WO2012124177A1 - Lithographic printing plate precursor, plate making method thereof and polyvalent isocyanate compound - Google Patents

Lithographic printing plate precursor, plate making method thereof and polyvalent isocyanate compound Download PDF

Info

Publication number
WO2012124177A1
WO2012124177A1 PCT/JP2011/063306 JP2011063306W WO2012124177A1 WO 2012124177 A1 WO2012124177 A1 WO 2012124177A1 JP 2011063306 W JP2011063306 W JP 2011063306W WO 2012124177 A1 WO2012124177 A1 WO 2012124177A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
printing plate
lithographic printing
plate precursor
Prior art date
Application number
PCT/JP2011/063306
Other languages
English (en)
French (fr)
Inventor
Toshihide Aoshima
Noriaki Sato
Mamoru Kuramoto
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to CN201180069244.XA priority Critical patent/CN103430096B/zh
Publication of WO2012124177A1 publication Critical patent/WO2012124177A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/02Cover layers; Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/04Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/10Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by inorganic compounds, e.g. pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/14Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by macromolecular organic compounds, e.g. binder, adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/06Developable by an alkaline solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/08Developable by water or the fountain solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/10Developable by an acidic solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/12Developable by an organic solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/20Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by inorganic additives, e.g. pigments, salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers

Definitions

  • the present invention relates to a lithographic printing plate precursor which is capable of being subjected to a so-called direct plate making, in which the plate making is directly conducted based on digital signals, for example, from a computer using various kinds of lasers, particularly, to a lithographic printing plate precursor which is improved in printing durability, stain resistance and preservation stability, a plate making method thereof, and a polyvalent isocyanate compound.
  • a solid laser, semiconductor laser and gas laser having a large output and a small size, which radiate an ultraviolet ray, visible light or infrared ray having a wavelength from 300 to 1,200 nm, have become easily available, and these lasers are very useful for recording light sources used in the direct plate making based on digital data, for example, from a computer.
  • Various investigations on recording materials sensitive to such various laser beams have been made.
  • a recording material capable of being recorded with infrared laser having a photosensitive wavelength of 760 nm or more has an advantage in that its handling in a bright room is easy, and a typical example thereof includes a radical polymerization type negative recording material described, for example, in JP-A-2004-212558 (the term "JP- A" as used herein means an "unexamined published Japanese patent application”).
  • a step of removing the non-image area by dissolution is indispensable and a post-processing step, for example, washing the printing plate after the development processing with water, treatment of the printing plate after the development processing with a rinse solution containing a surfactant or treatment of the printing plate after the development processing with an oil-desensitizing solution containing gum arabic or a starch derivative, is also necessary.
  • the point that such additional wet treatments are indispensable is a large subject of investigation in hitherto known PS plates. Even when the first half (image-forming process) of plate making process is simplified by the above-described digital processing, the effects due to the simplification is still insufficient as long as the last half (development processing) is the troublesome wet treatment.
  • a method for eliminating the processing step a method referred to as on-press development wherein an exposed printing plate precursor is mounted on a cylinder of a printing machine and the non-image area of the printing plate precursor is removed by supplying dampening water and ink while rotating the cylinder is known.
  • the printing plate precursor is exposed and mounted on a printing machine as it is to complete development processing in a conventional process of printing.
  • a lithographic printing plate precursor having provided on a hydrophilic support an image-recording layer in which fine particles of thermoplastic hydrophobic polymer are dispersed in a hydrophilic binder polymer is proposed (see, for example, Japanese Patent 2938397).
  • the lithographic printing plate precursor is exposed to infrared laser to agglomerate (fuse) the fine particles of thermoplastic hydrophobic polymer by heat generated by light-to-heat conversion thereby forming an image, and mounted on a cylinder of a printing machine to carry out on-press development by supplying at least any one of dampening water and ink. Since the lithographic printing plate precursor has the sensitive zone in an infrared region, it also has the handling property in a bright room.
  • the image formed by the agglomeration (fusion) of the fine particles of thermoplastic hydrophobic polymer is insufficient in strength and has a problem of printing durability as a printing plate.
  • Lithographic printing plate precursors including microcapsules containing a polymerizable compound encapsulated therein in stead of the thermoplastic fine particles are also proposed (see, for example, JP-A-2000-21 1262, JP-A-2001-277740, JP-A-2002-29162, JP-A-2002-46361, JP-A-2002- 137562 and JP-A-2002-326470).
  • it is advantageous that the polymer image formed by a reaction of the polymerizable compound is excellent in the strength in comparison with the image formed by the fusion of the fine particles.
  • An object of the present invention is to provide a lithographic printing plate precursor which is capable of being subjected to a direct plate making based on digital data, for example, from a computer, by image-recording using a solid laser or semiconductor laser radiating an infrared ray and which exhibits high printing durability while maintaining stain resistance and preservation stability, and particularly, to provide a lithographic printing plate precursor capable of undergoing on-press development and a plate making method thereof.
  • the present invention includes the following items.
  • a lithographic printing plate precursor comprising a hydrophilic support and an image-recording layer containing (A) a polymer fine particle, (B) a radical polymerizable compound and (C) an infrared absorbing dye, wherein (A) the polymer fine particle is a polymer fine particle obtained by a reaction between a polyvalent isocyanate compound which is an adduct of a polyhydric phenol compound having two or more hydroxyl groups in its molecule and isophorone diisocyanate and a compound having an active hydrogen atom.
  • R 1 and R 2 each independently represents a hydrogen atom, a methyl group or a cyclohexyl group
  • R represents a hydrogen atom, a methyl group or a group represented by formula (a) shown below
  • R 1 and R 2 have the same meanings as R 1 and R 2 in formula (1) respectively
  • n represents an integer from 0 to 2
  • R 9 represents a hydrogen atom, a methyl group or a cyclohexyl group
  • R 4 represents a methyl group or a group represented by formula (a) shown above
  • R 5 represents a hydrogen atom or a group selected from Group A shown below, in formulae of Group A
  • R 1 and R 2 have the same meanings as R 1 and R 2 in formula (1) respectively:
  • R 6 represents a hydrogen atom, a methyl group a phenyl group or a
  • R and R each independently represents a hydrogen atom, a methyl group or a cyclohexyl group, and m represents 0 or 1.
  • Rn, R ]2 and R )3 each independently represents a hydrogen atom, a methyl group or a cyclohexyl group.
  • Z and Z each independently represents an aromatic ring which may have a substituent or a heteroaromatic ring which may have a substituent
  • R 3 and R 4 each independently represents a hydrocarbon group having 20 or less carbon atoms which may have a substituent
  • R 9 and R 10 each independently represents a hydrogen atom or an alkoxy group which may have a substituent
  • Za " represents a counter anion which is present when neutralization of charge is necessary.
  • lithographic printing plate precursor as described in any one of (1) to (8) above, which is a lithographic printing plate precursor of on-press development type, wherein an unexposed area of the image-recording layer is able to be removed with at least any of dampening water and printing ink.
  • a plate making method comprising exposing imagewise the lithographic printing plate precursor of on-press development type as described in (9) above, mounting it on a cylinder of a printing machine, and removing an unexposed area of the image-recording layer with at least any of dampening water and printing ink.
  • a polyvalent isocyanate compound which is an adduct of isophorone diisocyanate and a compound represented by formula (4) shown below and a molar ratio of the isophorone diisocyanate and the compound represented by formula (4) is from 3 : 1 to 6 : 1 :
  • R 11 , R 12 and R1 3 each independently represents a hydrogen atom, a methyl group or a cyclohexyl group.
  • the functional mechanism of the invention is not quite clear but it is estimated that the polymer fine particle has high organicity and water permeability in the image area decreases, thereby improving printing durability.
  • the lithographic printing plate precursor according to the invention has an image-recording layer on a hydrophilic support. It may have an undercoat layer between the support and the image-recording layer and a protective layer on the image-recording layer, if desired.
  • the protective layer may have a multilayer structure.
  • the lithographic printing plate precursor may have a backcoat layer on the rear side of the support.
  • the present invention can be applied to any lithographic printing plate precursor of plate making system including development using a conventional developer after exposure and of plate making system including on-press development without using a developer after exposure.
  • the lithographic printing plate precursor according to the invention will be described in order below.
  • the image-recording layer according to the invention contains (A) a polymer fine particle, (B) a radical polymerizable compound and (C) an infrared absorbing dye, wherein (A) the polymer fine particle is characterized by obtaining by a reaction between a polyvalent isocyanate compound (hereinafter, also referred to as a "polyvalent isocyanate adduct”) which is an adduct of a polyhydric phenol compound having two or more hydroxyl groups in its molecule and isophorone diisocyanate and a compound having an active hydrogen atom.
  • a polyvalent isocyanate compound hereinafter, also referred to as a "polyvalent isocyanate adduct” which is an adduct of a polyhydric phenol compound having two or more hydroxyl groups in its molecule and isophorone diisocyanate and a compound having an active hydrogen atom.
  • a polymer fine particle according to the invention is a polymer fine particle having a urethane/urea bond or a urethane bond obtained by a reaction between a polyvalent isocyanate compound which is an adduct of a polyhydric phenol compound having two or more hydroxyl groups in its molecule and isophorone diisocyanate and a compound having an active hydrogen atom, for example, water.
  • the polyhydric phenol is a compound having plural phenolic hydroxy groups in its molecule and it is preferably a compound containing plural benzene rings having a phenolic hydroxy group in its molecule.
  • R 1 and R 2 each independently represents a hydrogen atom, a methyl group or a cyclohexyl group
  • R 3 represents a hydrogen atom, a methyl group or a group represented by formula (a) shown below, in formula (a), R 1 and R 2 have the same meanings as R 1 and R 2 in formula (1) respectively
  • n represents an integer from 0 to 2
  • R 9 represents a hydrogen atom, a methyl group or a cyclohexyl group
  • R 4 represents a methyl group or a group represented by formula (a) shown above
  • R 5 represents a hydrogen atom or a group selected from Group A shown below, in formulae of Group A
  • R 1 and R 2 have the same meanings as R 1 and R 2 in formula (1) respectively:
  • R 6 represents a hydrogen atom, a methyl group a phenyl group or a cyclohexyl group
  • R 7 and R 8 each independently represents a hydrogen atom, a methyl group or a cyclohexyl group
  • m represents 0 or 1.
  • a polyhydric phenol compound represented by formula (4) shown below is particularly preferred.
  • R 11 , Ri 2 and R 13 each independently represents a hydrogen atom, a methyl group or a cyclohexyl group.
  • a compound having an (inorganicity)/(organicity) value from 0.3 to 1.0 is preferably used in the invention.
  • the number of (I/O) indicated in the parentheses in the specific examples above means the (inorganicity)/(organicity) value and is obtained by calculation based on Yoshio Koda, Yuuki Gainenzu-Kiso to Oyo (Organic Conceptual Diagram-Fundamental and Application), Sankyo Publishing Co., Ltd. (1984).
  • Increase in the organicity in the (inorganicity)/(organicity) value mainly depends on a number of carbon atoms of an organic compound and the value is calculated one carbon atom as 20.
  • increase in the inorganicity mainly depends on a substituent of organic compound and the value is calculated one hydroxy group as 100 and determined on the basis of effect of the group on boiling point.
  • the (inorganicity)/(organicity) value is 1.0. It can be said that in the polyhydric phenol compounds having the (inorganicity)/(organicity) value in the range described above, a ratio of hydrocarbon is equal to or higher in comparison with phenol.
  • a polymer fine particle obtained by using an isocyanate adduct (polyvalent isocyanate compound) obtained from the polyhydric phenol compound has hydrophobicity and it is estimated that water permeability in the image area is inhibited, thereby improving printing durability.
  • a molar ratio of isophorone diisocyanate and polyhydric phenol compound is preferably from 3 : 1 to 6 : 1, more preferably from 3.5 : 1 to 5.5 : 1, and particularly preferably from 4 : 1 to 5 : 1.
  • the ratio of isophorone diisocyanate and polyhydric phenol compound is not lower than the lower limit of the range described above, viscosity becomes not too high and coarsening of the polymer fine particle is preferably prevented.
  • the ratio of isophorone diisocyanate and polyhydric phenol compound is not higher than the upper limit of the range described above, crosslink density in the polymer fine particle becomes not too low and the effect of improving printing durability preferably further increases.
  • An adduct (polyvalent isocyanate compound) of a polyhydric phenol compound having three or more hydroxyl groups in its molecule represented by formula (1) or (2) described above and isophorone diisocyanate can be obtained, for example, by heating (at 50 to 100°C) the polyhydric phenol compound and isophorone diisocyanate in an organic solvent with stirring, or by heating at a relatively low temperature (at 40 to 70°C) the polyhydric phenol compound and isophorone diisocyanate in an organic solvent while adding a catalyst, for example, stannous octoate.
  • a catalyst for example, stannous octoate.
  • a mole number (number of molecule) of isophorone diisocyanate which is reacted with the polyhydric phenol compound ordinarily from 0.8 to 1.5 times the mole number (number of molecule) of isophorone diisocyanate per mole number of hydroxy group (equivalent of hydroxy group) of the polyhydric phenol compound is used.
  • the polyvalent isocyanate compound obtained by the reaction described above is subjected to dibutyl-ureidation with dibutylamine to determine a molecular weight (as calculated in terms of polystyrene) and a weight average molecular weight thereof is preferably from 1,000 to 40,000, and particularly preferably from 2,000 to 30,000.
  • organic solvent examples include ethyl acetate, chloroform, tetrahydrofuran, methyl ethyl ketone, acetone, acetonitrile and toluene.
  • the polymer fine particle according to the invention is composed of a polymer obtained by a reaction between an isocyanate compound and a compound having an active hydrogen atom and the isocyanate compound includes at least the polyvalent isocyanate compound according to the invention.
  • the polymer fine particle according to the invention is able to increase printing durability without accompanying deterioration of developing property.
  • the polymer fine particle according to the invention can be prepared in the same manner as a heretofore known method for forming microcapsule as described in detail in Asashi Kondo, Microcapsule, The Nikkan Kogyo Shimbun, Ltd. (1970) and Tamotsu Kondo et al., Microcapsule, Sankyo Publishing Co., Ltd. (1977).
  • the polymer fine particle having a polyurethane/polyurea wall or polyurethane wall is synthesized by an interfacial polymerization reaction.
  • a method is heretofore known where a polyfunctional isocyanate compound is added to an organic solvent and the organic phase solution is emulsified in an aqueous solution of water-soluble polymer and then, by adding a catalyst for accelerating polymerization reaction to the aqueous phase or by raising temperature of the emulsion, the polyfunctional isocyanate compound is polymerized with a compound having an active hydrogen atom, for example, water to form a polymer fine particle.
  • a microcapsule having the constituting component of the image-recording layer encapsulated therein can be prepared.
  • a radical polymerizable compound is particularly preferred.
  • the isocyanate compound which is a raw material of the polymer fine particle other polyfunctional isocyanate compound having two or more isocyanate groups in its molecule can be used in combination with the polyvalent isocyanate compound which is an adduct of the polyhydric phenol compound and isophorone diisocyanate according to the invention.
  • the other polyfunctional isocyanate compound having two or more isocyanate groups in its molecule known compounds, for example, a diisocyanate, e.g., xylene diisocyanate or hydrogenated product thereof, hexamethylene diisocyanate, tolylene diisocyanate or hydrogenated product thereof or isophorone diisocyanate are exemplified.
  • a trimer (biuret or isocyanurate) of thereof using the compound described above as a main raw material a polyfunctional compound as an adduct with polyol, for example, trimethylolpropane, a formalin condensate of benzene isocyanate and the like can be used.
  • a polyfunctional compound as an adduct with polyol for example, trimethylolpropane, a formalin condensate of benzene isocyanate and the like
  • xylene diisocyanate, tolylene diisocyanate or isophorone diisocyanate is preferred. These compounds are described in Keiji Iwata ed., Polyurethane Jushi Handbook (Polyurethane Resin Handbook), The Nikkan Kogyo Shimbun, Ltd. (1987).
  • the compound having an active hydrogen atom which reacts to the polyvalent isocyanate compound in order to from a microcapsule wall at the microcapsulation according to the invention water is ordinarily used.
  • a polyol is used as the compound having an active hydrogen atom.
  • the polyol can be used by adding an oil phase constituting a core or an aqueous phase containing a water-soluble polymer compound constituting a dispersion medium.
  • the polyol specifically includes propylene glycol, glycerine and trimethylolpropane.
  • an amine compound for example, diethylenetriamine or tetraethylenepentamine may be used.
  • water-soluble polymer compound for dispersing an oil phase in an aqueous phase in the formation of microcapsule polyvinyl alcohol and a modified product thereof, polyacrylamide and a derivative thereof, an ethylene/vinyl acetate copolymer, a styrene/maleic anhydride copolymer, an ethylene/maleic anhydride copolymer, an isobutylene/maleic anhydride copolymer, polyvinylpyrrolidone, an ethylene/acrylic acid copolymer, a vinyl acetate/acrylic acid copolymer, carboxymethyl cellulose, methyl cellulose, casein, gelatin, a starch derivative, gum arabic and sodium alginate are exemplified.
  • water-soluble polymers those which do not react or hardly react with an isocyanate compound are preferred.
  • a compound having a reactive amino group in its molecular chain for example, gelatin, it is necessary to be modified to lose the reactivity in advance.
  • a surfactant may be used by adding any of an oil phase and an aqueous phase, it is easy to add the aqueous phase because of low solubility in an organic solvent.
  • the amount of the surfactant added is preferably from 0.1 to 5% by weight, particularly preferably from 0.5 to 2% by weight, based on the weight of the oil phase. It is ordinarily thought that as the surfactant for use in emulsification and dispersion, a surfactant having a relatively long-chain hydrophobic group is advantageous (see Ichiro Nishi et al., Kaimen Kasseizai Binran (Surfactant Handbook), Sangyotosho Co., Ltd. (1980)). Examples of such a surfactant used include an alkali metal salt of alkylsulfonic acid or alkylbenzenesulfonic acid.
  • a compound for example, a formalin condensate of an aromatic sulfonate or a formalin condensate of an aromatic carboxylate can also be used as the surfactant (emulsifying auxiliary).
  • a compound represented by formula shown below is exemplified. The compound is described in JP-A-6-297856.
  • R represents an alkyl group having from 1 to 4 carbon atoms
  • X represents S0 3 " or COO "
  • M represents Na + or K +
  • q represents an integer from 1 to 20.
  • alkylglucoside compound can also be used. Specifically, a compound represented by formula shown below is exemplified.
  • R represents an alkyl group having from 4 to 18 carbon atoms
  • q represents an integer from 0 to 2.
  • the surfactants may be used individually or in combination of two or more thereof in the invention.
  • an embodiment of a reactive polymer fine particle having a radical polymerizable group on its surface is particularly preferred from the standpoint of image-forming sensitivity and printing durability.
  • a method of introducing a radical polymerizable group into a particle-forming material is described below.
  • X represents a dicyclopentadienyl residue), but the invention should not be construed as being limited thereto.
  • the compound containing a radical polymerizable group for use in the synthesis of the polymer fine particle is preferably a compound represented by formula (b) shown below.
  • L 1 represents an m+n value connecting group
  • m and n each independently represents an integer from 1 to 100
  • Lc represents a monovalent ethylenically unsaturated group
  • Z represents a nucleophilic group
  • L l is preferably a divalent or higher valent aliphatic group, a divalent or higher valent aromatic group, a divalent or higher valent heterocyclic group, -0-, -S-, -NH-, -N ⁇ , -CO-, -SO-, -S0 2 - or a combination of these groups.
  • n and n each independently represents preferably an integer from 1 to 50, more preferably an integer from 1 to 20, still more preferably an integer from 1 to 10, and most preferably an integer from 1 to 5. Among them, cases where m is an integer from 1 to 3 and n is 1 are particularly preferred.
  • the monovalent ethylenically unsaturated group represented by Lc includes an allyl group, a vinyl group, an acryloyl group and a methacryloyl group.
  • Z is preferably -OH, -SH or -NH 2 , more preferably -OH or -SH, and most preferably
  • the compounds containing a radical polymerizable group may be used in combination of two or more thereof.
  • An adduct with the polyvalent isocyanate compound can be formed using other polyol together with the compound containing a radical polymerizable group.
  • an adduct of the compound containing a radical polymerizable group and the polyvalent isocyanate compound can be used together with an adduct of other polyol compound and the polyvalent isocyanate compound.
  • an adduct of other polyol compound and the polyvalent isocyanate compound may be subjected to a reaction with the compound containing a radical polymerizable group to synthesize an adduct of the compound containing a radical polymerizable group (modification of adduct).
  • polymer fine particles an embodiment of a polymer fine particle having a hydrophilic polymer that functions as a protective colloid in its side chain is particularly preferred from the standpoint of developing property.
  • the polymer fine particle having a hydrophilic polymer in its side chain may be prepared by dissolving the polyvalent isocyanate compound in a solvent immiscible with water, emulsifying dispersing the resulting solution in an aqueous solution containing a hydrophilic polymer having at least one active hydrogen group capable of reacting with an isocyanate group at its one terminal, and then removing the solvent from oil droplets in the emulsified dispersion, or may be prepared by reacting the polyvalent isocyanate compound with a hydrophilic polymer having at least one active hydrogen group at its one terminal, dissolving the resulting compound in a solvent immiscible with water, emulsifying dispersing the solution in an aqueous solution, and then removing the solvent from oil droplets in the emulsified dispersion.
  • the hydrophilic polymer having at least one active hydrogen group capable of reacting with an isocyanate group at its one terminal is described below.
  • the active hydrogen group capable of reacting with an isocyanate group includes, for example, a hydroxy group, an amino group, a mercapto group and a carboxyl group. In particular, a hydroxy group or an amino group is preferred.
  • the hydrophilic polymer having at least one active hydrogen group at its one terminal is not particularly restricted and includes, for example, a compound containing a polyoxyalkylene chain having an active hydrogen group at its one terminal.
  • a weight average molecular weight (Mw) of the hydrophilic polymer is preferably from 300 to 500,000, and more preferably from 500 to 100,000.
  • Mw is in a range from 300 to 500,000
  • the hydrophilic polymer functions sufficiently as a protective colloid, ensures dispersion stability of the polymer fine particle, and also achieves sufficiently hydrophilicity on the surface.
  • hydrophilic polymer examples include, as a compound containing a polyoxyalkylene chain, for example, polyethylene oxide and an ethylene oxide-propylene oxide copolymer.
  • the hydrophilic polymer can be synthesized, for example, by conducting ring-opening polymerization of a cyclic compound, for example, ethylene oxide or propylene oxide using an alcohol, an alkoxide, a carboxylic acid, a carboxylate or the like as a polymerization initiating terminal, and converting the polymerization initiating terminal to a hydroxy group or an amino group which is an active hydrogen group by a hitherto known reaction (for example, hydrolysis reaction or reduction reaction).
  • a polyether having an active hydrogen group at its one terminal can be utilized.
  • a monoether of polyethylene oxide including as the monoether, for example, monomethyl ether or monoethyl ether
  • a monoester of polyethylene oxide including as the monoester, for example, monoacetic acid ester or mono(meth)acrylic acid ester
  • X represents a connecting group.
  • m represents 0 or 1.
  • A represents an arylene group or an alkylene group.
  • Y represents an amino group or a hydroxy group.
  • the arylene group represented by A is preferably an arylene group having a total number of carbon atoms from 6 to 30 which may have a substituent, and particularly preferably an arylene group having a total number of carbon atoms from 6 to 20.
  • the substituent for the substituted arylene group preferably includes a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group and a cyano group, and particularly preferably includes an alkyl group and an alkoxy group.
  • Specific examples of the arylene group include a phenylene group, a biphenylene group, a naphthylene group, a tolylene group and a (methoxy)phenylene group.
  • the alkylene group represented by A is preferably an alkylene group having a total number of carbon atoms from 1 to 30, and particularly preferably an alkylene group having a total number of carbon atoms from 1 to 20.
  • Specific examples of the alkylene group include a methylene group, an ethylene group, a propylene group and a tetramethylene group.
  • specific examples of the group represented by -(X) m -A-Y include an aminoethyl group, an aminopropyl group, a 4-aminobenzoyl group, a 3-aminobenzoyl group, a 4-aminobenzenesulfonyl group, an aminoacetyl group, an aminoethylsulfonyl group, a hydroxyethyl group, a hydroxypropyl group, a 4-hydroxybenzoyl group, a 3-hydroxybenzoyl group, a 4-hydroxybenzenesulfonyl group, a hydroxyacetyl group and a hydroxyethylsulfonyl group.
  • L represents an alkylene group.
  • the alkylene group represented by L is preferably an alkylene group having a total number of carbon atoms from 2 to 20 which may have a substituent or may have a branched structure, and particularly preferably an alkylene group having a total number of carbon atoms from 2 to 10.
  • the substituent for the substituted alkylene group preferably includes an aryl group, an alkenyl group, an alkoxy group and an acyl group, and particularly preferably includes an aryl group.
  • alkylene group examples include an ethylene group, a propylene group, a tetramethylene group, a phenylethylene group, a cyclohexylene group, a vinylethylene group and a phenoxymethylethylene group, particularly preferably include an ethylene group and a propylene group, and most preferably include an ethylene group.
  • Ls are particularly preferably the same.
  • the polyether having such a repeating unit include polyethylene oxide, polypropylene oxide, polytetramethylene oxide, polystyrene oxide, polycyclohexylene oxide, a polyethylene oxide-polypropylene oxide block copolymer and a polyethylene oxide-polypropylene oxide random copolymer.
  • polyethylene oxide, polypropylene oxide and a polyethylene oxide-polypropylene oxide block copolymer are preferred, and polyethylene oxide is most preferred.
  • R represents an organic group which does not have an active hydrogen atom.
  • the organic group represented by R is not particularly restricted as long as it is an organic group which does not have an active hydrogen atom reacting with an isocyanate group.
  • the organic group preferably includes an alkyl group, an aryl group and an acyl group, and more preferably includes an alkyl group, an aryl group and an acyl group.
  • the alkyl group represented by R is preferably an alkyl group having a total number of carbon atoms from 1 to 30, and particularly preferably an alkyl group having a total number of carbon atoms from 1 to 20.
  • Specific examples of the alkyl group include a methyl group, an ethyl group, a butyl group, an isopropyl group, a benzyl group, an allyl group, an oleyl group and methoxyethyl group, and most preferably include a methyl group.
  • the aryl group represented by R is preferably an aryl group having a total number of carbon atoms from 6 to 30, and particularly preferably an aryl group having a total number of carbon atoms from 6 to 20.
  • Specific examples of the aryl group include a phenyl group, a nonylphenyl group, an octylphenyl group and a methoxyphenyl group.
  • the acyl group represented by R may be an aliphatic acyl group or an aromatic acyl group, may have a substituent, or may have a branched structure, and is preferably an acyl group having a total number of carbon atoms from 2 to 30, and particularly preferably an acyl group having a total number of carbon atoms from 2 to 20.
  • Specific examples of the acyl group include an acetyl group, a benzoyl group, a (meth)acryloyl group, an oleoyl group, a lauroyl group, a stearoyl group and a methoxybenzoyl group.
  • n represents an average addition mole number of polyether group from 10 to 120, preferably from 12 to 100.
  • polyether derivative having a terminal amino group or a terminal hydroxy group represented by formula (c) are set forth below, but the invention should not be construed as being limited thereto.
  • the average particle size of the polymer fine particle is preferably from 0.01 to 3.0 um, more preferably from 0.05 to 2.0 um, and particularly preferably from 0.10 to 1.0 um. In the range described above, good resolution and time lapse stability are obtained.
  • the content of the polymer fine particle is preferably in a range from 5 to 90% by weight based on the total solid content of the image-recording layer.
  • the radical polymerizable compound for use in the image-recording layer according to the invention is an addition-polymerizable compound having at least one ethylenically unsaturated double bond and it is selected from compounds having at least one, preferably two or more, terminal ethylenically unsaturated double bonds.
  • the polymerizable compound has a chemical form, for example, a monomer, a prepolymer, specifically, a dimer, a trimer or an oligomer, or a mixture thereof.
  • the monomer examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid or maleic acid) and esters or amides thereof.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid or maleic acid
  • esters of an unsaturated carboxylic acid with a polyhydric alcohol compound and amides of an unsaturated carboxylic acid with a polyvalent amine compound are used.
  • An addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent, for example, a hydroxy group, an amino group or a mercapto group, with a monofunctional or polyfunctional isocyanate or epoxy compound, or a dehydration condensation reaction product of the unsaturated carboxylic acid ester or amide with a monofunctional or polyfunctional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent for example, an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol, or a substitution reaction product of an unsaturated carboxylic acid ester or amide having a releasable substituent, for example, a halogen atom or a tosyloxy group with a monofunctional or polyfunctional alcohol, amine or thiol is also preferably used.
  • JP-T-2006-508380 the term "JP-T" as used herein means a published Japanese translation of a PCT patent application
  • JP-A-2002-287344 JP-A-2008-256850
  • JP-A-2001-342222 JP-A-9- 179296
  • JP-A-9- 179297 JP-A-9- 179298
  • JP-A-2004-294935 JP-A-2006-243493
  • JP-A-2002-275129 JP-A-2003-64130, JP-A-2003-280187 and JP-A- 10-333321.
  • the monomer which is an ester of a polyhydric alcohol compound with an unsaturated carboxylic acid
  • an acrylic acid ester for example, ethylene glycol diacrylate, 1,3-butanediol diacrylate, tetramethylene glycol diacrylate, propylene glycol diacrylate, trimethylolpropane triacrylate, hexanediol diacrylate, tetraethylene glycol diacrylate, pentaerythritol tetraacrylate, sorbitol triacrylate, isocyanuric acid ethylene oxide (EO) modified triacrylate and polyester acrylate oligomer.
  • EO isocyanuric acid ethylene oxide
  • methacrylic acid ester for example, tetramethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, pentaerythritol trimethacrylate,
  • bis[p-(methacryloxyethoxy)phenyl]dimethylmethane are exemplified.
  • Specific examples of the monomer, which is an amide of a polyvalent amine compound with an unsaturated carboxylic acid include methylene bisacrylamide, methylene bismethacrylamide, 1,6-hexamethylene bisacrylamide, 1,6-hexamethylene bismethacrylamide, diethylenetriamine trisacrylamide, xylylene bisacrylamide and xylylene bismethacrylamide.
  • Urethane type addition-polymerizable compounds produced using an addition reaction between an isocyanate and a hydroxy group are also preferably used and specific examples thereof include vinylurethane compounds having two or more polymenzable vinyl groups per molecule obtained by adding a vinyl monomer containing a hydroxy group represented by formula (d) shown below to a polyisocyanate compound having two or more isocyanate groups per molecule, described in JP-B-48-41708 (the term "JP-B" as used herein means an "examined Japanese patent publication").
  • R 4 and R 5 each independently represents H or CH 3 .
  • urethane acrylates as described in JP-A-51-37193, JP-B-2-32293, JP-B-2- 16765, JP-A-2003-344997 and JP-A-2006-65210, urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56- 17654, JP-B-62-39417, JP-B-62-39418, JP-A-2000-25021 1 and JP-A-2007-94138, and urethane compounds having a hydrophilic group described in U.S. Patent 7,153,632, JP-T-8-505958, JP-A-2007-293221 and JP-A-2007-293223 are preferably used.
  • an isocyanuric acid ethyleneoxide-modified acrylate for example, tris(acryloyloxyethyl) isocyanurate or bis(acryloyloxyethyl) hydroxyethyl isocyanurate is particularly preferred from the standpoint of excellent balance between hydrophilicity relating to the on-press development property and polymerization ability relating to the printing durability.
  • the radical polymerizable compound is used preferably in a range from 5 to 75% by weight, more preferably in a range from 10 to 70% by weight, particularly preferably in a range from 15 to 60% by weight, based on the total solid content of the image-recording layer.
  • the infrared absorbing dye has a function of converting the infrared ray absorbed to heat and a function of being excited by the infrared ray to perform electron transfer and/or energy transfer to a radical polymerization initiator described hereinafter.
  • the infrared absorbing dye for use in the invention is preferably a dye having an absorption maximum in a wavelength range from 760 to 1,200 nm.
  • the dye includes azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squarylium dyes, pyrylium salts and metal thiolate complexes.
  • cyanine dyes cyanine dyes, squarylium dyes, pyrylium dyes, nickel thiolate complexes and indolenine cyanine dyes are particularly preferred.
  • the cyanine dyes and indolenine cyanine dyes are more preferred.
  • a cyanine dye represented by formula (e) shown below is exemplified.
  • X 1 represents a hydrogen atom, a halogen atom, -N(R 9 )(R 10 ), -X 2 -jJ or a group shown below.
  • R 9 and R 10 which may be the same or different, each represents an aryl group having from 6 to 10 carbon atoms, which may have a substituent, an alkyl group having from 1 to 8 carbon atoms or a hydrogen atom or R 9 and R 10 may be combined with each other to from a ring, and preferably represents a phenyl group (-NPh 2 ).
  • X 2 represents an oxygen atom or a sulfur atom
  • L 1 represents a hydrocarbon group having from 1 to 12 carbon atoms, a heteroaryl group or a hydrocarbon group having from 1 to 12 carbon atoms and containing a hetero atom.
  • hetero atom as used herein means a nitrogen atom, a sulfur atom, an oxygen atom, a halogen atom or a selenium atom.
  • Xa has the same meaning as Za " defined hereinafter, and R a represents a hydrogen atom or a substituent selected from an alkyl group, an aryl group, a substituted or unsubstituted amino group and a halogen atom.
  • R and R each independently represents a hydrocarbon group having from 1 to 12 carbon atoms.
  • R 1 and R 2 each represents a hydrocarbon group having two or more carbon atoms.
  • R 1 and R 2 may be combined with each other to form a ring, and in case of forming the ring, to form a 5-membered ring or 6-membered ring is particularly preferred.
  • Ar 1 and Ar 2 which may be the same or different, each represents an aryl group which may have a substituent.
  • the aryl group include a benzene ring group and a naphthalene ring group.
  • substituent include a hydrocarbon group having 12 or less carbon atoms, a halogen atom and an alkoxy group having 12 or less carbon atoms.
  • ⁇ ' and Y which may be the same or different, each represents a sulfur atom or a dialkylmethylene group having 12 or less carbon atoms.
  • R 3 and R 4 which may be the same or different, each represents a hydrocarbon group having 20 or less carbon atoms, which may have a substituent.
  • the substituent include an alkoxy group having 12 or less carbon atoms, a carboxyl group and a sulfo group.
  • R 5 , R 6 , R 7 and R 8 which may be the same or different, each represents a hydrogen atom or a hydrocarbon group having 12 or less carbon atoms. In view of the availability of raw materials, a hydrogen atom is preferred.
  • Za " represents a counter anion.
  • Za " is not necessary when the cyanine dye represented by formula (e) has an anionic substituent in the structure thereof and neutralization of charge is not needed.
  • the counter ion for Za " include a halide ion, a perchlorate ion, a tetrafluoroborate ion, a hexafluorophosphate ion and a sulfonate ion, and particularly preferable examples thereof include a perchlorate ion, a hexafluorophosphate ion and an arylsulfonate ion, in view of the preservation stability of a coating solution for image-recording layer.
  • An infrared absorbing dye more preferably used in the invention includes a cyanine dye represented by formula (3) shown below.
  • Z 1 and Z 2 each independently represents an aromatic ring which may have a substituent or a heteroaromatic ring which may have a substituent.
  • the aromatic ring include a benzene ring and a naphthalene ring.
  • the substituent include a hydrocarbon group having 12 or less carbon atoms, a halogen atom and an alkoxy group having 12 or less carbon atoms, and a hydrocarbon group having 12 or less carbon atoms or an alkoxy group having 12 or less carbon atoms is most preferred.
  • R 3 and R 4 each independently represents a hydrocarbon group having 20 or less carbon atoms which may have a substituent.
  • substituents include an alkoxy group having 12 or less carbon atoms, a carboxyl group and a sulfo group.
  • R 9 and R 10 each independently represents a hydrogen atom or an alkoxy group which may have a substituent.
  • Za- represents a counter anion which is present when neutralization of charge is necessary.
  • the counter ion for Za- include a halide ion, a perchlorate ion, a tetrafluoroborate ion, a hexafluorophosphate ion and a sulfonate ion, and particularly preferable examples thereof include a perchlorate ion, a hexafluorophosphate ion and an arylsulfonate ion in view of the preservation stability of a coating solution for image-recording layer.
  • cyanine dye represented by formula (e) which can be preferably used in the invention, include compounds described in Paragraph Nos. [0017] to [0019] of JP-A-2001 -133969, Paragraph Nos. [0016] to [0021] of JP-A-2002-23360 and Paragraph Nos.
  • JP-A-2002-40638 preferably compounds described in Paragraph Nos. [0034] to [0041] of JP-A-2002-278057 and Paragraph Nos. [0080] to [0086] of JP-A-2008-195018, and most preferably compounds described in Paragraph Nos. [0035] to [0043] of JP-A-2007-90850.
  • the infrared absorbing dyes may be used only one kind or in combination of two or more kinds thereof and it may also be used together with an infrared absorbing pigment other than the infrared absorbing dye.
  • an infrared absorbing pigment other than the infrared absorbing dye.
  • the pigment compounds described in Paragraph Nos. [0072] to [0076] of JP-A-2008-195018 are preferred.
  • the content of the infrared absorbing dye in the image-recording layer according to the invention is preferably from 0.1 to 10.0% by weight, more preferably from 0.5 to 5.0% by weight, based on the total solid content of the image-recording layer.
  • the image-recording layer according to the invention may contain a known radical polymerization initiator.
  • the radical polymerization initiators include, for example, (a) an organic halide, (b) a carbonyl compound, (c) an azo compound, (d) an organic peroxide, (e) a metallocene compound, (f) an azido compound, (g) a hexaarylbiimidazole compound, (h) an organic borate compound, (i) a disulfone compound, (j) an oxime ester compound and (k) an onium salt compound.
  • a sulfonium salt, an iodonium salt, a diazonium salt, an azinium salt, an oxime compound and a triazine compound are exemplified.
  • the radical polymerization initiator can be added to the image-recording layer preferably in an amount from 0.1 to 50% by weight, more preferably from 0.5 to 30% by weight, particularly preferably from 0.8 to 20% by weight, based on the total solid content of the image-recording layer.
  • a binder polymer can be used for the purpose of improving film strength of the image-recording layer.
  • the binder polymer which can be used in the invention can be selected from those heretofore known without restriction, and polymers having a film-forming property are preferred. Among them, acrylic resins, polyvinyl acetal resins and polyurethane resins are preferred.
  • a polymer having a crosslinkable functional group for improving film strength of the image area in its main chain or side chain, preferably in its side chain, as described in JP-A-2008-195018 is exemplified. Due to the crosslinkable functional group, crosslinkage is formed between the polymer molecules to facilitate curing.
  • an ethylenically unsaturated group for example, a (meth)acryl group, a vinyl group, an allyl group or a styryl group or an epoxy group is preferred.
  • the crosslinkable functional group can be introduced into the polymer by a polymer reaction or copolymerization. For instance, a reaction between an acrylic polymer or polyurethane having a carboxyl group in its side chain and glycidyl methacrylate or a reaction between a polymer having an epoxy group and a carboxylic acid having an ethylenically unsaturated group, for example, methacrylic acid can be utilized.
  • the content of the crosslinkable functional group in the binder polymer is preferably from 0.1 to 10.0 mmol, more preferably from 0.25 to 7.0 mmol, most preferably from 0.5 to 5.5 mmol, based on 1 g of the binder polymer.
  • the binder polymer for use in the invention further contains a hydrophilic group.
  • the hydrophilic group contributes to impart the on-press development property to the image-recording layer.
  • coexistence of the crosslinkable functional group and the hydrophilic group makes it possible to maintain good balance between printing durability and developing property.
  • the hydrophilic group includes, for example, a hydroxy group, a carboxyl group, an alkylene oxide structure, an amino group, an ammonium group, an amido group, a sulfo group and a phosphoric acid group.
  • an alkylene oxide structure containing from 1 to 9 alkylene oxide units having 2 or 3 carbon atoms is preferred.
  • a monomer having the hydrophilic group may be copolymerized.
  • an oleophilic group for example, an alkyl group, an aryl group, an aralkyl group or an alkenyl group may be introduced into the binder polymer according to the invention.
  • an oleophilic group-containing monomer for example, an alkyl methacrylate may be copolymerized.
  • the weight average molecular weight (Mw) of the binder polymer according to the invention is preferably 2,000 or more, more preferably 5,000 or more, and still more preferably from 10,000 to 300,000.
  • the image-recording layer according to the invention may further contain the components shown below, if desired.
  • the image-recording layer according to the invention may contain a hydrophilic low molecular weight compound in order to improve the on-press development property without accompanying the decrease in the printing durability.
  • the hydrophilic low molecular weight compound includes a water-soluble organic compound, for example, a glycol compound, e.g., ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol or tripropylene glycol, or an ether or ester derivative thereof, a polyol compound, e.g., glycerine, pentaerythritol or tris(2-hydroxyethyl) isocyanurate, an organic amine compound, e.g., triethanol amine, diethanol amine or monoethanol amine, or a salt thereof, an organic sulfonic acid compound, e.g., an alkyl sulfonic acid, toluene sulfonic acid or benzene sulfonic acid, or a salt thereof, an organic sulfamic acid compound, e.g., an alkyl sulfamic acid, or a salt thereof, an organic sulfuric acid compound
  • At least one compound selected from a polyol compound, an organic sulfate compound, an organic sulfonate compound and a betaine compound into the image-recording layer.
  • organic sulfonate compound examples include an alkylsulfonate, for example, sodium n-butylsulfonate, sodium n-hexylsulfonate, sodium 2-ethylhexylsulfonate, sodium cyclohexylsulfonate or sodium n-octylsulfonate; an alkylsulfonate containing an ethylene oxide chain, for example, sodium 5,8,1 1-trioxapentadecane-l -sulfonate, sodium 5,8,11-trioxaheptadecane-l -sulfonate, sodium 13-ethyl-5,8,l l-trioxaheptadecane-l -sulfonate or sodium 5,8,11,14-tetraoxatetracosane-l -sulfonate; an arylsulfonate, for example, sodium benzenesulfonate, sodium sodium
  • the organic sulfate compound includes a sulfate of alkyl, alkenyl, alkynyl, aryl or heterocyclic monoether of polyethylene oxide.
  • the number of ethylene oxide unit is preferably from 1 to 4.
  • the salt is preferably a sodium salt, a potassium salt or a lithium salt. Specific examples thereof include compounds described in Paragraph Nos. [0034] to [0038] of JP-A-2007-276454.
  • betaine compound a compound wherein a number of carbon atoms included in a hydrocarbon substituent on the nitrogen atom is from 1 to 5 is preferred. Specific examples thereof include trimethylammonium acetate, dimethylpropylammonium acetate,
  • the hydrophilic low molecular weight compound has a small structure of hydrophobic portion and almost no surface active function, degradations of the hydrophobicity and film strength in the image area due to penetration of dampening water into the exposed area (image area) of the image-recording layer are prevented and thus, the ink receptive-property and printing durability of the image-recording layer can be preferably maintained.
  • the amount of the hydrophilic low molecular weight compound added to the image-recording layer is preferably from 0.5 to 20% by weight, more preferably from 1 to 15% by weight, still more preferably from 2 to 10% by weight, based on the total solid content of the image-recording layer. In the range described above, good on-press development property and printing durability are obtained.
  • hydrophilic low molecular weight compounds may be used individually or as a mixture of two or more thereof.
  • an oil-sensitizing agent for example, a phosphonium compound, a nitrogen-containing low molecular weight compound or an ammonium group-containing polymer can be used in the image-recording layer.
  • the oil-sensitizing agent functions as a surface covering agent of the inorganic stratiform compound and prevents deterioration of the ink-receptive property during printing due to the inorganic stratiform compound.
  • phosphonium compounds described in JP-A-2006-297907 and JP-A-2007-50660 are exemplified.
  • Specific examples of the phosphonium compound include tetrabutylphosphonium iodide, butyltriphenylphosphonium bromide, tetraphenylphosphonium bromide, 1 ,4-bis(triphenylphosphonio)butane
  • an amine salt and a quaternary ammonium salt are exemplified.
  • an imidazolinium salt, a benzimidazolinium salt, a pyridinium salt and a quinolinium salt are exemplified.
  • the quaternary ammonium salt and pyridinium salt are preferably used.
  • the nitrogen-containing low molecular weight compound include tetramethylammonium hexafluorophosphate, tetrabutylammonium hexafluorophosphate, dodecyltrimethylammonium p-toluenesulfonate, benzyltriethylammonium hexafluorophosphate, benzyldimethyloctylammonium hexafluorophosphate, benzyldimethyldodecylammonium hexafluorophosphate and compounds described in Paragraph Nos. [0021] to [0037] of JP-A-2008-284858 and Paragraph Nos. [0030] to [0057] of JP-A-2009-90645.
  • the ammonium group-containing polymer may be any polymer containing an ammonium group in its structure and is preferably a polymer containing from 5 to 80% by mole of (meth)acrylate having an ammonium group in its side chain as a copolymerization component. Specific examples thereof include polymers described in Paragraph Nos. [0089] to [0105] of JP-A-2009-208458.
  • the ammonium group-containing polymer its reduced specific viscosity value (unit: ml/g) determined according to the measuring method described below is preferably from 5 to 120, more preferably from 10 to 110, particularly preferably from 15 to 100.
  • the reduced specific viscosity value described above is calculated in terms of weight average molecular weight (Mw), from 10,000 to 150,000 is preferred, from 17,000 to 140,000 is more preferred, and 20,000 to 130,000 is particularly preferred.
  • ammonium group-containing polymer Specific examples of the ammonium group-containing polymer are set forth below.
  • the content of the oil-sensitizing agent is preferably from 0.01 to 30.0% by weight, more preferably from 0.1 to 15.0% by weight, still more preferably from 1 to 10% by weight, based on the total solid content of the image-recording layer.
  • a surfactant for example, a coloring agent, a print-out agent, a polymerization inhibitor, a higher fatty acid derivative, a plasticizer, an inorganic fine particle, an inorganic stratiform compound, a sensitizing auxiliary or a chain transfer agent may be added to the image-recording layer.
  • a surfactant for example, compounds and amounts added thereof described, for example, in Paragraph Nos. [0114] to [0159] of JP-A-2008-284817, Paragraph Nos. [0023] to [0027] of JP-A-2006-91479 and Paragraph No. [0060] of U.S. Patent Publication No. 2008/031 1520 are preferably used.
  • the image-recording layer according to the invention is formed by dispersing or dissolving each of the necessary constituting components described above in a solvent to prepare a coating solution and coating the solution on a support by a known method, for example, bar coater coating and drying as described in Paragraph Nos. [0142] to [0143] of JP-A-2008-195018.
  • the coating amount (solid content) of the image-recording layer formed on a support after coating and drying may be varied according to the intended purpose but is in general preferably from 0.3 to 3.0 g/m 2 . In the range described above, good sensitivity and good film property of the image-recording layer can be obtained.
  • an undercoat layer (also referred to as an intermediate layer) is preferably provided between the image-recording layer and the support.
  • the undercoat layer strengthens adhesion between the support and the image-recording layer in the exposed area and makes removal of the image-recording layer from the support easy in the unexposed area, thereby contributing improvement in the developing property without accompanying degradation of the printing durability. Further, it is advantageous that in the case of infrared laser exposure, since the undercoat layer acts as a heat insulating layer, decrease in sensitivity due to diffusion of heat generated upon the exposure into the support is prevented.
  • a compound having an acid group for example, a phosphonic acid, a phosphoric acid or a sulfonic acid is preferably used.
  • a compound having an adsorbing group capable of adsorbing to a surface of support and a crosslinkable group for improving an adhesion property to the image-recording layer is preferred.
  • the compound may be a low molecular weight compound or a polymer compound. The compounds may be used in mixture of two or more thereof, if desired.
  • a copolymer of a monomer having an adsorbing group, a monomer having a hydrophilic group and a monomer having a crosslinkable group is preferred.
  • adsorbing group capable of adsorbing to a surface of support a phenolic hydroxy group, a carboxyl group, -PO 3 H 2 , -OPO 3 H 2 , -CONHSO 2 -, -SO 2 NHSO 2 - or -COCH 2 COCH 3 is preferred.
  • a hydrophilic group a sulfo group is preferred.
  • the crosslinkable group for example, a methacryl group or an allyl group is preferred.
  • the polymer compound may contain a crosslinkable group introduced by a salt formation between a polar substituent of the polymer compound and a compound containing a substituent having a counter charge to the polar substituent of the polymer compound and an ethylenically unsaturated bond and also may be further copolymerized with a monomer other than those described above, preferably a hydrophilic monomer.
  • a silane coupling agent having an addition-polymerizable ethylenic double bond reactive group described in JP-A- 10-282679 and a phosphorus compound having an ethylenic double bond reactive group described in JP-A-2-304441 are preferably exemplified.
  • Low molecular weight compounds or polymer compounds having a crosslinkable group (preferably an ethylenically unsaturated bond group), a functional group capable of interacting with a surface of support and a hydrophilic group described in JP-A-2005-238816, JP-A-2005- 125749, JP-A-2006-239867 and JP-A-2006-215263 are also preferably used.
  • Polymer compounds having an adsorbing group capable of adsorbing to a surface of support, a hydrophilic group and a crosslinkable group described in JP-A-2005- 125749 and JP-A-2006-188038 are more preferred.
  • the content of the unsaturated double bond in the polymer compound for undercoat layer is preferably from 0.1 to 10.0 mmol, most preferably from 0.2 to 5.5 mmol, based on 1 g of the polymer compound.
  • the weight average molecular weight of the polymer compound for undercoat layer is preferably 5,000 or more, and more preferably from 10,000 to 300,000.
  • the undercoat layer according to the invention may contain a chelating agent, a secondary or tertiary amine, a polymerization inhibitor or a compound containing an amino group or a functional group having polymerization inhibition ability and a group capable of interacting with a surface of aluminum support (for example, l,4-diazabicyclo[2,2,2]octane (DABCO), 2,3,5,6-tetrahydroxy-p-quinone, chloranil, sulfophthalic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid or hydroxyethyliminodiacetic acid) in addition to the compound for the undercoat layer described above in order to prevent the occurrence of stain due to preservation of the lithographic printing plate precursor.
  • a chelating agent for example, l,4-diazabicyclo[2,2,2]octane (DABCO), 2,3,5,6-tetrahydroxy-p
  • the undercoat layer is coated according to a known method.
  • the coating amount (solid content) of the undercoat layer is preferably from 0.1 to 100 mg/m 2 , and more preferably from 1 to 30 mg/m 2 .
  • a known support is used.
  • an aluminum plate subjected to roughening treatment and anodizing treatment according to a known method is preferred.
  • an enlarging treatment or a sealing treatment of micropores of the anodized film described in JP-A-2001-253181 and JP-A-2001-322365 or a surface hydrophilizing treatment for example, with an alkali metal silicate as described in U.S. Patents 2,714,066, 3,181,461 , 3,280,734 and 3,902,734 or polyvinyl phosphonic acid as described in U.S. Patents 3,276,868, 4,153,461 and 4,689,272 may be appropriately selected and applied to the aluminum plate, if desired.
  • the support preferably has a center line average roughness from 0.10 to 1.2 ⁇ .
  • the support according to the invention may have a backcoat layer containing an organic polymer compound described in JP-A-5-45885 or an alkoxy compound of silicon described in JP-A-6-35174, provided on the back surface thereof, if desired.
  • a protective layer In the lithographic printing plate precursor according to the invention, it is preferred to provide a protective layer (overcoat layer) on the image-recording layer.
  • the protective layer has a function for preventing, for example, occurrence of scratch in the image-recording layer or ablation caused by exposure with a high illuminance laser beam, in addition to the function for restraining an inhibition reaction against the image formation by means of oxygen blocking.
  • any water-soluble polymer and water-insoluble polymer can be appropriately selected to use.
  • the polymers may be used in mixture of two or more thereof, if desired.
  • polyvinyl alcohol, a modified polyvinyl alcohol, polyvinyl pyrrolidone, a water-soluble cellulose derivative and poly(meth)acrylonitrile are exemplified.
  • modified polyvinyl alcohol an acid-modified polyvinyl alcohol having a carboxyl group or a sulfo group is preferably used.
  • modified polyvinyl alcohols described in JP-A-2005-250216 and JP-A-2006-259137 are preferably exemplified.
  • the protective layer prefferably contains an inorganic stratiform compound, for example, natural mica or synthetic mica as described in JP-A-2005-119273 in order to increase the oxygen blocking property.
  • an inorganic stratiform compound for example, natural mica or synthetic mica as described in JP-A-2005-119273 in order to increase the oxygen blocking property.
  • the protective layer may contain a known additive, for example, a plasticizer for imparting flexibility, a surfactant for improving a coating property or a fine inorganic particle for controlling a surface slipping property.
  • a plasticizer for imparting flexibility for example, a surfactant for improving a coating property or a fine inorganic particle for controlling a surface slipping property.
  • the oil-sensitizing agent described with respect to the image-recording layer may also be incorporated into the protective layer.
  • the protective layer is coated according to a known method.
  • the coating amount of the protective layer is preferably in a range from 0.01 to 10 g m 2 , more preferably in a range from 0.02 to 3 g/m 2 , most preferably in a range from 0.02 to 1 g/m 2 , in terms of the coating amount after drying.
  • the adhesion property of the protective layer to the image-recording layer and scratch resistance are also extremely important in view of handling of the lithographic printing plate precursor. Specifically, when a hydrophilic layer comprising a water-soluble polymer is laminated on the oleophilic image-recording layer, layer peeling due to an insufficient adhesion property is liable to occur, and the peeled portion causes such a defect as failure in curing of the image-recording layer due to polymerization inhibition by oxygen.
  • Various proposals have been made for improving the adhesion property between the image-recording layer and the protective layer.
  • a sufficient adhesion property can be obtained by mixing from 20 to 60% by weight of an acryl-based emulsion or a water-insoluble vinyl pyrrolidone/vinyl acetate copolymer with a hydrophilic polymer mainly comprising polyvinyl alcohol and laminating the resulting mixture on the image-recording layer.
  • Any of these known techniques can be applied to the protective layer according to the invention. Coating methods of the protective layer are described in detail, for example, in U.S. Patent 3,458,311 and JP-B-55-49729.
  • the lithographic printing plate precursor according to the invention is exposed imagewise and subjected to development in a development processing step to be provided for printing or is exposed imagewise and without undergoing the development processing, subjected to no-press development by supplying printing ink and dampening water to conduct on-press development, thereby being provided for printing as it is.
  • the plate making method according to the invention is described in detail below.
  • the laser for use in the invention preferably includes a solid laser emitting an infrared ray having a wavelength from 760 to 1,200 nm.
  • the output is preferably 100 mW or more, the exposure time per pixel is preferably within 20 microseconds, and the irradiation energy is preferably from 10 to 300 mJ/cm . In order to shorten the exposure time, it is preferred to use a multibeam laser device.
  • the development processing of the lithographic printing plate precursor according to the invention can be conducted by a known method.
  • a known developer which is an aqueous solution containing a component selected from a surfactant, an organic solvent, an alkali agent, a water-soluble polymer compound, a preservative, a chelating agent, a defoaming agent, an organic acid, an inorganic acid, an inorganic salt and the like is used.
  • An aqueous solution having pH of less than 10 can also be used.
  • a developer containing a surfactant and/or a water-soluble polymer compound is preferred.
  • An oil-desensitizing solution which is ordinarily used for protecting the surface of printing plate after development of a lithographic printing plate precursor may also be used.
  • the lithographic printing plate after development processing may be appropriately subjected to water washing, drying treatment or oil-desensitizing treatment.
  • oil-desensitizing treatment a known oil-desensitizing solution can be used.
  • a lithographic printing plate obtained by conducting the development processing described above is mounted on an offset printing machine to use for printing a large number of sheets.
  • the exposed lithographic printing plate precursor is mounted on a plate cylinder of a printing machine.
  • the lithographic printing plate precursor is mounted on a plate cylinder of the printing machine and then subjected to the imagewise exposure.
  • the image-recording layer cured by the exposure forms the printing ink receptive area having the oleophilic surface.
  • the uncured image-recording layer is removed by dissolution or dispersion with the dampening water and/or printing ink supplied to reveal the hydrophilic surface in the area.
  • the dampening water adheres onto the revealed hydrophilic surface and the printing ink adheres onto the exposed area of the image-recording layer, whereby printing is initiated.
  • dampening water or printing ink may be supplied at first on the surface of lithographic printing plate precursor, it is preferred to supply the printing ink at first in view of preventing the dampening water from contamination with the component of the image-recording layer removed.
  • dampening water and printing ink dampening water and printing ink for conventional lithographic printing can be used, respectively.
  • the lithographic printing plate precursor is subjected to the on-press development on an offset printing machine and used as it is for printing a large number of sheets.
  • a molecular weight is expressed as a weight average molecular weight (Mw) and a ratio of repeating unit is expressed in molar percentage, unless otherwise indicated specifically.
  • the terminal isocyanate compound obtained above was subjected to dibutyl-ureidation with dibutylamine to determine a weight average molecular weight (as calculated in terms of polystyrene) and the Mw thereof was 24,400.
  • FT-IR KBr
  • FT-IR KBr 3416 cm -1 , 2956 cm -1 , 2262 cm -1 , 1738 cm -1 , 1499 cm -1 , 1364 cm -1 , 1307 cm -1 , 1211 cm -1 , 1014 cm -1 , 853 cm -1 , 576 cm -1
  • An oil phase component was prepared by dissolving 8 g of the solution of Polyvalent isocyanate adduct NCO-1 described above, 2 g of adduct obtained by addition of trimethylolpropane (6 mol) and xylene diisocyanate (18 mol) and further addition of methyl-terminated polyoxyethylene (1 mol) (number of oxyethylene repeating unit: 90) thereto (produced by Mitsui Chemicals, Inc., 50% by weight ethyl acetate solution), 3.15 g of pentaerythritol triacrylate (SR444, produced by Nippon Kayaku Co., Ltd.) and 0.1 g of PIONIN A-41C (produced by Takemoto Oil & Fat Co., Ltd.) in 17 g of ethyl acetate.
  • aqueous phase component 40 g of a 4% by weight aqueous solution of polyvinyl alcohol (PVA-205, produced by Kuraray Co., Ltd.) was prepared.
  • the oil phase component and the aqueous phase component were mixed and emulsified using a homogenizer at 12,000 rpm for 10 minutes.
  • the resulting emulsion was added to a mixed aqueous solution composed of 25 g of distilled water and 0.2 g of U-CAT SA102 (l,8-diazabicyclo[5.4.0]undeca-7-ene octoate, produced by SAN-APRO Ltd.) and the mixture was stirred at room temperature for 30 minutes and then allowed to stand at 45°C for 24 hours.
  • microgel liquid thus-obtained was diluted using distilled water so as to have the solid content concentration of 15% by weight to prepare microgel (Polymer fine particle CP-1).
  • the average particle size of the polymer fine particle was measured by a light scattering method and found to be 0.26 ⁇ .
  • Polymer fine particles CP-2 to CP-21 were obtained in the same manner as described in Synthesis of Polymer fine particle CP-1 except for changing the solution of Polyvalent isocyanate adduct NCO-1 to the solutions of Polyvalent isocyanate adducts NCO-2 to NCO-21 shown in Tables 1 and 2, respectively.
  • Polymer fine particles CP-22 to CP-25 were obtained in the same manner as described in Synthesis of Polymer fine particle CP-1 except for changing the solution of Polyvalent isocyanate adduct NCO-1 to the 50% by weight ethyl acetate solutions of Polyvalent isocyanate adduct NCO-22 to NC025 shown in Table 3 below, respectively.
  • Lithographic printing plate precursor for alkali development processing 1. Preparation of Support (1)
  • An aluminum plate (material: JIS A 1050) having a thickness of 0.3 mm was subjected to a degreasing treatment at 50°C for 30 seconds using a 10% by weight aqueous sodium aluminate solution in order to remove rolling oil on the surface thereof and then grained the surface thereof using three nylon brushes embedded with bundles of nylon bristle having a diameter of 0.3 mm and an aqueous suspension (specific gravity: 1.1 g/cm 3 ) of pumice having a median size of 25 ⁇ , followed by thorough washing with water.
  • the plate was subjected to etching by immersing in a 25% by weight aqueous sodium hydroxide solution of 45 °C for 9 seconds, washed with water, then immersed in a 20% by weight aqueous nitric acid solution at 60°C for 20 seconds, and washed with water.
  • the etching amount of the grained surface was about 3 g/m 2 .
  • the electrolytic solution used was a 1% by weight aqueous nitric acid solution (containing 0.5% by weight of aluminum ion) and the temperature of electrolytic solution was 50°C.
  • the electrochemical roughening treatment was conducted using an alternating current source, which provides a rectangular alternating current having a trapezoidal waveform such that the time TP necessary for the current value to reach the peak from zero was 0.8 msec and the duty ratio was 1 :1, and using a carbon electrode as a counter electrode.
  • a ferrite was used as an auxiliary anode.
  • the current density was 30 A/dm 2 in terms of the peak value of the electric current and 5% of the electric current flowing from the electric source was divided to the auxiliary anode.
  • the quantity of electricity in the nitric acid electrolysis was 175 C/dm 2 in terms of the quantity of electricity when the aluminum plate functioned as an anode. The plate was then washed with water by spraying.
  • the plate was then subjected to an electrochemical roughening treatment in the same manner as in the nitric acid electrolysis above using as an electrolytic solution, a 0.5% by weight aqueous hydrochloric acid solution (containing 0.5% by weight of aluminum ion) having temperature of 50°C and under the condition that the quantity of electricity was 50 C/dm 2 in terms of the quantity of electricity when the aluminum plate functioned as an anode.
  • the plate was then washed with water by spraying.
  • the plate was then subjected to an anodizing treatment using as an electrolytic solution, a 15% by weight aqueous sulfuric acid solution (containing 0.5% by weight of aluminum ion) at a current density of 15 A/dm 2 to form a direct current anodized film of 2.5 g/m 2 , washed with water and dried to prepare Support (1).
  • the center line average roughness (Ra) of the support was measured using a stylus having a diameter of 2 um and found to be 0.51 um.
  • Coating solution for undercoat layer shown below was coated on Support (1) described above and dried at 100°C for 10 seconds.
  • the coating amount was 10 mg/m 2 .
  • Coating solution (1) for image-recording layer having the composition shown below was prepared, coated on the undercoat layer using a wire bar so as to have a coating amount after drying of 0.9 g/m , and dried by a hot air drying device at 115°C for 34 seconds to form an image-recording layer.
  • ⁇ Lower protective layer> A mixed aqueous solution (coating solution for protective layer) composed of synthetic mica (SOMASIF MEB-3L, 3.2% aqueous dispersion, produced by CO-OP Chemical Co., Ltd.), polyvinyl alcohol (GOSERAN CKS-50, saponification degree: 99% by mole, polymerization degree: 300, sulfonic acid-modified polyvinyl alcohol, produced by Nippon Synthetic Chemical Industry Co., Ltd.), Surfactant A (EMALEX 710, produced by Nihon Emulsion Co., Ltd.) and Surfactant B (ADEKA PLURONIC P-84, produced by ADEKA Corp.) was coated on the surface of the image-recording layer by a wire bar and dried by a hot air drying device at 125°C for 30 seconds.
  • Surfactant A EMALEX 710, produced by Nihon Emulsion Co., Ltd.
  • Surfactant B ADEKA PLURONIC P-84, produced by ADEKA Corp.
  • the content ratio of synthetic mica (solid contenfj/polyvinyl alcohol/Surfactant A/Surfactant B in the mixed aqueous solution (coating solution for protective layer) was 7.5/89/2/1.5 (in % by weight) and the coating amount (coverage after drying) was 0.5 g/m 2 .
  • organic filler ARTPEARL J-7P, produced by Negami Chemical Industrial Co., Ltd
  • the content ratio of organic filler/synthetic mica (solid content)/polyvinyl alcohol/thickener/Polymer compound A/surfactant in the mixed aqueous solution (coating solution for protective layer) was 4.7/2.8/67.4/18.6/2.3/4.2 (in % by weight) and the coating amount (coverage after drying) was 1.8 g/m 2 .
  • the lithographic printing plate precursors for Comparative Examples 1 to 10 were obtained in the same manner as in Example 1 except for changing the polymer fine particle and infrared absorbing dye used in Example 1 to those shown in Table 4 below, respectively.
  • the lithographic printing plate precursor obtained was exposed by Trendsetter 3244VX (produced by Creo Co.) equipped with a water-cooled 40 W infrared semiconductor laser at resolution of 175 lpi and a rotational number of an external drum of 150 rpm while changing output in a range from 0 to 8 W by 0.15 in log E.
  • the exposure was conducted under conditions of 25°C and 50% RH.
  • the exposed lithographic printing plate precursor was subjected to development processing using a development processor (LP- 1310 News, produced by FUJIFILM Corp.) at 30°C for 12 seconds.
  • the developer used was a solution prepared by diluting DH-N (produced by FUJIFILM Corp.) with water in a ratio of 1:4.
  • the finisher used was a solution prepared by diluting GN-2K (produced by FUJIFILM Corp.) with water in a ratio of 1 : 1.
  • the density of the image area of the lithographic printing plate prepared after the development processing was measured using a Macbeth reflection densitomer RD-918 and a red filter attached to the densitomer to determine the cyan density.
  • a reciprocal number of the exposure amount necessary for attaining the cyan density of 0.8 was used as an index of the sensitivity.
  • the sensitivity of the lithographic printing plate precursor was relatively evaluated taking the sensitivity of the lithographic printing plate precursor of Comparative Example 1 as 100. A larger value indicates higher sensitivity. The results obtained are shown in Table 4.
  • the lithographic printing plate precursor obtained was exposed by Trendsetter 3244VX (produced by Creo Co.) equipped with a water-cooled 40 W infrared semiconductor laser with 80% halftone dot image of resolution of 175 lpi at a rotational number of an external drum of 206 rpm and in a plate surface energy of 100 mJ/cm 2 .
  • the protective layer was removed by washing with tap water and then subjected to development processing in the same manner as in (1) Evaluation of sensitivity.
  • the resulting lithographic printing plate was subjected to printing using a printing machine (Lithrone, produced by Komori Corp.) to observe the image area of printed material and a number of sheets when the image initiated to become faint was used as an index of the printing durability.
  • the printing stain was evaluated by visual observation of ink stain in the non-image area after printing 1 ,000 sheets. The results obtained are shown in Table 4.
  • a lithographic printing plat was prepared in the same manner as described above and the printing was conducted in the same manner as described above to evaluate the printing stain.
  • the lithographic printing plate precursors (Examples 1 to 18) containing the polymer fine particle according to the invention exhibit the improvements in both the stain resistance and printing durability in comparison with the lithographic printing plate precursors which do not contain the polymer fine particle according to the invention.
  • Lithographic printing plate precursor of on-press development type Lithographic printing plate precursor of on-press development type
  • Support (1) described above was subjected to silicate treatment using a 2.5% by weight aqueous sodium silicate No. 3 solution at 60°C for 10 seconds and subsequently washed with water to obtain Support (2).
  • the adhesion amount of Si was 10 mg/m 2 .
  • Coating solution (1) for undercoat layer shown below was coated on Support (2) described above so as to have a dry coating amount of 20 mg/m to prepare a support having an undercoat layer.
  • Coating solution (2) for image-recording layer having the composition shown below was coated on the undercoat layer formed as described above by a bar and dried in an oven at 100°C for 60 seconds to form an image-recording layer having a dry coating amount of 1.0 g/m 2 .
  • Coating solution (2) for image-recording layer was prepared by mixing Photosensitive solution (1) shown below with Polymer fine particle solution (1) shown below just before the coating, followed by stirring.
  • Binder polymer (1) Radical polymerization initiator (1), Phosphonium compound (1), Hydrophilic low molecular weight compound (1), Oil-sensitizing agent (ammonium group-containing polymer) and Fluorine-based surfactant (1) are shown below.
  • Coating solution (1) for protective layer having the composition shown below was coated on the image-recording layer described above by a bar and dried in an oven at 120°C for 60 seconds to form a protective layer having a dry coating amount of 0.15 g/m , thereby preparing lithographic printing plate precursors for Examples 19 to 36, respectively.
  • Lithographic printing plate precursors for Comparative Examples 11 to 20 were prepared in the same manner as in Example 19 except for changing the polymer fine particle in Example 19 to those shown in Table 5 below, respectively.
  • Each of the lithographic printing plate precursors thus-obtained was exposed by Luxel Platesetter T-6000III equipped with an infrared semiconductor laser, produced by FUJIFILM Corp. under the conditions of a rotational number of an external drum of 1,000 rpm, laser output of 70% and resolution of 2,400 dpi.
  • the exposed image contained a fine line chart.
  • the exposed lithographic printing plate precursor was mounted without undergoing development processing on a plate cylinder of a printing machine (LITHRONE 26, produced by Komori Corp.).
  • a printing machine LITHRONE 26, produced by Komori Corp.
  • VALUES-G N
  • Black Ink produced by Dainippon Ink & Chemicals, Inc.
  • a curing degree of the image-recording layer (photosensitive layer) becomes low, while when the exposure amount is large, the curing degree of the image-recording layer becomes high.
  • the curing degree of the image-recording layer is too low, printing durability of the lithographic printing plate obtained decreases and reproducibility of small point and fine line is deteriorated.
  • the curing degree of the image-recording layer is high, the printing durability increases and the reproducibility of small point and fine line is improved.
  • the lithographic printing plate precursors obtained above were evaluated with the printing durability and fine line reproducibility under the same exposure conditions as described above and they are used as indexes of sensitivity of the lithographic printing plate precursor. Specifically, it can be said that as a number of printing sheet is large in the printing durability or as a width of fine line in the fine line reproducibility is small, the sensitivity of the lithographic printing plate precursor is high.
  • the fine line chart (a chart including fine lines of 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 60, 80, 100 and 200 um in width) on the 600 th printed material was observed by a 25-power magnifier and the fine line reproducibility was evaluated from the width of fine line reproduced by ink without interruption according to the criteria shown below.
  • A A level where a fine line of 10 ⁇ in width can be reproduced.
  • the lithographic printing plate precursor which had been subjected to forced preservation at temperature of 45°C and humidity of 75% for 3 days was exposed and developed under the same conditions in the evaluation of on-press development property described above, and after printing 100 sheets, stain in the non-image area of the printed material was visually observed. The stain was compared with that in case of the lithographic printing plate precursor which had not been subjected to the forced preservation to evaluate the preservation stability. The results obtained are shown in Table 5.
  • the lithographic printing plate precursors (Examples 19 to 36) containing the polymer fine particle according to the invention exhibit the improvements in both the printing durability and stain resistance (preservation stability) in comparison with the lithographic printing plate precursors which do not contain the polymer fine particle according to the invention.
  • the on-press development property and fine line reproducibility can be maintained at the good level.
  • a lithographic printing plate precursor having high productivity which is capable of being subjected to a so-called direct plate making, in which the plate making is directly conducted based on digital signals, for example, from a computer using various kinds of lasers can be provided.
  • a lithographic printing plate precursor of on-press development type which is excellent in printing durability, preservation stability and stain resistance can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Printing Plates And Materials Therefor (AREA)
PCT/JP2011/063306 2011-03-15 2011-06-03 Lithographic printing plate precursor, plate making method thereof and polyvalent isocyanate compound WO2012124177A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180069244.XA CN103430096B (zh) 2011-03-15 2011-06-03 平版印刷版原版、其制版方法以及多价异氰酸酯化合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011057036 2011-03-15
JP2011-057036 2011-03-15
JP2011-099722 2011-04-27
JP2011099722A JP5645743B2 (ja) 2010-04-30 2011-04-27 平版印刷版原版、その製版方法、及び、多価イソシアネート化合物

Publications (1)

Publication Number Publication Date
WO2012124177A1 true WO2012124177A1 (en) 2012-09-20

Family

ID=46830281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063306 WO2012124177A1 (en) 2011-03-15 2011-06-03 Lithographic printing plate precursor, plate making method thereof and polyvalent isocyanate compound

Country Status (3)

Country Link
JP (1) JP5645743B2 (ja)
CN (1) CN103430096B (ja)
WO (1) WO2012124177A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919331B2 (en) * 2017-03-31 2021-02-16 Fujifilm Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
EP3991988A4 (en) * 2019-06-28 2022-09-14 FUJIFILM Corporation LITHOGRAPHIC PRINTING PLATE PRECURSOR, LITHOGRAPHIC PRINTING PLATE PRODUCTION METHOD AND LITHOGRAPHIC PRINTING METHOD
US11498353B2 (en) 2017-03-31 2022-11-15 Fujifilm Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, plate-making method for lithographic printing plate, and lithographic printing method

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043066B2 (ja) * 2012-01-25 2016-12-14 株式会社カネカ 新規な絶縁膜及びその利用、並びに絶縁膜の生産方法
KR20160111805A (ko) * 2015-03-17 2016-09-27 동우 화인켐 주식회사 감광성 수지 조성물, 이로부터 형성된 광경화 패턴 및 이를 포함하는 화상 표시 장치
JP6510726B2 (ja) * 2016-02-29 2019-05-08 富士フイルム株式会社 平版印刷版原版及び平版印刷版の製版方法
EP3632694A4 (en) 2017-05-31 2020-06-17 FUJIFILM Corporation ORIGINAL LITHOGRAPHIC PRINTING PLATE, RESIN COMPOSITION FOR MANUFACTURING ORIGINAL LITHOGRAPHIC PRINTING PLATE, AND METHOD FOR MANUFACTURING LITHOGRAPHIC PRINTING PLATE
WO2018221133A1 (ja) 2017-05-31 2018-12-06 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、ポリマー粒子、及び、組成物
WO2019013268A1 (ja) 2017-07-13 2019-01-17 富士フイルム株式会社 平版印刷版原版、及び、平版印刷版の作製方法
WO2019021828A1 (ja) 2017-07-25 2019-01-31 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、及び、発色組成物
EP3674796B1 (en) 2017-08-25 2023-11-22 FUJIFILM Corporation Negative-type planographic printing plate precursor and method for producing planographic printing plate
EP3677434B1 (en) 2017-08-31 2022-10-19 FUJIFILM Corporation Lithographic printing original plate and method for producing lithographic printing plate
WO2019064696A1 (ja) 2017-09-29 2019-04-04 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法及び平版印刷方法
EP3674096B1 (en) 2017-09-29 2023-03-01 FUJIFILM Corporation Lithographic printing plate precursor and lithographic printing plate fabrication method
WO2019151163A1 (ja) 2018-01-31 2019-08-08 富士フイルム株式会社 平版印刷版原版、及び、平版印刷版の作製方法
EP3730307A4 (en) 2018-01-31 2021-02-24 FUJIFILM Corporation FLAT PRINTING PLATE PRECURSORS AND MANUFACTURING METHOD FOR A FLAT PRINTING PLATE
WO2019150788A1 (ja) 2018-01-31 2019-08-08 富士フイルム株式会社 平版印刷版原版、及び、平版印刷版の作製方法
EP3831613B1 (en) 2018-07-31 2023-09-06 FUJIFILM Corporation Planographic printing plate precursor
JPWO2020026957A1 (ja) 2018-07-31 2021-08-19 富士フイルム株式会社 平版印刷版原版、及び、捨て版原版
CN112638657A (zh) 2018-08-31 2021-04-09 富士胶片株式会社 平版印刷版原版、平版印刷版的制作方法、平版印刷方法及固化性组合物
CN112789178B (zh) 2018-09-28 2023-10-20 富士胶片株式会社 印刷用原版、其层叠体、印刷版的制版方法及印刷方法
JP7309741B2 (ja) 2018-09-28 2023-07-18 富士フイルム株式会社 印刷用原版、及び印刷版の製版方法
WO2020090995A1 (ja) 2018-10-31 2020-05-07 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
WO2020090996A1 (ja) 2018-10-31 2020-05-07 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
EP3904100A4 (en) 2019-01-31 2022-06-08 FUJIFILM Corporation PLANTOGRAPH PLATE PRECURSORS, METHOD OF MAKING A PLANTOGRAPH PLATE AND PLANTOGRAPHING METHOD
CN113382869B (zh) 2019-01-31 2023-02-17 富士胶片株式会社 平版印刷版原版、平版印刷版的制作方法及平版印刷方法
CN113474178B (zh) 2019-01-31 2023-09-15 富士胶片株式会社 平版印刷版原版、平版印刷版的制作方法及平版印刷方法
EP3900943A4 (en) 2019-01-31 2022-05-25 FUJIFILM Corporation ORIGINAL PLATE OF LITHOGRAPHIC PRINTING PLATE, METHOD OF MAKING LITHOGRAPHIC PRINTING PLATE AND METHOD OF LITHOGRAPHIC PRINTING
CN114051454B (zh) 2019-06-28 2023-12-15 富士胶片株式会社 机上显影型平版印刷版原版、平版印刷版的制作方法及平版印刷方法
CN114051598A (zh) 2019-06-28 2022-02-15 富士胶片株式会社 机上显影型平版印刷版原版、平版印刷版的制作方法及平版印刷方法
JP7282885B2 (ja) 2019-06-28 2023-05-29 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
EP3991984A4 (en) 2019-06-28 2022-08-17 FUJIFILM Corporation ORIGINAL PLATE FOR LITHOGRAPHIC PRINTING PLATE, METHOD OF LITHOGRAPHIC PRINTING PLATE AND METHOD OF LITHOGRAPHIC PRINTING
WO2020262689A1 (ja) 2019-06-28 2020-12-30 富士フイルム株式会社 機上現像型平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
CN114144306A (zh) 2019-06-28 2022-03-04 富士胶片株式会社 机上显影型平版印刷版原版、平版印刷版的制作方法及平版印刷方法
CN114096914A (zh) 2019-06-28 2022-02-25 富士胶片株式会社 机上显影型平版印刷版原版、平版印刷版的制作方法及平版印刷方法
JP7293377B2 (ja) 2019-09-30 2023-06-19 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
CN118046659A (zh) 2019-09-30 2024-05-17 富士胶片株式会社 平版印刷版原版、平版印刷版的制作方法及平版印刷方法
JP7389128B2 (ja) 2019-09-30 2023-11-29 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
JP7394874B2 (ja) 2019-12-27 2023-12-08 富士フイルム株式会社 平版印刷方法
CN115151425A (zh) 2020-02-28 2022-10-04 富士胶片株式会社 平版印刷版原版、平版印刷版的制作方法及平版印刷方法
EP4159460A4 (en) 2020-05-29 2023-11-08 FUJIFILM Corporation LAMINATED BODY
CN115697717A (zh) 2020-05-29 2023-02-03 富士胶片株式会社 机上显影型平版印刷版原版、平版印刷版的制作方法及平版印刷方法
EP4159455A4 (en) 2020-05-29 2023-10-04 FUJIFILM Corporation ORIGINAL PLATE OF PRESS DEVELOPMENT TYPE LITHOGRAPHIC PRINTING PLATE, METHOD FOR MANUFACTURING LITHOGRAPHIC PRINTING PLATE, AND LITHOGRAPHIC PRINTING METHOD
EP4159458A4 (en) 2020-05-29 2023-11-01 FUJIFILM Corporation LITHOGRAPHIC PRINTING PLATE PRECURSOR WITH DEVELOPMENT ON THE PRINTING PRESS, LITHOGRAPHIC PRINTING PLATE PRODUCTION PROCESS AND LITHOGRAPHIC PRINTING PROCESS
JP7378613B2 (ja) 2020-05-29 2023-11-13 富士フイルム株式会社 機上現像型平版印刷版原版、平版印刷版の作製方法、及び平版印刷方法
EP4159441A4 (en) 2020-05-29 2023-10-18 FUJIFILM Corporation ORIGINAL PLATE FOR MACHINE DEVELOPMENT TYPE LITHOGRAPHIC PRINTING PLATE, METHOD FOR MANUFACTURING LITHOGRAPHIC PRINTING PLATE, AND LITHOGRAPHIC PRINTING METHOD
WO2021241458A1 (ja) 2020-05-29 2021-12-02 富士フイルム株式会社 機上現像型平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
EP4169729A4 (en) 2020-06-17 2023-12-20 FUJIFILM Corporation ORIGINAL PLATE OF MACHINE DEVELOPMENT TYPE FLAT PLATE, METHOD FOR MANUFACTURING FLAT PLATE, AND METHOD OF FLAT PRINTING
CN116133862A (zh) 2020-07-21 2023-05-16 富士胶片株式会社 机上显影型平版印刷版原版、平版印刷版的制作方法及平版印刷方法
JPWO2022025068A1 (ja) 2020-07-31 2022-02-03
EP4286175A4 (en) 2021-01-28 2024-07-03 Fujifilm Corp PLATINUM PRINTING ORIGINAL PLATE THAT CAN BE DEVELOPED ON THE PRINTING PRESS, METHOD FOR PRODUCING A PLATINUM PRINTING PLATE AND PLATINUM PRINTING METHOD
JPWO2022181724A1 (ja) 2021-02-26 2022-09-01
WO2023032682A1 (ja) 2021-08-31 2023-03-09 富士フイルム株式会社 機上現像型平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
WO2023032681A1 (ja) 2021-08-31 2023-03-09 富士フイルム株式会社 積層体
EP4245542A1 (en) 2022-03-18 2023-09-20 FUJIFILM Corporation Lithographic printing plate precursor, method of preparing lithographic printing plate, and lithographic printing method
JP2024062746A (ja) 2022-10-25 2024-05-10 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086584A (ja) * 1998-07-15 2000-03-28 Honshu Chem Ind Co Ltd 新規なトリスフェノ―ルエ―テル類
JP2001277740A (ja) * 2000-01-27 2001-10-10 Fuji Photo Film Co Ltd 平版印刷版用原版
JP2005049538A (ja) * 2003-07-31 2005-02-24 Fuji Photo Film Co Ltd 平版印刷版原版および重合性組成物
JP2005343797A (ja) * 2004-05-31 2005-12-15 Honshu Chem Ind Co Ltd トリスフェノール類のトリオキシメチルカルボン酸及びそれらの3級シクロペンチルエステル
JP2006076258A (ja) * 2004-09-13 2006-03-23 Fuji Photo Film Co Ltd 平版印刷版原版およびそれを用いる平版印刷方法
JP2008189597A (ja) * 2007-02-05 2008-08-21 Toyo Gosei Kogyo Kk スルホニウム塩
JP2010139860A (ja) * 2008-12-12 2010-06-24 Nissan Chem Ind Ltd ポリヒドロキシウレア樹脂含有ポジ型感光性樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740464B2 (en) * 2000-01-14 2004-05-25 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
US20060032390A1 (en) * 2004-07-30 2006-02-16 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
US7915319B2 (en) * 2005-12-19 2011-03-29 Henkel Corporation Visible light curing systems, methods for reducing health risks to individuals exposed to systems designed to cure curable compositions by exposure to radiation, methods for bonding substrates and visible light curing compositions
US20100210812A1 (en) * 2007-07-13 2010-08-19 Showa Denko K.K. Curable composition and cured product thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086584A (ja) * 1998-07-15 2000-03-28 Honshu Chem Ind Co Ltd 新規なトリスフェノ―ルエ―テル類
JP2001277740A (ja) * 2000-01-27 2001-10-10 Fuji Photo Film Co Ltd 平版印刷版用原版
JP2005049538A (ja) * 2003-07-31 2005-02-24 Fuji Photo Film Co Ltd 平版印刷版原版および重合性組成物
JP2005343797A (ja) * 2004-05-31 2005-12-15 Honshu Chem Ind Co Ltd トリスフェノール類のトリオキシメチルカルボン酸及びそれらの3級シクロペンチルエステル
JP2006076258A (ja) * 2004-09-13 2006-03-23 Fuji Photo Film Co Ltd 平版印刷版原版およびそれを用いる平版印刷方法
JP2008189597A (ja) * 2007-02-05 2008-08-21 Toyo Gosei Kogyo Kk スルホニウム塩
JP2010139860A (ja) * 2008-12-12 2010-06-24 Nissan Chem Ind Ltd ポリヒドロキシウレア樹脂含有ポジ型感光性樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10919331B2 (en) * 2017-03-31 2021-02-16 Fujifilm Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, and lithographic printing method
US11498353B2 (en) 2017-03-31 2022-11-15 Fujifilm Corporation Lithographic printing plate precursor, method of producing same, lithographic printing plate precursor laminate, plate-making method for lithographic printing plate, and lithographic printing method
EP3991988A4 (en) * 2019-06-28 2022-09-14 FUJIFILM Corporation LITHOGRAPHIC PRINTING PLATE PRECURSOR, LITHOGRAPHIC PRINTING PLATE PRODUCTION METHOD AND LITHOGRAPHIC PRINTING METHOD

Also Published As

Publication number Publication date
JP5645743B2 (ja) 2014-12-24
CN103430096B (zh) 2016-06-22
JP2012206495A (ja) 2012-10-25
CN103430096A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2012124177A1 (en) Lithographic printing plate precursor, plate making method thereof and polyvalent isocyanate compound
EP2735444B1 (en) Lithographic printing plate precursor for newspaper printing and method for producing the same, and plate making method of lithographic printing plate
EP2549331B1 (en) Color developing photosensitive composition, lithographic printing original plate, and method for producing same
US10048588B2 (en) Lithographic printing plate precursor and plate making method of lithographic printing plate
EP2905144B1 (en) Lithographic printing original plate and plate making method
EP2383118B1 (en) Lithographic printing plate precursor and plate making method thereof
EP2660068B1 (en) Planographic printing plate precursor and planographic printing method
EP2423748B1 (en) Lithographic printing plate precursor and plate making method thereof
EP2363748B1 (en) Lithographic printing plate precursor and plate making method thereof
EP2576231A1 (en) Lithographic printing plate precursor, plate making method thereof and novel polymer compound
EP3330097B1 (en) Lithographic printing original plate and plate making method
JP5481339B2 (ja) 平版印刷版原版及びその製版方法
EP2236291A1 (en) Lithographic printing plate precursor and plate making method thereof
EP2644380B1 (en) Lithographic printing plate precursor
JP5757732B2 (ja) マイクロカプセルを用いた平版印刷版原版及び製版方法
EP2610067A1 (en) Master planographic printing plate for on-press development, and plate-making method using said master planographic printing plate
EP2383612B1 (en) Lithographic printing plate precursor and plate making method thereof
US20110076618A1 (en) Lithographic printing plate precursor and plate making method thereof
JP5746936B2 (ja) 平版印刷版原版及びその製版方法
EP2554381B1 (en) Method for producing lithographic printing plate
EP2441783B1 (en) Lithographic printing plate precursor and lithographic printing method
JPWO2017018262A1 (ja) 平版印刷版原版、平版印刷版の作製方法、及び、有機−無機ハイブリッド粒子
EP2239138A2 (en) Lithographic printing plate precursor and plate making method thereof
EP2339400A2 (en) Lithographic printing plate precursor and plate making method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861103

Country of ref document: EP

Kind code of ref document: A1