are connected to one end of the induction heating coils 11, 12, and 13 and the capacitor 24b.
- 25b, 26b, the other ends of the induction heating coils 11, 12, 13 are connected to one ends of the capacitors 29, 28, 27, and the other ends of the capacitors 29, 28, 27 are collectively electrolyzed. It is connected to a connection point P between the capacitors C F1 and C F2 .
- the other ends of the capacitors 24b, 25b, and 26b are connected to the output terminals U2, V2, and W2 of the IPM module 60b.
- the output power of each inverse conversion device using the IPM modules 60a and 60b is added, so that the output can be increased.
- FIG. 12 is a circuit diagram of a fourth embodiment using a high-order resonance preventing reactor.
- the induction heating device 103 includes inverse conversion devices 30, 35, 31, capacitors 21, 22, 23, and induction heating coils 11, 12, 13, and further includes the inverse conversion devices 30, 35 and 31 are provided with a high-order resonance reactor 73 and a capacitor 74 constituting an LC low-pass filter on each power supply side, and one end of three high-order resonance reactors 73 is connected to one end of an electrolytic capacitor 72 and a choke. Connected to one end of the coil 71. A DC voltage Vdc is applied to the other end of the choke coil 71, and the other end of the electrolytic capacitor 72 and the other end of the capacitor 74 are grounded.
- the high-order resonance prevention reactor 73 sets the inductance so that the resonance frequency f0 determined by the capacitor 74 (for example, 1000 ⁇ F) is lower than the high-order resonance frequency 2f0 by adding to the wiring inductance (several ⁇ H). To do. Thereby, it is possible to prevent the component of the high-order resonance frequency 2f0 of the mutual induced electromotive force Vm from circulating to the power source side of the inverse conversion devices 30, 35, and 31.
- the control unit 50 causes the inverse converters 30, 35, 31 to function as a PWM resonance inverter, and a rectangular wave voltage (high frequency voltage) of the carrier frequency.
- a rectangular wave voltage high frequency voltage
- the control unit 50 can reduce the loss by causing the inverse converter 35 to function as a current resonance type inverter that outputs a rectangular wave voltage having an operation frequency (Japanese Patent Laid-Open No. 2005-260707). 2010-287447).
- control unit 50 sets the pulse width to the inverse conversion device 35 so that the zero cross timing at which the sine wave current zero crosses from negative to positive is in the resonance current phase delay mode in which the rising timing of the rectangular wave drive voltage is delayed. I have control. Thereby, the reverse recovery loss of the commutation diode in the reverse conversion device 35 is prevented from occurring.
- control unit 50 also functions as a PWM resonance inverter for the inverse conversion devices 30 and 31.
- FIG. 13 is a waveform diagram for explaining the operation when a rectangular wave voltage is used.
- This waveform diagram shows the output voltage Vinv (rectangular wave voltage waveform) of the inverse conversion device 35, its fundamental wave voltage waveform and the coil current waveform, the vertical axis is the voltage / current, and the horizontal axis is the phase ( ⁇ t). It is.
- the output voltage Vinv of the inverse conversion device 35 is a positive / negative symmetrical odd function waveform (rectangular wave voltage waveform) indicated by a solid line, and the fundamental wave is shown as a broken line fundamental wave voltage waveform.
- the maximum amplitude of the output voltage Vinv is ⁇ Vdc
- the phase angle of the control angle ⁇ is set with respect to the zero cross point of the fundamental wave voltage waveform. That is, both the rising timing and falling timing of the output voltage Vinv of the inverse converter 35 and the zero cross timing of the fundamental voltage waveform have a phase difference of the control angle ⁇ .
- the amplitude of the fundamental voltage waveform is (4Vdc / ⁇ ) ⁇ cos ⁇ , and the frequency is the operating frequency (1 kHz).
- a coil current waveform i L indicated by a broken line is a sine wave that is delayed by a phase difference ⁇ from the zero cross timing of the fundamental wave voltage waveform.
- the capacitors 24, 25, and 26 are connected in series to the induction heating coils 11, 12, and 13, but the capacitors 24 and 25 are connected to the induction heating coils 11 and 13 in the first and third zones. 26 can be connected directly without being connected. That is, since the supplied power is small in the first and third zones, it can function as a PWM non-resonant inverter by adding a capacitor. This is because in the first and third zones, it is not necessary to lower the output voltage Vinv to lower the power factor or the capacity of the inverse conversion device.
- each of the above embodiments has described a circuit for supplying power to a billet heater (FIG. 1) that burns a single billet, it can also be used in a vertical furnace or a pancake spiral coil.
- the lowest zone where the temperature is likely to drop is set to the maximum output, so the target of the minimum phase angle control is the lowest zone.
- the capacitance of the capacitor is set so that the natural resonance point is lower than the natural resonance point of the lowest zone.
- the outermost peripheral zone has the maximum output, and therefore, the outermost peripheral zone is the target of the phase angle constant control.
- the capacitance is set such that the natural resonance point is lower than the natural resonance point of the outermost peripheral zone.
- the operating frequency of the center coil (singular point) is 200 kHz, and the others are 40 kHz.
- the metal billet is directly induction-heated.
- the semiconductor wafer or the like can be indirectly heated by induction-heating graphite as a nonmagnetic material.
- the zone that outputs the maximum output is subjected to the minimum phase angle control, and the capacitances of the capacitors in other zones are set so that the natural resonance point is lower than the natural resonance point of the lowest zone.
- a chopper + resonance type inverter is used at a heating frequency of about 20 kHz to 50 kHz. It is preferable.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
- Inverter Devices (AREA)
Abstract
Description
冷材 HOT材 空芯コイル
等価抵抗 R(比率) 1 0.3 0.15 (約7倍)
インダクタンス L(μH) 118 84 110
しかしながら、固有共振点が高くなると、インバータ電圧Vinvが相互誘導電圧Vmに負けて(Vinv<Vm)、急峻な逆位相電流(逆方向電流)が流れる(図2(a))。
例えば、空コイルは冷材コイルに対して等価抵抗Rが1/7になるので、相互誘導電圧Vmが変化することなく、等価抵抗の電圧降下VRや等価インダクタンスの電圧降下VLが低下する。この結果、インバータ電圧Vinvが相互誘導電圧Vmに負けることがあり、すべての負荷状態で正常運転できるとはいえない。
例えば、図9の温度変化を示す図を参照すれば、加熱が完了する整定温度(1250°C)付近では急激に電流低下するため、最初に整定温度に到達したゾーンは最小電流となり、未到達ゾーンは大電流が継続していることになる。このとき、最小電流ゾーンは、インバータの出力電圧Vinvが、隣接するゾーンから到達する相互誘導電圧Vmよりも小さくなり、正常運転することができない。
前記逆変換装置が振幅が変調された等価正弦波電圧を発生するときは、前記出力電圧は、前記電源電圧(Vdc)を2の平方根で除した値に、変調率を乗算した値であり、
前記逆変換装置がチョッパであるとき、前記出力電圧(Vinv)は、前記電源電圧に通流率(Duty)を乗じた値に規定されることを特徴とする。例えば、前記出力電圧(Vinv)は、前記電源電圧に通流率(Duty)及び波形歪率(0.9)を乗じた値に設定される。
(全体構成)
図1(a)(b)は、本発明の一実施形態である誘導加熱装置に使用されるビレットヒータの構造図であり、図2は、ビレットヒータの等価回路図、及び動作を説明するためのベクトル図であり、図3は、誘導加熱装置の回路構成図である。
図1(a)(b)に示すように、ビレットヒータ10は、加熱対象の円柱状のビレット(鋳塊)1を中心として、同心円状の耐火材、及び断熱材を備え、断熱材の外周表面に誘導加熱コイルが巻回されて構成されている。この耐火材、及び断熱材は、高温に熱せられたビレットの放熱を回避すると共に、コイル素線を溶断させないようにしている。なお、ビレット1の径は直径55mmである。
図1(a)の軸方向断面図において、誘導加熱コイルは、1ゾーンから3ゾーンまで、空隙を介して3分割されており、分割された誘導加熱コイル11,12,13から構成されている。なお、誘導加熱コイル12を誘導加熱中央コイルといい、誘導加熱コイル11,13を誘導加熱隣接コイルということがある。
言い換えれば、誘導加熱装置100は、1ゾーンに2,3ゾーンから相互誘導電圧(それぞれ、Vm21、Vm31)を受けたとき、1ゾーンの逆変換装置30の出力電圧(インバータ電圧Vinv)が、2,3ゾーンから到来する相互誘導電圧よりも高い値(Vinv>Vm21またはVinv>Vm31)になるように、コンデンサ21,22のキャパシタンスを設定する。同様に、誘導加熱装置100は、3ゾーンの逆変換装置31の出力電圧(インバータ電圧Vinv)が、2,1ゾーンから到来する相互誘導電圧よりも高い値(Vinv>Vm23またはVinv>Vm13)になるように、コンデンサ22,23のキャパシタンスを設定する。
すなわち、誘導加熱装置100は、2ゾーンにおいて、固有共振点400Hzの冷材が、加熱され、HOT材になると、共振電流が3倍に増加すると共に、固有共振点が550Hzまで上昇する。550Hzの固有共振点に追随させることにより、共振電流が減少して、冷材の共振電流と同等に制御できる。このとき、誘導加熱装置100は、1,3ゾーンは、固有共振周波数が350Hzに低く設定されているが、2ゾーンと同一周波数の550Hzで駆動することになるので、共振電流がさらに低減する。すなわち、2ゾーンから1,3ゾーンが受ける相互誘導電圧は変化しないので、逆変換装置30,31の出力電圧(インバータ電圧Vinv)は、低減する。
誘導加熱装置100は、トランジスタQ11のエミッタ端、及びトランジスタQ12のコレクタ端の接続点と、コンデンサ21の一端とが接続され、コンデンサ21の他端と誘導加熱コイル11の一端とが接続され、誘導加熱コイル11の他端と電解コンデンサCF1,CF2の接続点Pとが接続されている。
逆変換装置35は、トランジスタQ21のエミッタ端とトランジスタQ22のコレクタ端とが接続され、トランジスタQ23のエミッタ端とトランジスタQ24のコレクタ端とが接続され、トランジスタQ21,Q23のコレクタ端とトランジスタQ22,Q24のエミッタ端とに直流電圧Vdcが印加され、電解コンデンサCF3に直流電圧Vdcが印加される。誘導加熱装置100は、トランジスタQ23のエミッタ端とトランジスタQ24のコレクタ端との接続点とコンデンサ22の一端とが接続され、コンデンサ22の他端と誘導加熱コイル12の一端とが接続されている。
また、誘導加熱装置100は、トランジスタQ21のエミッタ端とトランジスタQ22のコレクタ端との接続点と、誘導加熱コイル12の他端とが接続されている。
順変換装置40は、ダイオードブリッジ41、及びチョッパ45(図5)により構成され、商用電源ACを用いて直流電圧Vdcを発生させて、第1の逆変換装置集合体(逆変換装置30a,35a,31a)及び第2の逆変換装置集合体(逆変換装置30b,35b,31b)に電力供給を行っている。これにより、順変換装置40は、逆変換装置30a,35a,31aに同一の直流電圧Vdcを印加する。
順変換装置40aは、ダイオードブリッジ41と、電解コンデンサ42と、スイッチング素子としてのトランジスタ(IGBT)Q41,Q42と、転流ダイオードと、平滑リアクトルLとを備える。ダイオードブリッジ41は、商用電源の交流電圧を全波整流する。電解コンデンサ42は、ダイオードブリッジ41が整流した直流電圧を平滑する。トランジスタQ41,Q42、及び転流ダイオードは、電解コンデンサ42の両端電圧Vdc0を所定のDUTY比で断続させて、矩形波電圧を生成する。平滑リアクトルLは、IGBTQ41,Q42が生成した矩形波電圧を平滑する。
制御ユニット50は、逆変換装置30,31,35内部のトランジスタ(IGBT)のゲートを制御するゲート信号を生成するものであり、ROM(Read Only Memory)、RAM(Random Access Memory)、CPU(Central Processing Unit)により構成され、CPUが記憶媒体に格納された所定のプログラムを実行することにより、下記の機能を実現する。
分割された誘導加熱コイル11,12,13は互いに近接しているので、相互誘導インダクタンスM12,M23が存在し、相互誘導電圧Vmが発生する状態となる。逆変換装置相互間で生じる電力の授受に伴って発生する誘導加熱コイル間での磁界の位相差を回避するために、1,2,3ゾーンを同一周波数で、かつ同期された正弦波電流で運転する。これにより、局所的に発熱量が低下して発熱ムラが発生する現象が回避される。
最大電力を出力する2ゾーンの逆変換装置35は、固有共振周波数に追随させつつ最小位相角制御を行っている。以下、最小位相角制御について説明する。
最大出力ゾーン(2ゾーン)の最小位相角(例えば、30°)となるように制御する。
具体的には、前記したように、最小位相角は、出力電圧(インバータ電圧Vinv)が隣接ゾーン(1,3ゾーン)から到来する相互誘導電圧Vm12,Vm32の和よりも大きな値(Vinv>(Vm12+Vm32))になるように設定する。1,3ゾーンから到来する相互誘導電圧Vm12,Vm32が等しいとき、Vinv>2|Vm|となり(図2(c))、このときの最小位相角は、30°である。
a)十分に大きな位相角を付けていたので、高力率運転することができない。
b)従来の逆変換装置は、相互誘導電圧Vmを超えるインバータ電圧Vinvを発生していたので、電圧電流定格(実効電力Vdc×Idc)に余裕が必要である。
次に、逆変換装置30,31,35、及び順変換装置(チョッパ)45の制御を行うための制御ユニット50の構成を具体的に説明する。
図7は、逆変換装置30,31、35を制御する制御ユニット50aのブロック構成図であり、1,3ゾーンを制御する制御ユニットの構成図を示すが、2ゾーンの制御ユニットの構成図も同様である。制御ユニット50aは、外部にA/D変換器を備え、コイル電流iLを検出する。
制御ユニット50bは、チョッパ45を制御するために、2ゾーンのコイル電流iL2、及びチョッパ45の出力矩形波電圧平滑後の直流電圧Vdcに基づいて、パルス幅制御信号DUTYを生成する。制御ユニット50bは、ゲインユニット255,259と、加算器256と、電圧制御器257と、パルス幅信号生成器258とを備える。
ゲインユニット255は、2ゾーンのコイル電流iLのA/D変換値IL2に相互誘導係数Mの2倍(2M)を乗算して、2MIL2を出力する。相互誘導電圧VmはMIL2なので、ゲインユニット255は、2Vmを出力する。ゲインユニット259は、チョッパ45の直流出力電圧Vdcに波形歪み率0.9を乗算する。加算器256は、ゲインユニット255の出力値からゲインユニット259の出力値を減算する。
本実施形態によれば、最大出力ゾーン(2ゾーン)を対象とする逆変換装置35は、逆変換装置出力の矩形波電圧の立ち上がりタイミングと共振電流が負から正に遷移するときのゼロクロスタイミングとの間の位相角が最小値になるよう制御される。
この最小位相角は、隣接ゾーン(1,3ゾーン)から相互誘導電圧(Vm12,Vm32)を受けたとき、最大出力ゾーンである中央ゾーン(2ゾーン)の逆変換装置35の出力電圧(インバータ電圧Vinv)が1,3ゾーンから到来する相互誘導電圧(Vm12,Vm32)の和よりも大きな値(Vinv>(Vm12+Vm32))になるように設定する。
したがって、高力率運転、及びこれによる効率向上、逆変換装置の低容量化(定格容量に収める)を図ることができる。
加熱が完了する整定温度(1250°C)付近では急激に電流低下する。
このため、最初に整定温度に到達したゾーンは最小電流となり、未到達ゾーンは大電流が継続していることになる。このとき、最小電流ゾーンは、インバータの出力電圧Vinvが、隣接するゾーンから到達する相互誘導電圧Vmよりも小さくなっている。このため、Vm~2Vmになるように、チョッパ45の出力電圧を上昇させる。
前記第1実施形態は、逆変換装置30,31にハーフブリッジ回路を用い、逆変換装置35にフルブリッジ回路を用いて、独立した回路を構成していたが、3ゾーン構成では、3相IPM(Inteligent Power Module)モジュールを使用して並列接続することができる。
図10は、IPMモジュールを用いた逆変換装置、及びビレットヒータの回路図である。
IPMモジュールは、3相モータを駆動することを目的として、6個のIGBTと、6個の転流ダイオードとをモジュール化して、汎用化したものである。IPMモジュール60は、電源端子V+,V-と、出力端子U,V,Wと、ゲート端子とを備えている。
第2実施形態は、IPMモジュールを1個用いたが、2個以上のIPMモジュールを並列接続して、大容量化を図ることができる。
図11は、IPMモジュールを用いた逆変換装置、及びビレットヒータ周辺の回路図である。
誘導加熱装置102は、2個のIPMモジュール60a,60bと、電解コンデンサCF1,CF2と、コンデンサ24a,25a,26aと、コンデンサ27,28,29と、コンデンサ24b,25b,26bと誘導加熱コイル11,12,13とを備える。
前記第1実施形態は、逆変換装置の電源側に電解コンデンサCF1のみを接続していたが、高次の電流成分が電源側に環流することを防止するために、逆変換装置毎に低域通過フィルタを設けることができる。
図12は、高次共振防止リアクトルを用いた第4実施形態の回路図である。
誘導加熱装置103は、第1実施形態と同様に、逆変換装置30,35,31とコンデンサ21,22,23と、誘導加熱コイル11,12,13とを備え、さらに、逆変換装置30,35,31の各々の電源側にLCローパスフィルタを構成する高次共振リアクトル73、及びコンデンサ74を備え、3個の高次共振リアクトル73の一端が接続されて、電解コンデンサ72の一端、及びチョークコイル71の一端に接続される。チョークコイル71の他端は、直流電圧Vdcが印加され、電解コンデンサ72の他端、及びコンデンサ74の他端は接地される。
これにより、相互誘導起電力Vmの高次共振周波数2f0の成分が、逆変換装置30,35,31の電源側に環流することを防止することができる。
前記各実施形態は、すべてのゾーン(1,2,3ゾーン)で、制御ユニット50は、逆変換装置30,35,31をPWM共振インバータとして機能させ、キャリア周波数の矩形波電圧(高周波電圧)を運転周波数の正弦波でPWM変調させ、等価正弦波を出力していた。加熱中心の2ゾーンは供給電力が多くなるので、制御ユニット50は、逆変換装置35を運転周波数の矩形波電圧を出力する電流共振型インバータとして機能させて、損失低減させることができる(特開2010-287447号公報参照)。
すなわち、制御ユニット50は、逆変換装置35に対して、正弦波電流が負から正にゼロクロスするゼロクロスタイミングが矩形波駆動電圧の立ち上がりタイミングよりも遅れる共振電流位相遅れモードになるようにパルス幅を制御している。これにより、逆変換装置35内部の転流ダイオードの逆回復損失が発生しないようにしている。なお、この場合も、制御ユニット50は、逆変換装置30,31に対してはPWM共振インバータとして機能させている。
また、破線で示されるコイル電流波形iLは、基本波電圧波形のゼロクロスタイミングよりも位相差θだけ遅れているいる正弦波である。
本発明は前記した実施形態に限定されるものではなく、例えば以下のような種々の変形が可能である。
すなわち、1,3ゾーンは、供給電力が少ないので、コンデンサを追加することによりPWM非共振インバータとして機能させることができる。1,3ゾーンは、出力電圧Vinvを下げて、力率を下げたり、逆変換装置の容量を下げたりする必要が無いからである。
(2)前記第1実施形態は、逆変換装置30,35,31と、コンデンサ24,25,26、及び誘導加熱コイル11,12,13の直列回路とを直接接続していたが、整合変圧器を介して接続することができる。
例えば、電源電圧400Vdcのときに出力電圧Vinv=200Vacで足りる場合は、整合変圧器によりインバータの出力電流を小さくすることができるという点で有効である。
縦型炉では、温度低下しやすい最下段ゾーンが最大出力に設定されるので、最小位相角制御の対象は、最下段ゾーンである。上のゾーンは、固有共振点が最下段ゾーンの固有共振点よりも低くなるようにコンデンサのキャパシタンスを設定する。
パンケーキ型の渦巻きコイルでは、最外周ゾーンが最大出力となるので、最外周ゾーンを位相角一定制御の対象にする。他のゾーンは、固有共振点が最外周ゾーンの固有共振点よりも下になるようにキャパシタンスを設定する。なお、中心コイル(特異点)の運転周波数は200kHz、その他は40kHzとする。
最大出力を出すゾーンを最小位相角制御を行い、他ゾーンのコンデンサも固有共振点が最下段ゾーンの固有共振点よりも下になるようにキャパシタンスを設定する。
ソレノイドコイルによる縦形グラファイトチューブ加熱や、パンケーキコイルによる円板状グラファイト加熱に使用される。
なお、この場合は、加熱周波数=約20kHz~50kHzでチョッパ+共振型インバータを用いる。ことが好ましい。
11,12,13 誘導加熱コイル
20 コンデンサユニット
21,22,23,24a,24b,25a,25b,26a,26b コンデンサ
30,30a,30b,31,31a,31b,35,35a,35b 逆変換装置
40 順変換装置
41 ダイオードブリッジ
42 電解コンデンサ
45 チョッパ
50,50a,50b 制御ユニット
55,56,57 A/D変換器
60,60a,60b IPMモジュール
71,73 リアクトル
72,74 コンデンサ
100,101,102,103 誘導加熱装置
201 振幅演算ユニット
202 目標電流生成器
203 加算器
204,208,218 PI制御器
205 ゼロクロス検出ユニット
206 電流同期用基準位相信号生成器
207 同期ズレ検出ユニット
209 電圧指令値演算器
210 三角波比較器
211 周波数設定器
215 位相角比較器
216 30°設定器
217,219 比較器
255,259 ゲインユニット
256 加算器
257 電圧制御器
258 パルス幅信号生成器
Claims (12)
- 近接して配置された複数の誘導加熱コイルと、この誘導加熱コイルの各々に直列接続されたコンデンサと、直流電圧から変換させられた高周波電圧を各々の前記誘導加熱コイル及び前記コンデンサの直列共振回路に印加する複数の逆変換装置と、前記高周波電圧をパルス幅制御するとともに前記複数の誘導加熱コイルに流れるコイル電流の位相を揃えるように前記複数の逆変換装置を制御する制御回路とを備える誘導加熱装置であって、
前記制御回路は、前記複数の逆変換装置を周波数同一かつ、電流同期させるとともに、前記複数の誘導加熱コイルに最大電力を供給する特定の逆変換装置が発生する前記高周波電圧と前記直列共振回路に流れるコイル電流との位相差が最小になるように制御し、
前記複数の逆変換装置に印加される直流電源電圧は、前記高周波電圧が隣接する前記誘導加熱コイルから受ける相互誘導電圧を超える電圧に設定されていることを特徴とする誘導加熱装置。 - 前記最小にする位相差は、任意の周波数において前記高周波電圧が前記コイル電流に対して進み位相になるような位相差であることを特徴とする請求の範囲第1項に記載の誘導加熱装置。
- 商用電源の交流電圧を直流電圧に変換し、前記直流電源電圧として前記逆変換装置に印加する順変換装置をさらに有し、
前記逆変換装置が前記パルス幅制御された等価正弦波電圧を発生するときは、前記高周波電圧は、前記直流電源電圧を2の平方根で除した値に、変調率を乗算した値であり、
前記逆変換装置がチョッパ制御を行うときは、前記高周波電圧は、前記直流電源電圧に通流率を乗じた値に規定されることを特徴とする請求の範囲第1項に記載の誘導加熱装置。 - 前記制御回路は、何れか1台又は複数台の逆変換装置が前記最小の位相差になるように制御することを特徴とする請求の範囲第1項に記載の誘導加熱装置。
- 前記制御回路は、出力電力が最大となる特定の前記逆変換装置、又はすべての前記逆変換装置を前記最小の位相差になるように制御することを特徴とする請求の範囲第1項に記載の誘導加熱装置。
- 前記高周波電圧は、矩形波電圧を呈し、
前記位相差は、前記矩形波電圧の立ち上がりタイミングと前記コイル電流のゼロクロスタイミングとの間の位相差であることを特徴とする請求の範囲第1項に記載の誘導加熱装置。 - 前記高周波電圧は、正弦波信号と三角波信号とを比較して得られる矩形波状の等価正弦波電圧であり、
前記位相差は、前記正弦波信号のゼロクロスタイミングと前記コイル電流のゼロクロスタイミングとの間の位相差である
ことを特徴とする請求の範囲第1項に記載の誘導加熱装置。 - 前記コイル電流のゼロクロスタイミングは、前記正弦波信号のゼロクロスタイミングよりも遅れることを特徴とする請求の範囲第7項に記載の誘導加熱装置。
- 前記高周波電圧は、時間積分値が正弦波の形状に変化する矩形波状の等価正弦波電圧であり、
前記位相差は、前記正弦波のゼロクロスタイミングと前記コイル電流のゼロクロスタイミングとの間の位相差であることを特徴とする請求の範囲第1項に記載の誘導加熱装置。 - 前記高周波電圧は、前記近接配置された複数の誘導加熱コイルに流れる共振電流に起因する相互誘導電圧の和よりも大きな値であることを特徴とする請求の範囲第1項に記載の誘導加熱装置。
- 近接して配置された複数の誘導加熱コイルと、この誘導加熱コイルの各々に直列接続されたコンデンサと、直流電圧から変換させられた高周波電圧を各々の前記誘導加熱コイル及び前記コンデンサの直列共振回路に印加する複数の逆変換装置と、前記高周波電圧を電圧幅制御するとともに前記複数の誘導加熱コイルに流れるコイル電流の位相を揃えるように前記複数の逆変換装置を制御する誘導加熱装置の制御方法であって、
前記複数の逆変換装置に印加される直流電源電圧は、前記高周波電圧が隣接する前記誘導加熱コイルから受ける相互誘導電圧を超える電圧に設定されており、
前記複数の逆変換装置を周波数同一かつ、電流同期させるとともに、前記複数の誘導加熱コイルに最大電力を供給する特定の逆変換装置が発生する前記高周波電圧と前記直列共振回路に流れるコイル電流との位相差が最小になるように制御することを特徴とする誘導加熱装置の制御方法。 - 近接して配置された複数の誘導加熱コイルと、この誘導加熱コイルの各々に直列接続されたコンデンサと、直流電圧から変換させられた高周波電圧を各々の前記誘導加熱コイル及び前記コンデンサの直列共振回路に印加する複数の逆変換装置と、前記高周波電圧を電圧幅制御するとともに前記複数の誘導加熱コイルに流れるコイル電流の位相を揃えるように前記複数の逆変換装置を制御する制御回路の制御プログラムであって、
前記複数の逆変換装置に印加される直流電源電圧は、前記高周波電圧が隣接する前記誘導加熱コイルから受ける相互誘導電圧を超える電圧に設定されており、
前記複数の逆変換装置を周波数同一かつ、電流同期させるとともに、前記複数の誘導加熱コイルに最大電力を供給する特定の逆変換装置が発生する前記高周波電圧と前記直列共振回路に流れるコイル電流との位相差が最小になるように、前記制御回路のコンピュータに実行させることを特徴とする制御回路の制御プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137027115A KR101422138B1 (ko) | 2011-03-23 | 2011-11-02 | 유도 가열 장치, 유도 가열 장치의 제어 방법, 및 제어 프로그램 |
CN201180069489.2A CN103444260B (zh) | 2011-03-23 | 2011-11-02 | 感应加热装置、感应加热装置的控制方法以及控制程序 |
US14/006,567 US8890042B2 (en) | 2011-03-23 | 2011-11-02 | Induction heating device, control method thereof, and control program thereof |
DE112011105068.2T DE112011105068B4 (de) | 2011-03-23 | 2011-11-02 | Induktionsheizvorrichtung, Steuerverfahren davon, Steuerprogramm davon |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-063528 | 2011-03-23 | ||
JP2011063528A JP4886080B1 (ja) | 2011-03-23 | 2011-03-23 | 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012127730A1 true WO2012127730A1 (ja) | 2012-09-27 |
Family
ID=45851287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075251 WO2012127730A1 (ja) | 2011-03-23 | 2011-11-02 | 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US8890042B2 (ja) |
JP (1) | JP4886080B1 (ja) |
KR (1) | KR101422138B1 (ja) |
CN (1) | CN103444260B (ja) |
DE (1) | DE112011105068B4 (ja) |
WO (1) | WO2012127730A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014072060A (ja) * | 2012-09-28 | 2014-04-21 | Mitsui Eng & Shipbuild Co Ltd | 誘導加熱方法および誘導加熱装置 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2951606B1 (fr) * | 2009-10-19 | 2012-01-06 | Electricite De France | Procede de chauffage par induction mis en oeuvre dans un dispositif comprenant des inducteurs couples magnetiquement |
JP6038546B2 (ja) * | 2012-08-27 | 2016-12-07 | 三井造船株式会社 | 誘導加熱装置の制御方法および誘導加熱装置 |
JP6054103B2 (ja) * | 2012-08-31 | 2016-12-27 | 三井造船株式会社 | 誘導加熱装置の制御方法 |
WO2014069526A1 (ja) | 2012-10-30 | 2014-05-08 | 三井造船株式会社 | 誘導加熱装置、誘導加熱装置の制御方法、及びプログラム |
CN106688308B (zh) * | 2014-09-05 | 2020-03-17 | 日本制铁株式会社 | 金属带板的感应加热装置 |
WO2016115514A1 (en) * | 2015-01-16 | 2016-07-21 | Oleg Fishman | Current controlled resonant induction power supply |
KR101706964B1 (ko) * | 2015-05-12 | 2017-02-15 | 엘지전자 주식회사 | 조리기기 및 그 제어방법 |
KR102368372B1 (ko) * | 2015-08-04 | 2022-02-28 | 삼성전자주식회사 | 유도 가열 장치 및 그 제어 방법 |
US20170094730A1 (en) * | 2015-09-25 | 2017-03-30 | John Justin MORTIMER | Large billet electric induction pre-heating for a hot working process |
US11877375B2 (en) * | 2016-07-06 | 2024-01-16 | AMF Lifesystems, LLC | Generating strong magnetic fields at low radio frequencies in larger volumes |
CN106903979B (zh) * | 2017-03-13 | 2023-02-03 | 成都信息工程大学 | 一种平面转印装置 |
KR102034798B1 (ko) * | 2018-01-08 | 2019-10-21 | 엘지전자 주식회사 | 제어 알고리즘이 개선된 유도 가열 장치 |
US10932328B2 (en) * | 2018-08-26 | 2021-02-23 | David R. Pacholok | Hand held air cooled induction heating tools with improved commutation |
CN110708779A (zh) * | 2019-10-31 | 2020-01-17 | 西安慧金科技有限公司 | 一种双频感应加热电源及其控制方法 |
TW202132595A (zh) * | 2019-12-02 | 2021-09-01 | 公益財團法人福岡縣產業 科學技術振興財團 | 蒸鍍裝置、昇華精製裝置、有機電子元件之製作方法及昇華精製方法 |
JP7419863B2 (ja) * | 2020-02-14 | 2024-01-23 | 富士電機株式会社 | 電力変換装置 |
CN111712007B (zh) * | 2020-07-08 | 2022-03-22 | 湖北汽车工业学院 | 一种应用混合型spwm调制技术的可分离式感应加热炉 |
CN111885760A (zh) * | 2020-08-31 | 2020-11-03 | 西安机电研究所 | 一种适用于多区段感应加热的中频电源及其使用方法 |
CN114071817A (zh) * | 2021-11-24 | 2022-02-18 | 江苏科技大学 | 可调压式多相谐振感应加热电路及系统 |
CN114071816B (zh) * | 2021-11-24 | 2024-04-19 | 江苏科技大学 | 多负载柔性感应加热装置 |
AT526910A1 (de) * | 2023-02-14 | 2024-08-15 | Bern Reinhold | Heizvorrichtung zur Einbringung von Prozesswärme in einen Schmelz- oder Erwärmungsofen |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004134138A (ja) * | 2002-10-08 | 2004-04-30 | Mitsui Eng & Shipbuild Co Ltd | 誘導加熱装置の運転方法および誘導加熱装置 |
JP2007328918A (ja) * | 2006-06-06 | 2007-12-20 | Fuji Electric Fa Components & Systems Co Ltd | 誘導加熱装置 |
JP2010287447A (ja) * | 2009-06-12 | 2010-12-24 | Mitsui Eng & Shipbuild Co Ltd | 誘導加熱装置、誘導加熱方法、及びプログラム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU543894B2 (en) * | 1982-09-13 | 1985-05-09 | Tokyo Shibaura Denki Kabushiki Kaisha | Electromagnetic induction heating apparatus |
DE19654269C2 (de) * | 1995-12-27 | 2000-02-17 | Lg Electronics Inc | Induktionskochgerät |
CN101917788B (zh) * | 2002-06-26 | 2012-05-09 | 三井造船株式会社 | 感应加热装置 |
CN103262648B (zh) * | 2010-12-03 | 2015-06-10 | 三井造船株式会社 | 感应加热装置以及感应加热装置的控制方法 |
US8853991B2 (en) * | 2012-01-31 | 2014-10-07 | General Electric Company | Phase angle detection in an inverter |
-
2011
- 2011-03-23 JP JP2011063528A patent/JP4886080B1/ja active Active
- 2011-11-02 CN CN201180069489.2A patent/CN103444260B/zh active Active
- 2011-11-02 US US14/006,567 patent/US8890042B2/en active Active
- 2011-11-02 KR KR1020137027115A patent/KR101422138B1/ko active IP Right Grant
- 2011-11-02 DE DE112011105068.2T patent/DE112011105068B4/de active Active
- 2011-11-02 WO PCT/JP2011/075251 patent/WO2012127730A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004134138A (ja) * | 2002-10-08 | 2004-04-30 | Mitsui Eng & Shipbuild Co Ltd | 誘導加熱装置の運転方法および誘導加熱装置 |
JP2007328918A (ja) * | 2006-06-06 | 2007-12-20 | Fuji Electric Fa Components & Systems Co Ltd | 誘導加熱装置 |
JP2010287447A (ja) * | 2009-06-12 | 2010-12-24 | Mitsui Eng & Shipbuild Co Ltd | 誘導加熱装置、誘導加熱方法、及びプログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014072060A (ja) * | 2012-09-28 | 2014-04-21 | Mitsui Eng & Shipbuild Co Ltd | 誘導加熱方法および誘導加熱装置 |
Also Published As
Publication number | Publication date |
---|---|
JP4886080B1 (ja) | 2012-02-29 |
CN103444260B (zh) | 2015-03-04 |
KR20130122022A (ko) | 2013-11-06 |
US8890042B2 (en) | 2014-11-18 |
KR101422138B1 (ko) | 2014-07-22 |
DE112011105068B4 (de) | 2014-11-20 |
US20140008356A1 (en) | 2014-01-09 |
JP2012199158A (ja) | 2012-10-18 |
DE112011105068T5 (de) | 2013-12-24 |
CN103444260A (zh) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4886080B1 (ja) | 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム | |
US9247589B2 (en) | Induction heating device, induction heating method, and program | |
CN104770059B (zh) | 感应加热装置、感应加热装置的控制方法及程序 | |
JP4866938B2 (ja) | 誘導加熱装置、誘導加熱方法、及びプログラム | |
JP2010245002A (ja) | 誘導加熱装置、その制御方法、及びプログラム | |
Chaudhary et al. | Input-series–output-parallel-connected buck rectifiers for high-voltage applications | |
JP5612519B2 (ja) | 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム | |
JP2015216081A (ja) | 誘導加熱装置 | |
JP2014225366A (ja) | 誘導加熱装置、誘導加熱装置の制御方法、及びプログラム | |
JP5612518B2 (ja) | 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム | |
Sabahi et al. | Bi-directional power electronic transformer with maximum power-point tracking capability for induction heating applications | |
Jain | Resonant power conversion: Insights from a lifetime of experience | |
JP6361240B2 (ja) | 誘導加熱装置の制御回路 | |
Lu et al. | Development of a commercial induction cooker | |
Sayed et al. | Simple PWM technique for a three‐to‐five phase matrix converter | |
Zhang et al. | Novel MSVPWM to Reduce the Inductor Current Ripple for Z‐Source Inverter in Electric Vehicle Applications | |
TWI514930B (zh) | An induction heating device, a control method for inducing a heating device, and a program product thereof | |
Kleangsin et al. | A power control of three-phase converter with AVFSVC control for high-power induction heating applications | |
Isobe et al. | Soft-switching inverter for variable frequency induction heating using magnetic energy recovery switch (MERS) | |
JP2021114865A (ja) | スイッチング電源装置及びその制御方法 | |
NAGARI et al. | NSPWM based of Series Resonant Inverters in Induction Heating with Lower Losses | |
Kleangsin et al. | Constant output power control of three-phase inverter for an induction heating system | |
JP2017027778A (ja) | 誘導加熱装置の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11861769 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14006567 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112011105068 Country of ref document: DE Ref document number: 1120111050682 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137027115 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11861769 Country of ref document: EP Kind code of ref document: A1 |