WO2012124243A1 - 非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2012124243A1
WO2012124243A1 PCT/JP2012/000085 JP2012000085W WO2012124243A1 WO 2012124243 A1 WO2012124243 A1 WO 2012124243A1 JP 2012000085 W JP2012000085 W JP 2012000085W WO 2012124243 A1 WO2012124243 A1 WO 2012124243A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
raw material
nickel
active material
positive electrode
Prior art date
Application number
PCT/JP2012/000085
Other languages
English (en)
French (fr)
Inventor
祐樹 杉本
直人 安田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2012124243A1 publication Critical patent/WO2012124243A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the same.
  • lithium composite oxide used as the positive electrode active material examples include a spinel-structure lithium nickel manganese composite oxide such as LiNi 0.5 Mn 1.5 O 4 (for example, JP 2002-42814 A, JP 2003-92108 A).
  • the spinel structure lithium nickel manganese composite oxide has relatively high safety and rate characteristics, and is low in cost.
  • the inventor of the present application has made various studies on the spinel lithium nickel manganese composite oxide in order to increase the battery capacity. As a result, it was found that the starting material, heating temperature, conditions, etc. of the lithium nickel manganese composite oxide greatly affect the performance of the battery.
  • the present invention has been made in view of such circumstances, and provides a positive electrode active material for a nonaqueous electrolyte secondary battery excellent in battery characteristics, a method for producing the same, a nonaqueous electrolyte secondary battery using the same, and a vehicle. This is the issue.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes a lithium nickel manganese composite that includes at least a lithium (Li) element, a nickel (Ni) element, and a manganese (Mn) element and whose crystal structure belongs to a spinel structure An oxide and nickel oxide, wherein the nickel oxide is a part of a raw material for producing the lithium nickel manganese composite oxide or a by-product generated from the raw material.
  • the positive electrode active material has a lithium nickel manganese composite oxide having a spinel structure and nickel oxide.
  • the nickel oxide is a part of the raw material for producing the lithium nickel manganese composite oxide or a by-product generated from the raw material. That is, nickel oxide is an impurity generated as a by-product when a lithium nickel manganese composite oxide is generated.
  • the raw material for producing the lithium nickel manganese based composite oxide includes, for example, a lithium compound raw material containing one or more metal elements essential for lithium (Li) element, and a nickel (Ni) element and manganese (Mn) element as essential. And a nickel manganese compound raw material containing two or more metal elements.
  • a lithium compound raw material and a nickel manganese compound raw material are mixed and heated.
  • a spinel structure containing lithium as a constituent component is formed.
  • nickel ions enter the lithium site having a spinel structure, and so-called cation mixing occurs.
  • the region becomes locally disordered salt facies (salt domain).
  • the rock salt domain is itself electrochemically inert.
  • nickel ions mixed in the lithium site inhibit the two-dimensional diffusion of lithium ions. For this reason, a rock salt domain reduces the function as a positive electrode active material rapidly.
  • the heating reaction is terminated and the amount of the nickel ions diffused to the lithium sites is limited. Thereby, mixing of nickel ions into the lithium site is suppressed, and a lithium nickel manganese based composite oxide with little mixing of nickel ions is generated.
  • the positive electrode active material thus produced contains nickel oxide (NiO) as an impurity.
  • the positive electrode active material is mainly composed of a lithium nickel manganese composite oxide that undergoes electrode reaction, and if it contains only a small amount of nickel oxide, it has superior battery characteristics compared to a positive electrode active material obtained by heating for a long time. Can be demonstrated.
  • the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a method for producing the above-described positive electrode active material for a non-aqueous electrolyte secondary battery, which is one or more metal elements that essentially require lithium.
  • Lithium compound raw material containing one or more metal compounds selected from oxides, hydroxides and metal salts containing, and oxides, hydroxides and metal salts containing two or more metal elements essential to nickel and manganese The nickel manganese compound raw material containing one or more metal compounds selected from the above is heated, and the lithium compound raw material and the nickel manganese compound raw material are allowed to react with each other while leaving the nickel oxide generated from the nickel manganese compound raw material. And a reaction step for obtaining the lithium nickel manganese composite oxide.
  • a lithium nickel manganese composite oxide having a spinel structure is generated in a state where the lithium compound raw material and the nickel manganese compound raw material are heated to leave the nickel oxide generated from the nickel manganese compound raw material. For this reason, it can suppress that the nickel ion produced
  • a non-aqueous electrolyte secondary battery of the present invention is characterized by including a positive electrode including the positive electrode active material for a non-aqueous electrolyte secondary battery described above, a negative electrode, and a non-aqueous electrolyte.
  • the lithium ion battery of the present invention includes the positive electrode active material described above, the battery characteristics are excellent.
  • the vehicle of the present invention is characterized in that the non-aqueous electrolyte secondary battery is mounted.
  • the vehicle of the present invention can exhibit high output.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery, the manufacturing method thereof, and the non-aqueous electrolyte secondary battery of the present invention not only lithium nickel manganese composite oxide but also nickel oxide as an impurity is contained. Battery characteristics can be improved. Moreover, since the vehicle of the present invention is equipped with the non-aqueous electrolyte secondary battery, it can exhibit high output.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a lithium nickel manganese composite oxide and a nickel oxide.
  • the lithium nickel manganese composite oxide contains at least a lithium (Li) element manganese (Mn) element and a nickel (Ni) element, and the crystal structure belongs to a spinel structure.
  • the lithium nickel manganese based composite oxide has a composition formula: LiNi xy Mn 2-xy M 1 y O 4 (0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, where M 1 is a metal element. And excluding Li, Ni, and Mn. Li may be partially substituted with hydrogen).
  • M 1 is a metal element introduced into the manganese site instead of Ni, and is, for example, at least one of Al, Co, Fe, Mg, and Ti.
  • Ni in LiNi xy Mn 2-xy M 1 y O 4 is divalent, Mn is tetravalent, and M 1 is a divalent or trivalent metal element.
  • the average oxidation number of Ni xy Mn 2-xy M 1 y is preferably 3.5.
  • the average oxidation number of M 1 may be slightly different from tetravalent, and is allowed to be 3.3 to 3.7.
  • a portion of Li contained in LiNi xy Mn 2-xy M 1 y O 4 may be substituted with hydrogen (H).
  • H hydrogen
  • 60% or less, further 45% or less in atomic ratio may be substituted with H.
  • a composite oxide represented by the composition formula LiNi xy Mn 2-xy M 1 y O 4 is used as a basic composition, and examples of lithium nickel manganese based composite oxides having a spinel structure include LiNi x Mn 2 ⁇ x O 4, LiNi x-y Mn 2-x-y Al y O 4, LiNi x-y Mn 2-x-y Co y O 4, LiNi x-y Mn 2-x-y Fe y O 4, LiNi x-y Mn 2-x- y Mg y O 4, LiNi x-y Mn 2-x-y Ti y O 4 and the like.
  • LiNi x Mn 2-x O 4 is preferable.
  • LiNi x Mn 2-x O 4 includes LiNi 0.5 Mn 1.5 O 4 .
  • the obtained composite oxide as a whole may have the basic composition as the exemplified oxide, and may slightly deviate from the above composition formula due to unavoidable metal element or oxygen deficiency.
  • the positive electrode active material contains nickel oxide (NiO) as an impurity.
  • the nickel oxide is a by-product generated from a part of the raw material of the lithium nickel manganese composite oxide or from the raw material.
  • the nickel oxide is preferably contained in an amount of 5 parts by mass to 30 parts by mass. If the nickel oxide is less than 5 parts by mass, cation mixing proceeds and the electric capacity may be reduced. When the nickel oxide exceeds 30 parts by mass, the nickel oxide does not participate in the battery reaction, so that the battery capacity may be reduced.
  • the lower limit of the nickel oxide content is 5 parts by mass, desirably 10 parts by mass, and the upper limit is 30 parts. It may be 10 parts by mass, preferably 10 parts by mass.
  • the lithium nickel manganese composite oxide and the nickel oxide each constitute a particle.
  • Nickel oxide is an impurity that has not been introduced into the lithium nickel manganese composite oxide, which is a reaction target. For this reason, the nickel oxide exists as a separate particle from the lithium nickel manganese composite oxide. Since nickel oxide does not participate in the battery reaction, for example, when the surface of the lithium nickel manganese composite oxide particles is coated with nickel oxide, the battery reaction of the lithium nickel manganese composite oxide may be hindered. Therefore, as in the present invention, the nickel oxide may constitute separate particles from the lithium nickel manganese composite oxide.
  • Method for producing positive electrode active material for non-aqueous electrolyte secondary battery In producing a positive electrode active material for a non-aqueous electrolyte secondary battery, as described below, the lithium compound raw material and the nickel manganese compound raw material are heated to leave the nickel oxide generated from the nickel manganese compound raw material. In this state, the lithium compound raw material and the nickel manganese compound raw material are reacted to obtain the lithium nickel manganese composite oxide. Before performing this reaction process, you may perform the mixing process which mixes a lithium compound raw material and a nickel manganese compound raw material, and obtains a raw material mixture.
  • a raw material mixture is prepared by mixing a lithium compound raw material and a nickel manganese compound raw material.
  • the lithium compound raw material has a metal compound containing one or more metal elements essential for lithium, and one kind selected from oxides, hydroxides and metal salts containing one or more metal elements essential for lithium It is good to have the above.
  • metal salts include nitrates, sulfates, chloride salts, and the like.
  • the lithium compound raw material preferably contains mainly lithium hydroxide. Examples of lithium hydroxide that can be used include LiOH and LiOH.H 2 O.
  • the lithium compound raw material may contain a metal element contained in the lithium nickel manganese composite oxide.
  • the nickel manganese compound raw material has a metal compound containing two or more metal elements essential for manganese and nickel, and an oxide or hydroxide containing two or more metal elements essential for manganese and nickel. And one or more selected from metal salts.
  • the nickel manganese compound raw material contains a metal element other than lithium contained in the lithium nickel manganese composite oxide, and contains at least nickel and manganese.
  • the nickel manganese compound raw material may contain nickel and manganese as separate compounds or may contain an integrated compound.
  • the nickel oxide in the positive electrode active material is a by-product generated from a part of the nickel manganese compound raw material or the nickel manganese compound raw material.
  • the nickel manganese compound raw material has one or more metal compounds selected from oxides, hydroxides and metal salts containing such metal elements.
  • metal salts include nitrates, sulfates, chloride salts, and the like.
  • the nickel manganese compound raw material is a source of tetravalent Mn, manganese dioxide (MnO 2 ), dimanganese trioxide (Mn 2 O 3 ), manganese monoxide (MnO), trimanganese tetroxide (Mn 3 O 4 ) manganese hydroxide (Mn (OH) 2), and at least one manganese oxyhydroxide (MnOOH), as a source of Ni, nickel hydroxide (NiOH), nickel nitrate (Ni (NO 3) 2 ⁇ 6H 2 O) and at least one of nickel sulfate (Ni 2 SO 4 .6H 2 O)).
  • the target product lithium nickel manganese based composite oxide contains a metal element other than Li, Mn and Ni
  • the nickel manganese compound raw material is an oxide, hydroxide or metal of the metal element.
  • the valence of Mn in the nickel manganese compound raw material is not necessarily tetravalent. Tetravalent Mn or less may be used. This is because, for example, when the reaction step is performed by the molten salt method, the reaction proceeds in a highly oxidized state, so that Mn is tetravalent even if it is divalent or trivalent. Ni in the nickel manganese compound raw material may also be lower than the oxidation number in the target product.
  • the nickel manganese compound raw material is one or more metal compounds selected from oxides, hydroxides and metal salts containing two or more metal elements (Mn and Ni are essential), It may be synthesized in advance as a precursor. That is, it is good to perform the precursor synthesis
  • a water-soluble inorganic salt specifically, a nitrate, sulfate, or chloride salt of a metal element is dissolved in water, and the aqueous solution is made alkaline with an alkali metal hydroxide, aqueous ammonia, etc. Is produced as a precipitate.
  • the lithium compound raw material and the nickel manganese compound raw material are mixed to obtain a raw material mixture.
  • a drying step for drying the raw material mixture may be performed.
  • the drying step can be omitted when a metal compound having high hygroscopicity is not used as the nickel manganese compound raw material, or when lithium hydroxide hydrate is not used as the lithium compound raw material.
  • the raw material mixture prepared as described above is heated, and the raw material mixture is reacted in a state where the nickel oxide generated from the nickel manganese compound raw material is left to obtain a lithium nickel manganese composite oxide.
  • Heating of the raw material mixture in the reaction step generates a target product lithium nickel manganese composite oxide from the raw material mixture, and nickel oxidation as a by-product outside the formed lithium nickel manganese composite oxide. Keep it to the extent that it remains. That is, before the nickel oxide produced from the nickel manganese compound raw material is introduced into the lithium site of the spinel structure of the lithium nickel manganese composite oxide or the amount of introduction is small, the heating of the raw material mixture is stopped and the reaction is performed. Stop.
  • the heating of the raw material mixture is preferably performed by at least one of, for example, a solid phase method, a spray drying method, a hydrothermal method, and a molten salt method.
  • a solid phase method a spray drying method, a hydrothermal method, and a molten salt method.
  • the molten salt method is desirable because the reaction time is relatively short.
  • the mixing step of mixing the lithium compound raw material and the nickel manganese compound raw material to adjust the raw material mixture is performed, and the heating of the raw material mixture in the reaction step is preferably performed by a molten salt method.
  • the solid phase method is a method of obtaining a positive electrode active material by mixing and pulverizing raw material powders, drying and compacting as necessary, and heating and firing.
  • the solid phase method that is usually performed is that the ratio of each raw material to the composition of the lithium nickel manganese composite oxide to be produced, that is, each element contained in the raw material is the stoichiometry of the lithium nickel manganese composite oxide. It mixes in the ratio used as a composition.
  • the heating temperature of the raw material mixture is preferably 900 ° C. or higher and 1000 ° C. or lower. Moreover, it is preferable that the heating time which heats a raw material mixture is 8 hours or more and 24 hours or less. Further, it is desirable that the heating temperature is 920 ° C. to 980 ° C., and the heating time is 12 hours to 18 hours. When the heating temperature is less than 900 ° C., the production rate of the lithium nickel manganese composite oxide may be lowered. When heating temperature exceeds 1000 degreeC, there exists a possibility that Li may volatilize.
  • the heating time is less than 8 hours, the formation of the lithium nickel manganese composite oxide is insufficient, and when the heating time exceeds 24 hours, nickel ions derived from the nickel oxide as a by-product are lithium nickel manganese based.
  • the heating time exceeds 24 hours, nickel ions derived from the nickel oxide as a by-product are lithium nickel manganese based.
  • it is introduced into the lithium site of the complex oxide spinel structure, cation mixing occurs, the diffusion of lithium ions is hindered, and the battery capacity and battery output may be reduced.
  • the spray drying method is a method in which a raw material powder is dissolved in a liquid to form a solution, the solution is sprayed into the air to form a mist, and the mist solution is heated. In the spray drying method, further heating may be performed later.
  • the heating temperature of the raw material mixture is preferably 500 ° C. or higher and 1000 ° C. or lower. Moreover, it is preferable that the heating time which heats a raw material mixture is 3 hours or more and 8 hours or less. Further, it is desirable that the heating temperature is 600 to 700 ° C. and the heating time is 5 hours. When the heating temperature is less than 500 ° C, there is a possibility that the lithium nickel manganese composite oxide is not formed, and when it exceeds 1000 ° C, Li may be volatilized.
  • the heating time is less than 3 hours, the formation of the lithium nickel manganese composite oxide is insufficient, and when the heating time exceeds 8 hours, nickel ions derived from the nickel oxide as a by-product are lithium nickel manganese based. When it is introduced into the lithium site of the composite oxide and causes cation mixing, it is difficult for lithium ions to enter and exit, and the battery capacity and battery output may be reduced.
  • the hydrothermal method is a method in which raw material powder is dissolved in a liquid to form a solution, and the solution is heated under high temperature and high pressure.
  • the heating temperature of the raw material mixture is preferably 120 ° C. or higher and 200 ° C. or lower. Moreover, it is preferable that the heating time which heats a raw material mixture is 2 hours or more and 24 hours or less. Furthermore, the heating temperature is preferably 150 ° C. or higher and 180 ° C. or lower, and the heating time is preferably 4 hours or longer and 8 hours or shorter. When the heating temperature is less than 120 ° C., the valence of Mn may be significantly reduced. When the heating time is less than 2 hours, the formation of the lithium nickel manganese composite oxide is insufficient, and when the heating time exceeds 24 hours, nickel ions derived from the nickel oxide as a by-product are formed in the lithium nickel composite. Introduced into the lithium site of the product, cation mixing occurs, lithium ions do not easily enter and exit, and the battery capacity and battery output may be reduced.
  • the molten salt method is a method in which a raw material mixture is heated to melt a lithium compound raw material to form a molten salt, and a nickel manganese compound raw material is synthesized in this molten liquid.
  • the lithium compound raw material plays a role in adjusting not only the Li supply source but also the oxidizing power of the molten salt.
  • the ratio of the theoretical composition of Li contained in the target lithium nickel manganese composite oxide (Li of lithium nickel manganese composite oxide / Li of lithium compound raw material) to Li contained in the lithium compound raw material is 1 in molar ratio. If it is less than.
  • the ratio is preferably 0.02 or more and less than 0.7, more preferably 0.03 or more and 0.5 or less, and preferably 0.04 or more and 0.25 or less.
  • the ratio is less than 0.02
  • the production amount of the lithium nickel manganese composite oxide with respect to the amount of the lithium compound raw material that is the raw material is reduced, which is not desirable in terms of manufacturing efficiency.
  • the ratio is 0.7 or more, the amount of the lithium compound raw material (molten salt) in which the nickel manganese compound raw material is dispersed is insufficient, and Li cannot be supplied to all the composite oxides.
  • a recovery step of recovering the lithium nickel manganese composite oxide may be performed.
  • the recovery step is not particularly limited, but the lithium nickel manganese composite oxide produced in the reaction step is insoluble in water. Therefore, the raw material mixture after the reaction is sufficiently cooled and solidified to form a solid. By dissolving in water, a lithium nickel manganese composite oxide is obtained as an insoluble material. The filtrate obtained by filtering the aqueous solution may be dried to take out the lithium nickel manganese composite oxide.
  • the recovery step may be a step of recovering the lithium nickel manganese composite oxide after slowly cooling the raw material mixture after the reaction step. That is, after the reaction step, a recovery step may be performed in which the lithium nickel composite oxide is gradually cooled and recovered.
  • the high-temperature raw material mixture after completion of the reaction may be left in a heating furnace and cooled, or may be taken out of the heating furnace and air-cooled at room temperature.
  • the temperature of the raw material mixture after the reaction step is 2 ° C./min to 50 ° C./min, until the temperature of the raw material mixture becomes 450 ° C. or lower (that is, the raw material mixture after the reaction solidifies). Is preferably cooled at a rate of 3 to 25 ° C./min.
  • lithium nickel manganese type complex oxide with high crystallinity is obtained.
  • a proton substitution step of substituting part of Li in the lithium nickel manganese composite oxide with hydrogen (H) may be performed.
  • a part of Li is easily substituted with H by bringing the composite oxide after the collection step into contact with a solvent such as diluted acid.
  • a heat treatment step of heating the lithium nickel manganese composite oxide in an oxygen-containing atmosphere may be performed.
  • the heat treatment step is preferably performed in an oxygen-containing atmosphere, for example, in the air, in a gas atmosphere containing oxygen gas and / or ozone gas.
  • the oxygen gas concentration in the gas atmosphere in the heat treatment step is preferably 20 to 100% by volume, more preferably 50 to 100% by volume.
  • the heating temperature is preferably 300 ° C. or higher, more preferably 350 to 500 ° C. This heating temperature is preferably maintained for 20 minutes or more, and more preferably 0.5 to 2 hours.
  • the lithium nickel manganese composite oxide contained in the positive electrode active material obtained by the production method of the present invention described in detail above has a particle shape.
  • the primary particles of the lithium nickel manganese composite oxide are single crystals. It can be confirmed by a high-resolution image of a transmission electron microscope (TEM) that the primary particles are single crystals.
  • the particle size in the c-axis direction of the primary particles of the lithium nickel manganese composite oxide is preferably 200 nm or less, and more preferably 20 to 100 nm. As described above, the smaller primary particle size is likely to be activated. However, if the particle size is too small, the crystal structure is liable to collapse due to charge / discharge, and the battery characteristics may be deteriorated.
  • the positive electrode active material obtained by the production method of the present invention contains a small amount of nickel oxide (NiO) as a by-product.
  • NiO nickel oxide
  • the amount of nickel oxide contained in the positive electrode active material can be easily measured by analysis such as X-ray diffraction (XRD).
  • the surface index (h, k, l) (1, 1, 1) in the X-ray diffraction pattern of the lithium nickel manganese composite oxide
  • Non-aqueous electrolyte secondary battery A nonaqueous electrolyte secondary battery using the positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention will be described.
  • the nonaqueous electrolyte secondary battery mainly includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. Moreover, the separator pinched
  • the positive electrode includes a positive electrode active material capable of inserting / extracting lithium ions and a binder that binds the positive electrode active material. Further, a conductive aid may be included.
  • the positive electrode active material may be one or more of the above complex oxides alone or together with the above complex oxides selected from the group of LiCoO 2 , LiNiO 2 , S and the like used in general non-aqueous electrolyte secondary batteries. A positive electrode active material may be included.
  • the binder and the conductive additive are not particularly limited as long as they can be used in a general non-aqueous electrolyte secondary battery.
  • the conductive aid is for ensuring the electrical conductivity of the electrode, and for example, a mixture of one or more carbon material powders such as carbon black, acetylene black, and graphite may be used. it can.
  • the binder plays a role of connecting the positive electrode active material and the conductive additive, and includes, for example, fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene. Can be used.
  • the negative electrode facing the positive electrode has a negative electrode active material.
  • the negative electrode can be formed by forming a sheet of metal lithium, which is a negative electrode active material, or pressing the sheet into a current collector network such as nickel or stainless steel.
  • a lithium alloy or a lithium compound raw material can be used instead of metallic lithium.
  • the negative electrode active material for example, a natural graphite, artificial graphite, an organic compound heating body such as a phenol resin, or a carbonaceous powder such as coke can be used.
  • a negative electrode active material is good to consist of an element compound which can occlude / release lithium ion and has an element which can be alloyed with lithium, and / or an element which can be alloyed with lithium.
  • Elements that can be alloyed with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn. , Pb, Sb, Bi may be included.
  • the binder as in the positive electrode, a fluorine-containing resin, a thermoplastic resin, or the like can be used.
  • a secondary battery using metallic lithium or a lithium alloy as the negative electrode active material is referred to as a lithium secondary battery, and when a negative electrode active material other than that is used, it is referred to as a lithium ion secondary battery.
  • the positive electrode and the negative electrode are composed of an active material layer in which an active material made of a positive electrode active material or a negative electrode active material is bound with a binder, and a current collector coated with the active material layer. Therefore, a positive electrode and a negative electrode are prepared by preparing an electrode mixture layer forming composition containing an active material, a binder, and, if necessary, a conductive additive, and further adding a suitable solvent to make a paste, After coating on the surface of the film, it can be dried and, if necessary, compressed to increase the electrode density.
  • the current collector can be a metal mesh or metal foil.
  • the current collector includes a porous or non-porous conductive substrate made of a metal material such as stainless steel, titanium, nickel, aluminum, copper, or a conductive resin.
  • the porous conductive substrate include a mesh body, a net body, a punching sheet, a lath body, a porous body, a fiber group molded body such as a foam, a nonwoven fabric, and the like.
  • the non-porous conductive substrate include a foil, a sheet, and a film.
  • a conventionally known method such as a doctor blade or a bar coater may be used.
  • NMP N-methyl-2-pyrrolidone
  • MIBK methyl isobutyl ketone
  • an organic solvent-based electrolytic solution in which an electrolyte is dissolved in an organic solvent, a polymer electrolyte in which the electrolytic solution is held in a polymer, or the like can be used.
  • the organic solvent contained in the electrolytic solution or polymer electrolyte is not particularly limited, but it preferably contains a chain ester from the viewpoint of load characteristics.
  • chain esters include chain carbonates typified by dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and organic solvents such as ethyl acetate and methyl propionate. These chain esters may be used alone or in admixture of two or more.
  • the above-mentioned chain esters occupy 50% by volume or more in the total organic solvent.
  • the organic solvent it is preferable to use a mixture having a high induction rate (induction rate: 30 or more) ester in the chain ester, in order to improve the discharge capacity, rather than using only the chain ester.
  • ester include cyclic carbonates typified by ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ethylene glycol sulfite, and the like.
  • a cyclic ester such as carbonate is preferred.
  • Such an ester having a high dielectric constant is preferably contained in an amount of 10% by volume or more, particularly 20% by volume or more in the total organic solvent from the viewpoint of discharge capacity.
  • 40 volume% or less is preferable and 30 volume% or less is more preferable.
  • LiClO 4 LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 ( SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCnF 2n + 1 SO 3 (n ⁇ 2) are used alone or in combination.
  • LiPF 6 and LiC 4 F 9 SO 3 that can obtain good charge / discharge characteristics are preferably used.
  • the concentration of the electrolyte in the electrolytic solution is not particularly limited, but is preferably about 0.3 to 1.7 mol / dm 3 , particularly about 0.4 to 1.5 mol / dm 3 .
  • an aromatic compound may be contained in the nonaqueous electrolytic solution.
  • aromatic compound benzenes having an alkyl group such as cyclohexylbenzene or t-butylbenzene, biphenyl, or fluorobenzenes are preferably used.
  • a separator having sufficient strength and capable of holding a large amount of electrolyte is preferable.
  • a polyolefin microporous film such as polypropylene, polyethylene, a copolymer of propylene and ethylene, a non-woven fabric, or the like having a thickness of 5 to 50 ⁇ m is preferably used.
  • a thin separator of 5 to 20 ⁇ m the characteristics of the battery are likely to deteriorate during charge / discharge cycles and high-temperature storage, and the safety is also lowered.
  • the above composite oxide was used as the positive electrode active material. Since the nonaqueous electrolyte secondary battery is excellent in stability and safety, the battery can function stably even when such a thin separator is used.
  • the shape of the non-aqueous electrolyte secondary battery constituted by the above components can be various, such as a cylindrical shape, a stacked shape, and a coin shape.
  • a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body.
  • the positive electrode current collector and the negative electrode current collector are connected to the positive electrode terminal and the negative electrode terminal that communicate with the outside with a current collecting lead or the like, and the electrode body is impregnated with the electrolyte solution and sealed in the battery case.
  • An electrolyte secondary battery is completed.
  • the battery When using a non-aqueous electrolyte secondary battery, the battery is first charged to activate the positive electrode active material.
  • the composite oxide is used as a positive electrode active material, lithium ions are released and oxygen is generated during the first charge. For this reason, it is desirable to charge the battery case before sealing it.
  • the non-aqueous electrolyte secondary battery using the composite oxide obtained by the production method of the present invention described above is suitably used in the field of automobiles in addition to the fields of communication devices such as mobile phones and personal computers, information-related devices. it can.
  • this non-aqueous electrolyte secondary battery is mounted on a vehicle, the non-aqueous electrolyte secondary battery can be used as a power source for an electric vehicle.
  • Example 1 a positive electrode active material containing LiNi 0.5 Mn 1.5 O 4 as a main component was produced by the molten salt method as follows.
  • the raw material mixture was put in a crucible, transferred into an electric furnace at 700 ° C., and heated in the atmosphere at 700 ° C. for 2 hours. At this time, the raw material mixture melted to form a molten salt, and a black product was precipitated.
  • the crucible containing the molten salt was cooled to room temperature in the electric furnace and then taken out from the electric furnace. After the molten salt was sufficiently cooled and solidified, the entire crucible was immersed in 200 ml of ion exchange water and stirred to dissolve the solidified molten salt in water. Since the black product was insoluble in water, the water became a black suspension. Filtration of the black suspension gave a clear filtrate and a black solid filtrate on the filter paper. The obtained filtrate was further filtered while thoroughly washing with acetone. The black solid after washing was vacuum-dried at 120 ° C. for 12 hours and then pulverized using a mortar and pestle.
  • X-ray diffraction (XRD) was measured using CuK ⁇ ray.
  • the measurement result of X-ray diffraction is shown in FIG.
  • Comparative Example 1 a positive electrode active material containing LiNi 0.5 Mn 1.5 O 4 as a main component was prepared by a solid phase method as follows.
  • a raw material mixture was prepared by mixing 0.11 mol of lithium hydroxide-hydrate LiOH.H 2 O as a lithium compound raw material and 0.10 mol of manganese nickel oxide as a nickel manganese compound raw material. .
  • the raw material mixture was thoroughly mixed in a mortar, then placed in a crucible and heated in an oxygen atmosphere (oxygen gas concentration 100%) at 1000 ° C. for 12 hours.
  • the obtained powder was pulverized using a mortar and pestle, put in a crucible, and further heated at 1000 ° C. for 12 hours in an oxygen atmosphere (oxygen gas concentration 100%).
  • X-ray diffraction was measured using CuK ⁇ ray.
  • the measurement result of X-ray diffraction is shown in FIG.
  • the peak of (h, k, l) (2, 0, 0) was not confirmed.
  • Example 1 A lithium secondary battery was produced using the powder produced in Example 1 and Comparative Example 1 as the positive electrode active material, and the discharge capacity was measured.
