WO2012124598A1 - 徐放性粒子 - Google Patents

徐放性粒子 Download PDF

Info

Publication number
WO2012124598A1
WO2012124598A1 PCT/JP2012/055968 JP2012055968W WO2012124598A1 WO 2012124598 A1 WO2012124598 A1 WO 2012124598A1 JP 2012055968 W JP2012055968 W JP 2012055968W WO 2012124598 A1 WO2012124598 A1 WO 2012124598A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
polymer
vinyl monomer
polymerizable vinyl
meth
Prior art date
Application number
PCT/JP2012/055968
Other languages
English (en)
French (fr)
Inventor
大島 純治
杉山 孝之
Original Assignee
日本エンバイロケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エンバイロケミカルズ株式会社 filed Critical 日本エンバイロケミカルズ株式会社
Priority to US14/003,271 priority Critical patent/US9511030B2/en
Priority to CN2012800126121A priority patent/CN103415207A/zh
Publication of WO2012124598A1 publication Critical patent/WO2012124598A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5026Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates

Definitions

  • the present invention relates to sustained-release particles, and more particularly to sustained-release particles for sustained release of an antibiotic compound.
  • antibiotic active compounds such as bactericides, preservatives, and fungicides are microencapsulated to gradually release the antibiotic active compounds to ensure sustained efficacy.
  • a microcapsule containing a microbial growth inhibitor obtained by blending and dispersing an oil phase containing a microbial growth inhibitor and a polyisocyanate component and an aqueous phase containing an active hydrogen group-containing component and interfacial polymerization has been proposed.
  • an oil phase containing a microbial growth inhibitor and a polyisocyanate component and an aqueous phase containing an active hydrogen group-containing component and interfacial polymerization has been proposed.
  • An object of the present invention is to provide sustained-release particles having excellent sustained-release properties.
  • the present inventors have provided a core containing an antibiotic compound present in the first polymer and a shell made of the second polymer. As a result of finding the knowledge that it is excellent in sustained release and further researching it, the present invention has been completed.
  • the present invention (1) formed by suspension polymerization of a core raw material component containing an antibiotic compound and a first polymerizable vinyl monomer, the first polymer of the first polymerizable vinyl monomer, and the first heavy Formed by suspension polymerization of a core containing an antibiotic compound present in the coalescence and a second polymerizable vinyl monomer having an affinity for water equal to or higher than that of the first polymerizable vinyl monomer, A sustained-release particle comprising a second polymer obtained from a second polymerizable vinyl monomer, and a shell covering the core.
  • FIG. 1 shows an image processing diagram of a TEM photograph of sustained-release particles of Example 4.
  • the sustained release particles (1) of the present invention include a core (2) and a shell (3) covering the core (2).
  • the core (2) has a substantially spherical shape and contains a first polymer and an antibiotic compound.
  • the shell (3) is formed in a film shape covering the surface of the core (2) and contains the second polymer.
  • the shell (3) is formed along the outer periphery of the core (2) and has a relatively smooth surface.
  • the core (2) is formed by suspension polymerization of a core raw material component containing an antibiotic compound and a first polymerizable vinyl monomer
  • the shell ( 3) is formed by suspension polymerization of the second polymerizable vinyl monomer.
  • the antibiotic compound has, for example, at least two functional moieties that can interact with the polymer of the first polymerizable vinyl monomer.
  • Examples of such a functional moiety include polar functional groups such as a carbonyl group, a nitro group, an amino group, a cyano group, a phosphate ester group, a carboxyl group, and an ether group, such as a carboxylate bond, a phosphate bond, a urea bond, Examples thereof include a polar bond containing a polar group such as a carbon-halogen bond, for example, a benzene ring, and a conjugated cyclic moiety such as a conjugated heterocycle such as a triazine ring, an imidazole ring, and an isothiazoline ring.
  • polar functional groups such as a carbonyl group, a nitro group, an amino group, a cyano group, a phosphate ester group, a carboxyl group, and an ether group, such as a carboxylate bond, a phosphate bond, a urea bond
  • Examples thereof include a polar bond
  • the molecular weight of the antibiotic compound is, for example, 200 to 600, preferably 200 to 500.
  • the compatibility of the antibiotic compound with the first polymer may decrease.
  • the molecular weight of the antibiotic compound is less than the above range, the antibiotic compound remains in the aqueous phase during suspension polymerization, and the antibiotic compound precipitates after suspension polymerization.
  • the first suspension may solidify.
  • the melting point of the antibiotic compound is, for example, 100 ° C. or less, preferably 90 ° C. or less, and more preferably 80 ° C. or less.
  • the antibiotic compound may not be encapsulated in the core and may be deposited outside the core, and even if the antibiotic compound is encapsulated in the core. However, the antibiotic compound may not be released slowly from the core.
  • the antibiotic compound is an antibacterial agent, antibacterial agent, antiseptic agent, antifungal agent, antifungal agent, insecticide having antibacterial activity such as antibacterial agent, antibacterial agent, antiseptic agent, antialgal agent, antifungal agent and insecticide. Selected from agents, herbicides, attractants, repellents and rodenticides.
  • the compounds having antibiotic activity include bactericidal antiseptic and algal fungicides such as iodine compounds, triazole compounds, carbamoylimidazole compounds, dithiol compounds, isothiazoline compounds, nitroalcohol compounds, and paraoxybenzoic acid esters.
  • anticides such as pyrethroid compounds, neonicotinoid compounds, organochlorine compounds, organophosphorus compounds, carbamate compounds, alkoxyamine compounds, oxadiazine compounds, etc. .
  • iodine compounds include 3-iodo-2-propynylbutylcarbamate (IPBC), 1-[[(3-iodo-2-propynyl) oxy] methoxy] -4-methoxybenzene, 3-bromo-2, And 3-diiodo-2-propenyl ethyl carbonate.
  • triazole compound examples include 1- [2- (2,4-dichlorophenyl) -4-n-propyl-1,3-dioxolan-2-ylmethyl] -1H-1,2,4-triazole (propico Nazole), bis (4-fluorophenyl) methyl (1H-1,2,4-triazol-1-ylmethylsilane) (also known as flusilazole, 1-[[bis (4-fluorophenyl) methylsilyl] methyl] -1H -1,2,4-triazole) and the like.
  • carbamoylimidazole compound examples include N-propyl-N- [2- (2,4,6-trichloro-phenoxy) ethyl] imidazole-1-carboxamide (prochloraz).
  • dithiol-based compound examples include 4,5-dichloro-1,2-dithiol-3-one.
  • isothiazoline-based compound examples include 2-n-octyl-4-isothiazolin-3-one (OIT), 5,6-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), 5- And chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT).
  • OIT 2-n-octyl-4-isothiazolin-3-one
  • DCOIT 5,6-dichloro-2-n-octyl-4-isothiazolin-3-one
  • Cl-MIT 5- And chloro-2-methyl-4-isothiazolin-3-one
  • nitroalcohol compound examples include 2,2-dibromo-2-nitro-1-ethanol (DBNE).
  • paraoxybenzoic acid ester examples include butyl paraoxybenzoate and propyl paraoxybenzoate.
  • pyrethroid compound examples include pyrethrin, cineline, jasmolin and the like obtained from Shirovanamushiyogiiku, and examples thereof include allethrin, bifenthrin, acrinathrin, alpha cypermethrin, tralomethrin, cyfluthrin ((RS) - ⁇ -cyano derived therefrom.
  • neonicotinoid compounds include (E) -N 1 -[(6-chloro-3-pyridyl) methyl] -N 2 -cyano-N 1 -methylacetamidine (acetamipride).
  • organochlorine compounds examples include Kelsen.
  • organophosphorus compounds examples include oxime, pyridafenthion, fenitrothion, tetrachlorbinphos, diclofenthion, propetanephos, and the like.
  • carbamate compounds examples include fenocarb and propoxur.
  • alkoxyamine compound examples include 3-lauryloxypropylamine.
  • Examples of the oxadiazine compound include indoxacarb.
  • insecticide examples include pyriproxyfen.
  • herbicides examples include pyraclonyl, pendimethalin, indanophan and the like.
  • repellents examples include diet.
  • Antibiotic active compounds are, for example, substantially hydrophobic and specifically have, for example, extremely low solubility in water at room temperature (20-30 ° C., more specifically 25 ° C.).
  • the solubility at room temperature is 1 part by mass / 100 parts by mass of water (10000 ppm) or less, preferably 0.5 parts by mass / 100 parts by mass of water (5000 ppm) or less, more preferably 0.1 parts by mass / 100 parts by mass of water (1000 ppm) or less, and on a volume basis, for example, 1 g / 100 mL or less of water, preferably 0.5 g / 100 mL or less of water, more preferably 0.1 g / 100 mL of water. It is as follows.
  • the solubility of the antibiotic compound in water exceeds the above range, the suspension of the core raw material component containing the first polymerizable vinyl monomer causes the antibiotic compound to be out of the core (that is, in the aqueous phase). ), And after the polymerization, the antibiotic compound dissolved in the aqueous phase is precipitated, so that it may be difficult to form a core containing the antibiotic compound.
  • antibiotic compounds can be used alone or in combination of two or more.
  • the above-mentioned antibiotic compound may contain, for example, impurities having a melting point outside the above range at an appropriate ratio during the production process.
  • impurities having a melting point outside the above range at an appropriate ratio during the production process.
  • a mixture of isomer I (melting point: 57 ° C.), isomer II (melting point: 74 ° C.) and isomer III (melting point: 66 ° C.) of cyfluthrin is, for example, isomer IV (impurity) Melting point 102 ° C.).
  • the first polymerizable vinyl monomer is a monomer having at least one polymerizable carbon-carbon double bond in the molecule, for example.
  • the first polymerizable vinyl monomer for example, (meth) acrylic acid ester monomers, (meth) acrylic acid monomers, aromatic vinyl monomers, vinyl ester monomers, maleic acid ester monomers, Examples include vinyl halide monomers and nitrogen-containing vinyl monomers.
  • (meth) acrylic acid ester monomers include methacrylic acid esters and / or acrylic acid esters, and specifically include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylic.
  • (Meth) acrylic acid alkyl ester which is a chain or branched aliphatic group
  • a (meth) acrylic acid cycloalkyl ester in which an alkyl moiety such as cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, or cycloheptyl (meth) acrylate is a cyclic aliphatic group having 3 to 20 carbon atoms is used.
  • an alkyl moiety such as cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, or cycloheptyl (meth) acrylate is a cyclic aliphatic group having 3 to 20 carbon atoms
  • (meth) acrylic acid alkyl ester in which the alkyl moiety is a linear or branched aliphatic group having 1 to 6 carbon atoms (preferably 1 to 3 carbon atoms or 4 to 6 carbon atoms) is mentioned.
  • a (meth) acrylic acid ester-based monomer a hydroxyl group-containing (meth) acrylic acid alkyl ester having a hydroxyalkyl moiety having 2 to 10 carbon atoms in which the hydrogen atom of the alkyl moiety is substituted with a hydroxyl group in the above-described monomer Specifically, for example, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Etc.
  • a hydroxyl group-containing (meth) acrylic acid alkyl ester having a hydroxyalkyl moiety in which the acrylic moiety has 2 to 6 carbon atoms (preferably 2 to 3 carbon atoms) is used.
  • Examples of the (meth) acrylic acid monomer include methacrylic acid and acrylic acid.
  • aromatic vinyl monomer examples include styrene, 4-chlorostyrene, p-methylstyrene, o-methylstyrene, ⁇ -methylstyrene, and the like.
  • vinyl ester monomers examples include vinyl acetate and vinyl propionate.
  • maleate ester monomers examples include dimethyl maleate, diethyl maleate, and dibutyl maleate.
  • Examples of the vinyl halide monomer include vinyl chloride and vinyl fluoride.
  • Examples of the vinyl halide monomer include vinylidene halide monomers, and specific examples include vinylidene chloride and vinylidene fluoride.
  • nitrogen-containing vinyl monomer examples include (meth) acrylonitrile, N-phenylmaleimide, vinylpyridine, and the like.
  • the first polymerizable vinyl monomer is, for example, substantially hydrophobic and specifically has, for example, extremely low solubility in water at room temperature. More specifically, the solubility at room temperature is, for example, 10 masses. Parts / 100 parts by weight or less of water, preferably 8 parts by weight / 100 parts by weight or less of water.
  • an antibiotic compound compatible with an antibiotic compound having a strong compatibility with an antibiotic compound and capable of dissolving (compatible) the antibiotic compound (hereinafter simply referred to as “compatible”). May be referred to as a monomer).
  • These compatible monomers can be used alone or in combination of two or more.
  • the compatible monomer is preferably a combined use of a (meth) acrylic acid ester monomer and a (meth) acrylic acid monomer.
  • MMA methyl methacrylate
  • MA methacrylic acid
  • IBMA isobutyl methacrylate
  • MA methacrylic acid
  • the blending ratio of the (meth) acrylic acid monomer is, for example, 30 masses with respect to 100 parts by mass of the compatible monomer. Less than 20 parts by weight, preferably 20 parts by weight or less, for example 1 part by weight or more, preferably 3 parts by weight or more.
  • the antibiotic compound and the compatible monomer are preferably compatible with each other at the polymerization temperature (heating temperature) described later, and the first polymer which is a polymer of the first polymerizable vinyl monomer and the antibiotic compound. A combination is selected.
  • the first polymerizable vinyl monomer can also contain a crosslinkable monomer as a compatible monomer.
  • the crosslinkable monomer is blended as necessary in order to adjust the sustained release property of the sustained release particles.
  • mono- or polyethylene glycol di (meth) such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate.
  • Acrylates for example alkanediol di (meth) acrylates such as 1,3-propanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate, for example , Alkane polyol poly (meth) acrylates such as trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, for example, allyl monomers such as allyl (meth) methacrylate, triallyl (iso) cyanurate, Eg to such divinyl monomers such as divinylbenzene.
  • mono or polyethylene glycol di (meth) acrylate is used.
  • the crosslinkable monomer has a molecular structure similar to the molecular structure of the compatible monomer excluding the crosslinkable monomer in order to ensure the compatibility between the monomer mixture containing the crosslinkable monomer (first polymerizable vinyl monomer) and the antibiotic compound.
  • the compatible monomer excluding the crosslinkable monomer contains a (meth) acrylic acid ester monomer, mono- or polyethylene glycol di (meth) acrylate as the crosslinkable monomer Is selected.
  • the blending ratio of the crosslinkable monomer is, for example, 1 to 100 parts by weight, preferably 5 to 90 parts by weight, and more preferably 10 to 80 parts by weight with respect to 100 parts by weight of the compatible monomer excluding the crosslinkable monomer. is there.
  • the dipole force term ⁇ p compound of the solubility parameter ⁇ defined by Hansen and calculated by the van Krevelen and Hoftyzer method is, for example, 2 To 8 [(J / cm 3 ) 1/2 ]
  • the hydrogen bonding term ⁇ h compound of the solubility parameter ⁇ is, for example, 5.0 to 9.5 [(J / cm 3 ) 1/2 ].
  • first polymer of the solubility parameter ⁇ is, for example, 4 to 7 [(J / cm 3 ) 1/2 ], and the hydrogen bond strength of the solubility parameter ⁇ term [delta] h, first polymer, for example, the first polymerizable Binirumo for generating a first polymer which is 8 ⁇ 10 [(J / cm 3) 1/2] The combination of the mer is selected.
  • the subscript compound, first polymer, and second polymer of each term ⁇ indicate an antibiotic compound, a first polymer, and a second polymer, respectively.
  • the dipole force term ⁇ p and the hydrogen bond force term ⁇ h of the solubility parameter ⁇ defined by Hansen and calculated by the van Krevelen and Hoftyzer method are the type and number of atomic groups (including chemical bonds or substituents). Specifically, it is represented by the following formulas (1) and (2), respectively.
  • F p is a dipole force element of intermolecular force (polar component of the molar attraction function), and V is a molar volume.)
  • the F p of the substituents> Si ⁇ , ⁇ N— and ⁇ C— is also calculated by the same calculation process as described above.
  • E h of the substituents —I,> Si ⁇ , ⁇ N—, and ⁇ C— are also calculated by performing the same calculation processing as described above.
  • the above calculation processing is recorded on a computer as a program and optimized.
  • n represents the degree of polymerization.
  • ⁇ p Dipole force term
  • PMMA In the monomer unit (—CH 2 —C (CH 3 ) COOCH 3 —) of the above formula (3), F p and V corresponding to each atomic group are described below.
  • the above-described monomer unit dipole force term ⁇ p, monomer unit is the polymethyl methacrylate dipole force term ⁇ p, PMMA which is a repeating structure of the monomer unit.
  • Hydrogen bond strength term ⁇ h, PMMA In the monomer unit (—CH 2 —C (CH 3 ) COOCH 3 —) of the above formula (3), E h corresponding to each atomic group is described below.
  • the hydrogen bond strength term ⁇ h, first polymer of the monomer unit described above is used as the hydrogen bond strength term ⁇ h, PMMA of polymethyl methacrylate which is a repeating structure of the monomer unit. 2.
  • Co-dipole force term ⁇ p and hydrogen bond force term ⁇ h of the copolymer Next, a dipole force term ⁇ p and a hydrogen bond force term ⁇ h of the copolymer are calculated.
  • the dipole force term ⁇ p, monomer unit of each monomer unit by the monomer mass ratio and adding them together the dipole force term ⁇ p, copolymer of the solubility parameter ⁇ of the copolymer is calculated.
  • the hydrogen bond strength term ⁇ h, copolymer of the solubility parameter ⁇ of the copolymer is calculated by multiplying the hydrogen bond strength term ⁇ h, monomer unit of each monomer unit by the monomer mass ratio and adding them together. To do.
  • the copolymer a copolymer of monomers containing methyl methacrylate, methacrylic acid and ethylene glycol dimethacrylate in a mass ratio of 75: 12.5: 12.5 (corresponding to the mass ratio of Example 1 described later).
  • the force term ⁇ h , PMMA-PMA-EGDMA is calculated.
  • Dipole force term ⁇ p, PMMA-PMA-EGDMA The dipole force term ⁇ p, MMA unit of the monomer unit of methyl methacrylate is 5.98 [(J / cm 3 ) 1/2 ] as calculated above.
  • the dipole force term ⁇ p, MA unit of the monomer unit of methacrylic acid is 7.36 [(J / cm 3 ) 1/2 ] by the same calculation as described above.
  • dipole force term ⁇ p, EDGMA of the monomer unit of ethylene glycol dimethacrylate is 5.37 [(J / cm 3 ) 1/2 ] by calculation in the same manner as described above.
  • the dipole force term ⁇ p, PMMA-PMA-EGDMA of this copolymer is calculated as in the following formula (6).
  • Hydrogen bond strength term ⁇ h, PMMA-PMA-EGDMA The hydrogen bond term ⁇ h, MMA unit of the monomer unit of methyl methacrylate is 9.25 [(J / cm 3 ) 1/2 ].
  • the hydrogen bond term ⁇ h, MA unit of the monomer unit of methacrylic acid is 10.25 [(J / cm 3 ) 1/2 ].
  • the hydrogen bond term ⁇ h, EGDMA of the monomer unit of ethylene glycol dimethacrylate is 10.42 [(J / cm 3 ) 1/2 ].
  • the hydrogen bonding force term ⁇ h, PMMA-PMA-EGDMA of this copolymer is calculated as in the following formula (7).
  • the dipole force term ⁇ p, first polymer of the solubility parameter ⁇ of the first polymer is preferably 4.25 to 6.5 [(J / cm 3 ) 1/2 ], and the first weight
  • the hydrogen bond strength term ⁇ h, first polymer of the solubility parameter ⁇ of the coalescence is preferably 8.25 to 10 [(J / cm 3 ) 1/2 ].
  • the hydrophobicity of the first polymer becomes excessively high and antibiotics In some cases, sufficient compatibility with the active compound may not be obtained, and even if compatibility is obtained, the antibiotic compound will leak out of the core during suspension polymerization, and the antibiotic compound In some cases, it may be difficult to synthesize sustained-release particles sufficiently encapsulating.
  • first polymer of the first polymer exceeds the above range, the hydrophilicity of the first polymer becomes excessively high, Sufficient compatibility with the biologically active compound may not be obtained, and even if the compatibility can be obtained, the free energy of the interface with the aqueous phase in suspension polymerization is reduced, and the antibiotic compound is During suspension polymerization, it may leak out of the core, making it difficult to synthesize a core sufficiently containing an antibiotic compound. 3.
  • Dipole force term ⁇ p, compound and hydrogen bond term ⁇ h, compound of solubility ⁇ of antibiotic compound The dipole force term ⁇ p, compound and the hydrogen bond term ⁇ h, compound of the solubility ⁇ of the antibiotic compound are also calculated in the same manner as the monomer unit described above.
  • the dipole force term ⁇ p, compound of the solubility parameter ⁇ of the antibiotic compound is preferably 3-7 [(J / cm 3 ) 1/2 ], and the hydrogen bond force term ⁇ h, compound is Preferably, it is 5.8 to 9.5 [(J / cm 3 ) 1/2 ].
  • the dipolar force term ⁇ p, compound and / or the hydrogen bond force term ⁇ h, compound of the antibiotic compound is not within the above range, the hydrophobic property of the antibiotic compound becomes excessively high, and the first polymer In some cases, sufficient compatibility cannot be obtained.
  • the difference between the dipole force terms ⁇ p of the solubility parameter ( ⁇ p1 ) and the difference between the hydrogen bond force terms ⁇ h ( ⁇ h1 ) Further, the solubility parameter [delta], the value obtained by subtracting the polar term [delta] p, Compound of the antibiotic compound from polar term [delta] p, first Polymer first polymer ⁇ p1 ( ⁇ p, first polymer ⁇ p, compound ) is, for example, ⁇ 2.5 to 3.0 [(J / cm 3 ) 1/2 ], preferably ⁇ 1.1 to 2.7 [(J / cm 3 ) 1 / 2 ], more preferably 0 to 2.6 [(J / cm 3 ) 1/2 ].
  • ⁇ p1 and ⁇ h1 are within the above-described ranges, excellent compatibility of the antibiotic compound and the first polymer can be ensured, and excellent sustained release can be ensured.
  • the dipole force term ⁇ p, compound and hydrogen bond force term ⁇ h, compound of the antibiotic compound are within the above ranges, and the dipole force term ⁇ p, first polymer and hydrogen of the first polymer If the binding force term ⁇ h, first polymer is within the above range, the antibiotic compound is defined as being compatible with the first polymer without leaking from the core during suspension polymerization.
  • the ratio of the antibiotic compound to the first polymerizable vinyl monomer is, for example, 10/90 to 90/10 on a mass basis (that is, the mass part of the antibiotic compound / the mass part of the first polymerizable vinyl monomer). That is, 0.11 to 9.0), and preferably 10/90 to 70/30 (that is, 0.11 to 2.33).
  • the second polymerizable vinyl monomer has a higher affinity for water (that is, hydrophilicity) than the first polymerizable vinyl monomer (specifically, compatible monomer), and specifically, the first polymerizable property described above.
  • Examples thereof include monomers similar to vinyl monomers and having a high affinity for water.
  • the second polymerizable vinyl monomer is preferably a (meth) acrylic acid ester monomer, and more preferably a hydroxyl group-containing (meth) acrylic acid alkyl ester or (meth) acrylic acid alkyl ester.
  • a hydroxyl group-containing (meth) acrylic acid alkyl ester specifically, a hydroxyl group-containing (meth) acrylate alkyl having a hydroxyalkyl moiety having 2 to 3 carbon atoms. Ester) alone, (meth) acrylic acid alkyl ester (specifically, (meth) acrylic acid alkyl ester having an alkyl moiety having 1 to 3 carbon atoms), or a combination of these two types. It is done.
  • the first polymerizable vinyl monomer may be, for example, A combination of 4 to 6 (meth) acrylic acid alkyl ester and (meth) acrylic acid-based monomer, preferably a combination of 4 (meth) acrylic acid alkyl ester and methacrylic acid is selected.
  • the first polymerizable vinyl monomer may be, for example, 4 to 4 carbon atoms.
  • a combination of 6 (meth) acrylic acid alkyl esters and (meth) acrylic acid monomers, preferably a combination of 4 (meth) acrylic acid alkyl esters and methacrylic acid is selected.
  • a hydroxyl group-containing (meth) acrylic acid alkyl ester having a hydroxyalkyl moiety having 2 to 3 carbon atoms and a (meth) acrylic acid alkyl ester having an alkyl moiety having 1 to 3 carbon atoms are provided.
  • the first polymerizable vinyl monomer for example, a combination of a (meth) acrylic acid alkyl ester having 4 to 6 carbon atoms and a (meth) acrylic acid ester monomer, A combination of a meth) acrylic acid alkyl ester and methacrylic acid is used in combination.
  • the dipole force term ⁇ p, second polymer of the second polymer that is a polymer of the second polymerizable vinyl monomer is, for example, 5.0 to 9.0 [(J / cm 3 ) 1/2 ]. Preferably, it is 6.5 to 8.0 [(J / cm 3 ) 1/2 ], and the hydrogen bond term ⁇ h, second polymer of the solubility parameter ⁇ of the second polymer is, for example, 8.0. To 20.0 [(J / cm 3 ) 1/2 ], preferably 12.0 to 18.0 [(J / cm 3 ) 1/2 ].
  • the hydrophilicity of the second polymer becomes excessively high and forms a shell. In some cases, the second polymer that swells due to water or water absorption cannot maintain the shape of the shell.
  • the dipole force term ⁇ p, second polymer and / or the hydrogen bond force term ⁇ h, second polymer of the second polymer is less than the above range, the hydrophilicity of the second polymer becomes insufficient, and the shell However, the effect of the barrier layer described later cannot be achieved, and the antibiotic active compound may leak out of the shell due to compatibility with the antibiotic active compound.
  • the second polymer has higher affinity (hydrophilicity) for water than the first polymer.
  • the second polymerizable vinyl monomer is defined as having higher affinity for water (hydrophilicity) than the first polymerizable vinyl monomer.
  • the core raw material component containing the antibiotic compound and the first polymerizable vinyl monomer is subjected to suspension polymerization.
  • the core raw material component is prepared as a hydrophobic solution containing an antibiotic compound and a first polymerizable vinyl monomer.
  • the antibiotic compound is dissolved in the first polymerizable vinyl monomer (or compatible with the first polymerizable vinyl monomer) in the absence of a solvent.
  • an initiator is preferably added to the hydrophobic solution.
  • the initiator is an oil-soluble radical polymerization initiator.
  • the radical polymerization initiator include dilauroyl peroxide (10 hour half-life temperature T 1/2 : 61.6 ° C.), 1,1,3, 3-tetramethylbutylperoxy-2-ethylhexanoate (10-hour half-temperature T 1/2 : 65.3 ° C.), t-hexylperoxy-2-ethylhexanoate (10-hour half-temperature T 1/2 2 : 69.4 ° C.), diisopropyl peroxydicarbonate (10-hour half-life temperature T 1/2 : 40.5 ° C.), benzoyl peroxide (10-hour half-life temperature T 1/2 : 73.6 ° C.), etc.
  • peroxides for example, 2,2'-azobisisobutyronitrile (10 hours half-life temperature T 1/2: 60 ° C.), 2,2'-azobis (2,4-dimethylvaleronitrile) (10 hours half Degrees T 1/2: 51 °C), 2,2'- azobis (2-methylbutyronitrile) (10 hours half-life temperature T 1/2: 67 ° C.), and the like azo compounds such as.
  • an organic peroxide is used.
  • the mixing ratio of the initiator is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, particularly preferably 100 parts by mass of the first polymerizable vinyl monomer. Is 2.0 parts by mass or more, and usually, for example, 10 parts by mass or less.
  • the mixing ratio of the initiator is not less than the above lower limit value, the conversion rate of the second polymerizable vinyl monomer in the suspension polymerization described below can be increased.
  • the initiator is blended at the same time as or before or after the blending of the antibiotic compound and the first polymerizable vinyl monomer.
  • the initiator is dissolved simultaneously when the antibiotic compound is dissolved in the first polymerizable vinyl monomer.
  • the preparation of the hydrophobic solution may be performed at room temperature, for example, or may be performed by heating to 30 to 100 ° C. as necessary.
  • the hydrophobic solution is prepared at room temperature without heating.
  • hydrophobic solution is suspended (dispersed in water).
  • the hydrophobic solution and water are mixed, and the hydrophobic solution is suspended by stirring uniformly. As a result, a first suspension in which the hydrophobic solution is suspended is obtained.
  • the suspension conditions are not particularly limited, and may be carried out at room temperature, for example, or may be carried out by heating at 30 to 100 ° C., for example. Preferably, suspension is performed without heating from the viewpoint of suppressing thermal decomposition of the initiator.
  • the mixing ratio of water is, for example, 10 to 1000 parts by mass, preferably 50 to 500 parts by mass with respect to 100 parts by mass of the hydrophobic solution.
  • a dispersant is blended in the suspension of the hydrophobic solution.
  • dispersant examples include polyvinyl alcohol (PVA, including partially saponified polyvinyl alcohol), polyvinyl pyrrolidone, gelatin, gum arabic, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, cationized starch, polyacrylic acid and salts thereof.
  • PVA polyvinyl alcohol
  • polyvinyl pyrrolidone polyvinyl pyrrolidone
  • gelatin gum arabic
  • hydroxyethyl cellulose hydroxypropyl cellulose
  • carboxymethyl cellulose cationized starch
  • polyacrylic acid and salts thereof examples include polyacrylic acid and salts thereof.
  • water-soluble polymers such as styrene-maleic acid copolymers and salts thereof, for example, inorganic dispersants such as tricalcium phosphate, colloidal silica, montmorillonite, magnesium carbonate, aluminum hydroxide and zinc white.
  • inorganic dispersants are preferable, and tricalcium phosphate is more preferable. If it is tricalcium phosphate, when the obtained sustained release particles are formulated as a powder (described later) or granules (described later), the redispersibility of the powder or granules is improved, Occurrence of caking can be prevented.
  • the blending ratio of the dispersing agent is, for example, 0.1 to 20 parts by mass, preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the hydrophobic solution.
  • a surfactant when suspending the hydrophobic solution, a surfactant can be used in combination with the above-described dispersant.
  • Surfactant is blended in order to effectively prevent core aggregation during suspension polymerization.
  • examples of the surfactant include sodium dodecylbenzene sulfonate (DBN), sodium lauryl sulfate, sodium di-2-ethylhexyl sulfosuccinate, sodium dodecyl diphenyl ether disulfonate, sodium nonyl diphenyl ether sulfonate, sodium polyoxyethylene alkyl ether sulfate.
  • DBN sodium dodecylbenzene sulfonate
  • sodium lauryl sulfate sodium di-2-ethylhexyl sulfosuccinate
  • sodium dodecyl diphenyl ether disulfonate sodium nonyl diphenyl ether sulfonate
  • sodium polyoxyethylene alkyl ether sulfate sodium polyoxyethylene alkyl ether sulfate.
  • Anionic surfactants such as polyoxyethylene alkyl ether ammonium phosphate, sodium naphthalene sulfonic acid formaldehyde condensate sodium salt, sodium dialkyl sulfosuccinate, such as polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene mono Stearate, polyoxyethylene sorbitan monooleate, polyoxyethylene poly Carboxymethyl propylene block copolymers, and nonionic surfactants such as polyoxyethylene phosphoric acid ester.
  • a nonionic surfactant is used.
  • the blending ratio of the surfactant is, for example, 0.0001 to 1.0 part by mass, preferably 0.001 to 0.1 part by mass with respect to 100 parts by mass of the hydrophobic solution.
  • the dispersant and the surfactant can be blended, for example, before or after blending the hydrophobic solution and water.
  • the dispersant and surfactant are preferably blended in the water prior to blending with the hydrophobic solution. Thereby, an aqueous solution of the dispersant and the surfactant is prepared.
  • a homogenizer for example, a homogenizer, a disper, an ultrasonic homogenizer, a pressure type homogenizer, a milder, or a porous membrane press-in disperser is used for suspending the hydrophobic solution.
  • a homomixer is used, and its rotation speed is, for example, 200 to 20000 rpm, preferably 1500 to 15000 rpm.
  • the suspension time (stirring time) of the first suspension is, for example, 20 minutes or less, preferably 3 to 10 minutes.
  • the core raw material component is subjected to suspension polymerization by raising the temperature of the first suspension (first step).
  • the first polymerizable vinyl monomer reacts (specifically, vinyl polymerization) while stirring the first suspension so that the suspension state of the first suspension is maintained.
  • a polymer of the first polymerizable vinyl monomer (first polymer) is produced.
  • the 1st polymeric vinyl monomer used as a raw material exists in a hydrophobic phase (oil phase), it is set as in situ polymerization.
  • the first suspension is heated to a temperature that is higher than 0 ° C. and lower than 30 ° C., preferably 5 to 20 ° C., than the 10-hour half-life temperature T 1/2 of the initiator. Raise the temperature to a higher temperature.
  • the first suspension can also be heated to the same temperature as the 10 hour half-life temperature T 1/2 of the initiator.
  • suspension polymerization starts when the initiator is thermally decomposed at a predetermined temperature in an inert gas atmosphere such as nitrogen.
  • the polymerization temperature in the first step is, for example, 30 to 100 ° C., preferably 40 to 80 ° C., and more preferably 50 to 75 ° C.
  • the pressure during suspension polymerization is not particularly limited and is normal pressure. Alternatively, for example, it can be carried out under high pressure. Preferably, it is carried out at normal pressure.
  • the polymerization time in the first step is, for example, 1 hour or more, preferably 3 hours or more, more preferably 4 hours or more, and usually 10 hours or less.
  • the antibiotic compound is present in the matrix made of the first polymer.
  • the second polymerizable vinyl monomer is subjected to suspension polymerization.
  • the suspension after the reaction is cooled, for example, by cooling or water cooling.
  • the cooling temperature of the first suspension is a temperature at which thermal decomposition of the initiator remaining in the core can be suppressed, and specifically, for example, 50 ° C. or less, preferably 40 ° C. or less, more preferably Is below normal temperature and usually above 5 ° C.
  • the first suspension after the reaction can be subjected to the subsequent suspension polymerization of the second polymerizable vinyl monomer without cooling, for example.
  • the second polymerizable vinyl monomer is blended into the first suspension and reacted.
  • the second polymerizable vinyl monomer is prepared as an emulsion containing the second polymerizable vinyl monomer.
  • the emulsion is prepared by emulsifying the second polymerizable vinyl monomer in water in the presence of an emulsifier.
  • emulsifier examples include the same surfactants as described above, and preferably an anionic surfactant.
  • the blending ratio of the emulsifier is, for example, 0.0001 to 1.0 part by mass, preferably 0.001 to 0.1 part by mass with respect to 100 parts by mass of the emulsion.
  • the emulsifier can be blended, for example, before or after blending the second polymerizable vinyl monomer and water.
  • the emulsifier is preferably blended in water before blending with the second polymerizable vinyl monomer. Thereby, an aqueous solution of the emulsifier is prepared.
  • the blending ratio of the second polymerizable vinyl monomer is, for example, 10 to 1000 parts by mass, preferably 50 to 500 parts by mass with respect to 100 parts by mass of water.
  • the above-described disperser is used for emulsification of the second polymerizable vinyl monomer.
  • a homomixer is used, and the rotation speed thereof is higher than the rotation speed in suspension of the first suspension, and specifically, for example, 200 to 20000 rpm, preferably 1500 to 15000 rpm.
  • a silane coupling agent can be added to the emulsion.
  • a silane coupling agent can also be blended.
  • the silane coupling agent is, for example, an alkoxysilyl compound having at least a vinyl group or a (meth) acryloyl group.
  • a vinyl group-containing alkoxysilyl compound such as vinyltrimethoxysilane or vinyltriethoxysilane.
  • acryloyl group-containing alkoxysilyl compounds are examples of alkoxysilyl compounds.
  • the blending ratio of the silane coupling agent is, for example, 0.01 to 10 parts by mass, preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the second polymerizable vinyl monomer.
  • the preparation of the emulsion may be carried out, for example, at room temperature, or may be carried out, for example, by heating to 30 to 100 ° C. as necessary.
  • the emulsion is prepared at room temperature without heating.
  • the emulsification time is, for example, 20 minutes or less, preferably 3 to 20 minutes.
  • the prepared emulsion is blended with the first suspension, and they are agitated to prepare a second suspension.
  • the above-mentioned disperser is used for the preparation of the second suspension described above.
  • a homomixer is used, and the number of revolutions thereof is, for example, 200 to 20000 rpm, preferably 1500 to 15000 rpm.
  • the suspension time (stirring time) of the second suspension is, for example, 0.1 hour or more, preferably 1 hour or more, from the viewpoint of sufficiently adsorbing the second polymerizable vinyl monomer to the surface of the core. More preferably, it is 2 hours or more, and usually 10 hours or less.
  • the second polymerizable vinyl monomer in the emulsion is attached (absorbed) to the core made of the first polymer.
  • the second polymerizable vinyl monomer is subjected to suspension polymerization by raising the temperature of the second suspension (second step).
  • the second suspension is at a temperature higher than the 10 hour half-temperature T 1/2 of the initiator, for example, more than 0 ° C. and not more than 30 ° C., preferably, The temperature is raised to a temperature 5 to 20 ° C higher.
  • the second suspension can also be heated to the same temperature as the 10 hour half-life temperature T 1/2 of the initiator.
  • suspension polymerization starts when the remaining initiator is thermally decomposed at a predetermined temperature, for example, in an inert gas atmosphere such as nitrogen.
  • the polymerization temperature in the second step is the same as the polymerization temperature in the first step.
  • the pressure during suspension polymerization of the second suspension is not particularly limited and is normal pressure. Alternatively, for example, it can be carried out under high pressure. Preferably, it is carried out at normal pressure.
  • the polymerization time in the second step is, for example, 0.1 hour or more, preferably 1 hour or more, more preferably 2 hours or more, and usually 10 hours or less.
  • the second polymerizable vinyl monomer reacts with stirring the second suspension so that the suspension state of the second suspension is maintained, and the second polymerizable vinyl monomer is reacted.
  • a coalescence (second polymer) is produced.
  • the core is covered by suspension polymerization of the second polymerizable vinyl monomer to form a shell made of the second polymer.
  • the second suspension is cooled, for example, by cooling or water cooling.
  • the cooling temperature is, for example, room temperature (20 to 30 ° C., more specifically 25 ° C.).
  • the antibiotic compound is present in the first polymer in the core.
  • the compatible state is frozen in the matrix composed of the first polymer in the core, and the uniform state is maintained.
  • the antibiotic compound is liquid at room temperature, it is compatible with the first polymer in the core (2), as shown in FIG.
  • a suspension containing sustained release particles (1) having a core (2) and a shell (3) can be obtained.
  • the particle diameter of the sustained-release particles is not particularly limited, and is an average particle diameter (median diameter), for example, 1 ⁇ m to 1 mm, preferably 2 ⁇ m to 100 ⁇ m.
  • the particle diameter of the core is an average particle diameter (median diameter), for example, 1 to 1000 ⁇ m, preferably 2 to 50 ⁇ m.
  • the thickness of the shell is a maximum thickness, for example, 0.01 to 500 ⁇ m, preferably 0.05 to 50 ⁇ m.
  • the particle diameter of the core and the thickness of the shell are calculated from a TEM photograph of the obtained sustained release particles.
  • the particle diameter of a core can also be measured by taking out the particle
  • sustained-release particles comprising a core containing an antibiotic compound and a shell covering the core are suspended.
  • the sustained-release particles thus obtained may be used as they are (suspension), that is, as a suspending agent, and after solid-liquid separation by filtration and / or centrifugation, for example, Alternatively, it may be formulated into a known dosage form such as powder or granule. Further, if necessary, water washing and / or acid washing can be performed. Furthermore, the suspension can be spray-dried or air-dried as it is to form a dosage form such as a powder or granule.
  • the solid concentration (sustained release particle concentration) in the suspension is, for example, 1 to 50% by mass, and preferably 5 to 40% by mass.
  • the concentration of the antibiotic compound in the suspension is, for example, 0.5 to 40% by mass, preferably 1 to 25% by mass.
  • the powder is excellent in fluidity especially when tribasic calcium phosphate is used as a dispersant. Moreover, an aqueous dispersion or suspension can be re-prepared by dispersing or suspending the powder again in water. Therefore, such a powder is excellent in re-water dispersibility or re-suspension.
  • sustained-release particles as a powder at the time of transportation, and preparing (re-formulation, regeneration) as an aqueous dispersion or suspension at the time of use. Can be enlarged.
  • the antibiotic active compound comprises a core present in the first polymer obtained from the first polymerizable vinyl monomer, and the second polymer, Since it is provided with a shell formed so as to be coated, by suppressing the release rate of the antibiotic compound, it has an excellent sustained release property and can exhibit an excellent effect sustaining effect.
  • the sustained release property is a property capable of slowly releasing the encapsulated compound.
  • the emulsion contains a silane coupling agent
  • a silanol group derived from the silane coupling agent is present in the shell, and the silanol group is an inorganic substance (specifically, a metal , Metal oxides and the like) and organic substances (specifically, cellulose and the like forming paper and wood). Therefore, when the sustained-release particles are used after being added (blended) to paints, sealants, adhesives, etc., the sustained-release particles can be chemically bonded to the above-mentioned base material, and antibiotics for a long time The activity can be maintained.
  • the second polymerizable vinyl monomer has been described as having a higher affinity for water than the first polymerizable vinyl monomer.
  • the second polymerizable vinyl monomer has an affinity for water.
  • the properties may be substantially the same as the first polymerizable vinyl monomer.
  • the affinity of the second polymerizable vinyl monomer for water is substantially the same as the affinity of the first polymerizable vinyl monomer for water.
  • a second polymerizable vinyl monomer is: It is hydrophobic.
  • Examples of such second polymerizable vinyl monomer include (meth) acrylic acid alkyl esters, and preferably (meth) acrylic acid alkyl esters having an alkyl moiety having 1 to 3 carbon atoms, which are used alone.
  • the first polymerizable vinyl monomer is, for example, a combination of a (meth) acrylic acid alkyl ester having 1 to 3 carbon atoms and a (meth) acrylic acid monomer, preferably a (meth) acrylic having 1 carbon atom.
  • a combination of an acid alkyl ester (specifically methyl (meth) acrylate) and methacrylic acid is selected.
  • the dipole force term ⁇ p, second polymer of the second polymer which is such a polymer of the second polymerizable vinyl monomer is, for example, 5.0 or more and 6.5 [(J / cm 3 ) 1/2. ], Preferably 5.5 to 6.5 [(J / cm 3 ) 1/2 ], and the hydrogen bond strength term ⁇ h of the second polymer, which is a polymer of the second polymerizable vinyl monomer ,
  • the second polymer is, for example, 8.0 [(J / cm 3 ) 1/2 ] or more and less than 13.0 [(J / cm 3 ) 1/2 ], preferably 9.0 to 11.0 [(J / Cm 3 ) 1/2 ].
  • a value ⁇ p2 obtained by subtracting the dipole force term ⁇ p, first polymer of the first polymer from the dipole force term ⁇ p, second polymer of the second polymer is, for example, ⁇ 0.5 [(J / Cm 3 ) 1/2 ] or more, less than 2.0 [(J / cm 3 ) 1/2 ], -0.2 to 1.0 [(J / cm 3 ) 1/2 ], and also , ⁇ 0.1 to 0.0 [(J / cm 3 ) 1/2 ].
  • a value ⁇ h2 obtained by subtracting the hydrogen bond strength term ⁇ h, first polymer of the first polymer from the hydrogen bond strength term ⁇ h, second polymer of the second polymer is, for example, ⁇ 2.0 [(J / cm 3 ) 1/2 ] or more and less than 2.0 [(J / cm 3 ) 1/2 ], further ⁇ 0.5 to 1.0 [(J / cm 3 ) 1/2 ], or 0.3 to 0.0 [(J / cm 3 ) 1/2 ].
  • the affinity of the second polymer for water is defined as substantially the same as the affinity of the first polymer for water.
  • the hydrophobicity of the second polymerizable vinyl monomer is substantially the same as the hydrophobicity of the first polymerizable vinyl monomer.
  • the affinity of the second polymerizable vinyl monomer to water is higher than that of the first polymerizable vinyl monomer, it is preferable to use an antibiotic compound that is incompatible with the shell. That is, the second polymer that forms the shell is preferably one that is incompatible with the antibiotic compound.
  • the shell (3) is a polymer of a second polysynthetic vinyl monomer having a higher affinity for water than for the first polymerizable vinyl monomer ( Second polymer). Therefore, the shell (3) acts as a barrier layer that prevents the antibiotic compound present in the core (2) from leaking out of the sustained release particles (1).
  • the sustained release property of the sustained release particles (1) can be improved, and an even better efficacy sustaining effect can be expressed.
  • the hydrophobic solution was added to a 1000 mL beaker (2).
  • K The suspension was prepared by suspending the hydrophobic solution by stirring for 5 minutes at a rotational speed of 5000 rpm with a homomixer MARK 2.5 (manufactured by PRIMIX).
  • Suspension polymerization was started when the temperature of the suspension reached 65 ° C. during the temperature increase of the suspension, and then the temperature of the suspension was maintained at 70 ° C. for 2 hours.
  • Suspension polymerization was started when the temperature of the suspension reached 65 ° C. during the temperature increase of the suspension, and then the temperature of the suspension was maintained at 70 ° C. for 3 hours.
  • Example 2 (Formulation of suspension containing OIT-containing sustained release particles) (First step: suspension polymerization, second step: suspension polymerization) Except that 30.0 g of methyl methacrylate in the hydrophobic solution was changed to 30.0 g of isobutyl methacrylate, it was treated in the same manner as in Example 1 to provide a sustained release comprising a core containing OIT and a shell covering it. A suspension of suspension particles was obtained.
  • Example 3 (Formulation of suspension containing OIT-containing sustained release particles) (First step: suspension polymerization, second step: suspension polymerization) 30.0 g of methyl methacrylate in the hydrophobic solution was changed to 30.0 g of isobutyl methacrylate, and instead of 40.0 g of methyl methacrylate emulsified in a 200 mL beaker (3), 20.0 g of methyl methacrylate and 2 of methacrylic acid 2 -Suspension of sustained release particles (suspension) comprising a core containing OIT and a shell covering the same, treated in the same manner as in Example 1 except that 20.0 g of hydroxyethyl was charged.
  • First step: suspension polymerization, second step: suspension polymerization 30.0 g of methyl methacrylate in the hydrophobic solution was changed to 30.0 g of isobutyl methacrylate, and instead of 40.0 g of methyl methacrylate emulsified in a 200
  • Example 4 (Formulation of suspension containing OIT-containing sustained release particles) (First step: suspension polymerization, second step: suspension polymerization) 30.0 g of methyl methacrylate in the hydrophobic solution was changed to 30.0 g of isobutyl methacrylate, and instead of 40.0 g of methyl methacrylate emulsified in a 200 mL beaker (3), 40.0 g of 2-hydroxyethyl methacrylate was used. Except for charging, the same treatment as in Example 1 was performed to obtain a suspension (suspension) of sustained-release particles including a core containing OIT and a shell covering the core.
  • Example 5 (Formulation of suspension containing IPBC-containing sustained release particles) (First step: suspension polymerization, second step: suspension polymerization) A core containing IPBC was treated in the same manner as in Example 1 except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of IPBC and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. A suspension (suspension agent) of sustained-release particles comprising a shell covering the same was obtained.
  • Example 6 (Formulation of suspension containing IPBC-containing sustained release particles) (First step: suspension polymerization, second step: suspension polymerization) OIT 60.0 g in the hydrophobic solution was changed to IPBC 25.0 g, methyl methacrylate 30.0 g was changed to isobutyl methacrylate 65.0 g, and replaced with 40.0 g of methyl methacrylate to be emulsified in a 200 mL beaker (3). A suspension of sustained release particles comprising a core containing IPBC and a shell covering the same, treated in the same manner as in Example 1 except that 40.0 g of 2-hydroxyethyl methacrylate was charged. Suspension) was obtained.
  • Example 7 (Formulation of suspension containing propiconazole-containing sustained-release particles) (First step: suspension polymerization, second step: suspension polymerization) Propiconazole was treated in the same manner as in Example 1 except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of propiconazole and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. Suspension (suspension agent) of sustained-release particles comprising a core containing, and a shell covering the core was obtained.
  • Example 8 (Formulation of suspension containing propiconazole-containing sustained-release particles) (First step: suspension polymerization, second step: suspension polymerization) 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of propiconazole, 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate, and 40.0 g of methyl methacrylate to be emulsified in a 200 mL beaker (3) Instead of 40.0 g of 2-hydroxyethyl methacrylate, a sustained-release particle comprising a core containing propiconazole and a shell covering the same, treated in the same manner as in Example 1 A suspension (suspension agent) was obtained.
  • Example 9 (Formulation of suspension containing flusilazole-containing sustained-release particles) (First step: suspension polymerization, second step: suspension polymerization) A core containing flusilazole was treated in the same manner as in Example 1 except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of flusilazole and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. And a suspension (suspension agent) of sustained-release particles comprising a shell covering the same.
  • Example 10 (Formulation of suspension containing flusilazole-containing sustained-release particles) (First step: suspension polymerization, second step: suspension polymerization) Change 60.0 g of OIT in the hydrophobic solution to 25.0 g of flusilazole, change 30.0 g of methyl methacrylate to 65.0 g of isobutyl methacrylate, and replace with 40.0 g of methyl methacrylate emulsified in a 200 mL beaker (3). A suspension of sustained-release particles comprising a core containing flusilazole and a shell covering the same, except that 40.0 g of 2-hydroxyethyl methacrylate was charged. (Suspending agent) was obtained.
  • Example 11 (Formulation of suspension containing prochloraz-containing sustained-release particles) (First step: suspension polymerization, second step: suspension polymerization) A core containing prochloraz treated in the same manner as in Example 1 except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of prochloraz and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. And a suspension (suspension agent) of sustained-release particles comprising a shell covering the same.
  • Example 12 (Formulation of suspension containing prochloraz-containing sustained-release particles) (First step: suspension polymerization, second step: suspension polymerization) 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of prochloraz, 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate, and replaced with 40.0 g of methyl methacrylate emulsified in a 200 mL beaker (3). A suspension of sustained-release particles comprising a core containing prochloraz and a shell covering the same, except that 40.0 g of 2-hydroxyethyl methacrylate was charged. (Suspending agent) was obtained.
  • Example 13 (Formulation of suspension containing cyfluthrin-containing sustained release particles) (First step: suspension polymerization, second step: suspension polymerization) A core containing cyfluthrin was treated in the same manner as in Example 1 except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of cyfluthrin and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. And a suspension (suspension agent) of sustained-release particles comprising a shell covering the same.
  • Example 14 (Formulation of suspension containing cyfluthrin-containing sustained release particles) (First step: suspension polymerization, second step: suspension polymerization) 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of prochloraz, 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate, and replaced with 40.0 g of methyl methacrylate emulsified in a 200 mL beaker (3). A suspension of sustained-release particles comprising a core containing cyfluthrin and a shell covering the same, except that 40.0 g of 2-hydroxyethyl methacrylate was charged. (Suspending agent) was obtained.
  • Comparative Example 1 (Formulation of suspension containing OIT-containing sustained release particles) (First step: Suspension polymerization) A 200 mL beaker (1) was charged with 60.0 g of OIT, 30.0 g of methyl methacrylate, 5 g of methacrylic acid, 5.0 g of ethylene glycol dimethacrylate and 1.9 g of dilauroyl peroxide and stirred uniformly at room temperature. A hydrophobic solution was prepared.
  • the hydrophobic solution was added to a 1000 mL beaker (2).
  • K The suspension was prepared by dispersing the hydrophobic solution by stirring for 5 minutes at a rotation speed of 5000 rpm with a homomixer MARK 2.5 (manufactured by PRIMIX).
  • Suspension polymerization was started when the temperature of the suspension reached 65 ° C. during the temperature increase of the suspension, and then the temperature of the suspension was maintained at 70 ° C. for 2 hours.
  • Comparative Example 2 (Formulation of suspension containing OIT-containing sustained release particles) (First step: Suspension polymerization) A suspension (suspension) of sustained-release particles containing OIT, which was treated in the same manner as in Comparative Example 1 except that 30.0 g of methyl methacrylate in the hydrophobic solution was changed to 30.0 g of isobutyl methacrylate. Got.
  • Comparative Example 3 (Formulation of suspension containing IPBC-containing sustained release particles) (First step: Suspension polymerization) The controlled release containing IPBC was carried out in the same manner as in Comparative Example 1 except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of IPBC and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. A suspension of suspension particles was obtained.
  • Comparative Example 4 (Formulation of suspension containing propiconazole-containing sustained-release particles) (First step: Suspension polymerization) Propiconazole was treated in the same manner as in Comparative Example 1 except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of propiconazole and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. Suspension (suspension agent) of sustained release particles containing
  • Comparative Example 5 (Formulation of suspension containing flusilazole-containing sustained-release particles) (First step: Suspension polymerization) The same procedure as in Comparative Example 1 was conducted except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of flusilazole and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. A suspension of suspension particles was obtained.
  • Comparative Example 6 (Formulation of suspension containing prochloraz-containing sustained-release particles) (First step: Suspension polymerization) The same procedure as in Comparative Example 1 was carried out except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of prochloraz and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. A suspension of suspension particles was obtained.
  • Comparative Example 7 (Formulation of suspension containing cyfluthrin-containing sustained release particles) (First step: Suspension polymerization) The same procedure as in Comparative Example 1 was carried out except that 60.0 g of OIT in the hydrophobic solution was changed to 25.0 g of cyfluthrin and 30.0 g of methyl methacrylate was changed to 65.0 g of isobutyl methacrylate. A suspension of suspension particles was obtained.
  • Tables 2 to 4 show the prescription of each component in each Example and each Comparative Example.
  • the numerical value of a compounding prescription shows g number in a table
  • Example 4 The suspension (suspension) of Example 4 was freeze-dried, dispersed in a bisphenol-type liquid epoxy resin, and cured with an amine. This was cut with an ultramicrotome to obtain a cross section, stained with osmium tetroxide, and if necessary, stained again with ruthenium tetroxide, and cut into ultrathin sections with an ultramicrotome to prepare a sample. The prepared sample was observed with a transmission electron microscope (model number “H-7100”, manufactured by Hitachi, Ltd.) by TEM.
  • Example 4 An image processing diagram of the TEM photograph of Example 4 is shown in FIG. 2.
  • Sustained release test (1) Sustained release test of OIT-containing sustained release particles (Examples 1 to 4 and Comparative Example 2) According to the following operation, the sustained release test was performed on the OIT-containing sustained release particles of Examples 1 to 4 and Comparative Example 2.
  • the suspension (suspension agent) of the sustained release particles obtained in Examples 1 to 4 and Comparative Example 2 was stirred into a commercially available acrylic styrene emulsion, and the OIT concentration was 0.15% by mass. And continued stirring for 1 hour.
  • the film is dried at 40 ° C. for 24 hours to produce a sustained-release particle-containing film, and then the sustained-release particle-containing film is cut into 7 cm ⁇ 15 cm to produce a test piece. Attached to a weather meter and exposed to continuous rain for 2 weeks.
  • the exposed test piece was cut into 2.5 cm ⁇ 2.5 cm, 10 mL of methanol was added, and OIT was extracted for 30 minutes using an ultrasonic cleaner.
  • the amount of OIT extracted as described above was measured using HPLC, and the residual rate of OIT of the sustained release particles in the sustained release particle-containing film was calculated from the unexposed test piece and the exposed test piece.
  • each prepared suspension was slowly added to the filter paper, and then air-dried.
  • the sustained release rate of cyfluthrin was calculated using GC from the third ion exchange water / methanol mixture collected as described above. The results are shown in Tables 3 and 4.
  • the sustained-release particles of the present invention are used in various industrial products such as indoor and outdoor paints, rubbers, fibers, resins, plastics, adhesives, jointing agents, sealing agents, building materials, caulking agents, soil treatment agents, wood, papermaking. Can be applied (or formulated) to white water, pigments, printing plate treatment liquid, cooling water, ink, cutting oil, cosmetics, nonwoven fabric, spinning oil, leather, etc. Thus, the efficacy of such an antibiotic compound can be continuously expressed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

 徐放性粒子は、抗生物活性化合物と第1重合性ビニルモノマーとを含有するコア原料成分を懸濁重合することにより形成され、第1重合性ビニルモノマーの第1重合体、および、第1重合体中に存在する抗生物活性化合物を含有するコアと、水に対する親和性が第1重合性ビニルモノマーと同一またはそれより高い第2重合性ビニルモノマーを懸濁重合することにより形成され、第2重合性ビニルモノマーから得られる第2重合体を含有し、コアを被覆するシェルとを備える。

Description

徐放性粒子
 本発明は、徐放性粒子、詳しくは、抗生物活性化合物を徐放する徐放性粒子に関する。
 殺菌剤、防腐剤、防かび剤などの抗生物活性化合物をマイクロカプセル化することにより、抗生物活性化合物を徐放して、効力持続性を担保することが知られている。
 例えば、微生物増殖抑制剤およびポリイソシアネート成分を含む油相と、活性水素基含有成分を含む水相とを配合して分散し、界面重合することにより得られる微生物増殖抑制剤含有マイクロカプセルが提案されている(例えば、下記特許文献1参照。)。
特開2001-247409号公報
 しかし、上記特許文献1に記載の微生物増殖抑制剤含有マイクロカプセルは、徐放性が不十分であるという不具合がある。
 本発明の目的は、徐放性に優れる徐放性粒子を提供することにある。
 本発明者らは、上記目的の徐放性粒子について鋭意検討したところ、第1重合体中に存在する抗生物活性化合物を含有するコアと、第2重合体からなるシェルとを備えることにより、徐放性に優れるという知見を見出し、さらに研究を進めた結果、本発明を完成するに至った。
 すなわち、本発明は、
(1)抗生物活性化合物と第1重合性ビニルモノマーとを含有するコア原料成分を懸濁重合することにより形成され、前記第1重合性ビニルモノマーの第1重合体、および、前記第1重合体中に存在する抗生物活性化合物を含有するコアと、水に対する親和性が前記第1重合性ビニルモノマーと同一またはそれより高い第2重合性ビニルモノマーを懸濁重合することにより形成され、前記第2重合性ビニルモノマーから得られる第2重合体を含有し、前記コアを被覆するシェルとを備えることを特徴とする、徐放性粒子
である。
 本発明の徐放性粒子では、第1重合性ビニルモノマーから得られる第1重合体、および、その第1重合体からなるマトリクス中に存在する抗生物活性化合物を含有するコアと、第2重合体からなり、コアを被覆するように形成されるシェルとを備えるので、抗生物活性化合物の放出速度を抑制することにより、優れた徐放性を有し、優れた効力持続効果を発現することができる。
図1は、実施例4の徐放性粒子のTEM写真の画像処理図を示す。
発明の実施形態
 図1のTEM写真が参照されるように、本発明の徐放性粒子(1)は、コア(2)と、コア(2)を被覆するシェル(3)とを備えている。
 コア(2)は、略球形状をなし、第1重合体および抗生物活性化合物を含有している。
 シェル(3)は、コア(2)の表面を被覆する膜状に形成されており、第2重合体を含有している。シェル(3)は、コア(2)の外周に沿って形成されており、比較的滑らかな表面を有している。
 そして、本発明の徐放性粒子(1)において、コア(2)は、抗生物活性化合物と第1重合性ビニルモノマーとを含有するコア原料成分を懸濁重合することにより形成され、シェル(3)は、第2重合性ビニルモノマーを懸濁重合することにより形成される。
 抗生物活性化合物は、例えば、第1重合性ビニルモノマーの重合体と相互作用できる官能部分を少なくとも2つ有している。
 このような官能部分としては、例えば、カルボニル基、ニトロ基、アミノ基、シアノ基、燐酸エステル基、カルボキシル基、エーテル基などの極性官能基、例えば、カルボキシレート結合、フォスフェート結合、尿素結合、炭素-ハロゲン結合などの極性基を含む極性結合、例えば、ベンゼン環、さらには、トリアジン環、イミダゾール環、イソチアゾリン環などの共役ヘテロ環などの共役環状部分などが挙げられる。
 抗生物活性化合物の分子量は、例えば、200~600、好ましくは、200~500である。
 抗生物活性化合物の分子量が上記範囲を超える場合には、抗生物活性化合物の第1重合体に対する相溶性が低下する場合がある。一方、抗生物活性化合物の分子量が上記範囲に満たない場合には、懸濁重合中に、抗生物活性化合物が水相に残存してしまい、懸濁重合後に、かかる抗生物活性化合物が析出して、第1懸濁液が固化する場合がある。
 また、抗生物活性化合物の融点は、例えば、100℃以下であり、好ましくは、90℃以下、さらに好ましくは、80℃以下である。抗生物活性化合物の融点が上記範囲を超える場合には、抗生物活性化合物がコアに内包されにくく、コア外に析出する場合があり、また、たとえ、抗生物活性化合物がコアに内包された場合でも、抗生物活性化合物がコア外に徐放されない場合がある。
 具体的には、抗生物活性化合物は、殺菌、抗菌、防腐、防藻、防かび、殺虫などの抗生物活性を有する、殺菌剤、抗菌剤、防腐剤、防藻剤、防かび剤、殺虫剤、除草剤、誘引剤、忌避剤および殺鼠剤などから選択される。これら抗生物活性を有する化合物としては、例えば、ヨウ素系化合物、トリアゾール系化合物、カルバモイルイミダゾール系化合物、ジチオール系化合物、イソチアゾリン系化合物、ニトロアルコール系化合物、パラオキシ安息香酸エステルなどの殺菌防腐防藻防かび剤、例えば、ピレスロイド系化合物、ネオニコチノイド系化合物、有機塩素系化合物、有機リン系化合物、カーバメート系化合物、アルコキシアミン系化合物、オキサジアジン系化合物などの防蟻剤(殺蟻剤)などが挙げられる。
 ヨウ素系化合物としては、例えば、3-ヨード-2-プロピニルブチルカルバメート(IPBC)、1-[[(3-ヨード-2-プロピニル)オキシ]メトキシ]-4-メトキシベンゼン、3-ブロモ-2,3-ジヨード-2-プロペニルエチルカーボネートなどが挙げられる。
 トリアゾール系化合物としては、例えば、1-[2-(2,4-ジクロロフェニル)-4-n-プロピル-1,3-ジオキソラン-2-イルメチル]-1H-1,2,4-トリアゾール(プロピコナゾール)、ビス(4-フルオロフェニル)メチル(1H-1,2,4-トリアゾール-1-イルメチルシラン)(別称:フルシラゾール、1-[[ビス(4-フルオロフェニル)メチルシリル]メチル]-1H-1,2,4-トリアゾール)などが挙げられる。
 カルバモイルイミダゾール系化合物としては、例えば、N-プロピル-N-[2-(2,4,6-トリクロロ-フェノキシ)エチル]イミダゾール-1-カルボキサミド(プロクロラズ)などが挙げられる。
 ジチオール系化合物としては、例えば、4,5-ジクロロ-1,2-ジチオール-3-オンなどが挙げられる。
 イソチアゾリン系化合物としては、例えば、2-n-オクチル-4-イソチアゾリン-3-オン(OIT)、5,6-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン(DCOIT)、5-クロロ-2-メチル-4-イソチアゾリン-3-オン(Cl-MIT)などが挙げられる。
 ニトロアルコール系化合物としては、例えば、2,2-ジブロモ-2-ニトロ-1-エタノール(DBNE)などが挙げられる。
 パラオキシ安息香酸エステルとしては、例えば、パラオキシ安息香酸ブチル、パラオキシ安息香酸プロピルなどが挙げられる。
 ピレスロイド系化合物としては、例えば、シロバナムシヨケギクより得られるピレトリン、シネリン、ジャスモリンなどが挙げられ、例えば、これらから誘導されるアレスリン、ビフェントリン、アクリナトリン、アルファシペルメトリン、トラロメトリン、シフルトリン((RS)-α-シアノ-4-フルオロ-3-フェノキシベンジル=(1RS,3RS)-(1RS,3RS)-3-(2,2-ジクロロビニル)-2,2-メチルシクロプロパンカルボキシラート)、シフェノトリン、プラレトリン、エトフェンプロックス、シラフルオフェン、フェンバレレートなども挙げられる。
 ネオニコチノイド系化合物としては、例えば、(E)-N-[(6-クロロ-3-ピリジル)メチル]-N-シアノ-N-メチルアセトアミジン(アセタミプリド)などが挙げられる。
 有機塩素系化合物としては、例えば、ケルセンなどが挙げられる。
 有機リン系化合物としては、例えば、ホキシム、ピリダフェンチオン、フェニトロチオン、テトラクロルビンホス、ジクロフェンチオン、プロペタンホスなどが挙げられる。
 カーバメート系化合物としては、例えば、フェノブカルブ、プロポクスルなどが挙げられる。
 アルコキシアミン系化合物としては、例えば、3-ラウリルオキシプロピリアミンなどが挙げられる。
 オキサジアジン系化合物としては、例えば、インドキサカルブなどが挙げられる。
 殺虫剤としては、例えば、ピリプロキシフェンなどが挙げられる。
 除草剤としては、例えば、ピラクロニル、ペンディメタリン、インダノファンなどが挙げられる。
 忌避剤としては、例えば、ディートなどが挙げられる。
 抗生物活性化合物は、例えば、実質的に疎水性であって、具体的には、例えば、水に対する室温(20~30℃、より具体的には、25℃)における溶解度が極めて小さく、より具体的には、例えば、室温の溶解度が、質量基準で、1質量部/水100質量部(10000ppm)以下、好ましくは、0.5質量部/水100質量部(5000ppm)以下、さらに好ましくは、0.1質量部/水100質量部(1000ppm)以下であり、容量基準で、例えば、1g/水100mL以下、好ましくは、0.5g/水100mL以下、さらに好ましくは、0.1g/水100mL以下である。
 抗生物活性化合物の水に対する溶解度が、上記した範囲を超える場合には、第1重合性ビニルモノマーを含むコア原料成分を懸濁重合する際に、抗生物活性化合物がコア外(つまり、水相)へ漏出し易く、重合後に、水相に溶解していた抗生物活性化合物が析出するので、抗生物活性化合物を含有するコアを形成することが困難となる場合がある。
 これら抗生物活性化合物は、単独使用または2種以上併用することができる。
 なお、上記した抗生物活性化合物は、例えば、製造工程中に、融点が上記範囲外である不純物を適宜の割合で含有していてもよい。具体的には、シフルトリンの異性体I(融点:57℃)と異性体II(融点:74℃)と異性体III(融点:66℃)との混合物は、例えば、不純物である異性体IV(融点102℃)を含有している。
 第1重合性ビニルモノマーは、例えば、重合性炭素-炭素二重結合を少なくとも1つ分子内に有するモノマーである。
 具体的には、第1重合性ビニルモノマーとしては、例えば、(メタ)アクリル酸エステル系モノマー、(メタ)アクリル酸系モノマー、芳香族系ビニルモノマー、ビニルエステル系モノマー、マレイン酸エステル系モノマー、ハロゲン化ビニルモノマー、窒素含有ビニルモノマーなどが挙げられる。
 (メタ)アクリル酸エステル系モノマーとしては、例えば、メタクリル酸エステルおよび/アクリル酸エステルであって、具体的には、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸オクタデシルなどのアルキル部分が炭素数1~20の直鎖または分岐の脂肪族基である(メタ)アクリル酸アルキルエステル、例えば、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘプチルなどのアルキル部分が炭素数3~20の環状脂肪族基である(メタ)アクリル酸シクロアルキルエステルなどが挙げられる。
 好ましくは、アルキル部分が炭素数1~6(好ましくは、炭素数1~3または炭素数4~6)の直鎖または分岐の脂肪族基である(メタ)アクリル酸アルキルエステルが挙げられる。
 また、(メタ)アクリル酸エステル系モノマーとして、上記したモノマーにおいてアルキル部分の水素原子をヒドロキシル基で置換した、炭素数2~10のヒドロキシアルキル部分を有するヒドロキシル基含有(メタ)アクリル酸アルキルエステルなども挙げられ、具体的には、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシルなどが挙げられる。
 好ましくは、アクリル部分が炭素数2~6(好ましくは、炭素数2~3)のヒドロキシアルキル部分を有するヒドロキシル基含有(メタ)アクリル酸アルキルエステルなどが挙げられる。
 (メタ)アクリル酸系モノマーとしては、例えば、メタクリル酸、アクリル酸などが挙げられる。
 芳香族系ビニルモノマーとしては、例えば、スチレン、4-クロロスチレン、p-メチルスチレン、o-メチルスチレン、α-メチルスチレンなどが挙げられる。
 ビニルエステル系モノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニルなどが挙げられる。
 マレイン酸エステル系モノマーとしては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
 ハロゲン化ビニルモノマーとしては、例えば、塩化ビニル、フッ化ビニルなどが挙げられる。また、ハロゲン化ビニルモノマーとして、ハロゲン化ビニリデンモノマーも挙げられ、具体的には、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。
 窒素含有ビニルモノマーとしては、例えば、(メタ)アクリロニトリル、N-フェニルマレイミド、ビニルピリジンなどが挙げられる。
 第1重合性ビニルモノマーは、例えば、実質的に疎水性であって、具体的には、例えば、水に対する室温における溶解度が極めて小さく、より具体的には、室温における溶解度が、例えば、10質量部/水100質量部以下、好ましくは、8質量部/水100質量部以下である。
 上記した第1重合性ビニルモノマーのうち、例えば、抗生物活性化合物に対する相溶性が強く、抗生物活性化合物を溶解(相溶)することのできる抗生物活性化合物相溶性モノマー(以下、単に相溶性モノマーという場合がある。)が選択される。
 これら相溶性モノマーは、単独使用または2種以上併用することができる。
 相溶性モノマーとしては、好ましくは、(メタ)アクリル酸エステル系モノマーと(メタ)アクリル酸系モノマーとの併用が挙げられる。
 具体的には、メタクリル酸メチル(MMA)とメタクリル酸(MA)との併用、メタクリル酸イソブチル(IBMA)とメタクリル酸(MA)との併用が挙げられる。
 (メタ)アクリル酸エステル系モノマーおよび(メタ)アクリル酸系モノマーが併用される場合には、(メタ)アクリル酸系モノマーの配合割合は、相溶性モノマー100質量部に対して、例えば、30質量部未満、好ましくは、20質量部以下であり、例えば、1質量部以上、好ましくは、3質量部以上である。
 抗生物活性化合物および相溶性モノマーは、後述する重合温度(加熱温度)において、好ましくは、第1重合性ビニルモノマーの重合体である第1重合体と抗生物活性化合物とが相溶するような組み合わせが選択される。
 また、第1重合性ビニルモノマーは、架橋性モノマーを相溶性モノマーとして含むこともできる。
 架橋性モノマーは、徐放性粒子の徐放性を調節するために、必要により配合され、例えば、エチレングリコールジ(メタ)クリレート、ジエチレングリコールジ(メタ)アクリレートなどのモノまたはポリエチレングリコールジ(メタ)アクリレート、例えば、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどのアルカンポリオールポリ(メタ)アクリレート、例えば、アリル(メタ)メタクリレート、トリアリル(イソ)シアヌレートなどのアリル系モノマー、例えば、ジビニルベンゼンなどのジビニル系モノマーなどが挙げられる。好ましくは、モノまたはポリエチレングリコールジ(メタ)アクリレートが挙げられる。
 架橋性モノマーは、架橋性モノマーを含むモノマー混合物(第1重合性ビニルモノマー)と抗生物活性化合物との相溶性を確保すべく、架橋性モノマーを除く相溶性モノマーの分子構造と類似する分子構造を有するモノマーが選択され、具体的には、例えば、架橋性モノマーを除く相溶性モノマーが(メタ)アクリル酸エステル系モノマーを含む場合には、架橋性モノマーとしてモノまたはポリエチレングリコールジ(メタ)アクリレートが選択される。
 架橋性モノマーの配合割合は、架橋性モノマーを除く相溶性モノマー100質量部に対して、例えば、1~100質量部、好ましくは、5~90質量部、さらに好ましくは、10~80質量部である。
 コア原料成分において、抗生物活性化合物および第1重合性ビニルモノマーとして、Hansenで定義され、van Krevelen and Hoftyzer法で算出される溶解度パラメータδの双極子間力項δp,compoundが、例えば、2~8[(J/cm1/2]であり、溶解度パラメータδの水素結合力項δh,compoundが、例えば、5.0~9.5[(J/cm1/2]である抗生物活性化合物と、溶解度パラメータδの双極子間力項δp,first polymerが、例えば、4~7[(J/cm1/2]であり、溶解度パラメータδの水素結合力項δh,first polymerが、例えば、8~10[(J/cm1/2]である第1重合体を生成する第1重合性ビニルモノマーとの組合せが選択される。
 なお、各項δ(δおよびδ)の添字compound、first polymerおよびsecond polymerは、抗生物活性化合物、第1重合体および第2重合体をそれぞれ示す。
 Hansenで定義され、van Krevelen and Hoftyzer法で算出される溶解度パラメータδの双極子間力項δおよび水素結合力項δは、原子団(化学結合または置換基などを含む)の種類および数に依存し、具体的には、下記式(1)および(2)でそれぞれ示される。
Figure JPOXMLDOC01-appb-M000001
(式中、Fは、分子間力の双極子間力要素(ポーラー・コンポーネント・オブ・ザ・モーラー・アトラクション・ファンクション(polar component of the molar attraction function)、Vはモル体積である。)
Figure JPOXMLDOC01-appb-M000002
(式中、Eは、分子間力の水素結合力の要素(コントリビューション・オブ・ザ・ハイドロジェン・ボンディング・フォーセズ・ツー・ザ・コーヘシヴ・エナジー(contribution of the hydrogen bonding forces to the cohesive energy)、Vはモル体積である。)
 上記したF、EおよびVの数値は、「Properties of Polymers」(3rd Edition、第7章、第189~225頁、van Krevelen著、ELSEVIER、2003年発行)に、原子団毎に記載されている。
 なお、置換基-I、>Si<、=N-および≡C-のFおよびEは、上記した文献に記載されていないが、関西大学山本秀樹教授によって、次の方法で算出されている。
 まず、置換基-IのFの算出方法について例示する。
 「Hansen Solubility Parameters, A User’s Handbook」(Charles Hansen著、第347~483ページのAppendix、CRC Press、2007年発行)に記載されている置換基-Iを含む化合物を無作為に10個選択し、上記した文献に記載される化合物δの数値を、上記式(1)の左辺として代入する。また、上記により選択された10個の化合物のすべての原子団のVの数値、および、置換基-Iを除く原子団のFを上記式(2)の右辺に代入する一方、右辺における置換基-IのFを未知数とする。
 そして、化合物のδ、すべての原子団のVおよび置換基を除く原子団のFが既知数であり、置換基-IのFが未知数である方程式を解き、10個の化合物に対応する解(F)の平均を、置換基-IのFとして算出する。
 また、置換基>Si<、=N-および≡C-のFについても、上記と同様に計算処理することにより、算出される。
 また、置換基-I、>Si<、=N-および≡C-のEについても、上記と同様に計算処理することにより、それぞれ算出される。
 上記した計算処理は、プログラムとしてコンピュータに記録され、最適化されている。
 上記により算出された置換基-I、>Si<、=N-および≡C-のFおよびEを以下に記載する。
-I      F:0(J1/2・cm3/2・mol-1
        E:0(J・mol-1
>Si<    F:0(J1/2・cm3/2・mol-1
        E:0(J・mol-1
=N-     F:800(J1/2・cm3/2・mol-1
        E:3000(J・mol-1
≡C-     F:0(J1/2・cm3/2・mol-1
        E:0(J・mol-1
 次に、第1重合体の一例として、メタクリル酸メチルの重合体であるポリメタクリル酸メチル(PMMA)を例示し、かかるポリメタクリル酸メチルの溶解度パラメータδの双極子間力項δp,PMMAおよび水素結合力項δh,PMMAを算出する。
1.単独重合体の双極子間力項δおよび水素結合力項δ
(1)ポリメタクリル酸メチルの構造式
 ポリメタクリル酸メチルは、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000003
(式中、nは、重合度を示す。)
(2)双極子間力項δp,PMMMA
 上記式(3)のモノマー単位(-CH-C(CH)COOCH-)において、各原子団に対応するFおよびVを以下に記載する。
-CH      F:0(J1/2・cm3/2・mol-1
         V:33.5(cm・mol)
-CH-     F:0(J1/2・cm3/2・mol-1
         V:16.1(cm・mol)
>C<      F:0(J1/2・cm3/2・mol-1
         V:-19.2(cm・mol)
-COO-    F:490(J1/2・cm3/2・mol-1
         V:18(cm・mol)
 従って、モノマー単位の双極子間力項δp,monomer unitは、下記式(4)に示すように、5.98[(J/cm1/2]と算出される。
Figure JPOXMLDOC01-appb-M000004
 そして、上記したモノマー単位の双極子間力項δp,monomer unitが、モノマー単位の繰り返し構造であるポリメタクリル酸メチルの双極子間力項δp,PMMAとされる。
(3)水素結合力項δh,PMMA
 上記式(3)のモノマー単位(-CH-C(CH)COOCH-)において、各原子団に対応するEを以下に記載する。
-CH      E:0(J・mol-1
-CH-     E:0(J・mol-1
>C<      E:0(J・mol-1
-COO-    E:7000(J・mol-1
 従って、モノマー単位の水素結合力項δh,monomer unitは、下記式(5)に示すように、9.25[(J/cm1/2]と算出される。
Figure JPOXMLDOC01-appb-M000005
 そして、上記したモノマー単位の水素結合力項δh,first polymerが、モノマー単位の繰り返し構造であるポリメタクリル酸メチルの水素結合力項δh,PMMAとされる。
2.共重合体の双極子間力項δおよび水素結合力項δ
 次に、共重合体の双極子間力項δおよび水素結合力項δを算出する。
 各モノマー単位の双極子間力項δp,monomer unitに、モノマーの質量比を乗じて、それらを足し合わせることにより、共重合体の溶解度パラメータδの双極子間力項δp,copolymerを算出する。また、各モノマー単位の水素結合力項δh,monomer unitに、モノマーの質量比を乗じて、それらを足し合わせることにより、共重合体の溶解度パラメータδの水素結合力項δh,copolymerを算出する。
 共重合体の一例として、メタクリル酸メチル、メタクリル酸およびエチレングリコールジメタクリレートを、質量比75:12.5:12.5(後述する実施例1の質量比に相当)で含むモノマーの共重合体であるポリメタクリル酸メチル-ポリメタクリル酸-エチレングリコールジメタクリレート共重合体(PMMA-MA-EGDMA)を挙げて、その溶解度パラメータδの双極子間力項δp,PMMA-PMA-EGDMAおよび水素結合力項δh,PMMA-PMA-EGDMAを算出する。
(1)双極子間力項δp,PMMA-PMA-EGDMA
 メタクリル酸メチルのモノマー単位の双極子間力項δp,MMA unitは、上記で算出したように、5.98[(J/cm1/2]である。
 また、メタクリル酸のモノマー単位の双極子間力項δp,MA unitは、上記で同様に算出することにより、7.36[(J/cm1/2]である。
 また、エチレングリコールジメタクリレートのモノマー単位の双極子間力項δp,EDGMAは、上記と同様に算出することにより、5.37[(J/cm1/2]である。
 そして、この共重合体の双極子間力項δp,PMMA-PMA-EGDMAは、下記式(6)のように算出される。
δp,PMMA-PMA-EGDMA=(75/100)δp、MMA unit+(12.5/100)δp、MA unit+(12.5/100)δp、EGDMA unit
  =(75/100)×5.98+(12.5/100)×7.36+(12.5/100)×5.37
  =6.07[(J/cm1/2]           (6)
(2)水素結合力項δh,PMMA-PMA-EGDMA
 メタクリル酸メチルのモノマー単位の水素結合力項δh,MMA unitは、9.25[(J/cm1/2]である。
 メタクリル酸のモノマー単位の水素結合力項δh,MA unitは、10.25[(J/cm1/2]である。
 また、エチレングリコールジメタクリレートのモノマー単位の水素結合力項δh,EGDMAは、10.42[(J/cm1/2]である。
 そして、この共重合体の水素結合力項δh,PMMA-PMA-EGDMAは、下記式(7)のように算出される。
δh,PMMA-PMA-EGDMA=(75/100)δh,MMA unit+(12.5/100)δh,
MA unit+(12.5/100)δh,EGDMA unit
  =(75/100)×9.25+(12.5)×10.25+(12.5)×10.42
  =9.52[(J/cm1/2]           (7)
 そして、第1重合体の溶解度パラメータδの双極子間力項δp,first polymerは、好ましくは、4.25~6.5[(J/cm1/2]であり、第1重合体の溶解度パラメータδの水素結合力項δh,first polymerは、好ましくは、8.25~10[(J/cm1/2]である。
 第1重合体の双極子間力項δp,first polymerおよび/または水素結合力項δh,first polymerが上記範囲に満たないと、第1重合体の疎水性が過度に高くなり、抗生物活性化合物との十分な相溶性を得ることができない場合があり、たとえ相溶性を得ることができた場合でも、抗生物活性化合物が懸濁重合中にコア外へ漏出して、抗生物活性化合物を十分内包した徐放性粒子の合成が困難となる場合がある。
 一方、第1重合体の双極子間力項δp,first polymerおよび/または水素結合力項δh,first polymerが上記範囲を超えると、第1重合体の親水性が過度に高くなり、抗生物活性化合物との十分な相溶性が得ることができない場合があり、たとえ相溶性を得ることができたとしても、懸濁重合における水相との界面自由エネルギーが低くなり、抗生物活性化合物が懸濁重合中にコア外へ漏出して、抗生物活性化合物を十分内包したコアの合成が困難となる場合がある。
3.抗生物活性化合物の溶解度δの双極子間力項δp, compoundおよび水素結合力項δh,compound
 抗生物活性化合物の溶解度δの双極子間力項δp,compoundおよび水素結合力項δh,compoundについても、上記したモノマー単位のそれと同様にして算出される。
 その結果、算出されたIPBC、OIT、シフルトリン、プロピコナゾール、プロクロラズおよびフルシラゾールの各抗生物活性化合物の双極子間力項δp,compoundおよび水素結合力項δh,compoundを、表1に示す。
Figure JPOXMLDOC01-appb-T000006
 抗生物活性化合物の溶解度パラメータδの双極子間力項δp,compoundは、好ましくは、3~7[(J/cm1/2]であり、水素結合力項δh,compoundは、好ましくは、5.8~9.5[(J/cm1/2]である。
 抗生物活性化合物の双極子間力項δp,compoundおよび/または水素結合力項δh,compoundが上記範囲に満たないと、抗生物活性化合物の疎水性が過度に高くなり、第1重合体との十分な相溶性を得ることができない場合がある。
 一方、抗生物活性化合物の双極子間力項δp,compoundおよび/または水素結合力項δh,compoundが上記範囲を超えると、抗生物活性化合物の親水性が過度に高くなり、抗生物活性化合物がコア外へ漏出し易く、抗生物活性化合物を十分に内包したコアの合成が困難となる場合がある。
4.溶解度パラメータの双極子間力項δの差(Δδp1)および水素結合力項δの差(Δδh1
 また、溶解度パラメータδにおいて、第1重合体の双極子間力項δp,first polymerから抗生物活性化合物の双極子間力項δp,compoundを差し引いた値Δδp1(=δp,first polymer-δp,compound)は、例えば、-2.5~3.0[(J/cm1/2]、好ましくは、-1.1~2.7[(J/cm1/2]、さらに好ましくは、0~2.6[(J/cm1/2]である。
 また、第1重合体の水素結合力項δh,first polymerから抗生物活性化合物の水素結合力項δh,compoundを差し引いた値Δδh1(=δh,first polymer-δh,compound)は、例えば、-1.1~4.5[(J/cm1/2]、好ましくは、0~4.2[(J/cm1/2]である。
 Δδp1およびΔδh1が上記した範囲内にあれば、抗生物活性化合物および第1重合体の優れた相溶性を確保して、優れた徐放性を確保することができる。
 抗生物活性化合物の双極子間力項δp,compoundおよび水素結合力項δh,compoundが上記した範囲内であり、かつ、第1重合体の双極子間力項δp,first polymerおよび水素結合力項δh,first polymerが上記した範囲内であれば、抗生物活性化合物は、懸濁重合中、コアから漏出せずに第1重合体と相溶していると定義される。
 抗生物活性化合物の第1重合性ビニルモノマーに対する割合は、質量基準(つまり、抗生物活性化合物の質量部/第1重合性ビニルモノマーの質量部)で、例えば、10/90~90/10(つまり、0.11~9.0)であり、好ましくは、10/90~70/30(つまり、0.11~2.33)である。
 第2重合性ビニルモノマーは、水に対する親和性(つまり、親水性)が、第1重合性ビニルモノマー(具体的には、相溶性モノマー)より高く、具体的には、上記した第1重合性ビニルモノマーと同様の種類であって、水に対する親和性が高いモノマーが例示される。
 第2重合性ビニルモノマーとしては、好ましくは、(メタ)アクリル酸エステル系モノマー、さらに好ましくは、ヒドロキシル基含有(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルキルエステルが挙げられる。
 より具体的には、第2重合性ビニルモノマーとして、ヒドロキシル基含有(メタ)アクリル酸アルキルエステル(具体的には、炭素数2~3のヒドロキシアルキル部分を有するヒドロキシル基含有(メタ)アクリル酸アルキルエステル)の単独使用、(メタ)アクリル酸アルキルエステル(具体的には、炭素数1~3のアルキル部分を有する(メタ)アクリル酸アルキルエステル)の単独使用、あるいは、それら2種類の併用が挙げられる。
 第2重合性ビニルモノマーとして、炭素数2~3のヒドロキシアルキル部分を有するヒドロキシル基含有(メタ)アクリル酸アルキルエステルが単独使用される場合には、第1重合性ビニルモノマーとして、例えば、炭素数4~6の(メタ)アクリル酸アルキルエステルおよび(メタ)アクリル酸系モノマーの組合せ、好ましくは、炭素数4の(メタ)アクリル酸アルキルエステルおよびメタクリル酸の組合せが選択される。
 また、第2重合性ビニルモノマーとして、炭素数1~3のアルキル部分を有する(メタ)アクリル酸アルキルエステルが単独使用される場合には、第1重合性ビニルモノマーとして、例えば、炭素数4~6の(メタ)アクリル酸アルキルエステルおよび(メタ)アクリル酸系モノマーの組合せ、好ましくは、炭素数4の(メタ)アクリル酸アルキルエステルおよびメタクリル酸の組合せが選択される。
 さらに、第2重合性ビニルモノマーとして、炭素数2~3のヒドロキシアルキル部分を有するヒドロキシル基含有(メタ)アクリル酸アルキルエステルおよび炭素数1~3のアルキル部分を有する(メタ)アクリル酸アルキルエステルが併用される場合には、第1重合性ビニルモノマーとして、例えば、炭素数4~6の(メタ)アクリル酸アルキルエステルおよび(メタ)アクリル酸エステル系モノマーの組合せ、好ましくは、炭素数4の(メタ)アクリル酸アルキルエステルおよびメタクリル酸の組合せが併用される。
 上記した第2重合性ビニルモノマーの重合体である第2重合体の双極子間力項δp,second polymerは、例えば、5.0~9.0[(J/cm1/2]、好ましくは、6.5~8.0[(J/cm1/2]であり、第2重合体の溶解度パラメータδの水素結合力項δh,second polymerは、例えば、8.0~20.0[(J/cm1/2]、好ましくは、12.0~18.0[(J/cm1/2]である。
 第2重合体の双極子間力項δp,second polymerおよび/または水素結合力項δh,second polymerが上記範囲を超えると、第2重合体の親水性が過度に高くなり、シェルを形成する第2重合体が水溶あるいは吸水して膨潤し、シェルの形状を維持することができない場合がある。
 一方、第2重合体の双極子間力項δp,second polymerおよび/または水素結合力項δh,second polymerが上記範囲に満たないと、第2重合体の親水性が不十分となり、シェルが後述するバリア層の作用を奏することができず、抗生物活性化合物と相溶して、抗生物活性化合物がシェル外へ漏出する場合がある。
 溶解度パラメータδにおいて、第2重合体の双極子間力項δp,second polymerから第1重合体の双極子間力項δp,first polymerを差し引いた値Δδp2(=δp,second polymer-δp,first polymer)は、例えば、-1.5[(J/cm1/2]以上、好ましくは、0.0[(J/cm1/2]以上、さらに好ましくは、2.0[(J/cm1/2]以上であり、通常、10.0[(J/cm1/2]以下である。
 また、第2重合体の水素結合力項δh,second polymerから第1重合体の水素結合力項δh,first polymerを差し引いた値Δδh2(=δh,second polymer-δh,first polymer)は、例えば、-1.0[(J/cm1/2]以上、好ましくは、0.0[(J/cm1/2]以上、さらに好ましくは、2.0[(J/cm1/2]以上であり、通常、20.0[(J/cm1/2]以下である。
 Δδp2および/またはΔδh2が上記下限値に満たない場合には、第2重合体の水への親和性を第1重合体のそれより高くすることができず、そのため、後述するバリア層の作用を奏することができず、その結果、抗生物活性化合物と相溶して、抗生物活性化合物がシェル外へ漏出する場合がある。
 一方、Δδp2および/またはΔδh2が上記上限値を超える場合には、第2重合体の水への親和性が過大(過度に親水性)となり、第2重合体が水溶あるいは吸水して膨潤し、シェルの形状を維持することができない場合がある。
 そして、Δδp2および/またはΔδh2が上記した下限値以上であれば、第2重合体は第1重合体より水への親和性(親水性)が高くなる。換言すれば、第2重合性ビニルモノマーは、第1重合性ビニルモノマーより水への親和性が高い(親水性である)と定義される。
 そして、本発明の徐放性粒子を得るには、まず、抗生物活性化合物と第1重合性ビニルモノマーとを含有するコア原料成分を懸濁重合する。
 具体的には、コア原料成分を、抗生物活性化合物と第1重合性ビニルモノマーとを含有する疎水性溶液として調製する。
 疎水性溶液を調製するには、例えば、溶剤の不存在下、抗生物活性化合物を第1重合性ビニルモノマーに溶解する(または第1重合性ビニルモノマーと相溶させる)。
 また、疎水性溶液には、好ましくは、開始剤を配合する。
 開始剤は、油溶性のラジカル重合開始剤であって、ラジカル重合開始剤としては、例えば、ジラウロイルパーオキシド(10時間半減温度T1/2:61.6℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(10時間半減温度T1/2:65.3℃)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(10時間半減温度T1/2:69.4℃)、ジイソプロピルパーオキシジカーボネート(10時間半減温度T1/2:40.5℃)、ベンゾイルパーオキシド(10時間半減温度T1/2:73.6℃)などの有機過酸化物、例えば、2,2’-アゾビスイソブチロニトリル(10時間半減温度T1/2:60℃)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(10時間半減温度T1/2:51℃)、2,2’-アゾビス(2-メチルブチロニトリル)(10時間半減温度T1/2:67℃)などのアゾ化合物などが挙げられる。好ましくは、有機過酸化物が挙げられる。
 開始剤の配合割合は、第1重合性ビニルモノマー100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上、さらに好ましくは、1質量部以上、とりわけ好ましくは、2.0質量部以上であり、通常、例えば、10質量部以下である。
 開始剤の配合割合が上記下限値以上であれば、次に説明する懸濁重合における第2重合性ビニルモノマーの転化率を高めることができる。
 開始剤は、上記した抗生物活性化合物および第1重合性ビニルモノマーの配合と同時、あるいは、その前後に、配合される。好ましくは、開始剤を、抗生物活性化合物を第1重合性ビニルモノマーに溶解する時に、同時に溶解する。
 疎水性溶液の調製は、例えば、常温で実施してもよく、あるいは、必要に応じて、例えば、30~100℃に加熱して実施することもできる。好ましくは、開始剤の熱分解を抑制する観点から、加熱することなく、常温で疎水性溶液を調製する。
 次いで、疎水性溶液を懸濁(水分散)させる。
 すなわち、疎水性溶液および水を配合し、均一に攪拌することにより、疎水性溶液を懸濁させる。これにより、疎水性溶液が懸濁された第1懸濁液を得る。
 懸濁の条件は、特に制限されず、例えば、常温で実施してもよく、あるいは、例えば、30~100℃で加熱して実施することもできる。好ましくは、開始剤の熱分解を抑制する観点から、加熱することなく、懸濁を実施する。
 水の配合割合は、疎水性溶液100質量部に対して、例えば、10~1000質量部、好ましくは、50~500質量部である。
 また、疎水性溶液の懸濁では、例えば、分散剤を配合する。
 分散剤としては、例えば、ポリビニルアルコール(PVA。部分ケン化ポリビニルアルコールを含む。)、ポリビニルピロリドン、ゼラチン、アラビアゴム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カチオン化澱粉、ポリアクリル酸およびその塩、スチレンマレイン酸コポリマーおよびその塩などの水溶性ポリマー、例えば、第三燐酸カルシウム、コロイダルシリカ、モンモリロナイト、炭酸マグネシウム、水酸化アルミニウム、亜鉛華などの無機分散剤などが挙げられる。
 分散剤のうち、好ましくは、無機分散剤、さらに好ましくは、第三燐酸カルシウムが挙げられる。第三燐酸カルシウムであれば、得られた徐放性粒子が、粉剤(後述)または粒剤(後述)として製剤化される場合には、その粉剤または粒剤の再分散性が向上されて、ケーキングの発生を防止させることができる。
 分散剤の配合割合は、疎水性溶液100質量部に対して、例えば、0.1~20質量部、好ましくは、0.1~15質量部である。
 また、疎水性溶液を懸濁する時に、上記した分散剤とともに、界面活性剤を併用することもできる。
 界面活性剤は、懸濁重合中のコアの凝集を有効に防止するために、配合される。界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム(DBN)、ラウリル硫酸ナトリウム、ジ-2-エチルヘキシルスルホコハク酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、ノニルジフェニルエーテルスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸エステルナトリウム、ポリオキシエチレンアルキルエーテル燐酸エステルアンモニウム、ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩、ジアルキルスルホコハク酸ナトリウムなどのアニオン系界面活性剤、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンモノステアレート、ポリオキシエチレンソルビタンモノオレート、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンリン酸エステルなどのノニオン系界面活性剤などが挙げられる。好ましくは、ノニオン系界面活性剤が挙げられる。
 界面活性剤の配合割合は、疎水性溶液100質量部に対して、例えば、0.0001~1.0質量部、好ましくは、0.001~0.1質量部である。
 分散剤および界面活性剤は、例えば、疎水性溶液および水の配合前または配合後のいずれにおいても、配合することができる。分散剤および界面活性剤は、好ましくは、疎水性溶液と配合する前の水に配合する。これにより、分散剤および界面活性剤の水溶液を調製する。
 上記した疎水性溶液の懸濁には、例えば、ホモミクサー、ディスパー、超音波ホモジナイザー、加圧式ホモジナイザー、マイルダー、多孔膜圧入分散機などの分散機が用いられる。
 好ましくは、ホモミクサーが用いられ、その回転数は、例えば、200~20000rpm、好ましくは、1500~15000rpmである。
 第1懸濁液の懸濁時間(攪拌時間)は、例えば、20分間以下、好ましくは、3~10分間である。
 次いで、第1懸濁液を昇温することにより、コア原料成分を懸濁重合する(第1工程)。
 懸濁重合では、第1懸濁液の懸濁状態が維持されるように、第1懸濁液を攪拌しながら、第1重合性ビニルモノマーが反応(具体的には、ビニル重合)して、第1重合性ビニルモノマーの重合体(第1重合体)が生成される。また、原料となる第1重合性ビニルモノマーが疎水性相(油相)にあることから、インサイチュ(in situ)重合とされる。
 懸濁重合を実施するには、まず、第1懸濁液を、開始剤の10時間半減温度T1/2より、例えば、0℃を超え30℃以下高い温度、好ましくは、5~20℃高い温度に昇温する。なお、第1懸濁液は、開始剤の10時間半減温度T1/2と同温に加熱することもできる。
 そして、昇温中の第1懸濁液では、例えば、窒素などの不活性ガス雰囲気下で、所定温度において、開始剤が熱分解することにより、懸濁重合が開始する。
 具体的には、第1工程における重合温度は、例えば、30~100℃、好ましくは、40~80℃、さらに好ましくは、50~75℃である。
 懸濁重合時における圧力は、特に限定されず、常圧である。あるいは、例えば、高圧下で実施することもできる。好ましくは、常圧で実施する。
 第1工程における重合時間は、例えば、1時間以上、好ましくは、3時間以上、さらに好ましくは、4時間以上であり、通常、10時間以下である。
 上記した懸濁重合によって、抗生物活性化合物は、第1重合体からなるマトリクス中に存在する。
 これによって、第1重合体と抗生物活性化合物とを含有するコアを形成する。
 その後、第2重合性ビニルモノマーを懸濁重合する。
 第2重合性ビニルモノマーを懸濁重合するには、まず、例えば、反応後の第1懸濁液を冷却する。
 具体的には、反応後の懸濁液を、例えば、放冷、水冷などによって冷却する。
 第1懸濁液の冷却温度は、コアに残存する開始剤の熱分解を抑制することができる温度であって、具体的には、例えば、50℃以下、好ましくは、40℃以下、さらに好ましくは、常温以下であって、通常、5℃以上である。
 あるいは、反応後の第1懸濁液は、例えば、冷却することなく、次の第2重合性ビニルモノマーの懸濁重合に供することもできる。
 次いで、第1懸濁液に、第2重合性ビニルモノマーを配合し、それらを反応させる。
 第2重合性ビニルモノマーは、第2重合性ビニルモノマーを含有する乳化液として調製される。
 乳化液は、乳化剤の存在下、第2重合性ビニルモノマーを水中に乳化させることにより、調製する。
 乳化剤としては、上記した界面活性剤と同様のものが挙げられ、好ましくは、アニオン系界面活性剤が挙げられる。
 乳化剤の配合割合は、乳化液100質量部に対して、例えば、0.0001~1.0質量部、好ましくは、0.001~0.1質量部である。
 乳化剤は、例えば、第2重合性ビニルモノマーおよび水の配合前または配合後のいずれにおいても、配合することができる。乳化剤は、好ましくは、第2重合性ビニルモノマーと配合する前の水に配合する。これにより、乳化剤の水溶液を調製する。
 第2重合性ビニルモノマーの配合割合は、水100質量部に対して、例えば、10~1000質量部、好ましくは、50~500質量部である。
 第2重合性ビニルモノマーの乳化には、例えば、上記した分散機が用いられる。好ましくは、ホモミクサーが用いられ、その回転数は、第1懸濁液の懸濁における回転数より高く、具体的には、例えば、200~20000rpm、好ましくは、1500~15000rpmである。
 また、乳化液には、シランカップリング剤を配合することもできる。
 シランカップリング剤を配合することもできる。
 シランカップリング剤は、例えば、ビニル基あるいは(メタ)アクリロイル基を少なくとも有するアルコキシシリル化合物であって、具体的には、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有アルコキシシリル化合物、例えば、メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランなどの(メタ)アクリルロイル基含有アルコキシシリル化合物などが挙げられる。
 シランカップリング剤の配合割合は、例えば、第2重合性ビニルモノマー100質量部に対して、例えば、0.01~10質量部、好ましくは、0.1~1質量部である。
 乳化液の調製は、例えば、常温で実施してもよく、あるいは、必要に応じて、例えば、30~100℃に加熱して実施することもできる。好ましくは、第2重合性ビニルモノマーの自己重合を抑制する観点から、加熱することなく、常温で乳化液を調製する。
 乳化時間は、例えば、20分間以下、好ましくは、3~20分間である。
 その後、調製した乳化液を第1懸濁液に配合して、それらを攪拌して、第2懸濁液を調製する。
 上記した第2懸濁液の調製には、上記した分散機が用いられる。好ましくは、ホモミクサーが用いられ、その回転数は、例えば、200~20000rpm、好ましくは、1500~15000rpmである。
 また、第2懸濁液の懸濁時間(攪拌時間)は、第2重合性ビニルモノマーをコアの表面に十分に吸着させる観点から、例えば、0.1時間以上、好ましくは、1時間以上、さらに好ましくは、2時間以上であり、通常、10時間以下である。
 第2懸濁液の調製では、乳化液中の第2重合性ビニルモノマーは、第1重合体からなるコアに付着(吸収)される。
 次いで、第2懸濁液を昇温することにより、第2重合性ビニルモノマーを懸濁重合する(第2工程)。
 第2懸濁液を懸濁重合するには、まず、第2懸濁液を、開始剤の10時間半減温度T1/2より、例えば、0℃を超え30℃以下高い温度、好ましくは、5~20℃高い温度に昇温する。なお、第2懸濁液は、開始剤の10時間半減温度T1/2と同温に加熱することもできる。
 そして、昇温中の第2懸濁液では、例えば、窒素などの不活性ガス雰囲気下で、所定温度において、残存する開始剤が熱分解することにより、懸濁重合が開始する。
 第2工程の重合温度は、第1工程の重合温度と同様である。
 第2懸濁液の懸濁重合時における圧力は、特に限定されず、常圧である。あるいは、例えば、高圧下で実施することもできる。好ましくは、常圧で実施する。
 第2工程の重合時間は、例えば、0.1時間以上、好ましくは、1時間以上、さらに好ましくは、2時間以上であり、通常、10時間以下である。
 懸濁重合では、第2懸濁液の懸濁状態が維持されるように、第2懸濁液を攪拌しながら、第2重合性ビニルモノマーが反応して、第2重合性ビニルモノマーの重合体(第2重合体)が生成される。
 第2重合性ビニルモノマーの懸濁重合によって、コアを被覆し、第2重合体からなるシェルが形成される。
 その後、反応後の第2懸濁液を冷却する。
 具体的には、第2懸濁液を、例えば、放冷、水冷などによって冷却する。冷却温度は、例えば、室温(20~30℃、より具体的には、25℃)である。
 冷却後、抗生物活性化合物は、コアにおいて、第1重合体中に存在している。
 つまり、抗生物活性化合物は、室温で固体であれば、コアにおける第1重合体からなるマトリクス中において、相溶状態が凍結されて、均一な状態を維持している。
 あるいは、冷却後、抗生物活性化合物は、室温で液体であれば、図1が参照されるように、コア(2)における第1重合体に対して、相溶している。
 上記した製造方法によって、図1が参照されるように、コア(2)とシェル(3)とを備える徐放性粒子(1)を含む懸濁液を得ることができる。
 徐放性粒子の粒子径は、特に制限されず、平均粒子径(メジアン径)で、例えば、1μm~1mm、好ましくは、2μm~100μmである。
 また、コアの粒子径は、平均粒子径(メジアン径)で、例えば、1~1000μm、好ましくは、2~50μm、である。
 また、シェルの厚みは、最大厚みで、例えば、0.01~500μm、好ましくは、0.05~50μmである。
 コアの粒子径およびシェルの厚みは、得られた徐放性粒子のTEM写真などから算出される。なお、コアの粒子径を、第1工程の後の懸濁液からコアのみからなる粒子を取り出し、それをレーザー回析散乱式粒子径分布測定装置によって測定することもできる。
 これにより、抗生物活性化合物を含有するコアと、コアを被覆するシェルとを備える徐放性粒子が懸濁された懸濁液を得ることができる。
 そして、徐放性粒子を含む懸濁液に、必要により、増粘剤、凍結防止剤、防腐剤、微生物増殖抑制剤、比重調節剤などの公知の添加剤を適宜配合する。
 このようにして得られた徐放性粒子は、そのままの状態(懸濁液)、つまり、懸濁剤として用いてもよく、また、濾過および/または遠心分離などによって固液分離した後に、例えば、粉剤または粒剤などの公知の剤型に製剤化して用いてもよい。また、必要により、水洗浄および/または酸洗浄することもできる。さらに、懸濁液をそのまま噴霧乾燥または風乾して、粉剤または粒剤などの剤型に製剤化することもできる。
 懸濁剤における固形分濃度(徐放性粒子の濃度)は、例えば、1~50質量%、好ましくは、5~40質量%である。
 懸濁剤における抗生物活性化合物の濃度は、例えば、0.5~40質量%、好ましくは、1~25質量%である。
 一方、粉剤は、とりわけ、分散剤として第三燐酸カルシウムが用いられた場合には、流動性に優れている。また、かかる粉剤を、再度、水分散または懸濁させることにより、水分散剤または懸濁剤を再調製することができる。そのため、かかる粉剤は、再水分散性または再懸濁性に優れる。
 その結果、輸送時には、徐放性粒子を粉剤として調製しておき、使用時には、水分散剤または懸濁剤として調製(再製剤化、再生)することにより、輸送コストを低減でき、さらには、用途を拡大させることができる。
 そして、上記した製造方法により得られた徐放性粒子では、抗生物活性化合物が第1重合性ビニルモノマーから得られる第1重合体中に存在するコアと、第2重合体からなり、コアを被覆するように形成されるシェルとを備えるので、抗生物活性化合物の放出速度を抑制することにより、優れた徐放性を有し、優れた効力持続効果を発現することができる。
 なお、徐放性とは、内包する化合物を緩徐に放出できる性質である。
 また、乳化液がシランカップリング剤を含有する場合には、シェルにおいて、シランカップリング剤に由来するシラノール基が存在し、そのシラノール基が、基材を形成する無機物(具体的には、金属、金属酸化物など)や、有機物(具体的には、紙や木材を形成するセルロースなど)と反応することができる。そのため、徐放性粒子が、塗料、シーラント、接着剤などに添加(配合)されて使用される場合において、徐放性粒子が、上記した基材と化学結合することができ、長期にわたる抗生物活性を維持することができる。
 なお、上記した実施形態では、第2重合性ビニルモノマーは、第1重合性ビニルモノマーより水への親和性が高いと説明しているが、例えば、第2重合性ビニルモノマーの水への親和性が、第1重合性ビニルモノマーと実質的に同一であってよい。
 すなわち、第2重合性ビニルモノマーの水に対する親和性が、第1重合性ビニルモノマーの水に対する親和性より実質的に同一であり、具体的には、そのような第2重合性ビニルモノマーは、疎水性である。
 そのような第2重合性ビニルモノマーとして、例えば、(メタ)アクリル酸アルキルエステル、好ましくは、炭素数1~3のアルキル部分を有する(メタ)アクリル酸アルキルエステルが挙げられ、それが単独使用される場合には、第1重合性ビニルモノマーとして、例えば、炭素数1~3の(メタ)アクリル酸アルキルエステルおよび(メタ)アクリル酸系モノマーの組合せ、好ましくは、炭素数1の(メタ)アクリル酸アルキルエステル(具体的には、(メタ)アクリル酸メチル)およびメタクリル酸の組合せが選択される。
 そのような第2重合性ビニルモノマーの重合体である第2重合体の双極子間力項δp,second polymerは、例えば、5.0以上6.5[(J/cm1/2]未満、好ましくは、5.5~6.5[(J/cm1/2]であり、第2重合性ビニルモノマーの重合体である第2重合体の水素結合力項δh,second polymerは、例えば、8.0[(J/cm1/2]以上13.0[(J/cm1/2]未満、好ましくは、9.0~11.0[(J/cm1/2]である。
 従って、第2重合体の双極子間力項δp,second polymerから第1重合体の双極子間力項δp,first polymerを差し引いた値Δδp2は、例えば、-0.5[(J/cm1/2]以上、2.0[(J/cm1/2]未満、さらに、-0.2~1.0[(J/cm1/2]、さらにまた、-0.1~0.0[(J/cm1/2]である。
 また、第2重合体の水素結合力項δh,second polymerから第1重合体の水素結合力項δh,first polymerを差し引いた値Δδh2は、例えば、-2.0[(J/cm1/2]以上2.0[(J/cm1/2]未満、さらには、-0.5~1.0[(J/cm1/2]、さらにまたは、-0.3~0.0[(J/cm1/2]である。
 Δδp2および/またはΔδh2が上記範囲内にあれば、第2重合体の水への親和性が、第1重合体の水への親和性と実質的に同一であると定義される。
 換言すれば、第2重合性ビニルモノマーの疎水性が、第1重合性ビニルモノマーの疎水性が実質的に同一である。
 そして、第2重合性ビニルモノマーの水への親和性が、第1重合性ビニルモノマーの水への親和性と実質的に同一であっても、上記した作用効果を奏することができる。
 一方、第2重合性ビニルモノマーの水への親和性が、第1重合性ビニルモノマーより高い場合は、抗生物活性化合物は、シェルに対して相溶しないものを用いる場合の方が好ましい。つまり、シェルを形成する第2重合体は、好ましくは、抗生物活性化合物と相溶しないものが用いられる。
 詳しくは、図1のTEM写真が参照されるように、シェル(3)は、水への親和性が、第1重合性ビニルモノマーへの親和性より高い第2重合成ビニルモノマーの重合体(第2重合体)からなる。そのため、シェル(3)は、コア(2)に存在する抗生物活性化合物が徐放性粒子(1)外に漏出すことを防止するバリア層として作用する。
 その結果、徐放性粒子(1)の徐放性を向上させて、より一層優れた効力持続効果を発現することができる。
 各実施例および各比較例で用いる略号の詳細を次に記載する。
OIT:商品名「ケーソン893T」(「ケーソン」は登録商標)、2-n-オクチル-4-イソチアゾリン-3-オン、分子量213、融点:20℃未満、水への溶解度:300ppm、溶解度パラメータδの双極子間力項δp, compound:5.47[(J/cm1/2]、溶解度パラメータδの水素結合力項δh, compound:5.87[(J/cm1/2]、ローム・アンド・ハース社製
IPBC:商品名「ファンギトロール400」、3-ヨード-2-プロピニルブチルカルバメート、分子量281、融点:60℃、水への溶解度:150ppm、溶解度パラメータδの双極子間力項δp,compound:3.23[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,compound:7.83[(J/cm1/2]、インターナショナル・スペシャリティ・プロダクツ社製
プロピコナゾール:1-[2-(2,4-ジクロロフェニル)-4-n-プロピル-1,3-ジオキソラン-2-イルメチル]-1H-1,2,4-トリアゾール、分子量342、融点:20℃未満、水への溶解度:110ppm、溶解度パラメータδの双極子間力項δp,compound:6.55[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,compound:9.44[(J/cm1/2]、八幸通商社製
フルシラゾール:ビス(4-フルオロフェニル)メチル(1H-1,2,4-トリアゾール-1-イルメチルシラン)、分子量315、融点:54℃、水への溶解度:45ppm、溶解度パラメータδの双極子間力項δp,compound:5.95[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,compound:6.85[(J/cm1/2]、エアブラウン社製
プロクロラズ:N-プロピル-N-[2-(2,4,6-トリクロロ-フェノキシ)エチル]イミダゾール-1-カルボキサミド、分子量375、融点45~52℃、水への溶解度:55ppm、溶解度パラメータδの双極子間力項δp,compound:6.87[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,compound:8.85[(J/cm1/2]、丸善薬品社製
シフルトリン:商品名「プリベントールHS12」(「プリベントール」は登録商標)、(RS)-α-シアノ-4-フルオロ-3-フェノキシベンジル=(1RS,3RS)-(1RS,3RS)-3-(2,2-ジクロロビニル)-2,2-メチルシクロプロパンカルボキシラート、分子量434、水への溶解度:1~2ppb、異性体I(融点57℃)と異性体II(融点74℃)と異性体III(融点66℃)と異性体IV(融点102℃)との混合物、溶解度パラメータδの双極子間力項δp,compound:3.46[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,compound:6.09[(J/cm1/2]、ランクセス社製
メタクリル酸メチル:商品名「アクリエステルM」(「アクリエステル」は登録商標)、水への溶解度:1.6質量%、モノマー単位としての溶解度パラメータδの双極子間力項δp,monomer unit:6.69[(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,monomer unit:9.78[(J/cm1/2]、三菱レイヨン社製
メタクリル酸イソブチル:水への溶解度:0.06質量%、モノマー単位としての溶解度パラメータδの双極子間力項δp,monomer unit:3.75[(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,monomer unit:7.32[(J/cm1/2]、日本触媒社製
メタクリル酸:水への溶解度:8.9質量%、モノマー単位としての溶解度パラメータδの双極子間力項δp,monomer unit:7.13[(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,monomer unit:13.03[(J/cm1/2]、三菱レイヨン製
エチレングリコールジメタクリレート:商品名「ライトエステルEG」、水への溶解度:5.37ppm、モノマー単位としての溶解度パラメータδの双極子間力項δp,monomer unit:5.37[(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,monomer unit:10.42[(J/cm1/2]、共栄社化学社製
ジラウロイルパーオキシド:商品名「パーロイルL」(「パーロイル」は登録商標)、日油社製
TCP-10U:商品名、第三燐酸カルシウム、[Ca(PO]・Ca(OH)の10%懸濁液、松尾薬品産業社製
プライサーフA210G:商品名、「プライサーフ」は登録商標、ポリオキシエチレンリン酸エステル、ノニオン系界面活性剤、第一工業製薬社製
メタクリル酸2-ヒドロキシエチル:親水性(水と混和可能)、モノマー単位としての溶解度パラメータδの双極子間力項δp,monomer unit:7.48[(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,monomer unit:16.98[(J/cm1/2]、日本触媒社製
ペレックスOT-P:商品名、「ペレックス」は登録商標、ジアルキルスルホコハク酸ナトリウム、花王社製
  実施例1
 (OIT含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 200mLのビーカー(1)に、OIT60.0g、メタクリル酸メチル30.0g、メタクリル酸5.0g、エチレングリコールジメタクリレート5.0gおよびジラウロイルパーオキシド1.9gを仕込み、室温で攪拌することにより、均一な疎水性溶液を調製した。
 別途、1000mLのビーカー(2)に、イオン交換水120.0g、TCP-10U120.0g、および、プライサーフA210Gの5%水溶液1.0gを仕込み、室温で攪拌することにより、均一な懸濁液を得た。
 次いで、1000mLのビーカー(2)に、疎水性溶液を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数5000rpmで5分間攪拌することにより、疎水性溶液を懸濁させて、懸濁液を調製した。
 その後、懸濁液を、攪拌器、還流冷却器、温度計および窒素導入管を装備した500mL4頚コルベンに移し、窒素気流下、攪拌しながら昇温して、懸濁液を懸濁重合した(第1工程)。
 懸濁重合は、懸濁液を昇温する途中において、懸濁液の温度が65℃に到達した時に開始され、続いて、懸濁液の温度を70℃で2時間維持した。
 その後、懸濁液を室温まで冷却した。
 別途、200mLのビーカー(3)に、イオン交換水17.2gおよびペレックスOT-Pの1%水溶液22.8gを仕込み、室温で攪拌することにより、均一な水溶液を調製した。
 次いで、200mLのビーカー(3)に、メタクリル酸メチル40.0gを仕込み、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数10000rpmで10分間攪拌して、メタクリル酸メチルを乳化することにより、乳化液を調製した。
 次いで、反応後に室温まで冷却された懸濁液を撹拌しながら、かかる懸濁液に乳化液を加え、2時間、撹拌した。
 その後、窒素気流下、攪拌しながら昇温して、懸濁重合した(第2工程)。
 懸濁重合は、懸濁液を昇温する途中において、懸濁液の温度が65℃に到達した時に開始され、続いて、懸濁液の温度を70℃で3時間維持した。
 その後、懸濁液を室温まで冷却した。
 これにより、OITを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例2
 (OIT含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるメタクリル酸メチル30.0gをメタクリル酸イソブチル30.0gに変更した以外は、実施例1と同様に処理して、OITを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例3
 (OIT含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるメタクリル酸メチル30.0gをメタクリル酸イソブチル30.0gに変更し、200mLのビーカー(3)において乳化するメタクリル酸メチル40.0gに代えて、メタクリル酸メチル20.0gおよびメタクリル酸2-ヒドロキシエチル20.0gを仕込んだ以外は、実施例1と同様に処理して、OITを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例4
 (OIT含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるメタクリル酸メチル30.0gをメタクリル酸イソブチル30.0gに変更し、200mLのビーカー(3)において乳化するメタクリル酸メチル40.0gに代えて、メタクリル酸2-ヒドロキシエチル40.0gを仕込んだ以外は、実施例1と同様に処理して、OITを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例5
 (IPBC含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをIPBC25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、実施例1と同様に処理して、IPBCを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例6
 (IPBC含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをIPBC25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更し、200mLのビーカー(3)において乳化するメタクリル酸メチル40.0gに代えて、メタクリル酸2-ヒドロキシエチル40.0gを仕込んだ以外は、実施例1と同様に処理して、IPBCを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例7
 (プロピコナゾール含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをプロピコナゾール25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、実施例1と同様に処理して、プロピコナゾールを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例8
 (プロピコナゾール含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをプロピコナゾール25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更し、200mLのビーカー(3)において乳化するメタクリル酸メチル40.0gに代えて、メタクリル酸2-ヒドロキシエチル40.0gを仕込んだ以外は、実施例1と同様に処理して、プロピコナゾールを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例9
 (フルシラゾール含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをフルシラゾール25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、実施例1と同様に処理して、フルシラゾールを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例10
 (フルシラゾール含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをフルシラゾール25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更し、200mLのビーカー(3)において乳化するメタクリル酸メチル40.0gに代えて、メタクリル酸2-ヒドロキシエチル40.0gを仕込んだ以外は、実施例1と同様に処理して、フルシラゾールを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例11
 (プロクロラズ含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをプロクロラズ25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、実施例1と同様に処理して、プロクロラズを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例12
 (プロクロラズ含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをプロクロラズ25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更し、200mLのビーカー(3)において乳化するメタクリル酸メチル40.0gに代えて、メタクリル酸2-ヒドロキシエチル40.0gを仕込んだ以外は、実施例1と同様に処理して、プロクロラズを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例13
 (シフルトリン含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをシフルトリン25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、実施例1と同様に処理して、シフルトリンを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  実施例14
 (シフルトリン含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合、第2工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをプロクロラズ25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更し、200mLのビーカー(3)において乳化するメタクリル酸メチル40.0gに代えて、メタクリル酸2-ヒドロキシエチル40.0gを仕込んだ以外は、実施例1と同様に処理して、シフルトリンを含有するコアと、それを被覆するシェルとを備える徐放性粒子の懸濁液(懸濁剤)を得た。
  比較例1
 (OIT含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合)
 200mLのビーカー(1)に、OIT60.0g、メタクリル酸メチル30.0g、メタクリル酸5g、エチレングリコールジメタクリレート5.0gおよびジラウロイルパーオキシド1.9gを仕込み、室温で攪拌することにより、均一な疎水性溶液を調製した。
 別途、1000mLのビーカー(2)に、イオン交換水120.0g、TCP-10U120.0g、および、プライサーフA210Gの5%水溶液1.0gを仕込み、室温で攪拌することにより、均一な懸濁液を得た。
 次いで、1000mLのビーカー(2)に、疎水性溶液を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数5000rpmで5分間攪拌することにより、疎水性溶液を分散させて、懸濁液を調製した。
 その後、懸濁液を、攪拌器、還流冷却器、温度計および窒素導入管を装備した500mL4頚コルベンに移し、窒素気流下、攪拌しながら昇温して、懸濁液を懸濁重合した(第1工程)。
 懸濁重合は、懸濁液を昇温する途中において、懸濁液の温度が65℃に到達した時に開始され、続いて、懸濁液の温度を70℃で2時間維持した。
 その後、懸濁液を室温まで冷却した。
 これにより、OITを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
  比較例2
 (OIT含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合)
 疎水性溶液におけるメタクリル酸メチル30.0gをメタクリル酸イソブチル30.0gに変更した以外は、比較例1と同様に処理して、OITを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
  比較例3
 (IPBC含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをIPBC25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、比較例1と同様に処理して、IPBCを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
  比較例4
 (プロピコナゾール含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをプロピコナゾール25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、比較例1と同様に処理して、プロピコナゾールを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
  比較例5
 (フルシラゾール含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをフルシラゾール25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、比較例1と同様に処理して、フルシラゾールを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
  比較例6
 (プロクロラズ含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをプロクロラズ25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、比較例1と同様に処理して、プロクロラズを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
  比較例7
 (シフルトリン含有徐放性粒子を含む懸濁剤の製剤化)
 (第1工程:懸濁重合)
 疎水性溶液におけるOIT60.0gをシフルトリン25.0gに変更し、メタクリル酸メチル30.0gをメタクリル酸イソブチル65.0gに変更した以外は、比較例1と同様に処理して、シフルトリンを含有する徐放性粒子の懸濁液(懸濁剤)を得た。
  (配合処方)
 各実施例および各比較例における各成分の処方を表2~表4に示す。なお、表中、配合処方の数値は、g数を示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
  (評価)
 (溶解度パラメータδの算出)
1. 第1重合体の溶解度パラメータδの双極子間力項δp,first polymerおよび水素結合力項δh,first polymerと、第2重合体の溶解度パラメータδの双極子間力項δp,second polymerおよび水素結合力項δh,second polymerを、上記に準拠して、算出した。
 それらの結果を、抗生物活性化合物の溶解度パラメータδの双極子間力項δp,compoundおよび水素結合力項δh,compound(表1参照)とともに、表2~表4に示す。
2. Δδh1(=δh,first polymer-δh,compound)、δp1(=δp,first polymer-δp,compound)、Δδp2(=δp,second polymer-δp,first polymer)およびΔδh2(=δh,second polymer-δh,first polymer)をそれぞれ算出した。
 それらの結果を、表2~表4に示す。
  (評価)
1. TEM(透過型電子顕微鏡、Transmission Electron Microscope)観察
 実施例4の懸濁液(懸濁剤)を、凍結乾燥し、ビスフェノール型液状エポキシ樹脂に分散して、アミンで硬化させた。これをウルトラミクロトームで切断することにより断面を出し、四酸化オスミウムによって染色、必要により、四酸化ルテニウムで再度染色し、これをウルトラミクロトームで超薄切片に切り出して、サンプルを調製した。調製したサンプルを、透過型電子顕微鏡(型番「H-7100」、日立製作所社製)で、TEM観察した。
 実施例4のTEM写真の画像処理図を、図1に示す。
2. 徐放性試験
(1)OIT含有徐放性粒子の徐放性試験(実施例1~4および比較例2)
 以下の操作に従って、実施例1~4および比較例2のOIT含有徐放性粒子について、徐放性試験を実施した。
 市販のアクリルスチレンエマルションに、撹拌しながら、実施例1~4および比較例2で得られた徐放性粒子の懸濁液(懸濁剤)を、OIT濃度がともに0.15質量%となるように添加し、1時間撹拌を続けた。
 次いで、アルミ板(JIS A 1050P、20cm×20cm)にバーコーターを用いて上記したアクリルスチレンエマルションを塗布して、皮膜を形成した。
 皮膜を40℃で24時間、乾燥することにより、徐放性粒子含有フィルムを作製し、その後、徐放性粒子含有フィルムを7cm×15cmに切断して試験片を作製し、試験片をデューパネルウェザーメーターに取り付け、連続降雨で2週間曝露した。
 その後、曝露した試験片を2.5cm×2.5cmに切断し、メタノール10mLを加えて、超音波洗浄器を用いて、30分間、OITを抽出した。
 また、未曝露の試験片についても、上記と同様に処理した。
 上記により抽出したOIT量を、HPLCを用いて測定し、未曝露の試験片と曝露後の試験片から徐放性粒子含有フィルムにおける徐放性粒子のOITの残存率を算出した。
 その結果を表2および表4に示す。
(2)IPBC含有徐放性粒子、プロピコナゾール含有徐放性粒子、フルシラゾール含有徐放性粒子およびプロクロラズ含有徐放性粒子の徐放性試験(実施例5~12および比較例3~6)
 以下の操作に従って、徐放性粒子について、徐放性試験を実施した。
 まず、実施例5~12および比較例3~6のそれぞれの徐放性粒子について、各抗生物活性化合物含有量が100mgとなるような量の各徐放性粒子の懸濁液を用意した。
 次いで、円筒濾紙(東洋濾紙No.84、外径×内径×高さ=28×25×100mm)を横方向に切断して、高さ30mmの円筒濾紙を用意した。
 次いで、その濾紙に、用意した各懸濁液をゆっくり添加し、その後、風乾した。
 これらの濾紙に、定量チューブポンプを用いて、流速20mL/hrで900mL通水し、得られた濾液の抗生物活性化合物量から、HPLCを用いて、抗生物活性化合物の徐放率を算出した。その結果を表2~表4に示す。
(3)シフルトリン含有徐放性粒子の徐放性試験(実施例13、14および比較例7)
 以下の操作に従って、実施例13、14および比較例7のシフルトリン含有徐放性粒子について、徐放性試験を実施した。
 まず、実施例13~14および比較例7のそれぞれの徐放性粒子について、シフルトリンとして100mgを含む各徐放性粒子の懸濁液を、1gそれぞれ用意した。
 次いで、円形濾紙(東洋濾紙No.5C、JIS P 3801の5種Cに相当)を2枚重ねて襞(ひだ)折りした。
 次いで、その濾紙に、用意した各懸濁液をゆっくり添加し、その後、風乾した。 
 その後、この濾紙をガラス瓶に入れ、イオン交換水/メタノール(=50/50(容量比))混合液100mLを加えて、室温で24時間。静置浸漬した。続いて、イオン交換水/メタノール混合物を採取し、新しいイオン交換水/メタノール混合液100mLを加えて24時間、室温で静置浸漬した。その後、上記したイオン交換水/メタノール混合液の交換操作を3回繰り返した。
 上記により採取した3回目のイオン交換水/メタノール混合液から、GCを用いて、シフルトリンの徐放率を算出した。その結果を表3および表4に示す。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。
 本発明の徐放性粒子は、各種の工業製品、例えば、屋内外の塗料、ゴム、繊維、樹脂、プラスチック、接着剤、目地剤、シーリング剤、建材、コーキング剤、土壌処理剤、木材、製紙工程における白水、顔料、印刷版用処理液、冷却用水、インキ、切削油、化粧用品、不織布、紡糸油、皮革などに適用(あるいは配合)することができ、含有する抗生物活性化合物を徐放して、かかる抗生物活性化合物の効力を持続的に発現させることができる。

Claims (1)

  1.  抗生物活性化合物と第1重合性ビニルモノマーとを含有するコア原料成分を懸濁重合することにより形成され、前記第1重合性ビニルモノマーの第1重合体、および、前記第1重合体中に存在する抗生物活性化合物を含有するコアと、
     水に対する親和性が前記第1重合性ビニルモノマーと同一またはそれより高い第2重合性ビニルモノマーを懸濁重合することにより形成され、前記第2重合性ビニルモノマーから得られる第2重合体を含有し、前記コアを被覆するシェルと
    を備えることを特徴とする、徐放性粒子。
PCT/JP2012/055968 2011-03-11 2012-03-08 徐放性粒子 WO2012124598A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/003,271 US9511030B2 (en) 2011-03-11 2012-03-08 Controlled release particles
CN2012800126121A CN103415207A (zh) 2011-03-11 2012-03-08 缓释粒子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011054628 2011-03-11
JP2011-054628 2011-03-11
JP2012037885A JP6083936B2 (ja) 2011-03-11 2012-02-23 徐放性粒子の製造方法
JP2012-037885 2012-02-23

Publications (1)

Publication Number Publication Date
WO2012124598A1 true WO2012124598A1 (ja) 2012-09-20

Family

ID=46830671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055968 WO2012124598A1 (ja) 2011-03-11 2012-03-08 徐放性粒子

Country Status (4)

Country Link
US (1) US9511030B2 (ja)
JP (1) JP6083936B2 (ja)
CN (1) CN103415207A (ja)
WO (1) WO2012124598A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030213A1 (ja) * 2013-08-30 2015-03-05 日本エンバイロケミカルズ株式会社 徐放性粒子、その製造方法、成形材料および成形品
JP2016523833A (ja) * 2013-05-17 2016-08-12 スリーエム イノベイティブ プロパティズ カンパニー 重合体複合粒子からの生物活性剤の放出
JP2019059719A (ja) * 2017-09-22 2019-04-18 新中村化学工業株式会社 コアシェル型農薬粒剤組成物及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109502B2 (ja) * 2012-07-13 2017-04-05 大阪ガスケミカル株式会社 抗生物活性粒子およびその製造方法
TWI686213B (zh) 2013-03-21 2020-03-01 美商優普順藥物公司美國分部 可注射持續釋放組合物及使用其治療關節之發炎及與發炎有關之疼痛之方法
CN105085778B (zh) * 2014-04-22 2018-11-16 广东华润涂料有限公司 用于缓释功能成分的涂料组合物用水性胶乳、其制备方法以及应用
KR20170056573A (ko) * 2014-09-19 2017-05-23 유프락시아 파마수티컬스 인코포레이티드 치료제의 고도로 국소화된 방출을 위한 주입가능한 미립자
SG11201803156TA (en) 2015-10-27 2018-05-30 Eupraxia Pharmaceuticals Inc Sustained release formulations of local anesthetics
US10881103B2 (en) * 2017-11-06 2021-01-05 National Chung Shan Institute Of Science And Technology Biocide-encapsulated microcapsule for use in paint
US20230365761A1 (en) 2020-09-11 2023-11-16 Osaka Gas Chemicals Co., Ltd. Additive for resin kneading
US20240050906A1 (en) * 2021-03-08 2024-02-15 Regents Of The University Of Michigan Crosslinked ion-exchange materials, related methods, and related articles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753835A (ja) * 1993-08-10 1995-02-28 Takeda Chem Ind Ltd 有効成分を含有するコアポリマー、コアシェルポリマーおよびそれらの製造法
JPH10324601A (ja) * 1997-04-11 1998-12-08 Rohm & Haas Co 生物活性物質の投与方法
WO2001037660A1 (en) * 1999-11-19 2001-05-31 Nof Corporation Sustained-release preparation of aqueous dispersion type and process for producing the same
JP2006035210A (ja) * 2004-06-21 2006-02-09 Nisshin Chem Ind Co Ltd マイクロカプセルエマルジョン及びその製造方法
JP2008074809A (ja) * 2006-09-25 2008-04-03 Sumitomo Chemical Co Ltd 被覆粉状農薬

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145265A (ja) 1983-02-04 1984-08-20 Sumitomo Naugatuck Co Ltd 接着剤組成物
GB8331546D0 (en) 1983-11-25 1984-01-04 Exxon Research Engineering Co Polymeric compositions
DE3485826T2 (de) 1983-11-25 1992-12-10 Allied Colloids Ltd Herstellung und verwendung polymerer kugeln.
JPS6186941A (ja) 1984-10-03 1986-05-02 Japan Synthetic Rubber Co Ltd 含油マイクロカプセルの製造方法
JPH0699244B2 (ja) 1985-04-10 1994-12-07 日本ペイント株式会社 抗有害生物性を有する微小樹脂粒子
US5225279A (en) * 1985-04-30 1993-07-06 Rohm And Haas Company Solvent core encapsulant composition
DE4137619A1 (de) 1991-11-15 1993-05-19 Basf Ag Mikrokapseln mit feststoff-kern
DE19644224A1 (de) 1996-10-24 1998-04-30 Bayer Ag Antifoulingbeschichtung
DE19807118A1 (de) * 1998-02-20 1999-08-26 Bayer Ag Perlpolymerisat-Formulierungen
US7354596B1 (en) 1998-05-01 2008-04-08 3M Innovative Properties Company Anti-microbial agent delivery system
US6471975B1 (en) 1998-05-01 2002-10-29 3M Innovative Properties Company Microspheres as a delivery vehicle for bio-active agents useful in agricultural applications
JP4514077B2 (ja) 1999-12-27 2010-07-28 日本エンバイロケミカルズ株式会社 微生物増殖抑制剤含有マイクロカプセルおよび微生物増殖抑制剤含有マイクロカプセルの製造方法
JP2004331625A (ja) 2003-05-12 2004-11-25 Nof Corp 水分散型のフェロモン徐放製剤およびその製造方法
US20050282011A1 (en) 2004-06-21 2005-12-22 Nissin Chemical Industry Co., Ltd. Microcapsule emulsion and method for producing the same
BRPI0700482B1 (pt) 2006-03-16 2017-04-04 Rohm & Haas composição de revestimento
JP4716435B2 (ja) 2007-03-02 2011-07-06 シチズン電子株式会社 光源装置及び光源装置を備えた表示装置
JP5125168B2 (ja) 2007-03-28 2013-01-23 住友化学株式会社 常温で固体の生理活性物質のマイクロカプセル組成物の製造方法
JP2008239561A (ja) 2007-03-28 2008-10-09 Sumitomo Chemical Co Ltd 常温で固体の生理活性物質のマイクロカプセル組成物の製造方法
WO2011030824A1 (ja) * 2009-09-11 2011-03-17 日本エンバイロケミカルズ株式会社 徐放性粒子およびその製造方法
JP5763570B2 (ja) * 2011-03-11 2015-08-12 大阪ガスケミカル株式会社 徐放性粒子およびその製造方法
CN104023527A (zh) * 2011-12-28 2014-09-03 日本环境化学株式会社 缓释性粒子、木材处理剂及其制造方法
JP6147115B2 (ja) * 2012-07-13 2017-06-14 大阪ガスケミカル株式会社 抗生物活性粒子およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753835A (ja) * 1993-08-10 1995-02-28 Takeda Chem Ind Ltd 有効成分を含有するコアポリマー、コアシェルポリマーおよびそれらの製造法
JPH10324601A (ja) * 1997-04-11 1998-12-08 Rohm & Haas Co 生物活性物質の投与方法
WO2001037660A1 (en) * 1999-11-19 2001-05-31 Nof Corporation Sustained-release preparation of aqueous dispersion type and process for producing the same
JP2006035210A (ja) * 2004-06-21 2006-02-09 Nisshin Chem Ind Co Ltd マイクロカプセルエマルジョン及びその製造方法
JP2008074809A (ja) * 2006-09-25 2008-04-03 Sumitomo Chemical Co Ltd 被覆粉状農薬

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016523833A (ja) * 2013-05-17 2016-08-12 スリーエム イノベイティブ プロパティズ カンパニー 重合体複合粒子からの生物活性剤の放出
WO2015030213A1 (ja) * 2013-08-30 2015-03-05 日本エンバイロケミカルズ株式会社 徐放性粒子、その製造方法、成形材料および成形品
JP2019059719A (ja) * 2017-09-22 2019-04-18 新中村化学工業株式会社 コアシェル型農薬粒剤組成物及びその製造方法

Also Published As

Publication number Publication date
JP2012207012A (ja) 2012-10-25
US20130337073A1 (en) 2013-12-19
CN103415207A (zh) 2013-11-27
JP6083936B2 (ja) 2017-02-22
US9511030B2 (en) 2016-12-06

Similar Documents

Publication Publication Date Title
JP6083936B2 (ja) 徐放性粒子の製造方法
JP5547589B2 (ja) 徐放性粒子およびその製造方法
JP5763570B2 (ja) 徐放性粒子およびその製造方法
JP6147115B2 (ja) 抗生物活性粒子およびその製造方法
JP2011079816A5 (ja)
JP2012207012A5 (ja)
JP5873790B2 (ja) 徐放性粒子およびその製造方法
JP2012526863A (ja) ポリマー/無機ナノ粒子からのコンポジットナノ顆粒、その調製方法およびその使用
JP2014520779A (ja) ミセルで被覆された結晶粒子
WO2019208801A1 (ja) 徐放性複合粒子、徐放性複合粒子の製造方法、乾燥粉体及び壁紙
JP6646950B2 (ja) 木材保存剤および木材保護塗料
WO2013100102A1 (ja) 徐放性粒子、木材処理剤およびその製造方法
JP2013151471A5 (ja)
JP6355485B2 (ja) 徐放性粒子、その製造方法、成形材料および成形品
JP5873842B2 (ja) 徐放性粒子、その製造方法およびこれを用いた木部処理剤
JP6114879B2 (ja) 徐放性粒子およびその製造方法
JP2015221892A (ja) 粒子
US20150010635A1 (en) Controlled release particles, wood treatment agent, and producing method thereof
JP2015221789A (ja) 粒子
JP6109502B2 (ja) 抗生物活性粒子およびその製造方法
WO2015030213A1 (ja) 徐放性粒子、その製造方法、成形材料および成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14003271

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758059

Country of ref document: EP

Kind code of ref document: A1