WO2012124219A1 - ポリロタキサン組成物 - Google Patents

ポリロタキサン組成物 Download PDF

Info

Publication number
WO2012124219A1
WO2012124219A1 PCT/JP2011/078024 JP2011078024W WO2012124219A1 WO 2012124219 A1 WO2012124219 A1 WO 2012124219A1 JP 2011078024 W JP2011078024 W JP 2011078024W WO 2012124219 A1 WO2012124219 A1 WO 2012124219A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyrotaxane
cyclodextrin
peg
composition
antioxidant
Prior art date
Application number
PCT/JP2011/078024
Other languages
English (en)
French (fr)
Inventor
山崎 智朗
慎哉 岡崎
宏紀 岡崎
茂生 濱本
長明 趙
実 岩田
佑樹 林
Original Assignee
住友精化株式会社
アドバンスト・ソフトマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, アドバンスト・ソフトマテリアルズ株式会社 filed Critical 住友精化株式会社
Priority to CN201180069027.0A priority Critical patent/CN103403031B/zh
Priority to CA2829857A priority patent/CA2829857C/en
Priority to EP11861081.5A priority patent/EP2687547B1/en
Priority to JP2013504518A priority patent/JP6013319B2/ja
Priority to ES11861081.5T priority patent/ES2620756T3/es
Priority to KR1020137026228A priority patent/KR101840901B1/ko
Priority to US14/004,855 priority patent/US9266972B2/en
Publication of WO2012124219A1 publication Critical patent/WO2012124219A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/3331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/04End-capping

Definitions

  • the present invention relates to a polyrotaxane composition.
  • ringing gel has been proposed as a new type of gel that is not classified as either a physical gel or a chemical gel, and a crosslinked polyrotaxane has attracted attention as a compound used in such a ringing gel.
  • the crosslinked polyrotaxane can be obtained by crosslinking a plurality of polyrotaxanes having blocking groups introduced at both ends of the pseudopolyrotaxane.
  • the pseudopolyrotaxane comprises a polyethylene glycol having a reactive group at both ends (hereinafter also referred to as “PEG”) and a cyclodextrin that includes the PEG
  • the resulting cross-linked polyrotaxane is obtained on a linear molecule of PEG. Since the cyclodextrin penetrated like a skewer is movable along the straight chain molecule (pulley effect), even if tension is applied, the tension can be uniformly dispersed by the pulley effect. Therefore, the cross-linked polyrotaxane has excellent properties that are not found in conventional cross-linked polymers, such as being less prone to cracks and scratches.
  • the polyrotaxane used for the production of the crosslinked polyrotaxane usually contains free cyclodextrin (hereinafter also referred to as “free cyclodextrin”), and this free cyclodextrin reduces the properties of the crosslinked polyrotaxane. It is necessary to remove the free cyclodextrin by purification by a method or the like.
  • Patent Document 1 carboxylated polyethylene glycol and cyclodextrin molecules are mixed, and both ends of the pseudopolyrotaxane formed by the inclusion of the carboxylated polyethylene glycol in a skewered manner in the openings of the cyclodextrin molecules are blocked by blocking groups.
  • a method for producing a blocked polyrotaxane is disclosed.
  • the obtained polyrotaxane is washed with a mixed solvent of dimethylformamide / methanol and then dissolved in dimethylsulfoxide, and this solution is dropped into water to precipitate polyrotaxane, followed by centrifugation. It is purified by a method of solid-liquid separation by separation to remove free cyclodextrins that degrade the properties of the crosslinked polyrotaxane.
  • the purified polyrotaxane from which the free cyclodextrin has been removed in this way is suitable as a raw material for the crosslinked polyrotaxane immediately after production. There is a case.
  • polyrotaxane Even when free cyclodextrin is removed, when polyrotaxane from which cyclodextrin is liberated in the course of storage is used as a raw material for the crosslinked polyrotaxane, the properties of the crosslinked polyrotaxane deteriorate. Therefore, if the characteristics of the crosslinked polyrotaxane are to be expressed effectively, repurification is required before use as a raw material for the crosslinked polyrotaxane, and the storage stability with suppressed cyclodextrin release is excellent.
  • a polyrotaxane is desired.
  • the objective of this invention is providing the polyrotaxane composition which solved said subject and was excellent in storage stability.
  • the present invention is a polyrotaxane having a cyclodextrin, a polyethylene glycol clasped into the cyclodextrin, and a blocking group disposed at both ends of the polyethylene glycol to prevent the cyclodextrin from being removed, and It is a polyrotaxane composition containing a polyphenol antioxidant.
  • the present invention is described in detail below.
  • the present inventors have found that by adding a polyphenol antioxidant to a polyrotaxane, it is possible to obtain a polyrotaxane composition having low storage of cyclodextrin during storage and having excellent storage stability. It came to be completed.
  • the polyrotaxane composition of the present invention has a cyclodextrin, a polyethylene glycol clathrated in the cyclodextrin, and a blocking group that is disposed at both ends of the polyethylene glycol and prevents the cyclodextrin from being detached. Contains polyrotaxane.
  • Polyrotaxane is usually a mixture of cyclodextrin and PEG, pseudopolyrotaxane in which the PEG is skewered at the opening of the cyclodextrin molecule, and both ends of the pseudopolyrotaxane are blocked with blocking groups, and cyclodextrin Is prepared so as not to be detached from the skewered state.
  • the PEG has a weight average molecular weight of preferably 1,000 to 500,000, more preferably 10,000 to 300,000, and further preferably 10,000 to 100,000.
  • the weight average molecular weight of the PEG is less than 1000, the resulting crosslinked polyrotaxane may have low properties.
  • the weight average molecular weight of the PEG exceeds 500,000, the storage stability of the polyrotaxane may be lowered.
  • the said weight average molecular weight is a value calculated
  • the PEG preferably has reactive groups at both ends.
  • a reactive group can be introduced into both ends of the PEG by a conventionally known method.
  • the reactive group at both ends of the PEG can be appropriately changed depending on the type of blocking group employed, and is not particularly limited, and examples thereof include a hydroxyl group, an amino group, a carboxyl group, and a thiol group. Is preferred.
  • As a method for introducing a carboxyl group into both ends of the PEG for example, using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy radical) and sodium hypochlorite, Examples include a method of oxidizing both ends.
  • cyclodextrin examples include ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, and derivatives thereof.
  • at least one selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin is preferable, and ⁇ -cyclodextrin is more preferable from the viewpoint of inclusion. preferable.
  • These cyclodextrins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the inclusion rate of the polyrotaxane is preferably 6 to 60%, although it depends on the application and intended use. If the inclusion rate of the polyrotaxane is less than 6%, the resulting crosslinked polyrotaxane may not exhibit a pulley effect. If the inclusion rate of the polyrotaxane exceeds 60%, cyclodextrin, which is a cyclic molecule, may be arranged too densely and the mobility of cyclodextrin may be reduced. In order for cyclodextrin to have an appropriate mobility and to allow the resulting crosslinked polyrotaxane to exhibit a good pulley effect, the inclusion rate of the polyrotaxane is more preferably 15 to 40%, and preferably 20 to 30%.
  • the inclusion rate is a ratio of the inclusion amount of cyclodextrin containing PEG to the maximum inclusion amount of cyclodextrin in PEG, the mixing ratio of PEG and cyclodextrin, aqueous It can be arbitrarily adjusted by changing the type of the medium.
  • the maximum inclusion amount refers to the number of cyclodextrins in the closest enclosure state in which one cyclodextrin is included in two repeating units of the PEG chain.
  • the inclusion rate of the polyrotaxane can be measured by 1 H-NMR. Specifically, the inclusion rate was measured by dissolving polyrotaxane in DMSO-d 6 and measuring with an NMR measuring apparatus (“Varian Mercury-400BB” manufactured by Varian Technologies Japan). 4-6 ppm cyclodextrin It can be calculated by comparing the integrated value of the origin with the integrated values of 3-4 ppm cyclodextrin and PEG.
  • polyphenol antioxidant in the polyrotaxane composition of the present invention examples include catechin, epicatechin, gallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate, epigallocatechin, tannic acid, gallotannin, and ellagitannin.
  • the polyphenol antioxidant is a natural compound widely contained in plants, it has a preferable feature that it is highly safe for human bodies.
  • the polyrotaxane composition of the present invention not only has high storage stability by containing a polyphenol antioxidant as an antioxidant, but also provides the obtained crosslinked polyrotaxane to human bodies such as cosmetics and biomaterials. In applications that act directly, it can be used as a material with excellent quality stability and safety.
  • the polyphenol antioxidant is excellent in antibacterial effect, and can be expected also in the antibacterial effect of the final product to which the crosslinked polyrotaxane is applied.
  • the content of the polyphenol-based antioxidant is preferably 0.001 to 5% by weight, more preferably 0.005 to 2% by weight with respect to the polyrotaxane. More preferably, the content is 0.01 to 1% by weight. If the content of the polyphenol-based antioxidant is less than 0.001% by weight, the effect of improving the storage stability may not be observed. Even if the content of the polyphenol antioxidant exceeds 5% by weight, no further effect is obtained, which is not economical.
  • the method for preparing the polyrotaxane composition of the present invention is not particularly limited, but when obtaining a dried solid polyrotaxane composition, the polyrotaxane and the polyphenolic oxidation are used as a solvent in order to uniformly mix the polyrotaxane and the polyphenolic antioxidant.
  • a method for preparing a mixed solution containing a polyrotaxane, a polyphenolic antioxidant, and a solvent by adding an inhibitor and stirring and mixing, and drying the mixed solution provides a polyrotaxane composition having excellent storage stability. Therefore, a method of drying a mixed solution in which at least one of polyrotaxane and polyphenol-based antioxidant is dissolved in a solvent is more preferable because a polyrotaxane having further excellent storage stability can be obtained.
  • polyphenolic antioxidant in the preparation of a mixed solution containing a polyrotaxane, a polyphenolic antioxidant, and a solvent, if the polyphenolic antioxidant is not dissolved in the solvent, it can be further preserved by mixing them as fine particles in advance.
  • An excellent polyrotaxane composition can be obtained.
  • a conventionally known method can be used as a method for making the polyphenol antioxidant fine particles, and examples thereof include mechanical pulverization by a pulverizer such as a ball mill and a pin mill, and refinement by crystallization.
  • the volume average particle diameter of the polyphenol antioxidant is preferably 0.01-100 ⁇ m, more preferably 0.1-30 ⁇ m, More preferably, the thickness is 0.1 to 10 ⁇ m.
  • the volume average particle diameter of the polyphenol antioxidant is less than 0.01 ⁇ m, not only adjustment by pulverization or crystallization is difficult, but there is no further effect of improving storage stability.
  • the volume average particle size of the polyphenol-based antioxidant exceeds 100 ⁇ m, the polyrotaxane composition is not uniformly dispersed, and the effect of improving storage stability may be reduced.
  • the volume average particle diameter of the polyphenol antioxidant can be measured with a laser diffraction particle size distribution analyzer.
  • a conventionally known method such as reduced pressure drying or freeze drying can be used.
  • the drying temperature in the drying varies depending on the drying apparatus used. For example, when a shelf-type vacuum dryer is used, the drying temperature may be 20 to 100 ° C. in order to suppress generation of radicals that induce polyrotaxane decomposition. It is preferably 40 to 90 ° C, more preferably 40 to 80 ° C. If the drying temperature is less than 20 ° C, drying may be insufficient. When the drying temperature exceeds 100 ° C., the polyrotaxane may be decomposed and the inclusion rate may be reduced.
  • the system pressure in the drying is not particularly limited, the drying is usually performed at a pressure close to atmospheric pressure. Moreover, it is also possible to dry under reduced pressure, and it is preferable to dry at a pressure below atmospheric pressure.
  • a polyrotaxane composition excellent in storage stability can be provided.
  • Example 1 (1) Preparation of PEG having carboxyl groups at both ends by TEMPO oxidation of PEG 10 L of water was added to a 20 L reaction tank, 1 kg of PEG (molecular weight 35000), TEMPO (2,2,6,6-tetramethyl) 1-piperidinyloxy radical) 10 g and sodium bromide 100 g were dissolved. 500 mL of a commercially available aqueous sodium hypochlorite solution (effective chlorine concentration 5% by weight) was added and stirred at room temperature for 30 minutes. In order to decompose the remaining sodium hypochlorite, 500 mL of ethanol was added to terminate the reaction. Separation extraction using 5 L of methylene chloride was repeated three times to extract components other than inorganic salts, and then methylene chloride was removed by distillation under reduced pressure to obtain 1 kg of PEG having carboxyl groups at both ends.
  • polyrotaxane composition 300 g of 0.1% by weight aqueous solution of rosmarinic acid (rosemary extract, “RM-21A base”, manufactured by Mitsubishi Chemical Foods, Inc.) as a polyphenol-based antioxidant (polyrotaxane) Rosmarinic acid (0.01 wt%) was added and mixed well to obtain a mixed solution containing polyrotaxane, rosmarinic acid and water.
  • the obtained mixed solution was dried under reduced pressure at 60 ° C. for 16 hours using a reduced pressure dryer to obtain 3 kg of a polyrotaxane composition.
  • the content of free cyclodextrin in the obtained polyrotaxane was measured by a high performance liquid chromatograph (“Alliance 2695” manufactured by Waters Co., Ltd.) and found to be 8% by weight.
  • Example 2 In “(5) Preparation of polyrotaxane composition”, the polyrotaxane was the same as in Example 1 except that the concentration of the rosmarinic acid aqueous solution was 0.5% by weight (0.05% by weight of rosmarinic acid with respect to the polyrotaxane). 3 kg of composition was obtained. When measured in the same manner as in Example 1, the content of free cyclodextrin in the obtained polyrotaxane was 8% by weight.
  • Example 3 In “(5) Preparation of polyrotaxane composition”, instead of 300 g of a 0.1 wt% aqueous solution of rosmarinic acid as a polyphenol-based antioxidant, 300 g of a 1 wt% aqueous solution of gallic acid (0.8 mg of gallic acid relative to the polyrotaxane was added. 3 kg of a polyrotaxane composition was obtained in the same manner as in Example 1 except that 1 wt%) was added. When measured in the same manner as in Example 1, the content of free cyclodextrin in the obtained polyrotaxane was 8% by weight.
  • Example 4 In “(5) Preparation of polyrotaxane composition”, instead of 300 g of a 0.1% by weight aqueous solution of rosmarinic acid as a polyphenol antioxidant, a tea extract having a catechin content of 5% (manufactured by Nippon Chlorophyll, “Cateking” 3 kg of a polyrotaxane composition was obtained in the same manner as in Example 1 except that 300 g of a 1 wt% aqueous solution of S ”) (0.005 wt% of catechin with respect to the polyrotaxane) was added. When measured in the same manner as in Example 1, the content of free cyclodextrin in the obtained polyrotaxane was 8% by weight.
  • a polyrotaxane composition excellent in storage stability can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

本発明は、保存安定性に優れたポリロタキサン組成物を提供することを目的とする。 本発明は、シクロデキストリンと、前記シクロデキストリンに串刺し状に包接されるポリエチレングリコールと、前記ポリエチレングリコールの両末端に配置され前記シクロデキストリンの脱離を防止する封鎖基とを有するポリロタキサン、並びに、ポリフェノール系酸化防止剤を含有するポリロタキサン組成物である。

Description

ポリロタキサン組成物
本発明は、ポリロタキサン組成物に関する。
近年、物理ゲル、化学ゲルのいずれにも分類されない新しい種類のゲルとして、「環動ゲル」が提案されており、このような環動ゲルに用いられる化合物として、架橋ポリロタキサンが注目を集めている。
架橋ポリロタキサンは、擬ポリロタキサンの両末端に封鎖基を導入したポリロタキサンを複数架橋することで得られる。例えば、擬ポリロタキサンが、両末端に反応性基を有するポリエチレングリコール(以下、「PEG」ともいう)と該PEGを包接するシクロデキストリンとからなる場合、得られる架橋ポリロタキサンは、PEGの直鎖分子上に串刺し状に貫通されているシクロデキストリンが、当該直鎖分子に沿って移動可能(滑車効果)なために、張力が加わっても滑車効果によりその張力を均一に分散させることができる。そのため、架橋ポリロタキサンは、クラックや傷が生じにくいなど、従来の架橋ポリマーにない優れた特性を有する。
架橋ポリロタキサンの製造に用いられるポリロタキサンには、通常、遊離したシクロデキストリン(以下、「遊離シクロデキストリン」ともいう)が含まれており、この遊離シクロデキストリンが架橋ポリロタキサンの特性を低下させるため、再沈殿法などにより精製し、遊離シクロデキストリンを除去する必要がある。
特許文献1には、カルボキシル化ポリエチレングリコールとシクロデキストリン分子とを混合して、シクロデキストリン分子の開口部に前記カルボキシル化ポリエチレングリコールが串刺し状に包接されてなる擬ポリロタキサンの両末端を封鎖基により封鎖したポリロタキサンの製造方法が開示されている。
特許文献1に開示されている製造方法では、得られたポリロタキサンをジメチルホルムアミド/メタノールの混合溶媒で洗浄した後、ジメチルスルホキシドに溶解し、この溶液を水中に滴下してポリロタキサンを析出させて、遠心分離により固液分離する方法により精製し、架橋ポリロタキサンの特性を低下させる遊離シクロデキストリンを除去している。
特開2005-154675号公報
このように精製され、遊離したシクロデキストリンが除去されたポリロタキサンは、製造された直後には架橋ポリロタキサンの原料として好適ではあるものの、ポリロタキサンが保存される過程で経時的に分解し、シクロデキストリンが遊離する場合がある。
ポリロタキサンの製造において、遊離シクロデキストリンが除去されたとしても、保存の過程でシクロデキストリンが遊離したポリロタキサンを架橋ポリロタキサンの原料として使用した場合には、架橋ポリロタキサンの特性は低下する。そのため、架橋ポリロタキサンの特性を有効に発現しようとすれば、架橋ポリロタキサンの原料として使用する前に再精製が必要になるなど煩雑となるため、シクロデキストリンの遊離が抑制された保存安定性に優れたポリロタキサンが望まれている。
本発明の目的は、上記の課題を解決し、保存安定性に優れたポリロタキサン組成物を提供することにある。
本発明は、シクロデキストリンと、前記シクロデキストリンに串刺し状に包接されるポリエチレングリコールと、前記ポリエチレングリコールの両末端に配置され前記シクロデキストリンの脱離を防止する封鎖基とを有するポリロタキサン、並びに、ポリフェノール系酸化防止剤を含有するポリロタキサン組成物である。
以下に、本発明を詳述する。
本発明者らは、ポリロタキサンにポリフェノール系酸化防止剤を添加することにより、保存中のシクロデキストリンの遊離が少なく、優れた保存安定性を有するポリロタキサン組成物を得ることができることを見出し、本発明を完成するに至った。
本発明のポリロタキサン組成物は、シクロデキストリンと、前記シクロデキストリンに串刺し状に包接されるポリエチレングリコールと、前記ポリエチレングリコールの両末端に配置され前記シクロデキストリンの脱離を防止する封鎖基とを有するポリロタキサンを含有する。
ポリロタキサンは通常、シクロデキストリンとPEGとを混合し、シクロデキストリン分子の開口部に前記PEGが串刺し状に包接された擬ポリロタキサンとし、前記擬ポリロタキサンの両末端を封鎖基で封鎖して、シクロデキストリンが串刺し状態から脱離しないように調製することにより得られる。
本発明のポリロタキサン組成物において、前記PEGの重量平均分子量は、1000~50万であることが好ましく、1万~30万であることがより好ましく、1万~10万であることがさらに好ましい。前記PEGの重量平均分子量が1000未満であると、得られる架橋ポリロタキサンが特性の低いものとなることがある。前記PEGの重量平均分子量が50万を超えると、ポリロタキサンの保存安定性が低下する場合がある。
なお、本明細書において、前記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、PEG換算により求められる値である。GPCによってPEG換算による重量平均分子量を測定する際のカラムとしては、例えば、TSKgel SuperAWM-H(東ソー社製)などが挙げられる。
前記PEGは、好ましくは、両末端に反応性基を有する。前記PEGの両末端は、従来公知の方法により反応性基を導入することが出来る。
前記PEGの両末端に有する反応性基は、採用する封鎖基の種類により適宜変更することができ、特に限定されないが、水酸基、アミノ基、カルボキシル基、チオール基などが挙げられ、とりわけ、カルボキシル基が好ましい。前記PEGの両末端にカルボキシル基を導入する方法としては、例えば、TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)と次亜塩素酸ナトリウムとを用いてPEGの両末端を酸化させる方法などが挙げられる。
前記シクロデキストリンとしては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、およびこれらの誘導体などが挙げられる。なかでも、α-シクロデキストリン、β-シクロデキストリン、および、γ-シクロデキストリンからなる群より選ばれる少なくとも1種であることが好ましく、包接性の観点より、α-シクロデキストリンであることがより好ましい。これらのシクロデキストリンは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
前記ポリロタキサンの包接率は、用途や使用目的にもよるが、6~60%であることが好ましい。前記ポリロタキサンの包接率が6%未満であると、得られる架橋ポリロタキサンに滑車効果が発現しないことがある。前記ポリロタキサンの包接率が60%を超えると、環状分子であるシクロデキストリンが密に配置され過ぎてシクロデキストリンの可動性が低下することがある。シクロデキストリンが適度な可動性を有し、得られる架橋ポリロタキサンに良好な滑車効果を発現させるためには、前記ポリロタキサンの包接率は15~40%であることがより好ましく、20~30%であることがさらに好ましい。
なお、本明細書において前記包接率とは、PEGへのシクロデキストリンの最大包接量に対するPEGを包接しているシクロデキストリンの包接量の割合であり、PEGとシクロデキストリンの混合比、水性媒体の種類などを変化させることにより、任意に調整することが出来る。また、前記最大包接量とは、PEG鎖の繰り返し単位2つに対し、シクロデキストリンが1つ包接された最密包接状態とした場合のシクロデキストリンの個数をいう。
前記ポリロタキサンの包接率は、H-NMRにより測定することが出来る。具体的には、前記包接率は、DMSO-dにポリロタキサンを溶解し、NMR測定装置(バリアン・テクノロジーズ・ジャパン社製、「VARIAN Mercury-400BB」)により測定し、4~6ppmのシクロデキストリン由来の積分値と3~4ppmのシクロデキストリンおよびPEGの積分値の比較で算出することができる。
本発明のポリロタキサン組成物におけるポリフェノール系酸化防止剤としては、例えば、カテキン、エピカテキン、ガロカテキン、カテキンガレート、エピカテキンガレート、ガロカテキンガレート、エピガロカテキンガレート、エピガロカテキン、タンニン酸、ガロタンニン、エラジタンニン、カフェー酸、ジヒドロカフェー酸、クロロゲン酸、イソクロロゲン酸、ゲンチシン酸、ホモゲンチシン酸、没食子酸、エラグ酸、ロズマリン酸、ルチン、クエルセチン、クエルセタギン、クエルセタゲチン、ゴシペチン、アントシアニン、ロイコアントシアニン、プロアントシアニジン、エノシアニンなどが挙げられる。なかでも、長期の保存安定性において高い安定化効果を示すため、ロズマリン酸、没食子酸、カテキン、エピカテキン、エピガロカテキン、エピカテキンガレート、および、エピガロカテキンガレートからなる群より選ばれる少なくとも1種であることがより好ましい。
これらのポリフェノール系酸化防止剤は、単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
さらに、前記ポリフェノール系酸化防止剤は、植物に広く含有されている天然化合物であるため、人体に対する安全性が高いという好ましい特徴を有する。このため、本発明のポリロタキサン組成物は、酸化防止剤としてポリフェノール系酸化防止剤を含有することにより、高い保存安定性を有するだけでなく、得られる架橋ポリロタキサンを、化粧料、バイオマテリアルなど人体に直接作用するような用途において、優れた品質安定性と安全性を備えた材料として使用することができる。また、ポリフェノール系酸化防止剤は抗菌効果にも優れており、架橋ポリロタキサンが応用された最終製品の抗菌効果にも期待することができる。
本発明のポリロタキサン組成物において、前記ポリフェノール系酸化防止剤の含有量は、ポリロタキサンに対して、0.001~5重量%であることが好ましく、0.005~2重量%であることがより好ましく、0.01~1重量%であることがさらに好ましい。前記ポリフェノール系酸化防止剤の含有量が0.001重量%未満であると、保存安定性の向上に効果が見られない場合がある。前記ポリフェノール系酸化防止剤の含有量が5重量%を超えても、それ以上の効果が得られず経済的でない。
本発明のポリロタキサン組成物を調製する方法は特に限定されないが、乾燥した固体状のポリロタキサン組成物を得る場合、ポリロタキサンとポリフェノール系酸化防止剤とを均一に混合するため、溶媒にポリロタキサンとポリフェノール系酸化防止剤とを投入し、攪拌混合することによりポリロタキサンとポリフェノール系酸化防止剤と溶媒とを含む混合液を調製し、該混合液を乾燥する方法が、保存安定性が優れるポリロタキサン組成物が得られるため好ましく、ポリロタキサン、ポリフェノール系酸化防止剤のうち少なくとも一方が溶媒に溶解している混合液を乾燥する方法がさらに保存安定性に優れるポリロタキサンが得られるためより好ましい。
ポリロタキサンとポリフェノール系酸化防止剤と溶媒とを含む混合液の調製において、PEGを包接するシクロデキストリンが修飾基などで修飾されていない場合、少なくともポリロタキサンを溶解させる場合に使用できる溶媒としては、DMSO、アルカリ水溶液などが挙げられる。
また、ポリロタキサンとポリフェノール系酸化防止剤と溶媒とを含む混合液の調製において、ポリフェノール系酸化防止剤が溶媒に溶解しない場合、事前にこれらを微細な粒子として混合することによって、より保存安定性に優れたポリロタキサン組成物を得ることができる。ポリフェノール系酸化防止剤を微細な粒子とする方法は、従来公知の方法を使用することができ、例えば、ボールミル、ピンミルなどの粉砕機による機械的粉砕、晶析などによる微細化などが挙げられる。
前記ポリフェノール系酸化防止剤を微細な粒子とする場合、前記ポリフェノール系酸化防止剤の体積平均粒子径は、0.01~100μmとすることが好ましく、0.1~30μmとすることがより好ましく、0.1~10μmとすることがさらに好ましい。前記ポリフェノール系酸化防止剤の体積平均粒子径を0.01μm未満にする場合、粉砕や晶析による調整が難しいだけで無く、それ以上の保存安定性の向上効果が無い。前記ポリフェノール系酸化防止剤の体積平均粒子径が100μmを超える場合は、得られるポリロタキサン組成物中に均一に分散せず、保存安定性の向上効果が低下する場合がある。
なお、前記ポリフェノール系酸化防止剤の体積平均粒子径は、レーザー回折式粒度分布測定装置により測定することが出来る。
ポリロタキサンとポリフェノール系酸化防止剤と溶媒とを含む混合液を乾燥する方法としては、減圧乾燥、凍結乾燥など従来公知の方法を用いることができる。
前記乾燥における乾燥温度は、使用する乾燥装置などにより異なるが、たとえば棚段式減圧乾燥機を使用した場合、ポリロタキサンの分解を誘発するラジカルの発生を抑制するため、20~100℃であることが好ましく、40~90℃であることがより好ましく、40~80℃であることがさらに好ましい。前記乾燥温度が20℃未満であると、乾燥が不充分となる場合がある。前記乾燥温度が100℃を超えると、ポリロタキサンが分解し、包接率が低下するおそれがある。
前記乾燥における系の圧力は特に限定されないが、通常、大気圧に近い圧力で乾燥を行う。また、減圧下で乾燥することも可能であり、大気圧以下の圧力で乾燥を行うことが好ましい。
本発明によれば、保存安定性に優れたポリロタキサン組成物を提供することができる。
以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されない。以下、PEGを酸化して両末端にカルボキシル基を有するPEGの製造方法について、国際公開第05/052026号パンフレットに記載された方法を参考にして行った。
(実施例1)
(1)PEGのTEMPO酸化による両末端にカルボキシル基を有するPEGの調製
20L容の反応槽内に、水10Lを加え、PEG(分子量35000)1kg、TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)10g、臭化ナトリウム100gを溶解させた。市販の次亜塩素酸ナトリウム水溶液(有効塩素濃度5重量%)500mLを添加し、室温で30分間撹拌した。余った次亜塩素酸ナトリウムを分解させるために、エタノールを500mL添加して反応を終了させた。5Lの塩化メチレンを用いた分液抽出を3回繰り返して無機塩以外の成分を抽出した後、減圧留去にて塩化メチレンを除去し、両末端にカルボキシル基を有するPEG1kgを得た。
(2)両末端にカルボキシル基を有するPEGとα-シクロデキストリンとを用いた擬ポリロタキサン水性分散体の調製
調製した両末端にカルボキシル基を有するPEG1kgに水35Lを加え、さらにα-シクロデキストリン4kgを加え、70℃まで加熱し溶解させた。攪拌下、4℃まで冷却し、乳液状に析出した擬ポリロタキサン水性分散体を得た。
(3)擬ポリロタキサン水性分散体の乾燥
調製した擬ポリロタキサン分散体40kgを、噴霧乾燥装置を用いて乾燥し、粉末状の乾燥体4.7kgを得た。なお、乾燥機気流入口温度は165℃、出口温度は90℃であった。
(4)アダマンタンアミンとBOP試薬反応系を用いた擬ポリロタキサンの封鎖
50L容のフラスコ内で、室温でジメチルホルムアミド(DMF)17Lにアダマンタンアミン45gを溶解し、得られた擬ポリロタキサン4.7kgに添加した後、速やかによく振りまぜた。
続いて、BOP試薬(ベンゾトリアゾール-1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウム・ヘキサフルオロフォスフェート)130gをDMF8Lに溶解したものを添加し、速やかによく振りまぜた。
さらに、ジイソプロピルエチルアミン50mLをDMF8Lに溶解したものを添加し、得られた混合液を常温で一晩攪拌した。
得られた混合液をろ過後、得られた残渣に水30kgを加えて攪拌下で70℃まで昇温し、同温度で60分間攪拌して、再度ろ過した。
(5)ポリロタキサン組成物の調製
得られた残渣にポリフェノール系酸化防止剤としてロズマリン酸(ローズマリー抽出物、三菱化学フーズ社製、「RM-21Aベース」)の0.1重量%水溶液300g(ポリロタキサンに対して、ロズマリン酸0.01重量%)を加えてよく混合し、ポリロタキサンとロズマリン酸と水とを含有する混合液とした。得られた混合液を、減圧乾燥機を使用して60℃にて16時間減圧乾燥して、ポリロタキサン組成物3kgを得た。高速液体クロマトグラフ(ウォーターズ社製、「アライアンス2695」)により、得られたポリロタキサンの遊離シクロデキストリンの含有率を測定したところ、8重量%であった。
(実施例2)
「(5)ポリロタキサン組成物の調製」において、ロズマリン酸水溶液の濃度を0.5重量%(ポリロタキサンに対して、ロズマリン酸0.05重量%)としたこと以外は、実施例1と同様にポリロタキサン組成物3kgを得た。実施例1と同様にして測定したところ、得られたポリロタキサンの遊離シクロデキストリンの含有率は8重量%であった。
(実施例3)
「(5)ポリロタキサン組成物の調製」において、ポリフェノール系酸化防止剤としてロズマリン酸の0.1重量%水溶液300gに代えて、没食子酸の1重量%水溶液300g(ポリロタキサンに対して、没食子酸0.1重量%)を加えたこと以外は、実施例1と同様にポリロタキサン組成物3kgを得た。実施例1と同様にして測定したところ、得られたポリロタキサンの遊離シクロデキストリンの含有率は8重量%であった。
(実施例4)
「(5)ポリロタキサン組成物の調製」において、ポリフェノール系酸化防止剤としてロズマリン酸の0.1重量%水溶液300gに代えて、カテキン含有量が5%の茶抽出物(日本葉緑素社製、「カテキングS」)の1重量%水溶液300g(ポリロタキサンに対して、カテキン0.005重量%)を加えたこと以外は、実施例1と同様にポリロタキサン組成物3kgを得た。実施例1と同様にして測定したところ、得られたポリロタキサンの遊離シクロデキストリンの含有率は8重量%であった。
(比較例1)
「(5)ポリロタキサン組成物の調製」において、ロズマリン酸の0.1重量%水溶液を添加しなかったこと以外は、実施例1と同様の操作を行い、ポリロタキサンを得た。実施例1と同様にして測定したところ、得られたポリロタキサンの遊離シクロデキストリンの含有率は8重量%であった。
<評価>
実施例で得られたポリロタキサン組成物および比較例で得られたポリロタキサンを40℃の恒温槽に保管し、高速液体クロマトグラフ(ウォーターズ社製、「アライアンス2695」)により30日目、および、120日目の遊離シクロデキストリン含有率を測定した。結果を作製直後のものとともに表1に示した。
Figure JPOXMLDOC01-appb-T000001
本発明によれば、保存安定性に優れたポリロタキサン組成物を提供することができる。

Claims (6)

  1. シクロデキストリンと、前記シクロデキストリンに串刺し状に包接されるポリエチレングリコールと、前記ポリエチレングリコールの両末端に配置され前記シクロデキストリンの脱離を防止する封鎖基とを有するポリロタキサン、並びに、ポリフェノール系酸化防止剤を含有する
    ことを特徴とするポリロタキサン組成物。
  2. ポリエチレングリコールの分子量が1000~50万である請求項1記載のポリロタキサン組成物。
  3. シクロデキストリンは、α-シクロデキストリン、β-シクロデキストリン、および、γ-シクロデキストリンからなる群より選ばれる少なくとも1種である請求項1または2記載のポリロタキサン組成物。
  4. ポリロタキサンの包接率が6~60%である請求項1、2または3記載のポリロタキサン組成物。
  5. ポリフェノール系酸化防止剤の含有量が、ポリロタキサンに対して0.001~5重量%である請求項1、2、3または4記載のポリロタキサン組成物。
  6. ポリフェノール系酸化防止剤は、ロズマリン酸、没食子酸、カテキン、エピカテキン、エピガロカテキン、エピカテキンガレート、および、エピガロカテキンガレートからなる群より選ばれる少なくとも1種である請求項1、2、3、4または5記載のポリロタキサン組成物。
     
PCT/JP2011/078024 2011-03-14 2011-12-05 ポリロタキサン組成物 WO2012124219A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180069027.0A CN103403031B (zh) 2011-03-14 2011-12-05 聚轮烷组合物
CA2829857A CA2829857C (en) 2011-03-14 2011-12-05 Polyrotaxane composition
EP11861081.5A EP2687547B1 (en) 2011-03-14 2011-12-05 Polyrotaxane composition
JP2013504518A JP6013319B2 (ja) 2011-03-14 2011-12-05 ポリロタキサン組成物
ES11861081.5T ES2620756T3 (es) 2011-03-14 2011-12-05 Composición de polirotaxano
KR1020137026228A KR101840901B1 (ko) 2011-03-14 2011-12-05 폴리로탁산 조성물
US14/004,855 US9266972B2 (en) 2011-03-14 2011-12-05 Polyrotaxane composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011055504 2011-03-14
JP2011-055503 2011-03-14
JP2011-055504 2011-03-14
JP2011055503 2011-03-14
JP2011239399 2011-10-31
JP2011-239399 2011-10-31

Publications (1)

Publication Number Publication Date
WO2012124219A1 true WO2012124219A1 (ja) 2012-09-20

Family

ID=46830319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078024 WO2012124219A1 (ja) 2011-03-14 2011-12-05 ポリロタキサン組成物

Country Status (8)

Country Link
US (1) US9266972B2 (ja)
EP (1) EP2687547B1 (ja)
JP (1) JP6013319B2 (ja)
KR (1) KR101840901B1 (ja)
CN (1) CN103403031B (ja)
CA (1) CA2829857C (ja)
ES (1) ES2620756T3 (ja)
WO (1) WO2012124219A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093583A (zh) * 2022-06-28 2022-09-23 江苏福基新材料研究院有限公司 一种提高β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯储存时间的处理方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708218B2 (ja) 2015-12-16 2020-06-10 日本電気株式会社 情報処理装置、侵入検知方法及びコンピュータプログラム
CN105695148B (zh) * 2016-02-24 2018-11-02 江阴市佐恩精品衣物洗涤护理有限公司 一种环保型固体清洗剂组合物
US11779653B2 (en) 2017-09-29 2023-10-10 The Regents Of The University Of California Multi-armed polyrotaxane platform for protected nucleic acid delivery
US11230497B2 (en) 2019-04-10 2022-01-25 Saudi Arabian Oil Company Cement additives
CN110527108B (zh) * 2019-08-29 2021-07-27 暨南大学 一种聚轮烷结构no供体材料及其制备方法与应用
US11279864B2 (en) * 2019-10-04 2022-03-22 Saudi Arabian Oil Company Method of application of sliding-ring polymers to enhance elastic properties in oil-well cement
CN113527545B (zh) * 2021-08-19 2022-05-17 北京理工大学 一种具有准确穿嵌量的β-环糊精聚轮烷、制备方法及其应用
US11858039B2 (en) 2022-01-13 2024-01-02 Saudi Arabian Oil Company Direct ink printing of multi-material composite structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052026A1 (ja) 2003-11-28 2005-06-09 The University Of Tokyo ポリロタキサン及びその製造方法
JP2007092024A (ja) * 2005-09-02 2007-04-12 Univ Of Tokyo ポリロタキサンのポリマーブレンド及びその使用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699141B2 (ja) * 1994-09-24 2005-09-28 伸彦 由井 超分子構造の生体内分解性医薬高分子集合体及びその調製方法
DE19545257A1 (de) * 1995-11-24 1997-06-19 Schering Ag Verfahren zur Herstellung von morphologisch einheitlichen Mikrokapseln sowie nach diesem Verfahren hergestellte Mikrokapseln
JP2972861B2 (ja) * 1997-05-08 1999-11-08 北陸先端科学技術大学院大学長 超分子構造の血液適合性材料
US6100329A (en) * 1998-03-12 2000-08-08 Virginia Tech Intellectual Properties, Inc. Reversible, mechanically interlocked polymeric networks which self-assemble
DE60139683D1 (de) * 2000-04-28 2009-10-08 Toudai Tlo Ltd Verbindung enthaltend vernetzte polyrotaxane
CA2503949C (en) * 2002-10-29 2012-10-23 Toray Industries, Inc. Embolization material
WO2005022362A2 (en) * 2003-09-02 2005-03-10 The Regents Of The University Of Michigan Chemical address tags
WO2005023816A2 (en) * 2003-09-04 2005-03-17 Technion Research & Development Foundation Ltd. Synthetic binding pairs comprising cucurbituril derivatives and polyammonium compouds and uses thereof
US7220755B2 (en) * 2003-11-12 2007-05-22 Biosensors International Group, Ltd. 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
US7309500B2 (en) * 2003-12-04 2007-12-18 The Board Of Trustees Of The University Of Illinois Microparticles
FR2886848B1 (fr) * 2005-06-10 2007-10-19 Oreal Procede cosmetique capillaire comprenant une etape d'application d'un polyrotaxane reticule, compositions capillaires comprenant un polyrotaxane reticule et utilisations
JP5145548B2 (ja) 2005-09-02 2013-02-20 国立大学法人 東京大学 ポリロタキサン含有溶液及びその使用
CN101627057B (zh) 2007-03-06 2013-01-16 高级软质材料株式会社 聚轮烷和含有聚轮烷的材料、交联聚轮烷和含有该交联聚轮烷的材料以及它们的制造方法
DE102007055776A1 (de) * 2007-12-12 2009-06-18 Wacker Chemie Ag Cyclodextrin-Silankomplexe
WO2009145073A1 (ja) 2008-05-30 2009-12-03 アドバンスト・ソフトマテリアルズ株式会社 ポリロタキサン、水系ポリロタキサン分散組成物、及びポリロタキサンとポリマーとの架橋体、並びにこれらの製造方法
KR101840505B1 (ko) * 2010-12-16 2018-03-20 스미또모 세이까 가부시키가이샤 정제 폴리로탁산의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052026A1 (ja) 2003-11-28 2005-06-09 The University Of Tokyo ポリロタキサン及びその製造方法
JP2005154675A (ja) 2003-11-28 2005-06-16 Kozo Ito ポリロタキサン及びその製造方法
JP2007092024A (ja) * 2005-09-02 2007-04-12 Univ Of Tokyo ポリロタキサンのポリマーブレンド及びその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2687547A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093583A (zh) * 2022-06-28 2022-09-23 江苏福基新材料研究院有限公司 一种提高β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯储存时间的处理方法
CN115093583B (zh) * 2022-06-28 2023-11-21 江苏福基新材料研究院有限公司 一种提高β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯储存时间的处理方法

Also Published As

Publication number Publication date
US20140058078A1 (en) 2014-02-27
EP2687547A4 (en) 2014-11-26
US9266972B2 (en) 2016-02-23
JP6013319B2 (ja) 2016-10-25
ES2620756T3 (es) 2017-06-29
CA2829857C (en) 2019-04-30
EP2687547A1 (en) 2014-01-22
CN103403031B (zh) 2016-06-08
KR20140011361A (ko) 2014-01-28
JPWO2012124219A1 (ja) 2014-07-17
CN103403031A (zh) 2013-11-20
EP2687547B1 (en) 2017-02-08
CA2829857A1 (en) 2012-09-20
KR101840901B1 (ko) 2018-03-21

Similar Documents

Publication Publication Date Title
JP6013319B2 (ja) ポリロタキサン組成物
JP6013320B2 (ja) 親水性修飾ポリロタキサン組成物
JP6111072B2 (ja) 精製ポリロタキサンの製造方法
KR101817381B1 (ko) 친수성 수식 폴리로탁산의 제조 방법
JP6013318B2 (ja) 粉末状親水性修飾ポリロタキサンの製造方法
JP6013189B2 (ja) 擬ポリロタキサンの製造方法
JP6013190B2 (ja) 擬ポリロタキサンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504518

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2829857

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011861081

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137026228

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004855

Country of ref document: US