  • Example 1 and Comparative Example 1 The composite oxide of any one of Example 1 and Comparative Example 1, acetylene black as a conductive additive, and polytetrafluoroethylene (PTFE) as a binder were mixed at a mass ratio of 50:40:10. Subsequently, this mixture was crimped
  • PTFE polytetrafluoroethylene
  • a microporous polyethylene film having a thickness of 20 ⁇ m was sandwiched between the positive electrode and the negative electrode as an electrode body battery.
  • This electrode body battery was accommodated in a battery case (CR2032 coin cell manufactured by Hosen Co., Ltd.).
  • a non-aqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1.0 mol / L is injected into a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 2 into the battery case.
  • a secondary battery was obtained.
  • a charge / discharge test was performed at a constant temperature of 25 ° C. using the produced lithium secondary battery.
  • constant current charging was performed up to 4.5 V at a rate of 0.2 C, and then charging was performed at a constant voltage of 4.5 V up to a current value of 0.02 C.
  • discharging was performed at a rate of 0.2 C up to 2.0V.
  • the charge / discharge curves for the secondary batteries produced using the positive electrode active materials of Example 1 and Comparative Example 1 are shown in FIG. In FIG.
  • the solid line shows the charge / discharge curve of the secondary battery using the positive electrode active material of Example 1
  • the dotted line shows the charge / discharge curve of the secondary battery using the positive electrode active material of Comparative Example 1.
  • the battery using the positive electrode active material containing NiO Example 1
  • had a higher discharge capacity than the battery using the positive electrode active material containing no NiO Comparative Example 1).
  • the heating time in the reaction step was set to 2 hours shorter than the normal heating time.
  • the heating time is longer than usual. Even in the solid phase method, it is estimated that NiO remains in the reaction system if the heating time is shortened.

Abstract

 電池特性に優れた非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池及び車両を提供する。 非水電解質二次電池用正極活物質は、少なくともリチウム(Li)元素、ニッケル(Ni)元素及びマンガン(Mn)元素を含み結晶構造がスピネル構造に属するリチウムニッケルマンガン系複合酸化物と、ニッケル酸化物とを有する。ニッケル酸化物は、リチウムニッケルマンガン系複合酸化物を製造する原料の一部又は該原料より生成した副生成物である。

Description

非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池に関する。
 近年、携帯電話やノート型パソコンなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型で軽量でかつ高容量の二次電池が必要とされている。この要望に応える高容量二次電池としては、正極活物質としてリチウム複合酸化物、負極活物質としては炭素系材料を用いた非水電解質二次電池が開発されている。
 正極活物質として用いられるリチウム複合酸化物としては、例えば、LiNi0.5Mn1.5などのスピネル構造のリチウムニッケルマンガン系複合酸化物がある(例えば、特開2002-42814号公報、特開2003-92108号公報)。スピネル構造のリチウムニッケルマンガン系複合酸化物は、比較的安全性及びレート特性が高く、低コストである。
特開2002-42814号公報 特開2003-92108号公報
J.Ceram.Soc.Jpn.,110,pp.501-505 Electrochem.(Tokyo,Japan),76,pp.46-54
 しかしながら、リチウムニッケルマンガン系複合酸化物などのスピネル構造をもつ複合酸化物の多くは、J.Ceram.Soc.Jpn.,110,pp.501-505及びElectrochem.(Tokyo,Japan), 76,pp.46-54に記載されているように、組成が化学量論比と合った材料を合成することが困難である。このため、複合酸化物を正極活物質として用いて非水電解質二次電池を作製した場合には、電池特性が低下するおそれがある。
 本願発明者は、スピネル構造のリチウムニッケルマンガン系複合酸化物について、電池容量を高くするために、種々の研究を重ねた。その結果、リチウムニッケルマンガン系複合酸化物の出発物質や加熱温度、条件などが電池とした場合の性能に大きく影響することがわかった。
 本発明はかかる事情に鑑みてなされたものであり、電池特性に優れた非水電解質二次電池用正極活物質及びその製造方法並びに、これを用いた非水電解質二次電池及び車両を提供することを課題とする。
 (1)本発明の非水電解質二次電池用正極活物質は、少なくともリチウム(Li)元素、ニッケル(Ni)元素及びマンガン(Mn)元素を含み結晶構造がスピネル構造に属するリチウムニッケルマンガン系複合酸化物と、ニッケル酸化物とを有し、前記ニッケル酸化物は、前記リチウムニッケルマンガン系複合酸化物を製造する原料の一部又は該原料より生成した副生成物であることを特徴とする。
 上記正極活物質は、スピネル構造をもつリチウムニッケルマンガン系複合酸化物と、ニッケル酸化物とを有する。ニッケル酸化物は、リチウムニッケルマンガン系複合酸化物を製造する原料の一部又は該原料より生成した副生成物である。即ち、ニッケル酸化物は、リチウムニッケルマンガン系複合酸化物を生成する際に副生成物として生成する不純物である。リチウムニッケルマンガン系複合酸化物を製造する原料は、例えば、リチウム(Li)元素を必須とする一種以上の金属元素を含むリチウム化合物原料と、ニッケル(Ni)元素及びマンガン(Mn)元素を必須とする二種以上の金属元素を含むニッケルマンガン化合物原料とからなる。リチウムニッケルマンガン系複合酸化物を製造するに当たっては、リチウム化合物原料とニッケルマンガン化合物原料とを混合し加熱する。加熱の際に、リチウム元素を構成成分とするスピネル構造が形成される。高温で長時間加熱すると、スピネル構造のリチウムサイトにニッケルイオンが入り込み、所謂カチオンミキシングが生じる。ニッケルイオンがリチウムサイトに入り込むと、その領域は局所的に不規則配列岩塩相(岩塩ドメイン)となる。岩塩ドメインは、それ自体が電気化学的に不活性である。しかもリチウムサイトに混入したニッケルイオンがリチウムイオンの二次元的拡散を阻害する。このため、岩塩ドメインは、正極活物質としての機能を急激に低下させる。
 そこで、本発明では、ニッケルイオンがリチウムサイトに拡散する前に、加熱反応を終了して、ニッケルイオンがリチウムサイトに拡散する量を制限することとしている。これにより、ニッケルイオンのリチウムサイトへの混入が抑えられ、ニッケルイオンの混入の少ないリチウムニッケルマンガン系複合酸化物が生成される。
 このようにして生成された正極活物質は、ニッケル酸化物(NiO)を不純物として含む。正極活物質は、電極反応を行うリチウムニッケルマンガン系複合酸化物を主成分とし、ニッケル酸化物を微量含む程度であれば、長時間加熱して得た正極活物質に比べて、優れた電池特性を発揮することができる。
 (2)本発明の非水電解質二次電池用正極活物質の製造方法は、上述の非水電解質二次電池用正極活物質の製造方法であって、リチウムを必須とする一種以上の金属元素を含む酸化物、水酸化物及び金属塩から選ばれる一種以上の金属化合物を含むリチウム化合物原料と、ニッケル及びマンガンを必須とする二種以上の金属元素を含む酸化物、水酸化物及び金属塩から選ばれる一種以上の金属化合物を含むニッケルマンガン化合物原料とを加熱して、前記ニッケルマンガン化合物原料から生成したニッケル酸化物を残した状態で前記リチウム化合物原料と前記ニッケルマンガン化合物原料とを反応させて前記リチウムニッケルマンガン系複合酸化物を得る反応工程をもつことを特徴とする。
 リチウム化合物原料とニッケルマンガン化合物原料とを加熱して、ニッケルマンガン化合物原料から生成したニッケル酸化物を残した状態で、スピネル構造をもつリチウムニッケルマンガン系複合酸化物を生成させている。このため、ニッケル酸化物から生成したニッケルイオンがリチウムニッケルマンガン系複合酸化物のスピネル構造の中に拡散することを抑えることができる。
 以上より、本発明の製造方法によれば、電池特性に優れた正極活物質を得ることができる。
 (3)本発明の非水電解質二次電池は、上述の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質と、を備えることを特徴とする。
 本発明のリチウムイオン電池は、上記の正極活物質を備えるため、電池特性に優れる。
 (4)本発明の車両は、上記の非水電解質二次電池を搭載したことを特徴とする。本発明の車両は、高い出力を発揮できる。
 本発明の非水電解質二次電池用正極活物質及びその製造方法並びに非水電解質二次電池によれば、リチウムニッケルマンガン系複合酸化物だけでなく不純物としてのニッケル酸化物が含まれているため、電池特性を高めることができる。また、本発明の車両は、上記の非水電解質二次電池を搭載しているため、高い出力を発揮できる。
実施例1及び比較例1の正極活物質のX線回折測定結果を示す図である。 実施例1及び比較例1の正極活物質を用いた非水電解質二次電池の充放電特性を示すグラフである。
 (非水電解質二次電池用正極活物質)
 本発明の非水電解質二次電池用正極活物質は、リチウムニッケルマンガン系複合酸化物とニッケル酸化物とを有する。
 リチウムニッケルマンガン系複合酸化物は、少なくともリチウム(Li)元素マンガン(Mn)元素及びニッケル(Ni)元素を含み、結晶構造がスピネル構造に属する。リチウムニッケルマンガン系複合酸化物は、組成式:LiNix-yMn2-x-y (0<x≦0.5、0≦y<0.5、Mは金属元素であって、Li、Ni及びMnを除く。Liはその一部が水素で置換されていてもよい。)で表される複合酸化物を基本組成とするとよい。Mは、Niに代わって、マンガンサイトに導入された金属元素であって、例えば、Al、Co、Fe、Mg、Tiの少なくとも1種などである。
 LiNix-yMn2-x-y の中のNiは2価であり、Mnは、4価であり、Mは2価又は3価の金属元素である。Nix-yMn2-x-y の平均酸化数は、3.5価であるとよい。
 なお、不可避的に生じるLi、Ni、Mn、M又はOの欠損により、上記組成式からわずかにずれた複合酸化物も含む。したがって、上記Mの平均酸化数は、4価から若干ずれてもよく、3.3~3.7価まで許容される。
 LiNix-yMn2-x-y に含まれるLiは、その一部が水素(H)で置換されていてもよい。例えば、Liは、原子比で60%以下さらには45%以下がHに置換されていてもよい。
 組成式LiNix-yMn2-x-y で表される複合酸化物を基本組成とし、スピネル構造をもつリチウムニッケルマンガン系複合酸化物としては、例えば、LiNiMn2-x、LiNix-yMn2-x-yAl、LiNix-yMn2-x-yCo、LiNix-yMn2-x-yFe、LiNix-yMn2-x-yMg、LiNix-yMn2-x-yTiが挙げられる。中でも、LiNiMn2-xがよい。具体的には、LiNiMn2-xとしてLiNi0.5Mn1.5などがある。
 上記の複合酸化物の構成元素であるNi、Mnの一部は、他の金属元素で置換されていてもよい。得られる複合酸化物全体としては、例示した酸化物を基本組成とすればよく、不可避的に生じる金属元素又は酸素の欠損により、上記組成式からわずかに外れていても良い。
 正極活物質には、ニッケル酸化物(NiO)が不純物として含まれている。ニッケル酸化物は、リチウムニッケルマンガン系複合酸化物の原料の一部又はその原料から生成した副生成物である。正極活物質の中のリチウムニッケルマンガン系複合酸化物を100質量部としたときに、ニッケル酸化物は5質量部以上30質量部以下含まれていることがよい。ニッケル酸化物が5質量部未満では、カチオンミキシングが進み、電気容量が低下するおそれがある。ニッケル酸化物が30質量部を超える場合には、ニッケル酸化物は電池反応には関与しないため、電池容量が低下するおそれがある。
 更には、正極活物質の中のリチウムニッケルマンガン系複合酸化物を100質量部としたときに、ニッケル酸化物の含有量の下限は5質量部、望ましくは、10質量部であり、上限は30質量部、望ましくは10質量部であることがよい。
 X線としてCuKα線を用いた場合のX線回折図形でのリチウムニッケルマンガン系複合酸化物の面指数(h,k,l)=(1,1,1)のピーク強度に対する、X線としてCuKα線を用いた場合のX線回折図形での前記ニッケル酸化物の面指数(h,k,l)=(2,0,0)のピーク強度の比率が、0.1%以上20%未満であることが好ましい。即ち、CuKα線を光源とするX線回折測定を行って作成された前記正極活物質のX線回折図形において、前記リチウムニッケルマンガン系複合酸化物の面指数(h,k,l)=(1,1,1)のピーク強度に対する、前記ニッケル酸化物の面指数(h,k,l)=(2,0,0)のピーク強度の比率は、0.1%以上20%未満であることが好ましい。ニッケル酸化物は、NiOを組成とし立方晶を形成している。X線としてCuKα線を用いた場合のX線回折図形での立方晶NiOの面指数(h,k,l)=(2,0,0) のピークは、2θ=43.363°近傍に現れる。X線としてCuKα線を用いた場合のX線回折図形でのリチウムニッケルマンガン系複合酸化物の多くのものの面指数(h,k,l)=(1,1,1)を示すピークの強度は、2θ=18.6°近傍に位置する。
 例えば、LiNi0.5Mn1.5の面指数(h,k,l)=(1,1,1)のピークは、2θ=18.6°近傍に出現する。LiNi0.5Mn1.5の面指数(h,k,l)=(1,1,1)に起因するピークは他の面指数に起因するピークと比べて最大のピーク強度であり、立方晶NiOの面指数(h,k,l)=(2,0,0)に起因するピークは他の面指数に起因するピークと比べて最大のピーク強度である。つまり、最も明確なピークの強度を指標としている。
 リチウムニッケルマンガン系複合酸化物と、ニッケル酸化物とは、それぞれ粒子を構成していることが好ましい。ニッケル酸化物は、反応目的物であるリチウムニッケルマンガン系複合酸化物に導入されなかった不純物である。このため、ニッケル酸化物は、リチウムニッケルマンガン系複合酸化物とは別個の粒子として存在している。ニッケル酸化物は、電池反応に関与しないため、例えば、ニッケル酸化物でリチウムニッケルマンガン系複合酸化物粒子の表面を被覆すると、リチウムニッケルマンガン系複合酸化物の電池反応が妨げられるおそれがある。このため、本発明のように、ニッケル酸化物は、リチウムニッケルマンガン系複合酸化物とは別体の粒子を構成しているとよい。
 後述のリチウム化合物原料とニッケルマンガン化合物原料とを混合し加熱すると、リチウムニッケルマンガン系複合酸化物の生成とともに、リチウムニッケルマンガン系複合酸化物の中のリチウムサイトの一部にニッケルが置換される。加熱時間が長くなるほど、ニッケルの置換度合いが大きくなる。
 ニッケルイオンがリチウムニッケルマンガン系複合酸化物のスピネル構造のリチウムサイトに混入すると、カチオンミキシングにより、ニッケルイオンがリチウムイオンの移動の妨げとなる。カチオンミキシングは、リチウムニッケルマンガン系複合酸化物の原料を長時間加熱すると生じる現象のため、カチオンミキシングが生じる前に、加熱を終了する。これにより、リチウムイオンの出入りの障害となるニッケルイオンがリチウムサイトに入り込むことを抑制でき、電気出力の増加及び容量の増加となる。
 (非水電解質二次電池用正極活物質の製造方法)
 非水電解質二次電池用正極活物質を製造するにあたっては、以下に説明するように、リチウム化合物原料とニッケルマンガン化合物原料とを加熱して、前記ニッケルマンガン化合物原料から生成したニッケル酸化物を残した状態で前記リチウム化合物原料と前記ニッケルマンガン化合物原料とを反応させて前記リチウムニッケルマンガン系複合酸化物を得る反応工程を行う。この反応工程を行う前に、リチウム化合物原料とニッケルマンガン化合物原料とを混合して原料混合物を得る混合工程を行っても良い。
 混合工程では、リチウム化合物原料とニッケルマンガン化合物原料とを混合して原料混合物を調製する。
 リチウム化合物原料は、リチウムを必須とする一種以上の金属元素を含む金属化合物を有するものであり、リチウムを必須とする一種以上の金属元素を含む酸化物、水酸化物及び金属塩から選ばれる一種以上を有することがよい。金属塩としては、例えば、硝酸塩、硫酸塩、塩化物塩などがある。リチウム化合物原料は、主として水酸化リチウムを含むと良い。使用可能な水酸化リチウムとしては、LiOH、LiOH・HOなどが挙げられる。リチウム化合物原料には、リチウムの他に、リチウムニッケルマンガン系複合酸化物に含まれる金属元素を含んでいても良い。
 ニッケルマンガン化合物原料は、マンガン及びニッケルを必須とする二種以上の金属元素を含む金属化合物を有するものであり、マンガン及びニッケルを必須とする二種以上の金属元素を含む酸化物、水酸化物及び金属塩から選ばれる一種以上を有することがよい。
 ニッケルマンガン化合物原料は、リチウムニッケルマンガン系複合酸化物に含まれるリチウム以外の金属元素を含み、少なくともニッケル及びマンガンを含む。ニッケルマンガン化合物原料は、ニッケルとマンガンを別々の化合物として含んでいても良いし、一体化した化合物として含んでいても良い。正極活物質中のニッケル酸化物は、ニッケルマンガン化合物原料の一部又はニッケルマンガン化合物原料から生成した副生成物である。
 ニッケルマンガン化合物原料は、このような金属元素を含む酸化物、水酸化物及び金属塩から選ばれる一種以上の金属化合物を有する。金属塩としては、例えば、硝酸塩、硫酸塩、塩化物塩などがある。
 ニッケルマンガン化合物原料は、4価のMnの供給源として、二酸化マンガン(MnO)、三酸化二マンガン(Mn)、一酸化マンガン(MnO)、四酸化三マンガン(Mn)、水酸化マンガン(Mn(OH))、及びオキシ水酸化マンガン(MnOOH)の少なくとも1種と、Niの供給源として、水酸化ニッケル(NiOH)、硝酸ニッケル(Ni(NO・6HO)、及び硫酸ニッケル(NiSO・6HO))の少なくとも1種を含む。目的生成物のリチウムニッケルマンガン系複合酸化物が、Li、Mn及びNi以外の金属元素を含む場合には、その原料であるニッケルマンガン化合物原料は、当該金属元素の酸化物、水酸化物、金属塩から選ばれる一種以上を有する。
 ここで、ニッケルマンガン化合物原料の中のMnの価数は必ずしも4価である必要はない。4価以下のMnであってもよい。これは、例えば、溶融塩法で反応工程を行う場合、高酸化状態で反応が進むため、Mnは2価又は3価であっても4価になるからである。ニッケルマンガン化合物原料の中のNiについても、目的生成物の中の酸化数よりも低くてもよい。
 また、ニッケルマンガン化合物原料は、二種以上の金属元素(Mn及びNiを必須とする)を含む酸化物、水酸化物及び金属塩から選ばれる一種以上の金属化合物であり、これらを含む原料を前駆体としてあらかじめ合成するとよい。すなわち、混合工程の前に、ニッケル及びマンガンを含む二種以上の金属元素を含む水溶液をアルカリ性にして沈殿物を得る前駆体合成工程を行うとよい。水溶液としては、水溶性の無機塩、具体的には金属元素の硝酸塩、硫酸塩、塩化物塩などを水に溶解し、アルカリ金属水酸化物、アンモニア水などで水溶液をアルカリ性にすると、前駆体は沈殿物として生成される。
 上記リチウム化合物原料と上記ニッケルマンガン化合物原料とを混合して、原料混合物を得る。
 上記混合工程の後であって、反応工程の前には、原料混合物を乾燥させる乾燥工程を行っても良い。ただし、ニッケルマンガン化合物原料として吸湿性の高い金属化合物を使用しない場合、リチウム化合物原料として水酸化リチウムの水和物を用いない場合、などには、乾燥工程を省略することも可能である。
 反応工程では、上記のように調製した原料混合物を加熱して、ニッケルマンガン化合物原料から生成したニッケル酸化物を残した状態で原料混合物を反応させてリチウムニッケルマンガン系複合酸化物を得る。
 反応工程での原料混合物の加熱は、原料混合物から目的生成物であるリチウムニッケルマンガン系複合酸化物が生成し、且つ生成したリチウムニッケルマンガン系複合酸化物の外部に、副生成物としてのニッケル酸化物が残る程度に留める。即ち、リチウムニッケルマンガン系複合酸化物のスピネル構造のリチウムサイトに、ニッケルマンガン化合物原料から生成したニッケル酸化物が導入される前か又は導入量が少ない程度で、原料混合物の加熱を止めて反応を停止させる。
 原料混合物の加熱は、例えば、固相法、スプレードライ法、水熱法、及び溶融塩法の中の少なくとも1種で行うことが好ましい。リチウムニッケルマンガン系複合酸化物の生成反応が通常の反応時間よりも短い時間で起こり、副生成物としてニッケル酸化物(NiO)を含むリチウムニッケルマンガン系複合酸化物を生成させることができるからである。この中でも、反応時間が比較的短いといった理由から、溶融塩法が望ましい。例えば、前記リチウム化合物原料と前記ニッケルマンガン化合物原料とを混合して原料混合物を調整する混合工程を行い、前記反応工程での前記原料混合物の加熱は、溶融塩法で行うとよい。
 固相法は、原料粉末を混合・粉砕して、必要に応じて乾燥・圧粉成型して、加熱焼成することにより正極活物質を得る方法である。通常行われる固相法は、各原料を、製造しようとするリチウムニッケルマンガン系複合酸化物の組成に応じた割合、つまり、原料に含まれる各元素がリチウムニッケルマンガン系複合酸化物の化学量論組成となる割合で混合するものである。
 固相法では、原料混合物の加熱温度は、900℃以上1000℃以下であるとよい。また、原料混合物を加熱する加熱時間は8時間以上24時間以下であることが好ましい。更には、加熱温度は、920℃以上~980℃以下であって、加熱時間は12時間以上18時間以下であることが望ましい。加熱温度が900℃未満の場合には、リチウムニッケルマンガン系複合酸化物の生成率が低くなるおそれがある。加熱温度が1000℃を超える場合には、Liが揮発するおそれがある。加熱時間が8時間未満では、リチウムニッケルマンガン系複合酸化物の生成が不十分であり、加熱時間が24時間を超える場合には、副生成物のニッケル酸化物由来のニッケルイオンがリチウムニッケルマンガン系複合酸化物のスピネル構造のリチウムサイトに導入され、カチオンミキシングを生じて、リチウムイオンの拡散が妨げられ、電池容量及び電池出力が低下するおそれがある。
 スプレードライ法は、原料粉末を液体に溶かして溶液とし、溶液を空中に噴霧しミストとし、ミストとした溶液を加熱する方法である。スプレードライ法では、後で更に加熱してもよい。
 スプレードライ法では、原料混合物の加熱温度は、500℃以上1000℃以下であるとよい。また、原料混合物を加熱する加熱時間は3時間以上8時間以下であることが好ましい。更には、加熱温度は、600~700℃であって、加熱時間は5時間であることが望ましい。加熱温度が500℃未満の場合には、リチウムニッケルマンガン系複合酸化物ができていないおそれがあり、1000℃を超える場合にはLiが揮発するおそれがある。加熱時間が3時間未満では、リチウムニッケルマンガン系複合酸化物の生成が不十分であり、加熱時間が8時間を超える場合には、副生成物のニッケル酸化物由来のニッケルイオンがリチウムニッケルマンガン系複合酸化物のリチウムサイトに導入され、カチオンミキシングを生じて、リチウムイオンの出入りがしにくく、電池容量及び電池出力が低下するおそれがある。
 水熱法は、原料粉末を液体に溶かして溶液とし、溶液を高温高圧下で加熱する方法である。
 水熱法では、原料混合物の加熱温度は、120℃以上200℃以下であることがよい。また、原料混合物を加熱する加熱時間は2時間以上24時間以下であることが好ましい。更には、加熱温度は、150℃以上180℃以下であって、加熱時間は4時間以上8時間以下であることが望ましい。加熱温度が120℃未満の場合にはMnの価数が大幅に低下するおそれがある。加熱時間が2時間未満では、リチウムニッケルマンガン系複合酸化物の生成が不十分であり、加熱時間が24時間を超える場合には、副生成物のニッケル酸化物由来のニッケルイオンがリチウムニッケル系複合物のリチウムサイトに導入され、カチオンミキシングを生じて、リチウムイオンの出入りがしにくく、電池容量及び電池出力が低下するおそれがある。
 溶融塩法は、原料混合物を加熱することにより、リチウム化合物原料が溶融し溶融塩となり、この溶融液中でニッケルマンガン化合物原料を合成する方法である。溶融塩法では、リチウム化合物原料は、Liの供給源のみならず、溶融塩の酸化力を調整する役割を果たす。リチウム化合物原料に含まれるLiに対する、目的のリチウムニッケルマンガン系複合酸化物に含まれるLiの理論組成の比率(リチウムニッケルマンガン系複合酸化物のLi/リチウム化合物原料のLi)は、モル比で1未満であればよい。前記比率は、0.02以上0.7未満であることが好ましく、更には0.03以上0.5以下、0.04以上0.25以下であることが望ましい。前記比率が0.02未満の場合には、原料であるリチウム化合物原料の量に対する、リチウムニッケルマンガン系複合酸化物の生成量が少なくなるため、製造効率の面で望ましくない。また、前記比率が0.7以上である場合には、ニッケルマンガン化合物原料を分散させるリチウム化合物原料(溶融塩)の量が不足し、すべての複合酸化物にLiを供給できなくなるため望ましくない。
 溶融塩法でリチウムニッケルマンガン系複合酸化物を生成した後には、リチウムニッケルマンガン系複合酸化物を回収する回収工程を行うとよい。回収工程は、特に限定はないが、反応工程にて生成したリチウムニッケルマンガン系複合酸化物は水に不溶であるため、反応後の原料混合物を十分に冷却して凝固させて固体とし、固体を水に溶解することでリチウムニッケルマンガン系複合酸化物が不溶物として得られる。水溶液を濾過して得られた濾物を乾燥して、リチウムニッケルマンガン系複合酸化物を取り出せばよい。
 また、回収工程は、反応工程後の原料混合物を徐冷してからリチウムニッケルマンガン系複合酸化物を回収する工程であるとよい。即ち、反応工程の後には、前記リチウムニッケル系複合酸化物を徐冷してから回収する回収工程を行うとよい。反応終了後の高温の原料混合物を、加熱炉の中に放置して炉冷してもよいし、加熱炉から取り出して室温にて空冷してもよい。具体的に規定するのであれば、反応工程後の原料混合物の温度が、450℃以下になる(つまり、反応後の原料混合物が凝固する)まで、2℃/分以上50℃/分以下、さらには3~25℃/分の速度で冷却するとよい。これにより、結晶性の高いリチウムニッケルマンガン系複合酸化物が得られる。特に、スピネル構造をもつリチウムニッケルマンガン系複合酸化物の合成に有利である。
 また、回収工程の後に、リチウムニッケルマンガン系複合酸化物のLiの一部を水素(H)に置換するプロトン置換工程を行ってもよい。プロトン置換工程では、回収工程後の複合酸化物を希釈した酸などの溶媒に接触させることで、Liの一部が容易にHに置換する。
 また、回収工程(あるいはプロトン置換工程)の後に、リチウムニッケルマンガン系複合酸化物を酸素含有雰囲気中で加熱する加熱処理工程を行ってもよい。加熱処理工程は、酸素含有雰囲気、たとえば大気中、酸素ガスおよび/またはオゾンガスを含むガス雰囲気中で行うのがよい。酸素ガスを含有する雰囲気であれば、加熱処理工程でのガス雰囲気中の酸素ガス濃度を20~100体積%さらには50~100体積%とするのがよい。加熱温度は、300℃以上とすることがよく、さらには350~500℃が望ましい。この加熱温度を20分以上保持することがよく、さらには0.5~2時間保持するのが望ましい。
 以上詳説した本発明の製造方法により得られた正極活物質に含まれるリチウムニッケルマンガン系複合酸化物は、粒子形状を呈している。リチウムニッケルマンガン系複合酸化物の一次粒子は、単結晶である。一次粒子が単結晶であることは、透過型電子顕微鏡(TEM)の高分解能像により確認することができる。リチウムニッケルマンガン系複合酸化物の一次粒子のc軸方向の粒径は、200nm以下であることがよく、さらには20~100nmであるのが好ましい。前述のように、一次粒子径が小さい方が活性化されやすいが、小さすぎると、充放電により結晶構造が崩れやすくなり、電池特性が低下することがあるため好ましくない。
 リチウムニッケルマンガン系複合酸化物の一次粒子のc軸方向の粒径は、リチウムニッケルマンガン系複合酸化物の面指数(h,k,l)=(1,1,1)を示すピーク強度の半値幅に基づいて、シェラー(Scherrer)の式を用いて算出されたものである。なお、半値幅は、リチウムニッケルマンガン系複合酸化物の面指数(h,k,l)=(1,1,1)のピーク強度をImaxとしたときに、Imax/2の位置でのピークの幅とする。リチウムニッケルマンガン系複合酸化物の面指数(h,k,l)=(1,1,1)のピークは、回折角度(2θ、CuKα線)18.6度付近に見られる。
 本発明の製造方法により得られた正極活物質には、少量のニッケル酸化物(NiO)が副生成物として含まれる。正極活物質中に含まれるニッケル酸化物の量は、X線回折(XRD)などの分析で簡便に測定することができる。具体的には、X線としてCuKα線を正極活物質に照射した場合、リチウムニッケルマンガン系複合酸化物のX線回折図形での面指数(h,k,l)=(1,1,1)のピーク強度に対する、X線回折図形における立方晶NiOの面指数(h,k,l)=(2,0,0)のピーク位置である2θ=43.363°におけるピーク強度の比率が、0.1%以上20%未満であることが好ましい。立方晶NiOの面指数(h,k,l)=(2,0,0)のピーク位置は2θ=43.363°であることは、X線回折データベースであるJCPDSカードに記録されており、J.Am.Chem.Soc.,V62, p1134(1940)の論文にも記載されている。
 (非水電解質二次電池)
 本発明の非水電解質二次電池用正極活物質を用いた非水電解質二次電池を説明する。非水電解質二次電池は、主として、正極、負極および非水電解質を備える。また、一般の非水電解質二次電池と同様に、正極と負極の間に挟装されるセパレータを備える。
 正極は、リチウムイオンを挿入・脱離可能な正極活物質と、正極活物質を結着する結着剤とを含む。さらに、導電助材を含んでもよい。正極活物質は、上記の複合酸化物を単独、あるいは上記の複合酸化物とともに、一般の非水電解質二次電池に用いられるLiCoO、LiNiO、Sなどの群から選ばれる一種以上の他の正極活物質を含んでもよい。
 また、結着剤および導電助材にも特に限定はなく、一般の非水電解質二次電池で使用可能なものであればよい。導電助材は、電極の電気伝導性を確保するためのものであり、たとえば、カーボンブラック、アセチレンブラック、黒鉛などの炭素物質粉状体の1種または2種以上を混合したものを用いることができる。結着剤は、正極活物質および導電助材を繋ぎ止める役割を果たすもので、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂などを用いることができる。
 正極に対向させる負極は、負極活物質を有する。負極は、負極活物質である金属リチウムをシート状にして、あるいはシート状にしたものをニッケル、ステンレス等の集電体網に圧着して形成することができる。負極活物質として、金属リチウムのかわりに、リチウム合金またはリチウム化合物原料をも用いることができる。また、正極同様、リチウムイオンを吸蔵・脱離できる負極活物質と結着剤とからなる負極を使用してもよい。負極活物質としては、たとえば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物加熱体、コークス等の炭素物質の粉状体を用いることができる。また、負極活物質としては、負極活物質は、リチウムイオンを吸蔵・放出可能であってリチウムと合金化可能な元素又は/及びリチウムと合金化可能な元素を有する元素化合物からなるとよい。リチウムと合金化可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biの少なくとも1種を有するとよい。結着剤としては、正極同様、含フッ素樹脂、熱可塑性樹脂などを用いることができる。負極活物質として金属リチウム又はリチウム合金を用いた二次電池は、リチウム二次電池といい、それ以外の負極活物質を用いた場合にはリチウムイオン二次電池という。
 一般的には、正極および負極は、正極活物質または負極活物質からなる活物質が結着剤で結着されてなる活物質層と、活物質層で被覆された集電体とからなる。そのため、正極および負極は、活物質および結着剤、必要に応じて導電助材を含む電極合材層形成用組成物を調製し、さらに適当な溶剤を加えてペースト状にしてから集電体の表面に塗布後、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。
 集電体は、金属製のメッシュや金属箔を用いることができる。具体的には、集電体としては、ステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂からなる多孔性または無孔の導電性基板が挙げられる。多孔性の導電性基板としては、たとえば、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、不織布などの繊維群成形体、などが挙げられる。無孔の導電性基板としては、たとえば、箔、シート、フィルムなどが挙げられる。電極合材層形成用組成物の塗布方法としては、ドクターブレード、バーコーターなどの従来から公知の方法を用いればよい。
 粘度調整のための溶剤としては、N-メチル-2-ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。
 電解質としては、有機溶媒に電解質を溶解させた有機溶媒系の電解液、電解液をポリマー中に保持させたポリマー電解質などを用いることができる。電解液あるいはポリマー電解質に含まれる有機溶媒は特に限定されるものではないが、負荷特性の点からは鎖状エステルを含んでいることが好ましい。そのような鎖状エステルとしては、たとえば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートに代表される鎖状のカーボネートや、酢酸エチル、プロピロン酸メチルなどの有機溶媒が挙げられる。これらの鎖状エステルは、単独でもあるいは2種以上を混合して用いてもよく、特に、低温特性の改善のためには、上記鎖状エステルが全有機溶媒中の50体積%以上を占めることが好ましく、特に鎖状エステルが全有機溶媒中の65体積%以上を占めることが好ましい。
 有機溶媒としては、上記鎖状エステルのみで構成するよりも、放電容量の向上をはかるために、上記鎖状エステルに誘導率の高い(誘導率:30以上)エステルを混合して用いることが好ましい。このようなエステルの具体例としては、たとえば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートに代表される環状のカーボネートや、γ-ブチロラクトン、エチレングリコールサルファイトなどが挙げられ、特にエチレンカーボネート、プロピレンカーボネートなどの環状構造のエステルが好ましい。そのような誘電率の高いエステルは、放電容量の点から、全有機溶媒中10体積%以上、特に20体積%以上含有されることが好ましい。また、負荷特性の点からは、40体積%以下が好ましく、30体積%以下がより好ましい。
 有機溶媒に溶解させる電解質としては、たとえば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiCnF2n+1SO(n≧2)などが単独でまたは2種以上混合して用いられる。中でも、良好な充放電特性が得られるLiPFやLiCSOなどが好ましく用いられる。
 電解液中における電解質の濃度は、特に限定されるものではないが、0.3~1.7mol/dm、特に0.4~1.5mol/dm程度が好ましい。
 また、電池の安全性や貯蔵特性を向上させるために、非水電解液に芳香族化合物を含有させてもよい。芳香族化合物としては、シクロヘキシルベンゼンやt-ブチルベンゼンなどのアルキル基を有するベンゼン類、ビフェニル、あるいはフルオロベンゼン類が好ましく用いられる。
 セパレータとしては、強度が充分でしかも電解液を多く保持できるものがよい。この観点から、5~50μmの厚さで、ポリプロピレン製、ポリエチレン製、プロピレンとエチレンとの共重合体などポリオレフィン製の微孔性フィルムや不織布などが好ましく用いられる。特に、5~20μmと薄いセパレータを用いた場合には、充放電サイクルや高温貯蔵などにおいて電池の特性が劣化しやすく、安全性も低下するが、上記の複合酸化物を正極活物質として用いた非水電解質二次電池は安定性と安全性に優れているため、このような薄いセパレータを用いても安定して電池を機能させることができる。
 以上の構成要素によって構成される非水電解質二次電池の形状は円筒型、積層型、コイン型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極と負極との間にセパレータを挟装させ電極体とする。そして正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リードなどで接続し、この電極体に上記電解液を含浸させ電池ケースに密閉し、非水電解質二次電池が完成する。
 非水電解質二次電池を使用する場合には、はじめに充電を行い、正極活物質を活性化させる。ただし、上記の複合酸化物を正極活物質として用いる場合には、初回の充電時にリチウムイオンが放出されるとともに酸素が発生する。そのため、電池ケースを密閉する前に充電を行うのが望ましい。
 (車両など)
 以上説明した本発明の製造方法により得られる複合酸化物を用いた非水電解質二次電池は、携帯電話、パソコン等の通信機器、情報関連機器の分野の他、自動車の分野においても好適に利用できる。たとえば、この非水電解質二次電池を車両に搭載すれば、非水電解質二次電池を電気自動車用の電源として使用できる。
 以下、本発明の実施例を比較例と比較して説明する。
 (実施例1)
 本実施例では、以下のように、溶融塩法でLiNi0.5Mn1.5を主成分とする正極活物質を作製した。
 混合工程において、リチウム化合物原料(溶融塩原料)として0.20molの水酸化リチウム-水和物LiOH・HO(8.4g)と、ニッケルマンガン化合物原料として0.02molのニッケルマンガン酸化物とを混合して、原料混合物を調製した。
 反応工程において、原料混合物を坩堝に入れて、700℃の電気炉内に移し、大気中700℃で2時間加熱した。このとき原料混合物は、融解して溶融塩となり、黒色の生成物が沈殿した。
 回収工程において、溶融塩の入った坩堝を電気炉内で室温まで冷却した後、電気炉から取り出した。溶融塩が十分に冷却されて固化した後、坩堝ごと200mlのイオン交換水に浸し、攪拌することで、固化した溶融塩を水に溶解した。黒色の生成物は水に対して不溶性であるため、水は黒色の懸濁液となった。黒色の懸濁液を濾過すると、透明な濾液と、濾紙上に黒色の固体の濾物とが得られた。得られた濾物を更にアセトンを用いて十分に洗浄しながら濾過した。洗浄後の黒色の固体を120℃で12時間、真空乾燥した後、乳鉢と乳棒を用いて粉砕した。
 得られた黒色粉末について、CuKα線を用いてX線回折(XRD)を測定した。X線回折の測定結果を図1(a)に示す。図1(a)に示すように、2θ=18.6°にピークがあることから、黒色粉末はスピネル構造のLiNi0.5Mn1.5を有することがわかった。また、2θ=43.363°などにNiOの面指数(h,k,l)=(2,0,0)に起因するピークが出現していることから、黒色粉末には、NiOが含まれていることがわかった。LiNi0.5Mn1.5の面指数(h,k,l)=(1,1,1)に起因するピーク(2θ=18.6°)の強度に対する、NiOの面指数(h,k,l)=(2,0,0)に起因するピーク(2θ=43.463 °)の強度の比率は、約18%であった。このことから、LiNi0.5Mn1.5を100質量部としたときのNiOの含有量は7.1質量部であることがわかった。
 (比較例1)
 本比較例では、以下のように、固相法でLiNi0.5Mn1.5を主成分とする正極活物質を作製した。
 混合工程において、リチウム化合物原料として0.11molの水酸化リチウム-水和物LiOH・HOと、ニッケルマンガン化合物原料として0.10molのマンガンニッケル酸化物とを混合して、原料混合物を調製した。
 反応工程において、原料混合物を乳鉢でよく混合した後、坩堝に入れて、酸素雰囲気(酸素ガス濃度100%)中1000℃で12時間加熱した。得られた粉末を、乳鉢と乳棒を用いて粉砕したのち、坩堝に入れて、さらに酸素雰囲気(酸素ガス濃度100%)中、1000℃で12時間加熱した。
 得られた黒色粉末について、CuKα線を用いてX線回折(XRD)を測定した。X線回折の測定結果を図1(b)に示す。図1(b)に示すように、LiNi0.5Mn1.5の面指数(h,k,l)=(1,1,1)のピークが確認されたが、NiOの面指数(h,k,l)=(2,0,0)のピークは確認されなかった。
 <実験1>
 実施例1及び比較例1で生成した粉末を正極活物質として用いてリチウム二次電池を作製し、放電容量を測定した。
 実施例1及び比較例1のいずれかの複合酸化物、導電助剤としてのアセチレンブラック、結着材としてのポリテトラフルオロエチレン(PTFE)を質量比で50:40:10の割合で混合した。次いで、この混合物を集電体であるアルミニウムメッシュに圧着した。その後、120℃で12時間以上真空乾燥し、電極(正極:φ14mm)とした。正極に対向させる負極は、金属リチウム(φ14mm、厚さ400μm)とした。
 正極と負極との間に、セパレータとして厚さ20μmの微孔性ポリエチレンフィルムを挟装して電極体電池とした。この電極体電池を電池ケース(宝泉株式会社製CR2032コインセル)に収容した。また、電池ケースには、エチレンカーボネートとエチルメチルカーボネートとを1:2(体積比)で混合した混合溶媒にLiPFを1.0mol/Lの濃度で溶解した非水電解質を注入して、リチウム二次電池を得た。
 作製したリチウム二次電池を用いて25℃一定温度下において充放電試験を行った。充放電試験において充電を行う場合には、0.2Cのレートで4.5Vまで定電流充電を行い、その後0.02Cの電流値まで4.5V一定電圧で充電を行った。放電を行う場合には、2.0Vまで0.2Cのレートで放電を行った。実施例1及び比較例1の正極活物質を用いて作製した二次電池についての充放電曲線を図2にそれぞれ示した。図2において、実線は実施例1の正極活物質を用いた二次電池の充放電曲線を示し、点線は比較例1の正極活物質を用いた二次電池の充放電曲線を示す。図2に示すように、NiOを含む正極活物質(実施例1)を用いた電池の方が、NiOを含まない正極活物質(比較例1)を用いた電池よりも放電容量が高くなった。
 実施例1の正極活物質を製造するために採用した溶融塩法では、反応工程での加熱時間を、通常の加熱時間よりも短い2時間とした。比較例1の正極活物質を製造するために採用した固相法では、加熱時間を通常よりも長くしている。固相法でも、加熱時間を短くすれば、NiOが反応系に残ると推定される。
 以上の実験より、NiOを反応系に含む場合には、高温・長時間の合成が必要なく、高い電池容量の正極活物質を得ることができることがわかった。 

Claims (10)

  1.  少なくともリチウム(Li)元素、ニッケル(Ni)元素及びマンガン(Mn)元素を含み結晶構造がスピネル構造に属するリチウムニッケルマンガン系複合酸化物と、ニッケル酸化物とを有し、前記ニッケル酸化物は、前記リチウムニッケルマンガン系複合酸化物を製造する原料の一部又は該原料より生成した副生成物であることを特徴とする非水電解質二次電池用正極活物質。
  2.  前記リチウムニッケルマンガン系複合酸化物は、組成式:LiNix-yMn2-x-y (0<x≦0.5、0≦y<0.5、Mは金属元素であって、Li、Ni及びMnを除く。Liはその一部が水素で置換されていてもよい。)で表される複合酸化物を基本組成とする請求項1に記載の非水電解質二次電池用正極活物質。
  3. 前記組成式:LiNix-yMn2-x-y で表される複合酸化物は、LiNiMn2-xからなる請求項2記載の非水電解質二次電池用正極活物質。
  4.  前記リチウムニッケルマンガン系複合酸化物を100質量部としたときに、前記ニッケル酸化物が、5質量部以上30質量部以下含まれる請求項1に記載の非水電解質二次電池用正極活物質。
  5.  CuKα線を光源とするX線回折測定を行って作成された前記正極活物質のX線回折図形において、前記リチウムニッケルマンガン系複合酸化物の面指数(h,k,l)=(1,1,1)のピーク強度に対する、前記ニッケル酸化物の面指数(h,k,l)=(2,0,0)のピーク強度の比率は、0.1%以上20%未満である請求項1に記載の非水電解質二次電池用正極活物質。
  6.  請求項1に記載の非水電解質二次電池用正極活物質の製造方法であって、
     リチウムを必須とする一種以上の金属元素を含み且つ酸化物、水酸化物及び金属塩から選ばれる一種以上の金属化合物を含むリチウム化合物原料と、ニッケル及びマンガンを必須とする二種以上の金属元素を含みかつ酸化物、水酸化物及び金属塩から選ばれる一種以上の金属化合物を含むニッケルマンガン化合物原料とを加熱して、前記ニッケルマンガン化合物原料から生成したニッケル酸化物を残した状態で前記リチウム化合物原料と前記ニッケルマンガン化合物原料とを反応させて前記リチウムニッケルマンガン系複合酸化物を得る反応工程をもつことを特徴とする非水電解質二次電池用正極活物質の製造方法。
  7.  前記リチウム化合物原料と前記ニッケルマンガン化合物原料とを混合して原料混合物を調製する混合工程を行い、前記反応工程での前記原料混合物の加熱は、溶融塩法で行う請求項6記載の非水電解質二次電池用正極活物質の製造方法。
  8.  前記反応工程の後には、前記リチウムニッケル系複合酸化物を徐冷してから回収する回収工程を行う請求項6記載の非水電解質二次電池用正極活物質の製造方法。
  9.  請求項1に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質と、を備えることを特徴とする非水電解質二次電池。
  10. 請求項9に記載の非水電解質二次電池を搭載したことを特徴とする車両。
PCT/JP2012/000085 2011-03-14 2012-01-10 非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池 WO2012124243A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-055724 2011-03-14
JP2011055724 2011-03-14

Publications (1)

Publication Number Publication Date
WO2012124243A1 true WO2012124243A1 (ja) 2012-09-20

Family

ID=46830340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000085 WO2012124243A1 (ja) 2011-03-14 2012-01-10 非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2012124243A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133263A (ja) * 1998-10-23 2000-05-12 Hitachi Ltd リチウム二次電池
JP2001143704A (ja) * 1999-11-12 2001-05-25 Japan Energy Corp リチウム二次電池用正極材料の製造方法
JP2002042814A (ja) * 2000-07-28 2002-02-08 Hitachi Maxell Ltd 非水二次電池用正極活物質およびそれを用いた非水二次電池
JP2003176134A (ja) * 2001-12-10 2003-06-24 Japan Metals & Chem Co Ltd ニッケルマンガン化合物およびその製造方法、ならびに二次電池用リチウム−ニッケル−マンガン系複合酸化物およびその製造方法
JP2003197194A (ja) * 2001-10-18 2003-07-11 Nec Corp 非水電解液二次電池用電極材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133263A (ja) * 1998-10-23 2000-05-12 Hitachi Ltd リチウム二次電池
JP2001143704A (ja) * 1999-11-12 2001-05-25 Japan Energy Corp リチウム二次電池用正極材料の製造方法
JP2002042814A (ja) * 2000-07-28 2002-02-08 Hitachi Maxell Ltd 非水二次電池用正極活物質およびそれを用いた非水二次電池
JP2003197194A (ja) * 2001-10-18 2003-07-11 Nec Corp 非水電解液二次電池用電極材料
JP2003176134A (ja) * 2001-12-10 2003-06-24 Japan Metals & Chem Co Ltd ニッケルマンガン化合物およびその製造方法、ならびに二次電池用リチウム−ニッケル−マンガン系複合酸化物およびその製造方法

Similar Documents

Publication Publication Date Title
JP5418664B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP5440614B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP6462250B2 (ja) リチウム二次電池用正極活物質、その製造方法、そしてこれを含むリチウム二次電池用正極およびリチウム二次電池
JP5552685B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
KR102292385B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP5724269B2 (ja) 複合酸化物の製造方法
WO2012124242A1 (ja) 非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池
JPWO2012176471A1 (ja) リチウム含有複合酸化物粉末およびその製造方法
JP5674055B2 (ja) 複合酸化物の製造方法、二次電池用正極活物質および二次電池
JP5733571B2 (ja) リチウム含有複合酸化物の製造方法、正極活物質および二次電池
JP5370501B2 (ja) 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
KR20010091887A (ko) 리튬 이차 전지용 양극 활물질 및 그 제조방법
JP2013060319A (ja) リチウムマンガン(iv)ニッケル(iii)系酸化物、その酸化物を含むリチウムイオン二次電池用正極活物質、その正極活物質を用いたリチウムイオン二次電池及びそのリチウムイオン二次電池を搭載した車両
JP2013173632A (ja) リチウムマンガン系複合酸化物、二次電池用正極活物質および二次電池
JP5641132B2 (ja) リチウム含有複合酸化物の製造方法、正極活物質および二次電池
JP5447452B2 (ja) リチウムイオン二次電池用正極活物質、その正極活物質を用いたリチウムイオン二次電池及びリチウムマンガン銀複合酸化物の製造方法
JP2013012336A (ja) 二次電池およびその充電方法
JP5594241B2 (ja) 電解液及びリチウムイオン二次電池
JP5828282B2 (ja) 非水電解質二次電池用活物質の製造方法およびそれを用いた二次電池
JP5617792B2 (ja) リチウムイオン二次電池
JP5831234B2 (ja) 非水電解質二次電池用活物質の製造方法
JP2005353330A (ja) 非水電解質電気化学セル
WO2012124243A1 (ja) 非水電解質二次電池用正極活物質及びその製造方法、並びにこれを用いた非水電解質二次電池
JP2013020702A (ja) 電解液及びリチウムイオン二次電池
EP2624343B1 (en) Positive electrode active material for a lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP