CN114071817A - 可调压式多相谐振感应加热电路及系统 - Google Patents

可调压式多相谐振感应加热电路及系统 Download PDF

Info

Publication number
CN114071817A
CN114071817A CN202111409188.1A CN202111409188A CN114071817A CN 114071817 A CN114071817 A CN 114071817A CN 202111409188 A CN202111409188 A CN 202111409188A CN 114071817 A CN114071817 A CN 114071817A
Authority
CN
China
Prior art keywords
circuit
induction heating
voltage
series resonance
rlc series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111409188.1A
Other languages
English (en)
Inventor
王峥
徐松
陈迅
李垣江
赵黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202111409188.1A priority Critical patent/CN114071817A/zh
Publication of CN114071817A publication Critical patent/CN114071817A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

本发明公开了一种可调压式多相谐振感应加热电路及系统,包括调压电路、逆变电路和感应加热电路,所述调压电路作为前级电路,后接逆变电路,所述逆变电路包括若干组并联的半桥逆变器,所述感应加热电路包括若干组RLC串联谐振电路,所述RLC串联谐振电路包括谐振电容和感应加热线圈,各组RLC串联谐振电路的一端分别与不同的半桥逆变器的中心点相连,另一端电连接公共端;感应加热时各组RLC串联谐振电路保持谐振状态,各感应加热线圈之间相互耦合,各感应线圈和工件之间相互耦合。本发明可以实现全控器件的零电压开通于与关断,实现大范围的功率调制范畴,极大减少了逆变器的损耗以及提高了加热效率。

Description

可调压式多相谐振感应加热电路及系统
技术领域
本发明涉及一种感应加热装置,尤其涉及一种可调压式多相谐振感应加热电路及系统。
背景技术
随着我国工业化进程的飞速发展,感应加热领域也在快速发展。感应加热技术是一种应用广泛的工业技术,如治金热处理、剥离、镀锌等。针对金属材料加热,它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可进行表面加热等。与传统的火焰加热、电阻加热等传统加热方式相比,它具有速度快、灵活性高、效率高、无气体排放等优点。
虽然感应加热方法具有诸多优点,但我国感应加热技术起步较晚。目前,现有的感应加热系统,常见的例如专利:注塑机中频串联谐振感应加热节能装置中所公开的方案,公开号CN203504789U,此专利结构经三相交流电输入电路,经过整流,滤波,逆变的过程,将三相交流电转换为单相交流电,输入给感应加热电路,逆变电路串联谐振逆变电路,并带有频率跟踪及电流控制等功能。但是,如上述专利所公开的,现有感应加热装置的拓扑结构大多采用全桥或半桥谐振的感应加热电路,存在主要的问题是:损耗严重,效率低,且安全性较差。
发明内容
发明目的:针对以上问题,本发明提出一种可调压式多相谐振感应加热电路及系统,能够提高加热效能,降低损耗。
技术方案:本发明所采用的技术方案是一种可调压式多相谐振感应加热电路,包括调压电路、逆变电路和感应加热电路,所述调压电路作为前级电路,后接逆变电路,所述逆变电路包括若干组并联的半桥逆变器,所述感应加热电路包括若干组RLC串联谐振电路,所述RLC串联谐振电路包括谐振电容和感应加热线圈,各组RLC串联谐振电路的一端分别与不同的半桥逆变器的中心点相连,另一端电连接公共端;感应加热时各组RLC串联谐振电路保持谐振状态,各感应加热线圈之间相互耦合,各感应线圈和工件之间相互耦合。
所述调压电路采用四开关buck-boost升降压电路。所述四开关buck-boost升降压电路,包括四个MOSFET管,分别记为M1,M2,M3和M4;其中M1的集电极、M3的集电极分别与直流电源的正极连接,M2的发射极、M4的发射极分别与直流电源的负极连接,M1的发射极与M2的集电极连接,M3的发射极与M4的集电极连接;MOSFET管M1,M2,M3和M4的集电极和发射极之间并联有二极管。所述四开关buck-boost升降压电路还包括电感Lo和电容Co,其中电感Lo的一端连接在M1的发射极与M2的集电极之间,另一端连接在M3的发射极与M4的集电极之间;电容Co并联于四个MOSFET管之后。
所述感应加热线圈的尺寸选择与工件尺寸相同,以提高传输效率。
本发明还提出一种包括上述可调压式多相谐振感应加热电路结构的感应加热系统,该系统还包括控制电路、驱动电路和频率跟踪电路,所述频率跟踪电路用于采集可调压式多相谐振感应加热电路中各组RLC串联谐振电路的谐振频率并发送至控制电路,控制电路根据谐振频率控制逆变电路中开关管的导通频率使得各组RLC串联谐振电路处于谐振状态;控制电路通过驱动电路分别控制调压电路和逆变电路中开关管的关断和开启。
所述控制电路控制所述逆变器中的开关管均为零电压开关模式。
有益效果:相比现有技术,本发明具有以下优点:可调压式多相谐振感应加热电路中,感应加热电路采用若干组RLC串联谐振电路,多个线圈之间相互耦合,构成耦合线圈的多相谐振逆变器,结合电路前级引入的升降压变换器,补足电路的调制范畴,以调压作为电路的前级控制,调频、移相对线圈进行直接控制,通过极点切换的补偿方式,扩大功率调制范畴。本发明可以实现全控器件的零电压开通与关断,实现大范围的功率调制范畴,极大减少了逆变器的损耗,极大提高了加热效率。
附图说明
图1是本发明所述的可调压式多相谐振感应加热电路的电路图;
图2是本发明所述的感应加热电路线圈耦合示意图;
图3是本发明所述的感应加热系统的系统框图;
图4是本实施例所述的双线圈感应加热电路图;
图5是本实施例所述的双线圈感应加热过程中电流和控制电压时序图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的可调压式多相谐振感应加热电路,其电路图如图1所示,包括调压电路,逆变电路和感应加热电路。
所述调压电路采用四开关buck-boost升降压电路,包括四个MOSFET管,分别记为M1,M2,M3和M4;其中M1的集电极CM1、M3的集电极CM3分别与直流电源的正极连接, M2的发射极EM2、M4的发射极EM4分别与直流电源的负极连接,M1的发射极EM1与M2的集电极CM2连接,M3的发射极EM3与M4的集电极CM4连接。
MOSFET管M1,M2,M3和M4的集电极和发射极之间并联有二极管形成逆变单元,因为电路负载存在电感,所以需要并联二极管续流。
还包括电感Lo和电容Co,其中电感Lo的一端连接在M1的发射极EM1与M2的集电极CM2之间,另一端连接在M3的发射极EM3与M4的集电极CM4之间。电容Co位于四个 MOSFET之后,电容的一端连接在直流电源的正极,另一端连接在直流电源的负极。
所述逆变电路包括多个MOSFET,分别记为Q1
Figure BDA0003371513000000031
Q2
Figure BDA0003371513000000032
Qk
Figure BDA0003371513000000033
为一组半桥逆变器,Qk的集电极CQK与调压电路的正极输出端连接,
Figure BDA0003371513000000034
的发射极
Figure BDA0003371513000000035
与调压电路的负极输出端连接,Qk的发射极EQK
Figure BDA0003371513000000036
的集电极
Figure BDA0003371513000000037
连接。并且每个MOSFET的集电极和发射机之间都并联二极管进行续流。
所述感应加热电路是由谐振电容Crn、感应加热线圈自感Ln和感应加热线圈电阻Rn构成的RLC串联谐振电路。该RLC串联谐振电路的一段与半桥逆变器的中心点1、2...n 相连,另一端连接公共端0。线圈的尺寸选择与工件的直径相近,以提高能效。多个线圈之间实现相互耦合,参见图2,为感应加热电路线圈耦合示意图,M为两两之间耦合系数。由图可知,在工作状态下,各感应加热线圈之间相互耦合,各感应线圈和工件之间相互耦合。
参见图3,为本发明所述的感应加热系统的系统框图,包括控制及驱动电路、频率跟踪电路和上述的可调压式多相谐振感应加热电路,驱动电路包括控制调压电路和控制半桥逆变器的两个驱动电路。当线圈处于工作状态下,线圈的自感系数会发生改变,也就会造成系统的谐振频率发生变化。频率跟踪电路用于采集随时变化的谐振频率,然后通过控制电路进行频率跟进,控制电路根据谐振频率控制逆变电路四个开关管的导通频率,以使得线圈时刻处于谐振状态。
本实施例以两个串联谐振半桥逆变器来表征一个具有移相输出功率控制的双线圈装置,如图4所示。
所述控制电路通过驱动电路控制调压电路四个MOSFET的导通与断开。该控制电路可以控制PWM信号的频率。四开关buck-boost升降压电路由四个MOSFET的导通与断开配合,控制其工作模式。
四开关buck-boost升降压电路大致分为有两种模式即升压模式和降压模式。
升压模式:M1常闭,M2常开,M3、M4不同时通断,输出电压为:
Figure BDA0003371513000000038
其中Vin为直流输入电压,D为驱动M3、M4开断的PWM信号的占空比。
降压模式:M3常闭,M4常开,M1、M2不同时通断,输出电压为:Vo=DVin,其中Vin为直流输入电压,D为驱动M1、M2开断的PWM信号的占空比。
该调压式多相谐振感应加热电源系统的工作过程如下:
参见图5,感应加热电路的工作过程可分为8个工作模式。
为了解释零电压开关(ZVS),我们使
Figure BDA0003371513000000039
Figure BDA00033715130000000310
在t0时刻导通。零电压开关(ZeroVoltage Switch,ZVS),即开关管关断和开关管导通时,其两端的电压已经为0。这样开关管的开关损耗可以降到最低。普通的充电器等都是硬开关的,比这种谐振电源损耗要大些,所以ZVS可以做到很高效率。
模式1[t0-t1]:i1、i2为负值,
Figure BDA0003371513000000041
Figure BDA0003371513000000042
处于导通状态,根据图4,支路1:电流i1- 节点1-Cr1-线圈1-Crc,支路2:电流i2-节点2-Cr2-线圈2-Crc,两支路都发生串联谐振。
模式
Figure BDA0003371513000000043
关断,由于电流i1为负值,Q1的并联二极管D1导通,此模式支路1和支路2仍与模式1一样运行,保持谐振。
模式3[t2-t3]:Q1在ZVS模式下导通,此时电流i1为正值,两个谐振支路工作状态保持不变。
模式4[t3-t4]:在
Figure BDA0003371513000000044
后,
Figure BDA0003371513000000045
关断,Q2的并联二极管D2导通。两个谐振支路工作状态保持不变。
模式5[t4-t5]:Q2在ZVS模式下导通,此时电流i2为正值,两个谐振支路工作状态保持不变。
模式6[t5-t6]:在此模式下,Q1关断,由于电流i1为正值,
Figure 2
的并联二极管
Figure BDA0003371513000000047
寻通,两个谐振支路工作状态保持不变。
模式7[t6-t7]:因为电流i1变为负值,
Figure BDA0003371513000000048
在ZVS模式下导通,两个谐振支路工作状态保持不变。
模式8[t7-ts]:Q2关断,
Figure BDA0003371513000000049
的并联二极管
Figure BDA00033715130000000410
导通,两个谐振支路工作状态保持不变。
如此往复,值得指出的是,Q1
Figure BDA00033715130000000411
Q2
Figure 1
都可以实现ZVS导通,极大地减少了该电路的开关损耗,有利于提高感应加热效率,且能更好的保护开关器件。

Claims (7)

1.一种可调压式多相谐振感应加热电路,其特征在于:包括调压电路、逆变电路和感应加热电路,所述调压电路作为前级电路,后接逆变电路,所述逆变电路包括若干组并联的半桥逆变器,所述感应加热电路包括若干组RLC串联谐振电路,所述RLC串联谐振电路包括谐振电容和感应加热线圈,各组RLC串联谐振电路的一端分别与不同的半桥逆变器的中心点相连,另一端电连接公共端;感应加热时各组RLC串联谐振电路保持谐振状态,各感应加热线圈之间相互耦合,各感应线圈和工件之间相互耦合。
2.根据权利要求1所述的可调压式多相谐振感应加热电路,其特征在于:所述调压电路采用四开关buck-boost升降压电路。
3.根据权利要求2所述的可调压式多相谐振感应加热电路,其特征在于:所述四开关buck-boost升降压电路,包括四个MOSFET管,分别记为M1,M2,M3和M4;其中M1的集电极、M3的集电极分别与直流电源的正极连接,M2的发射极、M4的发射极分别与直流电源的负极连接,M1的发射极与M2的集电极连接,M3的发射极与M4的集电极连接;MOSFET管M1,M2,M3和M4的集电极和发射极之间并联有二极管。
4.根据权利要求3所述的可调压式多相谐振感应加热电路,其特征在于:所述四开关buck-boost升降压电路还包括电感Lo和电容Co,其中电感Lo的一端连接在M1的发射极与M2的集电极之间,另一端连接在M3的发射极与M4的集电极之间;电容Co并联于四个MOSFET管之后。
5.根据权利要求1所述的可调压式多相谐振感应加热电路,其特征在于:所述感应加热线圈的尺寸选择与工件尺寸相同。
6.一种包括权利要求1~5任一项所述的可调压式多相谐振感应加热电路的感应加热系统,其特征在于:该系统还包括控制电路、驱动电路和频率跟踪电路,所述频率跟踪电路用于采集可调压式多相谐振感应加热电路中各组RLC串联谐振电路的谐振频率并发送至控制电路,控制电路根据谐振频率控制逆变电路中开关管的导通频率使得各组RLC串联谐振电路处于谐振状态;控制电路通过驱动电路分别控制调压电路和逆变电路中开关管的关断和开启。
7.根据权利要求6所述的感应加热系统,其特征在于:所述控制电路控制所述逆变器中的开关管均为零电压开关模式。
CN202111409188.1A 2021-11-24 2021-11-24 可调压式多相谐振感应加热电路及系统 Pending CN114071817A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111409188.1A CN114071817A (zh) 2021-11-24 2021-11-24 可调压式多相谐振感应加热电路及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111409188.1A CN114071817A (zh) 2021-11-24 2021-11-24 可调压式多相谐振感应加热电路及系统

Publications (1)

Publication Number Publication Date
CN114071817A true CN114071817A (zh) 2022-02-18

Family

ID=80276090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111409188.1A Pending CN114071817A (zh) 2021-11-24 2021-11-24 可调压式多相谐振感应加热电路及系统

Country Status (1)

Country Link
CN (1) CN114071817A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444260A (zh) * 2011-03-23 2013-12-11 三井造船株式会社 感应加热装置、感应加热装置的控制方法以及控制程序
CN203352842U (zh) * 2013-07-22 2013-12-18 山东乐航节能科技股份有限公司 带有频率跟踪电路的感应加热设备
CN212588281U (zh) * 2020-06-16 2021-02-23 广州金升阳科技有限公司 一种电机驱动系统
CN113241959A (zh) * 2021-05-22 2021-08-10 福州大学 一种多相变换器的并联均流电路
CN113364265A (zh) * 2021-06-09 2021-09-07 江苏和网源电气有限公司 一种野战用多模电源转换器及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444260A (zh) * 2011-03-23 2013-12-11 三井造船株式会社 感应加热装置、感应加热装置的控制方法以及控制程序
CN203352842U (zh) * 2013-07-22 2013-12-18 山东乐航节能科技股份有限公司 带有频率跟踪电路的感应加热设备
CN212588281U (zh) * 2020-06-16 2021-02-23 广州金升阳科技有限公司 一种电机驱动系统
CN113241959A (zh) * 2021-05-22 2021-08-10 福州大学 一种多相变换器的并联均流电路
CN113364265A (zh) * 2021-06-09 2021-09-07 江苏和网源电气有限公司 一种野战用多模电源转换器及控制方法

Similar Documents

Publication Publication Date Title
CN110932557B (zh) 一种基于倍压整流电路的高增益准谐振dc-dc变换器
CN107968471B (zh) Lclc谐振电路、宽范围恒功率输出直流充电机及控制方法
CN104201884B (zh) 一种软开关dc‑dc变换电路
CN108418434B (zh) 用于高压大功率的高频隔离软开关dc-dc变换器及调制方法
CN114285286B (zh) 一种单级式零电流开关全桥升压直流变换器及其控制方法
CN113890375B (zh) 一种双极性输出的双向llc谐振变换器拓扑
CN111682769B (zh) 有源钳位正激变换器的自适应同步整流数字控制方法
CN113078826A (zh) 一种直流升压电路的逆变电源
CN115642805A (zh) 基于ZVS的六开关buck-boost变换器
CN115694203A (zh) 一种可双向变换的直流隔离型变换器及其控制方法
CN112054673A (zh) 一种软开关buck变换器电路及其控制方法
CN109698627B (zh) 一种基于开关电容器的全桥dc/dc变换器及其调制策略
CN114157150A (zh) 一种高增益的双向y源-llc隔离直流-直流变换器
CN109818427A (zh) 无线输电系统接收侧的输出调制电路及其mos管控制方法
CN110224605B (zh) 一种全桥变换电路
CN110112902B (zh) 一种三相升降压型pfc整流电路
CN114825663B (zh) 一种sp型双输出单独可调无线电能传输系统及其控制方法
CN110739872A (zh) 一种新型双向高变比swiss整流器
CN216774625U (zh) 一种新型的ac-dc整流器电路
CN114071817A (zh) 可调压式多相谐振感应加热电路及系统
CN107070218B (zh) 一种大功率软开关斩波电路
CN216216584U (zh) 一种升降压逆变器
CN115296537A (zh) 基于耦合电感的三相交错并联升压变换器及其控制方法
CN115149808A (zh) 一种四管升降压变换器的控制方法
CN114665720A (zh) 一种双向串联谐振变换器及其改进间歇正弦调制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination