WO2012124127A1 - 酸化金属膜を備えたセンサおよびその利用 - Google Patents

酸化金属膜を備えたセンサおよびその利用 Download PDF

Info

Publication number
WO2012124127A1
WO2012124127A1 PCT/JP2011/056630 JP2011056630W WO2012124127A1 WO 2012124127 A1 WO2012124127 A1 WO 2012124127A1 JP 2011056630 W JP2011056630 W JP 2011056630W WO 2012124127 A1 WO2012124127 A1 WO 2012124127A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
group
film
sensor
organic film
Prior art date
Application number
PCT/JP2011/056630
Other languages
English (en)
French (fr)
Inventor
慶祐 大前
森 哲也
哲生 早瀬
中島 誠二
真理子 西口
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US14/002,640 priority Critical patent/US9711666B2/en
Priority to EP11861099.7A priority patent/EP2688108B1/en
Priority to CN201180068902.3A priority patent/CN103403877B/zh
Publication of WO2012124127A1 publication Critical patent/WO2012124127A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2

Definitions

  • the present invention relates to a sensor including a metal oxide film and use thereof, and more specifically, a sensor including a metal oxide film formed by wet processing and capable of detecting light, hydrogen gas, and atmospheric pressure, and a method of manufacturing the same, and The present invention relates to a method for detecting a hydrogen gas concentration or the like using the sensor.
  • Optical sensors are widely used in infrared communications such as TV and audio, optical communications using IrDA (Infrared Data Association), OA equipment, industrial equipment, and consumer equipment.
  • IrDA Infrared Data Association
  • Hydrogen gas is attracting attention as clean and recyclable energy, but on the other hand, it is also known to have high explosive properties. Therefore, in order to popularize hydrogen gas as an energy source in the future, the system will be cheap.
  • Safety measures to use with heart are indispensable. As a tool that contributes to safety measures, the importance of hydrogen gas detection sensors has increased, and various hydrogen gas detection sensors have been developed in recent years.
  • an optical sensor using a photovoltaic element made of a semiconductor laminate (Patent Document 1), an amorphous semiconductor film is used as a photoconductive film, and a photocurrent based on light irradiated on the amorphous semiconductor film
  • Patent Document 3 a light irradiation position detection sensor configured by a structure having a predetermined regularity, which has high accuracy and long length. It has been developed for the purpose of enabling highly sensitive light detection for a long period of time.
  • Patent Document 4 a sensor using a hydrogen storage alloy thin film
  • Patent Document 5 a sensor for detecting a change in resistance value due to hydrogenation of the surface of the detection film in which photoelectron emission particles are dispersed. They have been developed for the purpose of reducing the power consumption while maintaining the detection sensitivity, accurately measuring the gas concentration, reducing the variation in conductivity, and detecting the stable leakage of hydrogen gas. .
  • the optical sensor described in Patent Document 1 inevitably becomes a multilayer film because it is necessary to join a p-type semiconductor and an n-type semiconductor in order to generate photovoltaic power.
  • a vacuum process since a vacuum process is used, there is a problem that it is not suitable for mass production by increasing the diameter, the manufacturing cost is high, and it is difficult to produce a sensor on a flexible substrate.
  • the optical sensor described in Patent Document 2 is a sensor manufactured by forming a single layer film on a substrate.
  • amorphous since amorphous is used, the stability of the film is low. Therefore, a heating element is required to ensure the stability of the film. Therefore, there is a problem that the degree of freedom of substrate selectivity is low because the substrate is always in a state of being heated. Further, since film formation is performed by a vacuum process, there is a problem that it is not suitable for mass production with a large diameter and the manufacturing cost is high.
  • the hydrogen gas detection sensor using the hydrogen storage alloy thin film described in Patent Document 4 absorbs hydrogen between metal atoms and releases hydrogen from between metal atoms.
  • metal deterioration hydrogen embrittlement
  • the manufacturing cost is high, and there is a problem that it is not suitable for mass production with a large diameter.
  • the hydrogen gas detection sensor described in Patent Document 5 is manufactured by applying photoelectron emitting particles to a substrate by a wet method and sintering the formed film.
  • it is necessary to heat not only during production but also during use in order to avoid the influence of humidity dependence. Therefore, since the influence of heat must be taken into consideration, there are problems that the number of substrates that can be used is limited and that power consumption is high because it is necessary to always heat.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a sensor including a metal oxide film formed by wet processing and capable of detecting light, hydrogen gas, and atmospheric pressure, and use thereof. There is to do.
  • the present inventor has developed a base composition containing a functional group excellent in metal ion support, promoted fixation of metal ions on an organic film, and eluted metal fixed on the organic film.
  • An element provided with a metal oxide film was manufactured using a manufacturing method capable of realizing prevention, improvement of metal reduction efficiency, and improvement of reactivity at the base of each processing solution.
  • the senor according to the present invention includes a base composition containing an addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, and an addition polymerizable compound having a hydrophilic functional group. Is applied to a substrate or a film and polymerized to form an organic film, and the organic film is treated with an aqueous solution containing metal (M1) ions to form the acidic group.
  • a base composition containing an addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, and an addition polymerizable compound having a hydrophilic functional group.
  • Reduction process to form a film Comprises a metal oxide film produced by the process comprising an oxidation step of oxidizing the metal film, light, and wherein the hydrogen gas and air pressure can be detected.
  • the organic film can take a bulky three-dimensional structure (hereinafter also referred to as “bulky structure”) due to an addition polymerization compound having three or more reactive groups.
  • the organic film can fix many metal (M2) ions in the space in the film.
  • the organic film can fix many metal ions. Further, structurally, the reducing agent can be spread to the inside of the organic film, so that it is considered that the metal (M2) ion can be reduced to the inside.
  • each treatment solution that is, an aqueous solution containing a metal (M1) ion, a metal
  • M1 ion, a metal can reach the inside of the organic film.
  • M2 An ion-containing metal (M2) ion aqueous solution and a reducing agent aqueous solution can be allowed to act. Therefore, each treatment liquid can be more effectively caused to act on the organic film.
  • the organic film can be cured by ultraviolet rays, it can be applied to a substrate having low heat resistance.
  • the organic film has a metal (M1) salt with an acidic group in the metal salt generation step, and further contains a metal (M2) ion having a lower ionization tendency than the metal (M1) ion in the metal fixing step. Since the treatment is performed with the ion aqueous solution, the metal (M2) ions can be efficiently fixed by the difference in ionization tendency between the metal (M1) and the metal (M2), and a metal film can be formed on the surface of the organic film. Then, the metal film is oxidized to obtain a metal oxide film, whereby transparency can be imparted to the metal film.
  • the above method is a wet process, it is possible to uniformly form a metal (M2) as a transparent conductive film on the substrate. Therefore, the sensor according to the present invention can be reduced in size and thickness, and can be manufactured at low cost.
  • the senor according to the present invention can simplify the structure and reduce the mounting area and height, so that it can be multi-functional as compared with the conventional sensor, as shown in the examples described later. , Light, hydrogen gas and atmospheric pressure can be detected sensitively. Furthermore, it is easy to increase the diameter of the transparent conductive film.
  • the metal oxide film is composed of metal oxide fine particles, the surface area can be easily increased as compared with a normal thin film. Therefore, a trace amount of light and hydrogen gas can be detected.
  • the senor according to the present invention can be manufactured by a simple method using, for example, a plating tank, material loss can be reduced.
  • a method for producing a sensor according to the present invention comprises a base composition containing an addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, and an addition polymerizable compound having a hydrophilic functional group.
  • An organic film is formed on a substrate or a film and polymerized to form an organic film, and the organic film is treated with an aqueous solution containing a metal (M1) ion to thereby form the acidic group.
  • the metal salt generation step to convert the metal (M1) salt and the organic film treated with the aqueous solution containing the metal (M1) ion contains a metal (M2) ion that has a lower ionization tendency than the metal (M1) ion.
  • the metal (M1) salt of the acidic group is converted into a metal (M2) salt, and the metal (M2) ion is reduced to the surface of the organic film.
  • Reduction process to form a metal film It is characterized in that it comprises an oxidation step to obtain a metal oxide film by oxidizing the metal film.
  • the method according to the present invention is a wet process, it is possible to uniformly form a metal (M2) oxide on a substrate, and the metal oxide film is composed of metal oxide fine particles.
  • the surface area can be easily increased as compared with a normal thin film, a sensor capable of detecting a small amount of light and hydrogen gas can be produced.
  • the organic film can be cured with ultraviolet rays, high-temperature treatment is unnecessary, and since the organic film can be applied to a substrate having low heat resistance, a sensor with a high degree of freedom in substrate selection can be manufactured.
  • the senor according to the present invention includes an addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, and an addition polymerizable compound having a hydrophilic functional group.
  • the base composition is applied onto a substrate or film and polymerized to form an organic film, and the organic film is treated with an aqueous solution containing a metal (M1) ion to form the acidic film.
  • M1 metal
  • the metal salt generation step that converts the base to a metal (M1) salt, and the organic film treated with an aqueous solution containing the metal (M1) ion, the metal (M2) ion that has a lower ionization tendency than the metal (M1) ion
  • a metal fixing step in which the metal (M1) salt of the acidic group is treated with a metal (M2) ion aqueous solution contained therein to reduce the metal (M2) ion to the organic film. Reduction to form a metal film on the surface Extent and an oxidation step of oxidizing the metal film, provided with a metal oxide film prepared by a process comprising a detectable light, hydrogen gas and atmospheric pressure.
  • a multi-functional sensor capable of detecting light, hydrogen gas, and atmospheric pressure can be obtained, and an effect is obtained that a trace amount of light and hydrogen gas can be detected. Further, it is possible to reduce the size and thickness, and the effect is that it can be manufactured at low cost.
  • FIG. 1A is a photograph showing a result of observing a longitudinal section of a metal oxide film included in a sensor according to an embodiment of the present invention with a transmission electron microscope.
  • FIG. 1B is a schematic diagram of the longitudinal section. It is a schematic diagram which shows the external appearance of the sensor concerning one Embodiment of this invention. It is a graph showing the change of the resistance value which the said sensor showed, when irradiation is stopped after irradiating light to the sensor concerning one embodiment of the present invention. It is a graph showing the change of the resistance value which the said sensor showed, when irradiation is stopped after irradiating light to the sensor concerning one embodiment of the present invention in hydrogen gas atmosphere.
  • the sensor according to the present invention includes a metal oxide film manufactured by a predetermined method, and can detect light, hydrogen gas, and atmospheric pressure. First, the above method will be described.
  • a base composition containing an addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, and an addition polymerizable compound having a hydrophilic functional group is used as a substrate or a film.
  • Process and oxidizing the metal film A method comprising oxidizing step.
  • the base composition forms a base (resin film) for forming a predetermined metal film by precipitating metal (M2) ions introduced in the metal fixing step described later on the surface.
  • the base composition may further contain an addition polymerizable compound having a basic group.
  • the addition polymerizable compound having three or more reactive groups, the addition polymerizable compound having an acidic group, the addition polymerizable compound having a hydrophilic group, and the addition polymerizable compound having a basic group are polymerizable. It has at least one unsaturated bond, particularly a polymerizable double bond per molecule.
  • the “addition polymerizable compound” refers to a compound that can undergo addition polymerization by active energy such as UV, plasma, and EB, and may be a monomer, an oligomer, or a polymer.
  • addition polymerizable compound having three or more reactive groups is used for imparting a bulky structure to the base composition. Since the base composition has a bulky structure, the organic film has a bulky three-dimensional structure (bulky structure) due to the compound as compared with polyimide. Therefore, a large amount of metal ( M2) ions can be fixed, and the metal (M2) ions in the film can be easily brought into contact with a reducing agent, ultraviolet rays, or the like.
  • the above-mentioned “reactive group” is an addition polymerizable reactive group capable of performing addition polymerization such as radical polymerization and cationic polymerization.
  • an acryloyl group, a methacryloyl group, an acrylamide group, a vinyl group, an allyl group etc. can be used.
  • an acryloyl group and a methacryloyl group, which are functional groups that easily form a bulky structure are particularly preferably used, and the reactive group of the addition polymerizable compound having three or more reactive groups includes an acryloyl group and / or a methacryloyl group. It is preferable.
  • the number of the reactive groups is not particularly limited as long as it is 3 or more. .
  • the structure of the addition polymerizable compound having three or more reactive groups is not particularly limited as long as it has three or more of the above addition polymerizable reactive groups in one molecule.
  • the compound represented by General formula (1) can be mentioned.
  • R1-R2 n-R3 (1)
  • n is 3 or more
  • R1 is an addition polymerizable reactive group selected from the group consisting of acryloyl group, methacryloyl group, acrylamide group, vinyl group and allyl group
  • R2 is, for example, an ester group or an alkyl group.
  • R3 represents C, an alkyl group or C—OH.
  • the addition-polymerizable compound having three or more reactive groups include trimethylolpropane triacrylate (commercially available products such as TMP-A manufactured by Kyoeisha Chemical Co., Ltd.), pentaerythritol triacrylate (commercially available).
  • Examples of the product include PE-3A manufactured by Kyoeisha Chemical Co., Ltd., pentaerythritol tetraacrylate (for example, PE-4A manufactured by Kyoeisha Chemical Co., Ltd.), dipentaerythritol hexaacrylate (for example, Kyoeisha Chemical Co., Ltd.).
  • DPE-6A pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer
  • UA306I manufactured by Kyoeisha Chemical Co., Ltd.
  • a commercially available urethane prepolymer for example, UA-510H manufactured by Kyoeisha Chemical Co., Ltd.
  • addition polymerizable compound having three or more reactive groups may be used alone or in combination of two or more.
  • the content of the “addition polymerizable compound having three or more reactive groups” in the base composition is not particularly limited, but is 1% by weight or more and 60% by weight or less based on the total amount of the base composition. Is preferable, and it is especially preferable that it is 5 to 50 weight%.
  • the content of the addition polymerizable compound is increased, the bulky structure of the addition polymerizable compound increases the effect of fixing the metal (M2) ions of the base composition and the effect of reducing the metal (M2) ions.
  • the ratio of the addition polymerizable compound having an acidic group, the addition polymerizable compound having a basic group, and the addition polymerizable compound having a hydrophilic functional group in the base composition decreases, and the effects of these compounds becomes lower. Therefore, the content of the “addition polymerizable compound having three or more reactive groups” in the base composition is preferably in the above range.
  • the acidic group in the “addition polymerizable compound having an acidic group” is not particularly limited as long as it can hold a metal ion in the form of a salt.
  • Examples thereof include a phenol group, a benzoic acid group, a benzenesulfonic acid group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a phthalic acid group, a salicylic acid group, and an acetylsalicylic acid group.
  • the acidic group is preferably a strongly acidic acidic group.
  • a strongly acidic acid group since it has excellent metal ion supportability, carboxyl group, sulfonic acid group, phenol group, benzoic acid group, phthalic acid group, salicylic acid group, acetylsalicylic acid group and benzenesulfonic acid group It is particularly preferable that one or more functional groups selected from the group consisting of
  • the acidic groups in the above “addition polymerizable compound having acidic group” it is necessary that at least one is located at the molecular end.
  • the “molecular end” may be the end of the main chain or the end of the side chain.
  • the metal (M1) ion is trapped by a free acidic group located at the molecular end of the compound, at least one of the acidic groups is at the molecular end. It is necessary to be located.
  • the acidic group located at the end of the molecule is present in the molecule as an acidic group after addition polymerization, so in the subsequent metal salt production step, the metal (M1) is treated by treatment with an aqueous solution containing metal (M1) ions. Form a salt.
  • addition polymerizable compound having an acidic group examples include compounds represented by the following general formula (2) or (3).
  • R1 is an addition polymerizable reactive group selected from the group consisting of acryloyl group, methacryloyl group, acrylamide group, vinyl group and allyl group
  • R2 is, for example, alkyl group, amide group, ethylene oxide
  • R3 is a functional group having a ring structure such as a phenyl group or a cyclohexyl group, or a functional group having a linear structure such as an alkyl group or a branched structure such as an alkylene group.
  • (meth) acrylic acid, vinylbenzenecarboxylic acid, vinylacetic acid, vinylsulfonic acid, vinylbenzenesulfonic acid, maleic acid, fumaric acid, acrylic ester having phthalic acid group, acrylic ester having salicylic acid group, Acrylic ester having an acetylsalicylic acid group, vinylphenol and the like can be mentioned.
  • the above “addition polymerizable compound having an acidic group” may be used alone or in combination of two or more.
  • addition polymerizable compound containing an acidic group is a compound in which an acidic group located at the molecular end exists in the molecule as an acidic group instead of an ester even after addition polymerization. That is, it is a compound that does not contain an ester group of the acidic group as an acidic group located at the molecular end.
  • the “addition polymerizable compound containing an acidic group” does not contain an ester group of the acidic group as an acidic group, the acidic group remains in the organic film as an acidic group after addition polymerization. Even after the polymerization, the addition polymerizable compound has an acidic group such as a sulfonic acid group or a carboxyl group at the terminal.
  • HOA-MPL used in the examples is an addition polymerizable compound represented by the chemical formula shown in the formula (4) and corresponds to “acrylic ester having a phthalic acid group”.
  • the acidic group located at the molecular end is surrounded by a frame.
  • the “addition polymerizable compound containing an acidic group” has at least one polymerizable unsaturated bond per molecule, and in HOA-MPL, the addition polymerization is performed by vinyl polymerization. Therefore, the phthalic acid group possessed by HOA-MPL is not used for the polymerization, and does not become an ester after the addition polymerization, and remains in the organic film as the phthalic acid group.
  • the content of the “addition polymerizable compound having an acidic group” in the base composition is not particularly limited, but is preferably 10% by weight or more and 90% by weight or less based on the total amount of the base composition, It is particularly preferable that the amount is not less than 80% by weight.
  • addition polymerizable compound having an acidic group improves the metal ion supportability of the base composition, but has an addition polymerizable compound having three or more reactive groups and a hydrophilic functional group.
  • the content of the addition polymerization compound is reduced, and their effects are reduced. Therefore, the content of the “addition polymerizable compound having an acidic group” is preferably in the above range.
  • hydrophilic functional group means a functional group that is easily compatible with an aqueous solution.
  • an ethylene oxide group, a propylene oxide group, an acetal group, a hydroxyl group, an ether group, and the like can be used.
  • an ethylene oxide group and a propylene oxide group are used especially preferably, and it is preferable that the said hydrophilic functional group contains an ethylene oxide group and / or a propylene oxide group.
  • addition polymerizable compound having a hydrophilic functional group examples include compounds represented by the following general formula (5).
  • R1-R2-R1 (5) (R1 is an addition polymerizable reactive group selected from the group consisting of acryloyl group, methacryloyl group, acrylamide group, vinyl group and allyl group; R2 is a group consisting of ethylene oxide group, propylene oxide group, acetal group, hydroxyl group, ether group, for example. Represents a hydrophilic functional group selected from more.) More specifically, examples include polyethylene glycol diacrylate, polypropylene glycol diacrylate, glycerin diacrylate, polytetramethylene glycol diacrylate, 2-hydroxypropyl acrylate, and the like. Further, the “addition polymerizable compound having a hydrophilic functional group” may be used alone or in combination of two or more.
  • the content of the “addition polymerizable compound having a hydrophilic functional group” in the base composition is not particularly limited, but is preferably 1% by weight or more and 80% by weight or less based on the total amount of the base composition. It is particularly preferable that the content is 5% by weight or more and 50% by weight or less.
  • the content of the “addition polymerizable compound having a hydrophilic functional group” increases the effect of improving the hydrophilicity of the organic film.
  • the addition polymerization compound having three or more reactive groups and an acidic group The content of the addition-polymerizable compound is reduced, and their effects are reduced. Therefore, the content of the “addition polymerizable compound having a hydrophilic functional group” in the base composition is preferably in the above range.
  • the base composition preferably contains an addition polymerizable compound having a basic group.
  • the “addition polymerizable compound having a basic group” refers to an addition polymerizable compound having one or more basic groups in one molecule.
  • the base composition contains an “addition polymerizable compound having a basic group”
  • the conductivity of the metal film produced by the production method can be remarkably improved.
  • the above-mentioned “addition polymerizable compound having a basic group” is considered to have an effect of improving the supporting property of the metal (M1) ion to the organic film, and contains an aqueous composition containing the base composition and the metal (M1) ion.
  • the resistance value can be controlled according to the conductivity required for the obtained metal film.
  • the basic group is not particularly limited as long as it is a basic group capable of improving the support of a metal (M1) ion on an acidic group.
  • a metal (M1) ion on an acidic group examples thereof include primary to tertiary amino groups, quaternary ammonium bases, pyridyl groups, morpholino groups, anilino groups, imidazole groups, and quaternary pyridinium bases.
  • addition polymerizable compound having a basic group examples include compounds represented by the following general formula (6).
  • R1-R2-R3 (6) (In the formula, R1 is an addition polymerizable reactive group selected from the group consisting of acryloyl group, methacryloyl group, acrylamide group, vinyl group and allyl group, and R2 is, for example, an ester group, an alkyl group, an amide group, an ethylene oxide group, a propylene oxide group.
  • any structure including R3 is a basic group) More specifically, as the above-mentioned “addition polymerizable compound having a basic group”, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, N-acryloylmorpholine, N, N-dimethylacrylamide, N- (3-dimethylaminopropyl) And methacrylamide.
  • the content of the “addition polymerizable compound having a basic group” in the base composition is not particularly limited, but is preferably 1% by weight or more and 80% by weight or less based on the total amount of the base composition, It is particularly preferably 1% by weight or more and 50% by weight or less.
  • the base composition contains at least an addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, and an addition polymerizable compound having a hydrophilic functional group.
  • it also contains an addition polymerizable compound having a basic group. Therefore, unlike the sputtering method, wet processing can be performed, and metal (M2) can be processed in a plating bath.
  • metal films such as gold, silver, copper, nickel, platinum, cobalt, and iron can be fixed with high uniformity and high adhesion. it can.
  • the base composition only needs to contain at least an addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, and an addition polymerizable compound having a hydrophilic functional group, These compounds can be prepared by appropriately mixing them using a conventionally known method. If necessary, an addition polymerizable compound having a basic group can be further appropriately mixed and prepared.
  • the base composition preferably contains a polymerization initiator in addition to the compound.
  • the polymerization initiator is not particularly limited as long as it can polymerize the base composition. Examples thereof include radical polymerization initiators such as a photopolymerization initiator and a thermal polymerization initiator, and ionic polymerization initiators such as a cationic polymerization initiator and an anionic polymerization initiator.
  • a radical polymerization initiator is preferably used, and a photopolymerization initiator is particularly preferably used from the viewpoint of being applicable to a substrate having low heat resistance because it does not use heat.
  • the photopolymerization initiator is not particularly limited, and examples thereof include 2-hydroxy-2-methyl-1-phenyl-propen-1-one and 2-methyl-1- [4- (methylthio) phenyl]. Examples include -2-morpholinopropen-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and triphenylsulfonyl triflate.
  • the thermal polymerization initiator is not particularly limited, and examples thereof include cumene hydroperoxide, t-butyl hydroperoxide, benzoyl peroxide, DBU, ethylenediamine, N, N-dimethylbenzylamine and the like. it can. These polymerization initiators can be used alone or in appropriate combination.
  • the content of the polymerization initiator is 0.05 to 10% by weight, preferably 0.1 to 8% by weight, based on the total amount of the base composition.
  • the above-mentioned base composition includes the above-described addition polymerizable compound having three or more reactive groups, an addition polymerizable compound having an acidic group, an addition polymerizable compound having a basic group, and an addition polymerizable compound having a hydrophilic group.
  • An addition polymerizable compound other than the compound (hereinafter referred to as “other addition polymerizable compound”) may be contained.
  • the other addition polymerizable compound is a compound which does not have an acidic group or an ester group thereof and has one polymerization unsaturated bond, particularly one polymerizable double bond per molecule. Examples thereof include styrene and vinylcyclohexane.
  • the content of the other addition polymerizable compound is preferably 50% by weight or less, more preferably 30% by weight or less based on the total amount of the base composition.
  • the base composition may further contain an organic solvent.
  • the organic solvent is not particularly limited, and propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, butyl acetate and the like can be used.
  • the content of the organic solvent is preferably 80% by weight or less, and more preferably 30% by weight or less, based on the total amount of the base composition.
  • any substrate or film can be used.
  • the substrate or film include substrates or films made of acrylic resin, polyester resin, polycarbonate resin, polyethylene terephthalate, epoxy resin, such as glass substrate, quartz, lithium niobate, lithium tantalate, borosilicate glass, PZT, PLZT, etc. Can be mentioned. Since the above method does not require high-temperature treatment, it can be applied to a wide variety of substrates or films, and a substrate or film with low heat resistance can be used sufficiently.
  • the method for applying the base composition on the substrate or film is not particularly limited, and any coating method can be used.
  • methods such as ink jet, screen printing, spin coating, spray coating, and immersion can be used.
  • the coating thickness of the base composition is not particularly limited, and for example, a range in which the thickness of the organic film is within the range described below after polymerization is appropriate.
  • Polymerization can be performed using, for example, a polymerization initiator or activation energy rays such as radiation, electron beam, ultraviolet ray, electromagnetic ray and the like.
  • a polymerization initiator or activation energy rays such as radiation, electron beam, ultraviolet ray, electromagnetic ray and the like.
  • light having a wavelength capable of generating radicals by absorption by the photopolymerization initiator, for example, ultraviolet light may be irradiated from the coated surface side of the substrate or film.
  • a thermal polymerization initiator when used, it is heated to a temperature at which the thermal polymerization initiator can be decomposed to generate radicals, for example, 50 to 150 ° C.
  • An organic film is formed on the substrate or film by the polymerization.
  • the thickness of the organic film to be obtained is not particularly limited as long as the object of the present invention is achieved, and for example, 0.1 to 1000 ⁇ m, particularly 10 to 500 ⁇ m is preferable.
  • the metal (M2) can be fixed to the organic film by a simple process using a plating bath to form a metal film. Therefore, the sensor according to the present invention can be manufactured at a low cost while suppressing material loss.
  • the above base composition when it is desired to form some pattern on the metal oxide film included in the sensor according to the present invention, the above pattern is formed on the organic film without using a photolithography method in the organic film forming step. Can be formed directly.
  • the photolithography method requires expensive equipment.
  • the organic film can be very easily and inexpensively transferred by transferring a desired pattern to the base composition and polymerizing the base composition. A desired pattern can be formed. Thereafter, a metal film having a desired pattern can be obtained through a metal salt generation step, a metal fixing step, and a reduction step.
  • the method for imparting the above pattern to the organic film without using the photolithography method is not particularly limited, and examples thereof include inkjet, screen printing, and nanoimprint methods.
  • the nanoimprint method refers to a method of transferring a shape by pressing unevenness with a size inscribed in a mold of several tens of nanometers to several hundreds of micrometers against a resin material applied on a substrate.
  • the metal salt generation step is a step of converting the acidic group into a metal (M1) salt by treating the organic film with an aqueous solution containing metal (M1) ions.
  • the treatment may be performed by immersing a substrate or film in which an organic film is formed in an aqueous solution containing metal (M1) ions, or an aqueous solution containing metal (M1) ions in which an organic film is formed. It can be easily carried out by applying to the surface.
  • the metal (M1) ion is a metal ion capable of cation exchange with a metal (M2) ion for forming a metal film in a metal fixing step to be described later. That is, the metal (M1) ion is a metal ion having a higher ionization tendency than the metal (M2) ion.
  • the metal (M1) ion is not particularly limited as long as it is a metal ion capable of cation exchange with the metal (M2) ion. Examples thereof include alkali metal ions and alkaline earth metal ions. Among these, from the viewpoint of the ease of cation exchange, the metal (M1) ion is preferably an alkali metal ion, and more preferably a potassium ion or a sodium ion.
  • ionization tendency means a tendency for metal ions to become metal ions (cations) when in contact with water, and the high ionization tendency of metal ions is from metal to metal ions. It is based on the tendency of becoming.
  • aqueous solution containing metal (M1) ions examples include aqueous solutions of potassium hydroxide, sodium hydroxide and the like.
  • concentration of the metal (M1) ion in such an aqueous solution is not particularly limited as long as an acid group metal salt is formed, but in the present invention, a relatively low concentration such as 0.1 to 10M, preferably 1 to 8M. Even so, it is possible to efficiently produce a metal salt of an acidic group.
  • the present invention does not prevent the use of two or more kinds of metal (M1) ions, and in that case, the total concentration of metal (M1) ions is preferably within the above range.
  • the hydrogen ions of the acidic group of the organic film are replaced with metal (M1) ions.
  • metal (M1) ions such as —COOH or —SO 3 H, which the organic film has, are directly replaced with metal (M1) ions, such as —COOM1 or —SO 3 M1.
  • Acid group metal salts are formed.
  • M1 represents a metal atom of a metal (M1) ion (hereinafter the same).
  • the treatment conditions are not particularly limited as long as an acid group metal salt is formed, and the treatment temperature is usually 0 to 80 ° C., preferably 20 to 50 ° C.
  • the treatment time is usually 1 to 30 minutes, preferably 2 to 20 minutes.
  • the treatment with the aqueous solution containing the metal (M1) ion of the acidic group includes immersing the substrate or film in which the acidic group is generated in the aqueous solution, or the aqueous solution in which the acidic group is generated. Can be easily carried out, for example, by applying to the aqueous solution.
  • the treatment temperature is, for example, 0 to 80 ° C., preferably 20 to 50 ° C.
  • the treatment time (immersion time) is usually 1 to 30 minutes, preferably 5 to 20 minutes.
  • the hydrogen ion of the acidic group is replaced with the metal (M1) ion, but the addition polymerizable compound having the basic group is included as a component of the organic film.
  • the supportability of metal (M1) ions to the organic film can be further improved. This is presumably because the addition polymerizable compound improves the compatibility between the surface of the base composition and the aqueous solution containing metal (M1) ions, and increases the reactivity between the base composition and the aqueous solution.
  • the metal fixing step includes, for example, immersing a substrate or film on which an organic film treated with an aqueous solution containing the metal (M1) ions is formed in an aqueous metal (M2) ion solution containing metal (M2) ions, It can be easily carried out by applying a metal (M2) ion aqueous solution containing metal (M2) ions to a substrate or a film on which an organic film treated with the metal (M1) ion aqueous solution is formed.
  • metal (M2) ions have a lower ionization tendency than metal (M1) ions
  • metal (M1) salts of acidic groups in organic membranes are easily cation-exchanged with metal (M2) ions, and the metal in the organic membrane (M2) Ions are introduced and fixed.
  • the metal (M2) is not particularly limited and may be any metal that can exchange the cation.
  • this method is a preferable method as an alternative method for forming a metal film by sputtering.
  • the metal (M2) for example, gold, silver, copper, palladium, indium, zinc, tin, nickel, platinum, cobalt, or iron can be used. Among these, one or more metals selected from the group consisting of indium, zinc and tin are preferable.
  • the metal (M2) ion aqueous solution is not particularly limited.
  • the concentration of the metal (M2) ions in the aqueous solution is not particularly limited as long as cation exchange is achieved, but is preferably 5 to 500 mM, and particularly preferably 30 to 250 mM.
  • the treatment temperature is not particularly limited as long as cation exchange is achieved, but it is, for example, 0 to 80 ° C., preferably 20 to 50 ° C.
  • the treatment time is not particularly limited as long as cation exchange is achieved, but is, for example, 1 to 30 minutes, preferably 5 to 20 minutes.
  • the present invention does not prevent the use of two or more types of metal (M2) ions. When two or more types of metal (M2) ions are used, the total concentration of metal (M2) ions is as described above. It may be within the range.
  • the metal (M2) ion aqueous solution preferably contains alkali metal and / or alkaline earth metal ions.
  • the fixation of the metal (M2) ion to the organic film can be promoted by utilizing the difference in ionization tendency between the metal (M2) ion and the metal (M1) ion.
  • Alkali metal and / or alkaline earth metal has a very high ionization tendency. Therefore, in this step, by adding alkali metal and / or alkaline earth metal ions to the metal (M2) ion aqueous solution, (M2) Ion exchange can be further promoted by the difference in ionization tendency with metal (M2) ions in the aqueous ionic solution. Therefore, the metal (M2) can be more efficiently fixed to the organic film.
  • one or more metals selected from the group consisting of indium, zinc and tin have been difficult to fix with good uniformity by sputtering, but alkali metals and / or alkaline earth metals having a high ionization tendency.
  • metal (M1) ions it is presumed that the ratio of indium and the like as ions can be reduced and the fixation to the organic film can be promoted.
  • the alkali metal and alkaline earth metal may be used singly or in combination, but the higher the ionization tendency, the more preferable, and it is more preferable to use the alkali metal alone.
  • the type of alkali metal or alkaline earth metal is not particularly limited, but sodium and potassium are more preferable from the viewpoint of high ionization tendency and low cost and easy use.
  • the amount of the alkali metal and / or alkaline earth metal used is not particularly limited as long as compatibility with the metal (M2) ion aqueous solution is obtained.
  • M2 metal
  • sodium is used as the alkali metal and / or alkaline earth metal
  • the alkali metal and / or alkaline earth metal may be added to the metal (M2) ion aqueous solution as a salt that can be ionized in the aqueous solution.
  • metal (M2) ion aqueous solution as a salt that can be ionized in the aqueous solution.
  • sodium acetate or sodium carbonate can be used.
  • the metal (M2) ion aqueous solution preferably contains a polyol.
  • the metal (M2) ion concentration of the metal (M2) ion aqueous solution is preferable to make the metal (M2) ion concentration of the metal (M2) ion aqueous solution as high as possible.
  • the specific gravity of the metal (M2) ion is large, precipitation tends to occur when the concentration is high.
  • the addition of polyol makes it difficult for metal (M2) ions to precipitate, so that cation exchange between metal (M2) ions and metal (M1) ions can be performed more smoothly.
  • fixation of metal (M2) ions to the organic film can be promoted.
  • the number of alcoholic hydroxyl groups contained in the polyol is not particularly limited, and may be two or more per molecule.
  • glycerin, polyethyleneglycol, sorbitol etc. can be used, for example.
  • glycerin is particularly preferably used because of its excellent thickening property, high effect of preventing precipitation of metal (M2) ions, and excellent effect of promoting fixation of gold ions to an organic film.
  • the amount of the polyol used is preferably 10 to 80% by weight with respect to the metal (M2) ion aqueous solution for reasons of compatibility with the metal ion aqueous solution, and the concentration in the metal (M2) ion aqueous solution is the concentration. What is necessary is just to mix.
  • the reduction step is a step of reducing the metal (M2) ions to form a metal film on the surface of the organic film. That is, the metal (M2) ions introduced into the organic film in the metal fixing step are reduced to deposit the metal atoms of the ions on the surface of the organic film to form a predetermined metal film.
  • Examples of the reduction method include (1) ascorbic acid, sodium ascorbate, sodium borohydride, dimethylamine borane, trimethylamine borane, citric acid, sodium citrate, tannic acid, diborane, hydrazine, formaldehyde, lithium aluminum hydride, (2) a derivative of the compound of (1), and (3) one or more reducing agents selected from the group consisting of sulfites and hypophosphites, and / or (4) from ultraviolet rays, heat, plasma, hydrogen
  • the method etc. which carry out using the 1 or more reduction means chosen from the group which consists of can be mentioned.
  • the above derivative is not particularly limited.
  • the (3) sulfite and hypophosphite are not particularly limited.
  • the metal (M2) ions can be reduced by bringing the surface of the organic film into contact with the reducing agent.
  • the reducing agent is usually used in the form of an aqueous solution, and the reduction can be easily achieved by immersing a substrate or film having an organic film in the aqueous solution of the reducing agent.
  • the concentration of the reducing agent in the reducing agent aqueous solution is not particularly limited, but when the concentration of the reducing agent is too low, the rate of the reduction reaction tends to be too slow, and when the concentration of the reducing agent is too high.
  • the deposited metal may fall off, which is not preferable.
  • the concentration of the reducing agent is preferably 1 to 500 mM, and more preferably 5 to 100 mM.
  • the treatment temperature during the reduction is not particularly limited.
  • the temperature of the aqueous solution of the reducing agent is preferably 0 to 80 ° C., more preferably 20 to 50 ° C.
  • the treatment time (immersion time) is not particularly limited, but is preferably 1 to 30 minutes, for example, and more preferably 5 to 20 minutes.
  • the reducing step preferably uses an alcohol and / or a surfactant together with the reducing agent.
  • the water-soluble reducing agent can be easily adapted to the base composition, so that the reduction can be performed more efficiently.
  • the alcohol must be amphiphilic because it must be soluble in an aqueous solution of a reducing agent and be compatible with the metal film and the underlying composition.
  • any of chain alcohol, alicyclic alcohol, and aromatic alcohol may be used.
  • lower monohydric chain alcohols such as ethanol, methanol, propanol and butanol
  • polyhydric alcohols such as ethylene glycol
  • aromatic alcohols such as benzyl alcohol, and the like can be used.
  • the surfactant may be any of a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • cationic surfactant examples include amine salts such as alkylamine salts, amide bond amine salts, and ester bond amine salts; fourth salts such as alkyl ammonium salts, amide bond ammonium salts, ester bond ammonium salts, and ether bond ammonium salts. Secondary ammonium salts; pyridinium salts such as alkylpyridinium salts, amide-linked pyridinium salts, ether-linked pyridinium salts; and the like can be used.
  • anionic surfactant soap, sulfated oil, alkyl sulfate, alkyl sulfonate, alkyl allyl sulfonate, alkyl naphthalene sulfonate, or the like can be used.
  • Nonionic surfactants include ethylene oxide surfactants such as alkyl allyl ether type, alkyl ether type and alkyl amine type; polyhydric alcohol fatty acids such as glycerin fatty acid ester, sorbitan fatty acid ester and polyethylene glycol fatty acid ester.
  • An ester surfactant, a polyethyleneimine surfactant, a fatty acid alkylolamide surfactant, and the like can be used.
  • amphoteric surfactant a combination of a cationic surfactant and an anionic surfactant, a combination of a cationic surfactant or an anionic surfactant and a nonionic surfactant, or the like is used. be able to.
  • Alcohol and surfactant may be used singly or in combination. Moreover, the kind of alcohol to be used and the kind of surfactant may be one kind, or two or more kinds.
  • Alcohol and / or surfactant may be added to an aqueous solution of a reducing agent before dipping the substrate or film.
  • the amount of alcohol and / or surfactant added is preferably 10 to 60% by weight for reasons of compatibility with an aqueous metal ion solution.
  • the amount of the alcohol and / or surfactant used is preferably 0.01 to 10% by weight because of compatibility with the aqueous metal ion solution.
  • the organic film surface may be irradiated with ultraviolet rays.
  • the irradiation time is preferably 10 to 150 minutes, particularly 60 to 90 minutes.
  • a metal film having a pattern shape corresponding to the mask can be formed by irradiating the mask with ultraviolet rays. Therefore, even a relatively complicated metal pattern can be easily formed. Regions other than the pattern portion can be removed by immersing in a 1% nitric acid aqueous solution, for example.
  • metal (M2) ions may be reduced using a heatable device such as a hot plate or an oven.
  • the heating temperature is preferably 150 to 300 ° C., and the heating time is preferably 5 to 60 minutes.
  • the reduction may be performed using a reducing agent in combination with one or more reducing means selected from the group consisting of ultraviolet light, heat, plasma, and hydrogen.
  • the reducing step when one or more reducing agents selected from the group consisting of (1), (2) and (3) are used, in the presence of an alkali metal and / or an alkaline earth metal. It is preferable to reduce the metal (M2) ion.
  • Alkali metals and / or alkaline earth metals have a much higher ionization tendency than the metal (M2) used in the present invention, so that the reduction is performed in the presence of alkali metals and / or alkaline earth metals. It prevents ionization of metal (M2) fixed to the organic film in the process and prevents elution.
  • the alkali metal and / or alkaline earth metal used in the metal fixing step plays a role of promoting the fixation of the metal (M2) to the organic film, and the alkali metal and / or alkaline earth metal used in the reduction step. Plays a role in preventing the elution of the metal (M2) fixed on the organic membrane and promoting the reduction more reliably.
  • the alkali metal and alkaline earth metal may be used singly or in combination, but the higher the ionization tendency, the more preferable, and it is more preferable to use the alkali metal alone.
  • the type of alkali metal or alkaline earth metal is not particularly limited, but sodium and potassium are more preferable from the viewpoint of high ionization tendency and low cost and easy use.
  • the amount of the alkali metal and / or alkaline earth metal used is not particularly limited as long as compatibility with the metal (M2) ion aqueous solution is obtained.
  • the molar ratio of indium and sodium is about 1: 1 as a simple substance with respect to the indium ion aqueous solution. preferable.
  • the alkali metal and / or alkaline earth metal may be added to the aqueous solution of the reducing agent as a salt that can be ionized in the aqueous solution.
  • a salt that can be ionized in the aqueous solution.
  • sodium acetate or sodium carbonate can be used.
  • an aqueous solution of an alkali metal and / or alkaline earth metal salt, or an alkali metal and / or alkaline earth After preparing an aqueous solution containing a metal and immersing the substrate or film on which the organic film on which the metal (M2) is fixed is formed in the aqueous solution, a treatment such as ultraviolet irradiation may be performed.
  • the substrate or film is usually washed and dried.
  • the washing may be washing with water, but washing with an aqueous sulfuric acid solution is preferable in order to reliably remove excess metal ions. Drying may be achieved by standing at room temperature, but is preferably performed in a nitrogen atmosphere from the viewpoint of preventing oxidation of the obtained metal film. Moreover, it is preferable to wash the substrate or film between the above-described steps or processes in the present invention.
  • the oxidation process is a process of obtaining a metal oxide film by oxidizing the metal film formed through the reduction process. By this step, transparency can be imparted to the metal film.
  • the metal oxide film is a particulate film.
  • the metal oxide film includes metal oxide particles that are oxides of the metal (M2) having a particle diameter of 1 nm or more and 100 nm or less, and the metal oxide film is a surface of the substrate or film in the longitudinal section of the sensor.
  • M2 metal oxide particles that are oxides of the metal
  • the metal oxide film is a surface of the substrate or film in the longitudinal section of the sensor.
  • Example 2 For example, in Example 2 to be described later, as shown in FIGS. 1A and 1B, a thin film layer having a thickness of about 100 nm having a laminated structure of indium oxide particles having a particle diameter of 1 nm to 100 nm is formed. A so-called gradation structure is observed in which the particle diameter decreases from the vicinity of the surface of the thin film layer toward the organic film side.
  • FIG. 1A is a photograph showing a result of observing a longitudinal section of a metal oxide film included in a sensor according to an embodiment of the present invention with a transmission electron microscope.
  • FIG. 1B is a schematic diagram of the longitudinal section.
  • particle diameter is intended to mean the diameter of the maximum inscribed circle with respect to the two-dimensional shape of the metal oxide particles (that is, the metal (M2) oxide particles) when the metal oxide film is observed with a microscope. Is done.
  • the two-dimensional shape of the metal oxide particles constituting the metal oxide film is substantially circular
  • the diameter of the circle is intended
  • the shape is substantially square, the length of the side of the square is intended, and when the shape is substantially rectangular, the length of the short side of the rectangle is intended.
  • the oxide of the metal (M2) having a particle diameter of 1 nm to 100 nm means that the particle diameter of the metal (M2) oxide contained in the metal oxide film is in the range of 1 nm to 100 nm. It means that there is.
  • the particle diameter can be measured, for example, by cross-sectional observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the TEM to be used is not particularly limited.
  • the “longitudinal section of the sensor” means, for example, a longitudinal section when the sensor according to the present invention is cut so as to make a right angle to the substrate or film, as shown in FIGS. Say.
  • the surface of the substrate or film on which the organic film is formed corresponds to, for example, the lower side of the layer described as “organic film” in FIGS.
  • the average particle diameter of the metal oxide particles crossing the straight line is determined from the surface of the metal oxide film to the organic It is preferable that it becomes smaller as it goes to the film.
  • the average particle diameter of the metal oxide particles crossing the straight line decreases from the surface of the metal oxide film toward the organic film (having a so-called gradation structure), for example, as follows: Can be confirmed.
  • crossing the straight line means that at least a part of the metal oxide particles overlaps the straight line in the longitudinal section.
  • a straight line may be taken as described above to determine the average particle diameter.
  • the thickness of the metal oxide film is, for example, the concentration of metal (M1) ion-containing aqueous solution, treatment temperature, treatment time in the metal salt production step; the concentration of metal (M2) ion aqueous solution, treatment temperature, treatment in the metal fixing step.
  • Time It can be controlled by appropriately adjusting the reducing agent concentration, treatment temperature, treatment time, etc. in the reduction step.
  • the film thickness can be measured by observing the longitudinal section of the sensor according to the present invention (for example, the longitudinal section shown in FIGS. 1A and 1B) using a TEM or the like, and is particularly limited. Although it is not a thing, since a high resistance film
  • the metal oxide film provided in the sensor has a laminated structure of the metal (M2) oxide having a particle diameter of 1 nm to 100 nm. Take the above gradation structure. As a result, the structure of the metal oxide film is sparse compared to a metal film produced by a technique such as sputtering, and therefore has a higher electrical resistance than the metal film.
  • the metal oxide film can be directly formed on the organic film, the sensor according to the present invention can be reduced in size, thickness, and diameter.
  • the sensor according to the present invention may be provided with the metal oxide film manufactured by the above method.
  • the metal oxide particles constituting the metal oxide film are stacked on the organic film, but some of the metal oxide particles may be embedded in the organic film.
  • a member such as an electrode may be provided as necessary.
  • the inventor has produced a film or a substrate (hereinafter referred to as the organic film and the metal oxide film) manufactured by the method including the organic film formation process, the metal salt generation process, the metal fixing process, the reduction process and the oxidation process.
  • the organic film and the metal oxide film manufactured by the method including the organic film formation process, the metal salt generation process, the metal fixing process, the reduction process and the oxidation process.
  • the present inventor has found that the above-described element can be used as an optical sensor capable of detecting light irradiation and stoppage. That is, as shown in the examples described later, it is possible to detect light irradiation and stoppage by detecting a change in the resistance value indicated by the element during the light irradiation and after the light is stopped. .
  • a method for detecting the irradiation and stop of light according to the present invention includes a step of irradiating light to a sensor according to the present invention, a step of stopping the irradiation of light, And a step of detecting a change in resistance value indicated by the sensor after the light is stopped.
  • the element may be simply referred to as a sensor.
  • the present inventor has found that, in a hydrogen gas atmosphere, when the element is irradiated with light, the resistance value rapidly decreases, but the resistance value still decreases after the irradiation is completed. Paying attention to this behavior different from that in the atmosphere, the present inventor has found that the element can be used as a hydrogen gas detection sensor capable of measuring hydrogen gas. That is, the presence or absence of hydrogen gas in the environment can be detected by detecting a change in resistance value indicated by the sensor during the irradiation of the light and after the light is stopped.
  • the method for detecting hydrogen gas according to the present invention includes a step of irradiating light to the sensor according to the present invention, a step of stopping the irradiation of light, and a step of irradiating the light in a hydrogen gas atmosphere. And a step of detecting a change in the resistance value indicated by the sensor after the light is stopped.
  • hydrogen gas is detectable includes not only detecting the presence of hydrogen gas but also detecting the hydrogen gas concentration.
  • the present inventor has found that the behavior of the resistance value recovery after light irradiation to the sensor is different depending on the atmospheric pressure. In other words, as shown in the examples described later, when the device was irradiated and stopped under the same conditions under different atmospheric pressures, it was found that the higher the atmospheric pressure, the faster the resistance recovery rate. It was.
  • the above-described element can be used as a pressure sensor that is a sensor capable of measuring pressure. That is, the above elements are placed under different atmospheric pressures, and at each atmospheric pressure, the correlation between the atmospheric pressure and the recovery time of the resistance value after stopping light irradiation on the above elements is examined, and a calibration curve is created. Thus, the atmospheric pressure can be measured.
  • the method for measuring the atmospheric pressure according to the present invention includes a step of irradiating light to the sensor according to the present invention, a step of stopping the irradiation of the light, and an irradiation of the light under different atmospheric pressures. Detecting a change in the resistance value indicated by the sensor at each atmospheric pressure after the light is stopped.
  • the “resistance value recovery time” refers to the time until the resistance value indicated by the sensor rises after light irradiation stops and recovers to a fixed resistance value set arbitrarily.
  • the recovery time depends on the atmospheric pressure of the environment where the sensor is located. For example, in FIG. 6 described later, the time until the resistance value recovers to about 40 k ⁇ is about 40 seconds when the atmospheric pressure is 10 MPa, about 48 seconds for 1 MPa, and about 53 seconds for 0.1 MPa. Is different.
  • the step of detecting a change in resistance value indicated by the sensor under each atmospheric pressure means, for example, a step of detecting the recovery time.
  • under different atmospheric pressures means that there are multiple environments with different atmospheric pressures.
  • the number of environments is not particularly limited, but the larger the number of environments, the better the accuracy of the calibration curve.
  • the sensor according to the present invention can be used as a water depth measurement sensor as shown in Example 5 described later.
  • the water depth measurement sensor according to the present invention includes the sensor according to the present invention and an elastic body, and the sensor is enclosed in the elastic body.
  • the intensity of light applied to the sensor according to the present invention is preferably 0.1 mW / cm 2 to 1 W / cm 2 . Moreover, it is preferable to irradiate uniformly on the surface facing the light source among the surfaces of the sensor.
  • the resistance value of the sensor according to the present invention manufactured by the above method in the atmosphere and in a hydrogen gas atmosphere exhibits the above behavior because the metal oxide film provided in the sensor according to the present invention is a method such as sputtering.
  • the structure is sparse, and it is related to the fact that it has a feature of taking a laminated structure of the metal (M2) oxide having a particle diameter of 1 nm to 100 nm and taking the gradation structure. It is speculated that there is.
  • the sensor according to the present invention does not require a multilayer film because it has a uniform metal oxide film formed by a wet process by the manufacturing method described above. Therefore, a sensor that can be reduced in size, thickness, and diameter can be provided at low cost. In addition, since it is not necessary to heat at the time of manufacture and use, the degree of freedom of substrate selection is high, and power consumption can be reduced. Further, since hydrogen is bonded to the metal oxide film like a chemical reaction, the metal is not deteriorated due to repeated absorption of hydrogen between metal atoms and release of hydrogen from between metal atoms.
  • the present invention can also be expressed as follows.
  • the metal oxide film includes metal oxide particles that are oxides of the metal (M2) having a particle diameter of 1 nm or more and 100 nm or less, and the metal oxide film is in a longitudinal section of the sensor.
  • the metal oxide film has a so-called gradation structure in which the average particle diameter of the metal oxide particles is larger as it is closer to the film surface.
  • the metal oxide film is sparser than a metal film produced by a method such as sputtering. Therefore, a film having high electric resistance can be obtained. Further, since it has such a structural feature, it is presumed that an optical sensor, a hydrogen gas detection sensor, and an atmospheric pressure sensor with high sensitivity and few malfunctions can be obtained, as shown in examples described later.
  • the acidic group preferably includes one or more functional groups selected from the group consisting of a phenol group, a benzoic acid group, a phthalic acid group, a salicylic acid group, an acetylsalicylic acid group, and a benzenesulfonic acid group. .
  • the sensor can have a higher immobilization ratio of the metal (M2) oxide.
  • the reactive group of the addition polymerizable compound having three or more reactive groups preferably includes an acryloyl group and / or a methacryloyl group.
  • the structure of the organic film can be made into a structure that can fix more metal ions, and the reducing agent can be spread to the inside. Easy structure.
  • metal (M2) ions can be further reduced to the inside. Therefore, according to the said structure, it can be set as a sensor with the higher immobilization rate of the metal (M2) oxide.
  • the hydrophilic functional group preferably contains an ethylene oxide group and / or a propylene oxide group.
  • ethylene oxide and propylene oxide are particularly excellent in the ability to improve the hydrophilicity of the organic film, so that each treatment liquid (an aqueous solution containing metal (M1) ions, metal, etc.) is further introduced into the organic film.
  • M2 ion aqueous solution, reducing agent aqueous solution an ion-containing metal (M2 ion aqueous solution, reducing agent aqueous solution) can be allowed to act. Therefore, according to the said structure, it can be set as a sensor with the higher immobilization rate of the metal (M2) oxide.
  • the metal (M1) is preferably potassium or sodium.
  • Potassium or sodium has a very large ionization tendency and a large difference in ionization tendency from the metal (M2), so that the metal (M2) can be more easily fixed in the metal fixing step. Therefore, according to the said structure, it can be set as a sensor with the higher immobilization rate of the metal (M2) oxide.
  • the metal (M2) is preferably one or more metals selected from the group consisting of indium, zinc and tin.
  • These metals are widely used as raw materials for transparent conductive films. According to the said structure, since the favorable in-plane uniformity and adhesiveness can be provided to the transparent conductive film using these metals, the use efficiency of the said metal can be improved. Therefore, according to the said structure, it can be set as the sensor with the higher immobilization rate of these metal oxides.
  • the water depth measuring sensor according to the present invention includes the sensor according to the present invention and an elastic body, and the sensor is enclosed in the elastic body.
  • the elastic body contracts due to a change in the surrounding water pressure, and the atmospheric pressure inside the elastic body changes. Therefore, by irradiating the sensor according to the present invention with light at a point where the water depth is to be measured and detecting the slope of the recovery of the resistance value indicated by the sensor according to the present invention after the irradiation is stopped, The atmospheric pressure can be measured, and the water depth at the point can be measured based on the correlation between the atmospheric pressure and the water depth.
  • a method of detecting light irradiation and stop according to the present invention includes a step of irradiating light to a sensor according to the present invention, a step of stopping the light irradiation, and during and during the light irradiation. And a step of detecting a change in the resistance value indicated by the sensor.
  • the method for detecting hydrogen gas according to the present invention includes a step of irradiating light to the sensor according to the present invention in a hydrogen gas atmosphere, a step of stopping the irradiation of the light, and during the irradiation of the light and the light. And a step of detecting a change in the resistance value indicated by the sensor after the operation is stopped.
  • the method for measuring atmospheric pressure according to the present invention includes a step of irradiating light to a sensor according to the present invention, a step of stopping the irradiation of light, and a step of irradiating the light and the light at different atmospheric pressures. And a step of detecting a change in the resistance value indicated by the sensor after the stop.
  • Example 1 Preparation of base composition and formation of organic film
  • a base composition 2-acryloyloxyethyl-phthalic acid (trade name: HOA-MPL, manufactured by Kyoeisha Chemical Co., Ltd.) was 39% by weight, and dimethylaminoethyl methacrylate (trade name: DM, manufactured by Kyoeisha Chemical Co., Ltd.) was used.
  • HOA-MPL 2-acryloyloxyethyl-phthalic acid
  • DM dimethylaminoethyl methacrylate
  • % By weight, 25% by weight of pentaerythritol triacrylate (trade name: PE-3A, manufactured by Kyoeisha Chemical Co., Ltd.), 25% by weight of diethylene glycol dimethacrylate (trade name: 2EG, manufactured by Kyoeisha Chemical Co., Ltd.), polymerization initiator was prepared by mixing 1% by weight of Irgacure 1173 (manufactured by Ciba Specialty Chemicals Co., Ltd.) to a total of 100% by weight.
  • PE-3A pentaerythritol triacrylate
  • diethylene glycol dimethacrylate trade name: 2EG, manufactured by Kyoeisha Chemical Co., Ltd.
  • polymerization initiator was prepared by mixing 1% by weight of Irgacure 1173 (manufactured by Ciba Specialty Chemicals Co., Ltd.) to a total of 100% by weight.
  • the 2-acryloyloxyethyl-phthalic acid is an addition polymerizable compound having an acidic group
  • dimethylaminoethyl methacrylate is an addition polymerizable compound having a basic group
  • pentaerythritol triacrylate has three or more reactive groups.
  • diethylene glycol dimethacrylate was used as an addition polymerizable compound having a hydrophilic functional group.
  • the above chemical solution was applied on an acrylic plate by a spin coat method.
  • the chemical solution was cured by irradiating the chemical solution with ultraviolet rays for 20 minutes using an ultraviolet irradiation device (PL16-110, manufactured by Sen Special Light Source Co., Ltd.) to form an organic film on the acrylic plate. .
  • an ultraviolet irradiation device PL16-110, manufactured by Sen Special Light Source Co., Ltd.
  • Example 2 Formation of metal thin film
  • a metal thin film was obtained by subjecting the acrylic plate on which the organic film was formed to the following steps. (1) Immerse in an 8M aqueous potassium hydroxide solution at 60 ° C. and hold for 2 minutes. (2) Wash thoroughly in distilled water. (3) Immerse in an aqueous metal ion solution at room temperature and hold for 10 minutes. As said metal ion aqueous solution, what mixed 100 mM indium chloride aqueous solution and 100 mM sodium acetate aqueous solution by the volume ratio 1: 1 was used. (4) Wash thoroughly in distilled water. (5) Immerse in an aqueous solution of 100 mM sodium borohydride at 40 ° C. and hold for 10 minutes to reduce metal ions. (6) Wash thoroughly in distilled water. (7) Dry under a nitrogen atmosphere.
  • FIG. 1A is a photograph showing a result of observing a longitudinal section of a sensor according to an embodiment of the present invention with a transmission electron microscope.
  • (b) of FIG. 1 is a schematic diagram which shows the vertical cross section of a thin film layer and an organic film among the said vertical cross sections.
  • the indium oxide film was a thin film layer having a thickness of about 100 nm having a laminated structure of indium oxide particles having a particle diameter of 1 nm to 100 nm.
  • the indium oxide film had a feature that the particle diameter decreased from the surface vicinity toward the inside (organic film side). It was found that the particle diameter of the indium oxide particles existing in the vicinity of the surface is 50 to 100 nm and has a so-called gradation structure in which the particle diameter decreases toward the inside. As shown in FIG. 1 (b), some of the indium oxide particles are embedded in the organic film.
  • the metal thin film obtained by the steps (1) to (8) is firmly held on the organic film without using a binder or the like. Moreover, although comparative data is not shown, it was found that the metal thin film has a sparser structure than that of a metal film produced by a conventionally known method such as sputtering, and therefore has a high electric resistance.
  • FIG. 2 is a schematic diagram showing the appearance of the sensor 10 according to one embodiment of the present invention.
  • 1 is an element including an organic film and an indium oxide film
  • 2a and 2b are outer terminals
  • 3a and 3b are inner terminals
  • 4 is a voltmeter
  • 5 is an ammeter
  • 6 is a light source.
  • the sensor 10 according to the present invention includes an element 1, outer terminals 2a and 2b, and inner terminals 3a and 3b.
  • the element may be referred to as a sensor.
  • a light source 6 was installed on the top of the sensor 10. While flowing a current of 0.1 mA from both ends of the sensor 10, the light source 6 uniformly irradiates light of 50 mW / cm 2 from 10 cm above the sensor 10 to the entire surface of the sensor 10 on the light source side, and irradiates several seconds later. Stopped.
  • FIG. 3 is a graph showing a change in resistance value indicated by the sensor 10 when irradiation is stopped after the sensor 10 is irradiated with light. When light was irradiated for several seconds, the resistance value decreased rapidly, but when the irradiation was stopped, the resistance value gradually recovered from that point.
  • the senor according to the present invention including the indium oxide film formed on the organic film has a resistance value that decreases when light is irradiated and recovers when the light irradiation is stopped. Can be detected. Moreover, it became clear that light irradiation can be easily detected with a simple structure as shown in FIG.
  • Example 4 Detection of hydrogen by sensor
  • the sensor 10 was placed in a hydrogen gas atmosphere, and its use as a hydrogen gas detection sensor was examined.
  • the sensor 10 was installed in a sealed container other than the pipe portion, and after evacuating for several minutes with a rotary pump, hydrogen gas was introduced to 1 atm.
  • light was uniformly applied to the entire light source side surface of the sensor 10 from the light source 6 installed on the top of the sensor 10, and the irradiation was stopped after several seconds.
  • FIG. 4 is a graph showing a change in resistance value indicated by the sensor 10 when the light irradiation is stopped after the sensor 10 is irradiated with light in a hydrogen gas atmosphere.
  • the resistance value decreased abruptly as in Example 3.
  • the resistance value tended to decrease even after the light irradiation was stopped. .
  • the resistance value of the sensor 10 recovers after stopping the light irradiation in the atmosphere where hydrogen is not present as in the third embodiment, but decreases after the light irradiation is stopped in the hydrogen atmosphere. . Therefore, the sensor 10 can be used as a hydrogen gas detection sensor by utilizing the difference in behavior of the resistance value depending on the presence or absence of hydrogen.
  • FIG. 5 is a schematic diagram showing a sensor enclosed in sealed containers with different degrees of vacuum.
  • the current of 0.1 mA is supplied from both ends of the sensors 10a, 10b, and 10c, and the light sources 6a, 6b, and 6c are connected to the light sources side of the sensors 10a, 10b, and 10c, respectively.
  • the entire surface of the film was irradiated with light evenly, and the irradiation was stopped after a few seconds.
  • the irradiation intensity of light is all the same. Since the configuration of the sensor shown in FIG. 5 is the same as that shown in FIG. 2, reference numerals are omitted for elements and terminals constituting the sensor.
  • the voltmeter and ammeter are the same as those shown in FIG.
  • FIG. 6 is a graph showing the difference in the recovery time of the resistance value indicated by each sensor in atmospheres with different degrees of vacuum.
  • FIG. 6 shows that the higher the atmospheric pressure in the container, the faster the recovery speed of the resistance value. From this result, it can be seen that the recovery time of the resistance value changes due to the change in atmospheric pressure.
  • the sensor according to the present invention can be used as an atmospheric pressure sensor.
  • FIG. 7 is a schematic diagram showing a configuration of a water depth measuring sensor using the sensor according to the present invention.
  • 8 is an elastic body, and the internal atmospheric pressure changes depending on the ambient pressure.
  • the elastic body is preferably a rubber-like elastic body.
  • the same members as those shown in FIG. 2 are denoted by the same reference numerals as those used in FIG.
  • the senor 10 and the light source 6 are sealed in a rubber-like elastic body 8 and submerged in water. As the water depth increases, the surrounding water pressure changes, so the elastic body contracts and the atmospheric pressure inside the elastic body changes. By irradiating the sensor 10 with light at a point to be measured and detecting the slope of resistance value recovery indicated by the element after the irradiation is completed, the pressure inside the elastic body can be measured.
  • the correlation between the slope of the resistance value recovery and the atmospheric pressure inside the elastic body is obtained at various points, and further, the atmospheric pressure inside the elastic body, Find the correlation with water pressure and water depth. Then, by creating a calibration curve showing the correlation between the slope of the resistance value recovery, the water pressure and the water depth, the water depth can be measured using the sensor 10 as a water depth measuring sensor.
  • FIG. 6 shows a configuration in which the light source 6 is enclosed in the elastic body 8, but from the outside of the elastic body 8.
  • the sensor 10 enclosed in the elastic body 8 may be irradiated with light.
  • the elastic body 8 is preferably transparent in order to perform light irradiation efficiently.
  • the present invention can be applied to an optical sensor, a hydrogen gas detection sensor, an atmospheric pressure sensor, and a water depth sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Laminated Bodies (AREA)
  • Light Receiving Elements (AREA)
  • Measuring Fluid Pressure (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Chemically Coating (AREA)
  • Paints Or Removers (AREA)

Abstract

 湿式処理によって成膜した酸化金属膜を備え、光照射、水素ガスおよび気圧を測定可能であるセンサおよびその製造方法を提供する。 本発明にかかるセンサは、3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有する下地組成物を用いて有機膜を形成する有機膜形成工程と、上記酸性基を金属(M1)塩にする金属塩生成工程と、金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする金属固定工程と、上記金属(M2)イオンを還元して上記有機膜表面に金属膜を形成する還元工程と、上記金属膜を酸化する酸化工程と、を含む方法によって製造された酸化金属膜を備え、光、水素ガスおよび気圧を検出可能である。

Description

酸化金属膜を備えたセンサおよびその利用
 本発明は、酸化金属膜を備えたセンサおよびその利用に関し、より詳細には湿式処理によって成膜した酸化金属膜を備え、光、水素ガスおよび気圧を検出可能であるセンサおよびその製造方法、並びに上記センサを用いた水素ガス濃度等の検出方法に関するものである。
 光センサは、テレビやオーディオなどの赤外線リモコンをはじめ、IrDA(Infrared Data Association)などを用いた光通信、OA機器、産業機器、民生用機器などに幅広く用いられている。
 また、水素ガスは、クリーンかつ循環可能なエネルギーとして注目されているが、一方で爆発性が高いことも知られているため、将来的に水素ガスをエネルギー源として普及させるには、システムを安心して利用するための安全対策が必要不可欠である。その安全対策に貢献するツールとして、水素ガス検知センサの重要性が高まり、近年種々の水素ガス検知センサが開発されている。
 光センサとしては、例えば、半導体積層体からなる光起電力素子を用いた光センサ(特許文献1)、アモルファス半導体膜を光導電膜として使用し、アモルファス半導体膜に照射された光に基づく光電流を検出する光センサ(特許文献2)、所定の規則性を持った構造体によって構成された光照射位置検出センサ(特許文献3)などが知られており、これらは、精度の高さや、長期間高感度の光検出を可能とすることなどを目的として開発されている。
 また、水素ガス検知センサとしては、例えば水素吸蔵合金薄膜を用いたセンサ(特許文献4)、光電子放出粒子を分散させた検知膜表面が水素化されることによる抵抗値の変化を検出するセンサ(特許文献5)などが知られている。これらは、検出感度を保ちつつ消費電力を少なくし、正確なガス濃度の測定を行うことや、導電率のばらつきを低減し、安定した水素ガスの漏洩検知を行うことを目的として開発されている。
日本国公開特許公報「特開平1-278077号公報(1989年11月8日公開)」 日本国公開特許公報「特開昭62-76683号公報(1987年4月8日公開)」 日本国公開特許公報「特開平5-347428号公報(1993年12月27日公開)」 日本国公開特許公報「特開2008-82842号公報(2008年4月10日公開)」 日本国公開特許公報「特開2007-178168号公報(2007年7月12日公開)」
 しかしながら、特許文献1に記載の光センサは、光起電力を発生させるためにはp型半導体とn型半導体とを接合させる必要があるため、必然的に多層膜となる。また、透明導電膜に真空プロセスによって成膜を行い、膜同士の条件を合わせて多層膜の成膜を行う必要があり、レジストやエッチング等も必要となるため、工程が複雑であるという問題がある。さらに、真空プロセスを用いるため、大口径化による大量生産には不向きであり、製造コストも高く、フレキシブル基板上へセンサを作製することが困難であるという問題がある。
 特許文献2に記載の光センサは、基板上に一層の膜を成膜して作製したセンサであるが、アモルファスを利用しているため、膜の安定性が低い。そのため、膜の安定性確保のために発熱体を必要とする。そのため、常に基板に常に熱がかかった状態となることから、基板選択性の自由度が低いという問題がある。また、真空プロセスにて成膜が行われるため、大口径化による大量生産には不向きであり、製造コストが高いという問題がある。
 特許文献3に記載の光照射位置検出センサは、高電気抵抗体からなる電極層が複雑かつ繰り返し構造をなして線形性を保持しているため、集電された電流は高電気抵抗体からなる電極層を長距離に渡って流れ、大きな電圧降下を得ることができ、測定精度を向上させることができるとされている。
 しかしながら、特許文献3に記載の光照射位置検出センサにおいて、光照射位置の検出精度を上げるには高抵抗膜が必要であるが、通常のITO膜では抵抗が低すぎるものの、一方で抵抗値を高くすることは困難である。また、高抵抗膜を得るためには膜厚を下げる必要があるが、特許文献3では膜厚が数nm~数十nmの膜が使用されているので、これ以上薄くすることは困難であり、小型化、薄型化することが困難であるという問題がある。また、構造が複雑であるため製造コストが高く、大口径化による大量生産にも不向きであるという問題がある。
 特許文献4に記載の水素吸蔵合金薄膜を用いた水素ガス検知センサは、金属原子間への水素の吸収および金属原子間からの水素の放出を行うものであるため、上記吸収および放出を繰り返すうちに金属の劣化(水素脆化)が生じることが避けられないという問題がある。また、製造コストが高く、大口径化による大量生産にも不向きであるという問題がある。
 特許文献5に記載の水素ガス検知センサは、光電子放出粒子を湿式法によって基板に塗布し、形成された膜を焼結して作製される。しかしながら、作製時のみならず使用時にも湿度依存性の影響を避けるために加熱することが必要である。そのため、熱の影響を考慮しなければならないため使用できる基板が限られ、常に加熱することが必要となるので消費電力が高いという問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、湿式処理によって成膜した酸化金属膜を備え、光、水素ガスおよび気圧を検出可能であるセンサおよびその利用を提供することにある。
 上記の課題を解決するために、本発明者は、金属イオンの担持性に優れた官能基を含有する下地組成物、金属イオンの有機膜への固定促進、有機膜に固定された金属の溶出防止、金属の還元効率向上や各処理液の下地での反応性向上等を実現可能な製造方法を用い、酸化金属膜を備えた素子を作製した。
 これにより、工程の複雑さ、製造コストの高さ、基板選択の自由度の低さ、大口径化による大量生産に不向きであること、消費電力が高いということ等の、従来公知のセンサが有する問題点を一気に解決することができることを見出し、さらに、得られたセンサは、光、水素ガスおよび気圧を鋭敏に検出可能であることを見出して、本発明を完成するに至った。
 すなわち、本発明にかかるセンサは、3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有する下地組成物を、基板またはフィルム上に塗布し、重合して、有機膜を形成する有機膜形成工程と、上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、上記酸性基を金属(M1)塩にする金属塩生成工程と、上記金属(M1)イオンを含有する水溶液で処理した有機膜を、上記金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする金属固定工程と、上記金属(M2)イオンを還元して上記有機膜表面に金属膜を形成する還元工程と、上記金属膜を酸化する酸化工程と、を含む方法によって製造された酸化金属膜を備え、光、水素ガスおよび気圧を検出可能であることを特徴としている。
 上記構成によれば、上記有機膜は、3つ以上の反応基を有する付加重合化合物に起因する嵩高い三次元構造(以下「バルキー構造」ともいう)を取ることができる。上記バルキー構造を取ることにより、上記有機膜は、膜内の空間に多くの金属(M2)イオンを固定できるようになる。
 そのため、上記有機膜は、多くの金属イオンを固定することができるものと考えられる。また、構造的に、還元剤を有機膜の内部まで行き渡らせることができるので、金属(M2)イオンを内部まで還元することができるものと考えられる。
 さらに、上記親水性官能基を有する付加重合化合物は、上記有機膜の親水性を向上させることができるので、上記有機膜の内部まで各処理液、すなわち金属(M1)イオンを含有する水溶液、金属(M2)イオンを含有する金属(M2)イオン水溶液、還元剤の水溶液を作用させることができる。したがって、上記有機膜に対して上記各処理液をより効果的に作用させることができる。
 また、上記有機膜は、紫外線で硬化可能であるため、耐熱性の低い基板にも適用可能である。
 さらに、上記有機膜は金属塩生成工程において、酸性基が金属(M1)塩とされ、さらに、金属固定工程において、金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属イオン水溶液で処理されるので、金属(M1)と金属(M2)とのイオン化傾向の違いによって効率よく金属(M2)イオンを固定し、有機膜表面に金属膜を形成することができる。そして、上記金属膜を酸化して酸化金属膜を得ることにより、金属膜に透明性を付与することができる。
 このように、上記方法は湿式処理であるため、基板に均一に金属(M2)を透明導電膜として成膜することが可能である。そのため、本発明にかかるセンサは、小型化、薄型化することが可能であり、低コストで製造することができる。
 また、本発明にかかるセンサは、構造を単純化でき、実装面積や高さを減少させることができるので、従来のセンサに比べて多機能化することができ、後述する実施例に示すように、光、水素ガスおよび気圧を鋭敏に検出可能である。さらに、透明導電膜の大口径化を行うことも容易である。
 また、上記酸化金属膜は酸化金属の微粒子により構成されるため、通常の薄膜と比べて表面積を容易に増加させることができる。それゆえ、微量の光および水素ガスを検出することができる。
 さらに、本発明にかかるセンサは、例えばめっき槽を用いて簡易な方法によって作製できるため、材料ロスを少なくすることができる。
 本発明にかかるセンサの製造方法は、3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有する下地組成物を、基板またはフィルム上に塗布し、重合して、有機膜を形成する有機膜形成工程と、上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、上記酸性基を金属(M1)塩にする金属塩生成工程と、上記金属(M1)イオンを含有する水溶液で処理した有機膜を、上記金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする金属固定工程と、上記金属(M2)イオンを還元して上記有機膜表面に金属膜を形成する還元工程と、上記金属膜を酸化して酸化金属膜を得る酸化工程と、を含むことを特徴としている。
 本発明に係る方法は湿式処理であるため、基板に均一に金属(M2)の酸化物を成膜することが可能であり、上記酸化金属膜は、酸化金属の微粒子によって構成される。
 それゆえ、通常の薄膜に比べて表面積を容易に増加させることができることから、微量の光および水素ガスを検出可能なセンサを作製することができる。
 また、上記有機膜は、紫外線で硬化可能であるため、高温処理は不要であり、耐熱性の低い基板にも適用可能であるため、基板選択の自由度が高いセンサを作製することができる。
 以上のように、本発明にかかるセンサは、3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有する下地組成物を、基板またはフィルム上に塗布し、重合して、有機膜を形成する有機膜形成工程と、上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、上記酸性基を金属(M1)塩にする金属塩生成工程と、上記金属(M1)イオンを含有する水溶液で処理した有機膜を、上記金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする金属固定工程と、上記金属(M2)イオンを還元して上記有機膜表面に金属膜を形成する還元工程と、上記金属膜を酸化する酸化工程と、を含む方法によって製造された酸化金属膜を備え、光、水素ガスおよび気圧を検出可能である。
 それゆえ、光、水素ガスおよび気圧を検出可能な多機能センサとすることができ、微量の光および水素ガスを検出することができるという効果を奏する。また、小型化、薄型化することが可能であり、低コストで製造することができるという効果を奏する。
図1の(a)は、本発明の一実施形態にかかるセンサが備える酸化金属膜の縦断面を透過型電子顕微鏡によって観察した結果を示す写真である。図1の(b)は、上記縦断面の模式図である。 本発明の一実施形態にかかるセンサの外観を示す模式図である。 本発明の一実施形態にかかるセンサに光を照射後、照射を停止した場合に、上記センサが示した抵抗値の変化を表すグラフである。 水素ガス雰囲気中で本発明の一実施形態にかかるセンサに光を照射後、照射を停止した場合に、上記センサが示した抵抗値の変化を表すグラフである。 真空度の異なる密封容器中に封入された、本発明の一実施形態にかかるセンサを示す模式図である。 真空度の異なる密封容器中に封入された、それぞれのセンサが示した抵抗値の回復時間の違いを表すグラフである。 本発明の一実施形態にかかるセンサを用いた、水深測定用センサの構成を示す模式図である。
 本発明の実施の形態について説明すれば以下のとおりであるが、本発明はこれに限定されるものではない。本明細書において「A~B」という表現は、A以上B以下であることを表す。
(1.センサ)
 本発明にかかるセンサは、所定の方法によって製造された酸化金属膜を備え、光、水素ガスおよび気圧を検出可能である。そこで、まず上記方法について説明する。
 上記方法は、3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有する下地組成物を、基板またはフィルム上に塗布し、重合して、有機膜を形成する有機膜形成工程と、上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、上記酸性基を金属(M1)塩にする金属塩生成工程と、上記金属(M1)イオンを含有する水溶液で処理した有機膜を、上記金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする金属固定工程と、上記金属(M2)イオンを還元して上記有機膜表面に金属膜を形成する還元工程と、上記金属膜を酸化する酸化工程と、を含む方法である。
 (1-1.有機膜形成工程)
 上記下地組成物は、後述する金属固定工程で導入される金属(M2)イオンを表面に析出させて所定の金属膜を形成するための下地(樹脂膜)を形成するものである。上記下地組成物は、さらに、塩基性基を有する付加重合性化合物を含有していてもよい。
 上記3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性基を有する付加重合性化合物と、塩基性基を有する付加重合性化合物とは、重合性不飽和結合、特に重合性二重結合を1分子あたり1個以上有する。なお、本明細書において「付加重合性化合物」とは、UV,プラズマ、EB等の活性エネルギーによって付加重合しうる化合物をいい、モノマーであってもよいし、オリゴマーやポリマーであってもよい。
 上記「3つ以上の反応基を有する付加重合性化合物」は、上記下地組成物にバルキー構造を付与するために用いられる。上記下地組成物がバルキー構造を取ることによって、有機膜はポリイミドに比べ、当該化合物に起因する嵩高い三次元構造(バルキー構造)となるので、後述する金属固定工程で有機膜に多くの金属(M2)イオンを固定することができるとともに、膜中の当該金属(M2)イオンを還元剤や紫外線等と接触しやすい状態にすることができる。
 上記「反応基」とはラジカル重合やカチオン重合等の付加重合を行いうる付加重合性反応基のことである。上記反応基としては、特に限定されるものではないが、例えば、アクリロイル基、メタクリロイル基、アクリルアミド基、ビニル基、アリル基などを用いることができる。中でも、バルキー構造を構成しやすい官能基であるアクリロイル基、メタクリロイル基が特に好ましく用いられ、上記3つ以上の反応基を有する付加重合性化合物の反応基は、アクリロイル基および/またはメタクリロイル基を含むことが好ましい。
 また、上記付加重合性化合物の複数の反応基による枝分かれ構造が、上記付加重合性化合物にバルキー構造を付与するため、上記反応基の数は、3つ以上であれば特に限定されるものではない。
 上記3つ以上の反応基を有する付加重合性化合物は、上記付加重合性反応基を1分子中に3つ以上有していれば、その構造は特に限定されるものではないが、例えば以下の一般式(1)で表される化合物を挙げることができる。
 (R1-R2)n-R3・・・(1)
 (一般式(1)において、nは3以上であり、R1はアクリロイル基、メタクリロイル基、アクリルアミド基、ビニル基およびアリル基からなる群より選ばれる付加重合性反応基、R2は例えばエステル基、アルキル基、アミド基、エチレンオキシド基、プロピレンオキサイド基などを含む任意の構造、R3はC、アルキル基またはC-OHを表す。)
 上記3つ以上の反応基を有する付加重合性化合物としては、より具体的には、トリメチロールプロパントリアクリレート(市販品としては、例えば共栄社化学株式会社製 TMP-A)、ペンタエリスリトールトリアクリレート(市販品としては、例えば共栄社化学株式会社製 PE-3A)、ペンタエリスリトールテトラアクリレート(市販品としては、例えば共栄社化学株式会社製PE-4A)、ジペンタエリスリトールヘキサアクリレート(市販品としては、例えば共栄社化学株式会社製 DPE-6A)、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー(市販品としては、例えば共栄社化学株式会社製 UA306I)、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー(市販品としては、例えば共栄社化学株式会社製 UA-510H)等を挙げることができる。
 また、上記「3つ以上の反応基を有する付加重合性化合物」は、1種類のみ用いてもよいし、2種類以上を組み合わせて用いてもよい。
 下地組成物における上記「3つ以上の反応基を有する付加重合性化合物」の含有量は特に限定されるものではないが、下地組成物全量に対して1重量%以上60重量%以下であることが好ましく、5重量%以上50重量%以下であることが特に好ましい。
 上記付加重合性化合物の含有量を増やせば、上記付加重合性化合物のバルキー構造により、下地組成物の金属(M2)イオンを固定する効果や、金属(M2)イオンを還元する効果は高くなるが、下地組成物において、酸性基を有する付加重合性化合物と、塩基性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物とが占める割合が減少し、これらの化合物が示す効果は低くなる。そのため、下地組成物における上記「3つ以上の反応基を有する付加重合性化合物」の含有量は、上記範囲であることが望ましい。
 上記「酸性基を有する付加重合性化合物」における酸性基は、金属イオンを塩の形態で保持できるものである限り特に制限されるものではない。例えば、フェノール基、安息香酸基、ベンゼンスルホン酸基、カルボキシル基、スルホン酸基、水酸基、フタル酸基、サリチル酸基、アセチルサリチル酸基等、を挙げることができる。
 本発明者は、今回、強酸性の酸性基が特に金属イオンの担持性に優れ、金属膜を製造する上で非常に有効であることを見出した。したがって、上記酸性基は、強酸性の酸性基であることが好ましい。このような強酸性の酸性基としては、金属イオンの担持性に優れることから、カルボキシル基、スルホン酸基、フェノール基、安息香酸基、フタル酸基、サリチル酸基、アセチルサリチル酸基およびベンゼンスルホン酸基からなる群より選ばれる1以上の官能基を含むことが特に好ましい。
 上記「酸性基を有する付加重合性化合物」における酸性基のうち、少なくとも一つは分子末端に位置することが必要である。上記「分子末端」とは、主鎖の末端であっても側鎖の末端であってもよい。後述する金属塩生成工程においては、上記化合物の分子末端に位置するフリーの酸性基に金属(M1)イオンがトラップされることが必要であるため、上記酸性基は、少なくとも一つは分子末端に位置することが必要となる。分子末端に位置する酸性基は、付加重合後も酸性基として分子中に存在するので、後の金属塩生成工程において、金属(M1)イオンを含有する水溶液で処理することによって、金属(M1)塩を形成する。
 上記「酸性基を有する付加重合性化合物」としては、例えば、以下の一般式(2)または(3)で表される化合物を挙げることができる。
 R1-R2-R3-COOH・・・(2)
 R1-R2-R3-SOH・・・(3)
 (一般式(2)および(3)において、R1はアクリロイル基、メタクリロイル基、アクリルアミド基、ビニル基およびアリル基からなる群より選ばれる付加重合性反応基、R2は例えばアルキル基、アミド基、エチレンオキシド基、プロピレンオキサイド基などを含む任意の構造、R3は、例えばフェニル基もしくはシクロヘキシル基等の環構造を有する官能基、または、アルキル基などの直鎖構造もしくはアルキレン基などの分岐構造を有する官能基である。)
 より具体的には、(メタ)アクリル酸、ビニルベンゼンカルボン酸、ビニル酢酸、ビニルスルホン酸、ビニルベンゼンスルホン酸、マレイン酸、フマル酸、フタル酸基を有するアクリルエステル、サリチル酸基を有するアクリルエステル、アセチルサリチル酸基を有するアクリルエステル、ビニルフェノール等が挙げられる。また、上記「酸性基を有する付加重合性化合物」は、1種類のみ用いてもよいし、2種類以上を組み合わせて用いてもよい。
 上記「酸性基を含有する付加重合性化合物」は、分子末端に位置する酸性基が、付加重合後もエステルではなく酸性基として分子中に存在する化合物である。つまり、分子末端に位置する酸性基として当該酸性基のエステル基を含まない化合物である。
 「酸性基を含有する付加重合性化合物」が、酸性基として当該酸性基のエステル基を含まない場合、当該酸性基は、付加重合後もエステルではなく酸性基のまま有機膜中に残存する。上記付加重合性化合物は、重合後も、末端に例えばスルホン酸基やカルボキシル基などの酸性基を有することになる。
 例えば、実施例で用いたHOA-MPLは、式(4)に示す化学式で表される付加重合性化合物であり「フタル酸基を有するアクリルエステル」に該当する。式(4)において、分子末端に位置する酸性基を枠囲みしている。上述のように、「酸性基を含有する付加重合性化合物」は、重合性不飽和結合を1分子あたり1個以上有しており、HOA-MPLでは、付加重合はビニル重合により行われる。そのため、HOA-MPLが有するフタル酸基は重合に用いられることはなく、付加重合後もエステルとはならずに、フタル酸基のまま有機膜中に残存する。
Figure JPOXMLDOC01-appb-C000001
 下地組成物における上記「酸性基を有する付加重合性化合物」の含有量は特に限定されるものではないが、下地組成物全量に対して10重量%以上90重量%以下であることが好ましく、20重量%以上80重量%以下であることが特に好ましい。
 上記「酸性基を有する付加重合性化合物」の含有量を増やせば、下地組成物の金属イオン担持性は向上するが、3つ以上の反応基を有する付加重合化合物と、親水性官能基を有する付加重合化合物の含有量とが減少し、それらの効果は小さくなる。そのため、上記「酸性基を有する付加重合性化合物」の含有量は、上記範囲であることが望ましい。
 上記「親水性官能基」とは、水溶液がなじみやすい官能基を意味する。上記「親水性官能基」としては、エチレンオキシド基、プロピレンオキシド基、アセタール基、ヒドロキシル基、エーテル基などを用いることができる。中でも、有機膜の親水性を向上させる能力に優れるため、エチレンオキシド基、プロピレンオキシド基が特に好ましく用いられ、上記親水性官能基は、エチレンオキシド基および/またはプロピレンオキシド基を含むことが好ましい。
 上記「親水性官能基を有する付加重合性化合物」としては、例えば、以下の一般式(5)で表される化合物を挙げることができる。
 R1-R2-R1・・・(5)
 (R1はアクリロイル基、メタクリロイル基、アクリルアミド基、ビニル基およびアリル基からなる群より選ばれる付加重合性反応基、R2は例えばエチレンオキシド基、プロピレンオキシド基、アセタール基、ヒドロキシル基、エーテル基からなる群より選ばれる親水性官能基を表す。)
 より具体的には、例えば、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、グリセリンジアクリレート、ポリテトラメチレングリコールジアクリレート、2-ヒドロキシプロピルアクリレートなどが挙げられる。また、上記「親水性官能基を有する付加重合性化合物」は、1種類のみ用いてもよいし、2種類以上を組み合わせて用いてもよい。
 下地組成物における上記「親水性官能基を有する付加重合性化合物」の含有量は特に限定されるものではないが、下地組成物全量に対して1重量%以上80重量%以下であることが好ましく、5重量%以上50重量%以下であることが特に好ましい。
 上記「親水性官能基を有する付加重合性化合物」の含有量を増やせば、有機膜の親水性を向上させる効果は高くなるが、3つ以上の反応基を有する付加重合化合物、および酸性基を有する付加重合性化合物の含有量が減少し、それらの効果は小さくなる。そのため、下地組成物における上記「親水性官能基を有する付加重合性化合物」の含有量は上記範囲であることが望ましい。
 上記下地組成物は、塩基性基を有する付加重合性化合物を含有することが好ましい。「塩基性基を有する付加重合性化合物」とは、1分子中に1個以上の塩基性基を有する付加重合性化合物をいう。
 上記下地組成物に「塩基性基を有する付加重合性化合物」を含有させると、上記製造方法によって製造された金属膜の導電性を著しく向上させることができる。上記「塩基性基を有する付加重合性化合物」は、有機膜への金属(M1)イオンの担持性を向上させる効果を奏するものと考えられ、下地組成物と金属(M1)イオンを含有する水溶液とのなじみを向上させることによって、下地組成物表面と上記水溶液の反応を促進することにより、金属(M1)イオンの担持性向上に寄与するものと考えられる。
 したがって、上記「塩基性基を有する付加重合性化合物」を下地組成物に加えることによって、得られる金属膜に求められる導電性に応じて、抵抗値を制御することが可能となる。
 上記塩基性基としては、特に限定されるものではなく、酸性基への金属(M1)イオンの担持性を向上させることができる塩基性基であればよい。例えば、1~3級アミノ基、第4級アンモニウム塩基、ピリジル基、モルホリノ基、アニリノ基、イミダゾール基、第4級ピリジニウム塩基などを挙げることができる。中でも、付加重合性を阻害しにくいため、アミノ基、ピリジル基、モルホリノ基、アニリノ基からなる群より選ばれる1以上の官能基であることが好ましい。
 上記「塩基性基を有する付加重合性化合物」としては、例えば、以下の一般式(6)で表される化合物を挙げることができる。
 R1-R2-R3・・・(6)
 (式中、R1はアクリロイル基、メタクリロイル基、アクリルアミド基、ビニル基およびアリル基からなる群より選ばれる付加重合性反応基、R2は例えばエステル基、アルキル基、アミド基、エチレンオキシド基、プロピレンオキサイド基などを含む任意の構造、R3は塩基性基)
 上記「塩基性基を有する付加重合性化合物」として、より具体的には、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、N-アクリロイルモルホリン、N,N-ジメチルアクリルアミド、N-(3-ジメチルアミノプロピル)メタクリルアミド等を挙げることができる。
 下地組成物における上記「塩基性基を有する付加重合性化合物」の含有量は特に限定されるものではないが、下地組成物全量に対して1重量%以上80重量%以下であることが好ましく、1重量%以上50重量%以下であることが特に好ましい。
 このように、上記下地組成物は、少なくとも、3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有し、好ましくは塩基性基を有する付加重合性化合物をも含有する。そのため、スパッタリング法とは異なり湿式処理を行うことができ、めっき浴で金属(M2)を処理できるため、金属(M2)イオンの担持性に優れている。
 よって、インジウム、亜鉛およびスズからなる群より選ばれる1以上の金属の他、金、銀、銅、ニッケル、白金、コバルト、鉄などの金属膜を均一性良く、高い密着性で固定することができる。
 上記下地組成物は、3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を少なくとも含有していればよく、これらの化合物を従来公知の方法を用いて適宜混合することによって調製することができる。また、必要に応じて、塩基性基を有する付加重合性化合物をさらに適宜混合して調製することができる。
 上記下地組成物は、上記化合物以外に、重合開始剤を含有することが好ましい。重合開始剤としては下地組成物を重合できるものであれば特に限定されるものではない。例えば、光重合開始剤および熱重合開始剤等のラジカル重合開始剤、カチオン重合開始剤およびアニオン重合開始剤等のイオン重合開始剤等を挙げることができる。中でも、ラジカル重合開始剤が好ましく用いられ、熱を使わないため耐熱性の低い基板にも適用可能であるという観点から、特に光重合開始剤が好ましく用いられる。
 光重合開始剤としては、特に限定されるものではないが、例えば、2-ヒドロキシ-2-メチル-1-フェニル-プロペン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロペン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、トリフェニルスルホニルトリフレート等を挙げることができる。
 熱重合開始剤としては、特に限定されるものではないが、例えば、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化ベンゾイル、DBU、エチレンジアミン、N,N-ジメチルベンジルアミン等を挙げることができる。なお、これらの重合開始剤は、単独もしくは、適宜組み合わせて使用することができる。
 重合開始剤の含有量は、下地組成物全量に対して0.05~10重量%であり、好ましくは0.1~8重量%である。
 上記下地組成物は、既に述べた、3つ以上の反応基を有する付加重合性化合物、酸性基を有する付加重合性化合物、塩基性基を有する付加重合性化合物、親水性基を有する付加重合性化合物以外の付加重合性化合物(以下、「他の付加重合性化合物」という)を含有していてもよい。上記他の付加重合性化合物は、酸性基またはそのエステル基を有さず、かつ重合不飽和結合、特に重合性二重結合を1分子あたり1個有する化合物である。例えば、スチレン、ビニルシクロヘキサン等を挙げることができる。上記他の付加重合性化合物の含有量は、下地組成物全量に対して50重量%以下であることが好ましく、30重量%以下であることがより好ましい。
 上記下地組成物には、さらに有機溶剤を含有させてもよい。有機溶剤を含有させることによって、基板またはフィルムへの塗布性が向上する。有機溶剤としては特に限定されるものではないが、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、酢酸ブチル等を用いることができる。有機溶剤の含有量は下地組成物全量に対して80重量%以下であることが好ましく、30重量%以下であることがより好ましい。
 基板またはフィルムは任意のものが使用可能である。上記基板またはフィルムとしては、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、エポキシ樹脂からなる基板またはフィルム、例えばガラス基板、石英、ニオブ酸リチウム、タンタル酸リチウム、ホウ珪酸ガラス、PZT,PLZT等が挙げられる。上記方法は高温処理を必要としないため、幅広い種類の基板またはフィルムに適用することができ、耐熱性の低い基板またはフィルムも十分に使用可能である。
 上記下地組成物を、基板またはフィルム上に塗布する方法としては、特に限定されるものではなく、任意の塗布方法を用いることができる。例えば、インクジェット、スクリーン印刷、スピンコート、スプレーコート、浸漬等の方法を挙げることができる。
 下地組成物の塗布厚としては特に限定されるものではなく、例えば、重合後において有機膜の厚みが後述の範囲内となるような範囲が適当である。
 重合は、例えば、重合開始剤、あるいは放射線や電子線、紫外線、電磁線などの活性化エネルギー線などを用いて行うことができる。例えば、光重合開始剤を使用している場合は、当該光重合開始剤が吸収することによってラジカルを生成できる波長の光、例えば紫外線を、基板またはフィルムの塗布面側から照射するとよい。
 また、例えば、熱重合開始剤を使用する場合には、当該熱重合開始剤が分解してラジカルを生成できる温度、例えば50~150℃まで加熱する。
 上記重合によって、基板またはフィルム上に有機膜が形成される。得られる有機膜の膜厚は、本発明の目的が達成される限り特に制限されるものではなく、例えば0.1~1000μm、特に10~500μmが好適である。
 上記製造方法では、上述の下地組成物を用いるため、湿式処理が可能であり、メッキ浴によって簡易な工程で有機膜に金属(M2)を固定し、金属膜を形成することができる。それゆえ、材料のロスを低く抑え、低コストで本発明にかかるセンサを作製することができる。
 また、上述の下地組成物を用いるため、本発明にかかるセンサが備える酸化金属膜に何らかのパターンを形成したい場合は、有機膜形成工程において、フォトリソグラフィー法を用いずに、上記パターンを有機膜に直接形成することができる。フォトリソグラフィー法は高額な設備を必要とするが、上記製造方法によれば、下地組成物に所望のパターンを転写し、当該下地組成物を重合させることにより、非常に簡易かつ安価に当該有機膜に所望のパターンを形成することができる。その後、金属塩生成工程、金属固定工程、還元工程を経ることによって、所望のパターンを備えた金属膜を得ることができる。
 フォトリソグラフィー法を用いずに有機膜に上記パターンを付与する方法としては、特に限定されるものではないが、例えば、インクジェット、スクリーン印刷、ナノインプリント法を挙げることができる。
 ここで、ナノインプリント法とは、金型に刻み込んだ寸法が数十nm~数百μmの凹凸を、基板上に塗布した樹脂材料に押し付けて形状を転写する方法をいう。
 (1-2.金属塩生成工程)
 金属塩生成工程は、上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、上記酸性基を金属(M1)塩にする工程である。上記処理は、例えば、金属(M1)イオンを含有する水溶液に、有機膜を形成した基板またはフィルムを浸漬することや、金属(M1)イオンを含有する水溶液を、有機膜を形成した基板またはフィルムに塗布すること等によって容易に実施可能である。
 金属(M1)イオンは、後述する金属固定工程において金属膜形成用の金属(M2)イオンとカチオン交換可能な金属イオンである。すなわち、金属(M1)イオンは、金属(M2)イオンよりもイオン化傾向が高い金属イオンである。金属(M1)イオンは、金属(M2)イオンとカチオン交換可能な金属イオンであれば特に限定されるものではない。例えば、アルカリ金属イオンやアルカリ土類金属イオンを挙げることができる。中でも、上記カチオン交換の容易さの観点から、金属(M1)イオンは、アルカリ金属イオンであることが好ましく、カリウムイオンまたはナトリウムイオンであることがより好ましい。
 なお、本明細書において、「イオン化傾向」とは、金属が水と接するとき金属イオン(陽イオン)になる傾向のことであり、金属イオンのイオン化傾向の高さは、金属から当該金属イオンになる傾向の高さに基づくものである。
 金属(M1)イオンを含有する水溶液としては、例えば水酸化カリウム、水酸化ナトリウム等の水溶液が挙げられる。そのような水溶液における金属(M1)イオンの濃度は、酸性基の金属塩が生成する限り特に制限されないが、本発明においては0.1~10M、好ましくは1~8Mのような比較的低濃度であっても効率よく酸性基の金属塩を生成することができる。なお、本発明は2種類以上の金属(M1)イオンを使用することを妨げるものではなく、その場合には金属(M1)イオンの合計濃度が上記範囲内であることが好ましい。
 上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、有機膜が有する酸性基の水素イオンが金属(M1)イオンに置換される。具体的には、有機膜が有する例えば、-COOHまたは-SOHのような酸性基の水素イオンは直接的に金属(M1)イオンに置換され、例えば-COOM1または-SOM1等のような酸性基金属塩が生成する。なお、M1は金属(M1)イオンの金属原子を示す(以下、同様とする)。
 処理条件は酸性基の金属塩が生成する限り特に制限されるものではなく、処理温度は通常は0~80℃、好ましくは20~50℃である。処理時間(浸漬時間)は、通常は1~30分間、好ましくは2~20分間である。
 また、上記酸性基の金属(M1)イオンを含有する水溶液による処理は、酸性基が生成された基板またはフィルムを当該水溶液に浸漬することや、当該水溶液を、酸性基が生成された基板またはフィルムを当該水溶液に塗布すること等によって容易に実施可能である。処理温度は例えば、0~80℃、好ましくは20~50℃であり、処理時間(浸漬時間)は、通常は1~30分間、好ましくは5~20分間である。
 このように、金属塩生成工程においては、酸性基の水素イオンが金属(M1)イオンに置換されるが、有機膜の構成成分として、上記塩基性基を有する付加重合性化合物が含まれていると、有機膜への金属(M1)イオンの担持性をさらに向上させることができる。これは、上記付加重合性化合物によって、下地組成物の表面と金属(M1)イオンを含有する水溶液のなじみが向上し、下地組成物と上記水溶液との反応性が上がることによると考えられる。
 (1-3.金属固定工程)
 金属固定工程は、上記金属(M1)イオンを含有する水溶液で処理した有機膜を、上記金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする工程である。
 金属固定工程は、例えば、金属(M2)イオンを含有する金属(M2)イオン水溶液に、上記金属(M1)イオンを含有する水溶液で処理した有機膜が形成された基板またはフィルムを浸漬することや、金属(M2)イオンを含有する金属(M2)イオン水溶液を上記金属(M1)イオンを含有する水溶液で処理した有機膜が形成された基板またはフィルムに塗布することによって容易に実施可能である。
 金属(M2)イオンは、金属(M1)イオンよりもイオン化傾向が低いので、有機膜が有する酸性基の金属(M1)塩は、容易に金属(M2)イオンとカチオン交換され、有機膜に金属(M2)イオンが導入・固定される。
 金属(M2)としては、特に限定されるものではなく、上記カチオン交換が可能な金属であればよいが、本方法は、スパッタリング法による金属膜の成膜の代替法として好適な方法である。
 金属(M2)としては、例えば、金、銀、銅、パラジウム、インジウム、亜鉛、スズ、ニッケル、白金、コバルトまたは鉄などを用いることができる。中でも、インジウム、亜鉛およびスズからなる群より選ばれる1以上の金属であることが好ましい。
 金属(M2)イオン水溶液としては、特に限定されるものではないが、例えば塩化インジウム、硝酸インジウム、酢酸インジウム、硫酸インジウム、塩化スズ(II)、塩化スズ(IV)、酢酸スズ、硫酸スズ、スズ酸ナトリウム、塩化亜鉛、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛、炭酸亜鉛、塩化金(III)、塩化金(I)、塩化金酸、酢酸金、硝酸銀、酢酸銀、炭酸銀、塩化銀、硝酸銅、硫酸銅、酢酸銅、炭酸銅、塩化銅、塩化パラジウム、硝酸パラジウム、酢酸パラジウム、硫酸パラジウム、trans-ジアミンジクロロ白金、塩化コバルト、硝酸コバルト、硫酸コバルト、酢酸コバルト、塩化鉄(II)、塩化鉄(III)、硝酸鉄(III)、硫酸鉄(II)、硫酸鉄(III)、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、等の水溶液を挙げることができる。
 上記水溶液における金属(M2)イオンの濃度は、カチオン交換が達成される限り特に限定されるものではないが、例えば、5~500mMであることが好ましく、30~250mMであることが特に好ましい。
 処理温度は、カチオン交換が達成される限り特に限定されるものではないが、例えば0~80℃、好ましくは20~50℃である。処理時間(浸漬時間)は、カチオン交換が達成される限り特に限定されるものではないが、例えば1~30分間、好ましくは5~20分間である。また、本発明は2種類以上の金属(M2)イオンを使用することを妨げるものではなく、2種類以上の金属(M2)イオンを使用する場合には、金属(M2)イオンの合計濃度が上記範囲内であればよい。
 一実施形態において、上記金属(M2)イオン水溶液は、アルカリ金属および/またはアルカリ土類金属のイオンを含むことが好ましい。上述のように、金属(M2)イオンと金属(M1)イオンとのイオン化傾向の差を利用して、金属(M2)イオンの有機膜への固定を促進することができる。アルカリ金属および/またはアルカリ土類金属は非常に高いイオン化傾向を持つことから、本工程において、上記金属(M2)イオン水溶液にアルカリ金属および/またはアルカリ土類金属のイオンを含ませることにより、金属(M2)イオン水溶液中の金属(M2)イオンとのイオン化傾向の差によって、イオン交換をより一層促進することができる。よって、金属(M2)をより効率的に有機膜に固定することができる。
 特に、インジウム、亜鉛およびスズからなる群より選ばれる1以上の金属は、スパッタリング法では、均一性良く固定することが困難であったが、高いイオン化傾向を持つアルカリ金属および/またはアルカリ土類金属のイオンと、金属(M1)イオンとの併存によって、インジウム等がイオンとして存在する割合を低減させることができ、有機膜への固定を促進することができるものと推測される。
 上記アルカリ金属とアルカリ土類金属とは、それぞれを単独で用いてもよいし、両者を併用してもよいが、イオン化傾向は高いほど好ましいので、アルカリ金属を単独で用いることがより好ましい。アルカリ金属、アルカリ土類金属の種類としては特に限定されるものではないが、イオン化傾向が高く、安価で容易に使用できるという観点から、ナトリウム、カリウムがより好ましい。
 上記アルカリ金属および/またはアルカリ土類金属の使用量としては、上記金属(M2)イオン水溶液との相溶性が得られる限り、特に限定されるものではない。例えば、金属(M2)としてインジウムを、アルカリ金属および/またはアルカリ土類金属としてナトリウムを用いる場合、インジウムイオン水溶液に対し、ナトリウム単体として、インジウムとナトリウムのモル比を1:1で用いることが好ましい。
 上記アルカリ金属および/またはアルカリ土類金属は、上記金属(M2)イオン水溶液に、水溶液中で電離可能な塩として添加してもよい。例えば、酢酸ナトリウム、炭酸ナトリウムなどを用いることができる。また、例えば水酸化カリウム、水酸化ナトリウム等のように、アルカリ金属および/またはアルカリ土類金属を含有する水溶液として添加してもよい。
 一実施形態において、上記金属(M2)イオン水溶液は、ポリオールを含むことが好ましい。成膜を効率化するため、金属(M2)イオン水溶液の金属(M2)イオン濃度をできるだけ高濃度にすることが好ましいが、金属(M2)イオンの比重が大きい場合、高濃度にすると沈殿しやすくなる。しかし、ポリオールの添加によって、上述のように、金属(M2)イオンは沈殿を起こしにくくなるので、金属(M2)イオンと金属(M1)イオンとのカチオン交換をより円滑に行うことができるようになり、金属(M2)イオンの有機膜への固定を促進することができる。
 また、通常、金属(M2)イオンと溶媒との間に相溶性があっても金属(M2)が沈殿する場合、効率よくカチオン交換を行うためには、溶液を攪拌することが好ましい。しかしながら、金属(M2)イオン水溶液にポリオールを含ませることにより、攪拌しなくても効率よくカチオン交換を進行させることが可能となる。そのため、作業効率向上の観点からも非常に有用である。
 上記ポリオールに含まれるアルコール性水酸基の数としては特に限定されるものではなく、1分子中に2個以上あればよい。上記ポリオールとしては、例えばグリセリン、ポリエチレングリコール、ソルビトール等を用いることができる。中でも、増粘性に優れ、金属(M2)イオンの沈殿防止効果が高く、金イオンの有機膜への固定促進効果が優れていることから、グリセリンが特に好ましく用いられる。
 上記ポリオールの使用量としては、金属イオン水溶液との相溶性という理由から、上記金属(M2)イオン水溶液に対して10~80重量%であることが好ましく、上記金属(M2)イオン水溶液に当該濃度になるように混合すればよい。
 (1-3.還元工程)
 還元工程は、上記金属(M2)イオンを還元して、上記有機膜表面に金属膜を形成する工程である。すなわち、金属固定工程で有機膜に導入された金属(M2)イオンを還元することによって、当該イオンの金属原子を有機膜表面に析出させ、所定の金属膜を形成する工程である。
 還元方法としては、例えば、(1)アスコルビン酸、アスコルビン酸ナトリウム、水素化ホウ素ナトリウム、ジメチルアミンボラン、トリメチルアミンボラン、クエン酸、クエン酸ナトリウム、タンニン酸、ジボラン、ヒドラジン、ホルムアルデヒド、水素化リチウムアルミニウム、(2)(1)の化合物の誘導体、および(3)亜硫酸塩、次亜リン酸塩からなる群より選ばれる1以上の還元剤、並びに/または、(4)紫外線、熱、プラズマ、水素からなる群より選ばれる1以上の還元手段を用いて行う方法等を挙げることができる。
 上記誘導体としては、特に限定されるものではない。また、上記(3)亜硫酸塩、次亜リン酸塩は特に限定されるものではない。
 例えば還元剤を用いる方法においては、有機膜表面を還元剤と接触させることにより、上記金属(M2)イオンを還元することができる。還元剤は通常、水溶液の形態で使用され、還元剤の水溶液に、有機膜を有する基板またはフィルムを浸漬することによって還元を容易に達成することができる。
 還元剤水溶液における還元剤の濃度は特に限定されるものではないが、還元剤の濃度が低すぎる場合には、還元反応の速度が遅くなりすぎる傾向があり、還元剤濃度が高すぎる場合には析出した金属の脱落が生じる場合があって好ましくない。
 したがって、還元剤の濃度は1~500mMであることが好ましく、5~100mMであることがより好ましい。還元時の処理温度は特に限定されるものではないが、例えば還元剤の水溶液の温度が0~80℃であることが好ましく、20~50℃であることがより好ましい。また、処理時間(浸漬時間)は特に限定されるものではないが、例えば、1~30分間であることが好ましく、5~20分間であることがより好ましい。
 また、一実施形態において、上記還元工程は、上記還元剤とともに、アルコールおよび/または界面活性剤を用いることが好ましい。これによって、水溶性の還元剤を下地組成物になじみやすくすることができるので、さらに効率よく還元を行うことができる。
 上記アルコールとしては、還元剤の水溶液に溶解し、かつ、金属膜および下地組成物になじみやすい性質を持つことが必要であるため、両親媒性であることが必要である。両親媒性であれば、鎖式アルコール、脂環式アルコール、芳香族アルコールのいずれであってもよい。例えば、エタノール、メタノール、プロパノール、ブタノール、等の低級な1価鎖式アルコール、エチレングリコールなどの多価アルコール、ベンジルアルコール等の芳香族アルコール等を用いることができる。
 また、界面活性剤としては、陽イオン界面活性剤、陰イオン界面活性剤、両性界面活性剤、非イオン性界面活性剤のいずれであってもよい。
 陽イオン界面活性剤としては、例えば、アルキルアミン塩、アミド結合アミン塩、エステル結合アミン塩などのアミン塩;アルキルアンモニウム塩、アミド結合アンモニウム塩、エステル結合アンモニウム塩、エーテル結合アンモニウム塩などの第四級アンモニウム塩;アルキルピリジニウム塩、アミド結合ピリジニウム塩、エーテル結合ピリジニウム塩などのピリジニウム塩;等を用いることができる。
 陰イオン界面活性剤としては、セッケン、硫酸化油、アルキル硫酸塩、アルキルスルホン酸塩、アルキルアリルスルホン酸塩、アルキルナフタレンスルホン酸塩等を用いることができる。
 また、非イオン性界面活性剤としては、アルキルアリルエーテル型、アルキルエーテル型、アルキルアミン型などの酸化エチレン系界面活性剤;グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステルなどの多価アルコール脂肪酸エステル系界面活性剤;ポリエチレンイミン系界面活性剤;脂肪酸アルキロールアミド系界面活性剤などを用いることができる。
 両性界面活性剤としては、陽イオン界面活性剤と陰イオン界面活性剤とを組み合わせたもの、陽イオン界面活性剤または陰イオン界面活性剤と非イオン性界面活性剤とを組み合わせたもの等を用いることができる。
 アルコールと界面活性剤とは、それぞれ単独で用いてもよいし、両者を組み合わせて用いてもよい。また、用いるアルコールの種類、界面活性剤の種類は、1種類であっても、2種類以上であってもよい。
 アルコールおよび/または界面活性剤は、基板またはフィルムを浸漬する前に、還元剤の水溶液に添加しておけばよい。アルコールおよび/または界面活性剤の添加量は、金属イオン水溶液との相溶性という理由から、10~60重量%であることが好ましい。また、上記アルコールおよび/または界面活性剤は、下地樹脂組成物とともに基板またはフィルム上に塗布してもよい。この場合、上記アルコールおよび/または界面活性剤の使用量は、金属イオン水溶液との相溶性という理由から、0.01~10重量%であることが好ましい。
 また、紫外線を用いて還元を行う方法においては、有機膜表面に対して紫外線を照射すればよい。例えば、セン特殊光源株式会社製UV照射装置PL16-110を用いる場合は、照射時間を10~150分間、特に60~90分間とすることが好ましい。そのような方法によって還元を行う場合は、マスクを用いて紫外線照射することによって、マスクに対応するパターン形状を有する金属膜を形成することができる。したがって、比較的複雑な金属パターンであっても、簡便に形成可能である。パターン部以外の領域は、例えば、1%硝酸水溶液等に浸漬することによって除去できる。
 熱(加温)による還元方法においては、ホットプレート、オーブンなどの加熱可能な装置を用いて金属(M2)イオンを還元すればよい。加温温度は150~300℃、加温時間は5~60分間とすることが好ましい。
 上記還元工程においては、還元剤と、紫外線、熱、プラズマ、水素からなる群より選ばれる1以上の還元手段とを併用して還元を行ってもよい。
 一実施形態において、上記還元工程において、上記(1)、(2)および(3)からなる群より選ばれる1以上の還元剤を用いる場合は、アルカリ金属および/またはアルカリ土類金属の存在下で上記金属(M2)イオンの還元を行うことが好ましい。
 アルカリ金属および/またはアルカリ土類金属は、本発明で用いる金属(M2)よりもイオン化傾向がかなり大きいため、上記還元をアルカリ金属および/またはアルカリ土類金属の存在下で行うことにより、金属固定工程で有機膜に固定された金属(M2)のイオン化を防ぎ、溶出を防ぐことができる。
 つまり、金属固定工程で用いられるアルカリ金属および/またはアルカリ土類金属は、金属(M2)の有機膜への固定を促進する役割を果たし、還元工程で用いられるアルカリ金属および/またはアルカリ土類金属は、有機膜に固定された金属(M2)の溶出を防ぎ、還元をより確実に進行させる役割を果たす。
 上記アルカリ金属とアルカリ土類金属とは、それぞれを単独で用いてもよいし、両者を併用してもよいが、イオン化傾向は高いほど好ましいので、アルカリ金属を単独で用いることがより好ましい。アルカリ金属、アルカリ土類金属の種類としては特に限定されるものではないが、イオン化傾向が高く、安価で容易に使用できるという観点から、ナトリウム、カリウムがより好ましい。
 上記アルカリ金属および/またはアルカリ土類金属の使用量としては、上記金属(M2)イオン水溶液との相溶性が得られる限り、特に限定されるものではない。例えば、金属(M2)としてインジウムを、アルカリ金属および/またはアルカリ土類金属としてナトリウムを用いる場合、インジウムイオン水溶液に対し、ナトリウム単体として、インジウムとナトリウムのモル比を1:1程度で用いることが好ましい。
 上記アルカリ金属および/またはアルカリ土類金属は、上記還元剤の水溶液に、水溶液中で電離可能な塩として添加してもよい。例えば、酢酸ナトリウム、炭酸ナトリウムなどを用いることができる。また、例えば水酸化カリウム、水酸化ナトリウム等のように、アルカリ金属および/またはアルカリ土類金属を含有する水溶液として、上記還元剤の水溶液に添加してもよい。
 また、紫外線、熱、プラズマ、水素からなる群より選ばれる1以上の還元手段によって還元するときは、アルカリ金属および/またはアルカリ土類金属の塩の水溶液、または、アルカリ金属および/またはアルカリ土類金属を含有する水溶液を調製し、金属(M2)を固定した有機膜が形成された基板またはフィルムを当該水溶液に浸漬した後、紫外線照射等の処理を行えばよい。
 還元を完了した後は、基板またはフィルムを通常洗浄し、乾燥する。洗浄は水洗であってもよいが、余分な金属イオンを確実に除去するため、硫酸水溶液により洗浄することが好ましい。乾燥は室温での放置によって達成してもよいが、得られた金属膜の酸化を防止する観点から、窒素雰囲気下で行うことが好ましい。また、本発明において上記した各工程または処理間では、基板またはフィルムの水洗を行うことが好ましい。
 (1-4.酸化工程)
 酸化工程は、還元工程を経て形成された金属膜を酸化し、酸化金属膜を得る工程である。当該工程によって、金属膜に透明性を付与することができる。
 本発明においては、上記酸化金属膜が粒子状の膜となる。上記酸化金属膜は、1nm以上100nm以下の粒子径を持つ上記金属(M2)の酸化物である酸化金属粒子を備え、上記酸化金属膜は、上記センサの縦断面において、上記基板またはフィルムの面であって上記有機膜が形成されている面と平行に、上記酸化金属膜の左端から右端までを結ぶ直線を取った場合に、上記直線を横切る上記酸化金属粒子の平均粒子径が、上記酸化金属膜の表面から上記有機膜に向かうにしたがって小さくなっていることが好ましい。
 例えば、後述する実施例2では、図1の(a)、(b)に示すように、粒子径が1nm~100nmである酸化インジウム粒子による積層構造を持った、膜厚100nm程度の薄膜層が得られ、薄膜層の表面付近から有機膜側へ向かうにしたがって粒子径が小さくなる、いわゆるグラデーション構造が観察されている。
 図1の(a)は、本発明の一実施形態にかかるセンサが備える酸化金属膜の縦断面を透過型電子顕微鏡によって観察した結果を示す写真である。図1の(b)は、上記縦断面の模式図である。
 上記「粒子径」とは、上記酸化金属膜を顕微鏡によって観察した場合の、酸化金属粒子(すなわち、上記金属(M2)の酸化物の粒子)の二次元形状に対する最大内接円の直径が意図される。例えば、上記酸化金属膜を構成する酸化金属粒子の二次元形状が実質的に円形状である場合はその円の直径が意図され、実質的に楕円形状である場合はその楕円の短径が意図され、実質的に正方形状である場合はその正方形の辺の長さが意図され、実質的に長方形状である場合はその長方形の短辺の長さが意図される。
 「1nm以上100nm以下の粒子径を持つ上記金属(M2)の酸化物」とは、上記酸化金属膜中に含まれる上記金属(M2)の酸化物が有する粒子径が1nm以上100nm以下の範囲にあることを意味する。
 上記粒子径は、例えば、透過型電子顕微鏡(TEM)による断面観察により測定することができる。用いるTEMは特に限定されるものではない。
 「上記センサの縦断面」とは、例えば図1の(a)、(b)に示すように、本発明にかかるセンサを、上記基板またはフィルムと直角をなすように切断した場合の縦断面をいう。
 「上記基板またはフィルムの面であって上記有機膜が形成されている面」は、例えば図1の(a)、(b)に「有機膜」と記載されている層の下辺に該当する。この下辺に平行となるように、上記酸化金属膜の左端から右端までを結ぶ直線を取った場合に、上記直線を横切る上記酸化金属粒子の平均粒子径が、上記酸化金属膜の表面から上記有機膜に向かうにしたがって小さくなっていることが好ましい。
 上記直線を横切る上記酸化金属粒子の平均粒子径が、上記酸化金属膜の表面から上記有機膜に向かうにしたがって小さくなっていること(いわゆるグラデーション構造を取っていること)は、例えば以下のように確認することができる。
 すなわち、センサの縦断面を作製し、倍率100000倍の画面において、1μm×1μmの面積の中に含まれる酸化金属粒子を観察した。次に、JIS-H0501(切断法)を参考に、図1の(b)に示すような薄膜の縦断面において、薄膜の表面から有機膜に向かって略20nmの位置で、図中に「有機膜」と記載されている層の下辺に平行な直線を、薄膜層の左端から右端まで引き、該直線を横切っている粒子の数で該直線の長さを割ることにより、粒子径の平均値を算出して、酸化金属粒子の平均粒子径を求める。
 さらに、薄膜の表面からより有機膜側において同様に直線を取り、同様に、酸化金属粒子の平均粒子径を求める。このような方法により、当該平均粒子径が、上記酸化金属膜の表面から上記有機膜に向かうにしたがって小さくなっていることを確認することができる。
 なお、「上記直線を横切る」とは、上記縦断面において、上記酸化金属粒子の少なくとも一部が上記直線と重なることをいう。
 また、例えば図1の(a)に示すように、薄膜層が図中に「有機膜」と記載されている層の下辺に対して傾いているような場合は、便宜的に薄膜層を上記下辺に略平行となるように回転させたうえで、上述のように直線を取り、平均粒子径を求めればよい。
 上記酸化金属膜の膜厚は、例えば上記金属塩生成工程における金属(M1)イオン含有水溶液の濃度、処理温度、処理時間;上記金属固定工程における金属(M2)イオン水溶液の濃度、処理温度、処理時間;上記還元工程における還元剤濃度、処理温度、処理時間などを適宜調整することによって制御することが可能である。
 上記膜厚は、本発明にかかるセンサの縦断面(例えば図1の(a)、(b)に示す縦断面)をTEM等を用いて観察することによって測定することができ、特に限定されるものではないが、高抵抗膜が得られるため、50nm以上100nm以下程度であることが好ましい。
 なお、図1の(a)、(b)を例に取って説明したが、図1の(a)、(b)に示されたセンサはあくまで一例である。
 本発明にかかるセンサは上述のように湿式処理によって製造されるため、該センサが備える上記酸化金属膜は、1nm以上100nm以下の粒子径を持つ上記金属(M2)の酸化物による積層構造を取り、上記グラデーション構造を取る。その結果、上記酸化金属膜の組織は、スパッタリング等の手法によって作製される金属膜と比較して疎となり、それゆえに当該金属膜と比較して高い電気抵抗を有する。
 また、上記酸化金属膜を上記有機膜上に直接成膜することができるため、本発明にかかるセンサは小型化、薄型化、大口径化が可能である。
 本発明にかかるセンサは、上記の方法によって製造された酸化金属膜を備えていればよい。酸化金属膜を構成する酸化金属粒子は、有機膜上に積層されるが、一部は有機膜の内部に埋設された状態で存在していてもよい。上記酸化金属膜以外には、必要に応じて電極などの部材を備えていてもよい。
 (1-5.本発明にかかるセンサによる光の照射および停止の検出等)
 本発明者は、上述の有機膜形成工程、金属塩生成工程、金属固定工程、還元工程および酸化工程を含む方法によって製造された、上記有機膜および酸化金属膜が形成されたフィルムまたは基板(以下、素子と称する)の特性を評価したところ、大気中で上記素子に光を照射すると抵抗値が急激に減少し、照射終了後に抵抗値が徐々に回復するという特異な挙動を示すことを見出した。
 このような挙動に着目し、本発明者は、上記素子を、光の照射および停止を検出可能な光センサとして使用できることを見出した。すなわち、後述する実施例に示すように、上記光の照射中と上記光を停止した後とにおいて上記素子が示す抵抗値の変化を検出することによって、光の照射および停止を検出することができる。
 それゆえ、本発明にかかる光の照射および停止を検出する方法は、本発明にかかるセンサに対して光を照射する工程と、上記光の照射を停止する工程と、上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出する工程と、を含んでいる。なお、本明細書では、上記素子を単にセンサと呼ぶ場合がある。
 また、種々の照射光の強度と、照射停止後の抵抗値の変化の傾向との相関関係を調べ、検量線を作成することによって、センサに対して照射された光の強度を検出することも可能である。よって、「光を検出可能である」ということには、光の照射および停止を検出することの他、照射光の強度を検出することも含まれる。
 また、本発明者は、水素ガス雰囲気中では、上記素子に光を照射すると抵抗値が急激に減少するが、照射終了後も抵抗値がなお減少するという挙動を示すことを見出した。大気中とは異なるこの挙動に着目し、本発明者は、上記素子を、水素ガスを測定可能である水素ガス検知センサとして使用できることを見出した。すなわち、上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出することにより、環境中の水素ガスの有無を検出することができる。
 それゆえ、本発明にかかる水素ガスの検出方法は、水素ガス雰囲気下において、本発明にかかるセンサに対して光を照射する工程と、上記光の照射を停止する工程と、上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出する工程と、を含んでいる。
 また、種々の水素ガス濃度と、上記素子への光照射停止後の抵抗値の変化の傾向との相関関係を調べ、検量線を作成することによって、水素ガス濃度を検出することも可能である。つまり、「水素ガスを検出可能である」ということには、水素ガスの有無を検出することの他、水素ガス濃度を検出することも含まれる。
 さらに、本発明者は、センサに対する光の照射停止後における抵抗値回復の挙動は、気圧によって異なることを見出した。つまり、後述する実施例に示すように、異なる大気圧下において上記素子に対して同じ条件で光の照射および停止を行ったところ、大気圧が高いほど抵抗値の回復速度が速くなることが分かった。
 このことに着目し、本発明者は、上記素子を、気圧を測定可能なセンサである気圧センサとして使用できることを見出した。すなわち、上記素子を異なる大気圧下に置き、それぞれの大気圧下において、大気圧と、上記素子への光照射停止後の抵抗値の回復時間との相関関係を調べ、検量線を作成することにより、気圧を測定することができる。
 それゆえ、本発明にかかる気圧の測定方法は、異なる大気圧下において、本発明にかかるセンサに対して光を照射する工程と、上記光の照射を停止する工程と、上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を、それぞれの大気圧下において検出する工程と、を含んでいる。
 なお、上記「抵抗値の回復時間」とは、光照射停止後にセンサが示す抵抗値が上昇し、任意に設定した一定の抵抗値にまで回復するまでの時間をいう。その回復時間が、センサが置かれている環境の大気圧によって異なる。例えば、後述する図6では、約40kΩへ抵抗値が回復するまでの時間が、大気圧が10MPaの場合は約40秒、1MPaの場合は約48秒、0.1MPaの場合は約53秒と異なっている。「上記センサが示す抵抗値の変化を、それぞれの大気圧下において検出する工程」、とは例えば上記回復時間を検出する工程のことである。
 上記「異なる大気圧下」は、大気圧が異なる複数の環境下であることを意味する。当該環境の数は特に限定されるものではないが、当該環境の数が多いほど、上記検量線の精度が増すため好ましい。
 また、気圧が高いほど抵抗値の回復速度が速くなるという特徴に基づけば、後述する実施例5に示すように、本発明にかかるセンサを水深測定用センサとして用いることができる。本発明にかかる水深測定用センサは、本発明にかかるセンサと、弾性体とを備え、上記センサが上記弾性体の内部に封入されてなる構成である。
 本発明にかかるセンサに照射する光の強度は0.1mW/cm~1W/cmであることが好ましい。また、照射は、上記センサの面のうち、光源に相対する面に満遍なく行うことが好ましい。
 大気中および水素ガス雰囲気下において、上記方法によって製造された本発明にかかるセンサの抵抗値が上述のような挙動を示すのは、本発明にかかるセンサが備える酸化金属膜が、スパッタリング等の方法によって製造された金属膜と異なり組織が疎であり、1nm以上100nm以下の粒子径を持つ上記金属(M2)の酸化物による積層構造を取り、上記グラデーション構造を取るという特徴を有することに関連があるのではないかと推測される。
 本発明にかかるセンサは、上述の製造方法によって湿式処理で成膜された均一な酸化金属膜を有するため、多層膜を要さない。そのため、小型化、薄型化、大口径化が可能なセンサを安価に提供可能である。また、製造時、使用時に加熱することは必要ないため、基板選択の自由度が高く、消費電力を少なくすることもできる。さらに、酸化金属膜に水素が化学反応のように結合するため、金属原子間への水素の吸収および金属原子間からの水素の放出の繰り返しによる金属の劣化が生じることもない。
 本願発明は以下のように表現することもできる。
 本発明にかかるセンサは、上記酸化金属膜は、1nm以上100nm以下の粒子径を持つ上記金属(M2)の酸化物である酸化金属粒子を備え、上記酸化金属膜は、上記センサの縦断面において、上記基板またはフィルムの面であって上記有機膜が形成されている面と平行に、上記酸化金属膜の左端から右端までを結ぶ直線を取った場合に、上記直線を横切る上記酸化金属粒子の平均粒子径が、上記酸化金属膜の表面から上記有機膜に向かうにしたがって小さくなっていることが好ましい。
 このように、上記酸化金属膜は、膜表面に近いほど上記酸化金属粒子の平均粒子径が大きい、いわゆるグラデーション構造を取ることが好ましい。上記酸化金属膜は、スパッタリング等の方法によって作製される金属膜と比較して組織が疎である。それゆえ、電気抵抗の高い膜とすることができる。また、このような構造上の特徴を備えるため、後述する実施例に示すように、感度が高く誤作動の少ない光センサ、水素ガス検出センサ、気圧センサとすることができると推測される。
 本発明にかかるセンサは、上記酸性基が、フェノール基、安息香酸基、フタル酸基、サリチル酸基、アセチルサリチル酸基およびベンゼンスルホン酸基からなる群より選ばれる1以上の官能基を含むことが好ましい。
 これらの官能基は、強酸性であるとともに電子吸引基を備えているので、これらの官能基を含む酸性基は、金属(M1)イオンと金属(M2)イオンとのイオン交換を容易に行うことができ、さらに金属(M2)を固定化しやすい基となる。したがって、上記構成によれば、金属(M2)の酸化物の固定化率がより高いセンサとすることができる。
 本発明にかかるセンサは、上記3つ以上の反応基を有する付加重合性化合物の反応基が、アクリロイル基および/またはメタクリロイル基を含むことが好ましい。
 アクリロイル基および/またはメタクリロイル基は、バルキー構造を構成しやすい官能基であるため、有機膜の構造を、より多くの金属イオンを固定可能な構造にすることができ、還元剤がより内部まで行き渡りやすい構造とすることができる。
 したがって、金属(M2)イオンをより内部まで還元することができるものと考えられる。よって上記構成によれば、金属(M2)の酸化物の固定化率がより高いセンサとすることができる。
 本発明にかかるセンサは、上記親水性官能基が、エチレンオキシド基および/またはプロピレンオキシド基を含むことが好ましい。
 エチレンオキシド、プロピレンオキシドは、親水性官能基の中でも、特に上記有機膜の親水性を向上させる能力に優れるので、上記有機膜のより内部まで各処理液(金属(M1)イオンを含有する水溶液、金属(M2)イオンを含有する金属(M2)イオン水溶液、還元剤の水溶液)を作用させることができる。よって上記構成によれば、金属(M2)の酸化物の固定化率がより高いセンサとすることができる。
 本発明にかかるセンサは、上記金属(M1)がカリウムまたはナトリウムであることが好ましい。
 カリウムまたはナトリウムは、非常にイオン化傾向が大きく、金属(M2)とのイオン化傾向の差が大きいため、上記金属固定工程において、より金属(M2)を固定化しやすい。よって上記構成によれば、金属(M2)の酸化物の固定化率がより高いセンサとすることができる。
 本発明にかかるセンサは、上記金属(M2)がインジウム、亜鉛およびスズからなる群より選ばれる1以上の金属であることが好ましい。
 これらの金属は、透明導電膜の原料として幅広く使用されている。上記構成によれば、これらの金属を用いた透明導電膜に良好な面内均一性および密着性を付与することができるので、上記金属の使用効率を向上させることができる。よって上記構成によれば、これらの金属の酸化物の固定化率がより高いセンサとすることができる。
 本発明にかかる水深測定用センサは、本発明にかかるセンサと、弾性体とを備え、上記センサが上記弾性体の内部に封入されてなることを特徴としている。
 上記構成によれば、水深が深くなると周囲の水圧の変化によって弾性体が収縮し、弾性体内部の気圧が変化する。そこで、水深を測定したい地点において本発明にかかるセンサに対して光を照射し、照射を停止した後で本発明にかかるセンサが示す抵抗値の回復の傾きを検出することにより、弾性体内部の気圧を測定し、当該気圧と水深との相関関係に基づいて、上記地点における水深を測定することができる。
 本発明にかかる光の照射および停止を検出する方法は、本発明にかかるセンサに対して光を照射する工程と、上記光の照射を停止する工程と、上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出する工程と、を含むことを特徴としている。
 本発明にかかる水素ガスの検出方法は、水素ガス雰囲気下において、本発明にかかるセンサに対して光を照射する工程と、上記光の照射を停止する工程と、上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出する工程と、を含むことを特徴としている。
 本発明にかかる気圧の測定方法は、異なる大気圧下において、本発明にかかるセンサに対して光を照射する工程と、上記光の照射を停止する工程と、上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出する工程と、を含むことを特徴としている。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔実施例1:下地組成物の調製と有機膜の形成〕
 下地組成物として、2-アクリロイルオキシエチル-フタル酸(商品名:HOA-MPL、共栄社化学株式会社製)を39重量%、ジメチルアミノエチルメタクリレート(商品名:DM、共栄社化学株式会社製)を10重量%、ペンタエリスリトールトリアクリレート(商品名:PE-3A、共栄社化学株式会社製)を25重量%、ジエチレングリコールジメタクリレート(商品名:2EG、共栄社化学株式会社製)を25重量%、重合反応開始剤としてイルガキュア1173(チバ・スペシャルティ・ケミカルズ株式会社製)を1重量%混合し、計100重量%となるようにした薬液を調製した。
 上記2-アクリロイルオキシエチル-フタル酸は、酸性基を有する付加重合性化合物として、ジメチルアミノエチルメタクリレートは塩基性基を有する付加重合性化合物として、ペンタエリスリトールトリアクリレートは3つ以上の反応基を有する付加重合性化合物として、ジエチレングリコールジメタクリレートは親水性官能基を有する付加重合化合物として用いた。
 上記薬液をアクリル板上にスピンコート法によって塗布した。次に、紫外線照射装置(セン特殊光源株式会社製、PL16-110)を用いて、上記薬液に対して20分間紫外線を照射することによって上記薬液を硬化させ、アクリル板上に有機膜を形成した。
 〔実施例2:金属薄膜の形成〕
 上記有機膜が形成されたアクリル板を下記の工程に供することによって、金属薄膜を得た。
(1)60℃、8Mの水酸化カリウム水溶液に浸漬し、2分間保持する。
(2)蒸留水中で十分に洗浄する。
(3)室温にて金属イオン水溶液に浸漬し、10分間保持する。上記金属イオン水溶液としては、100mM塩化インジウム水溶液と100mM酢酸ナトリウム水溶液を体積比1:1で混合したものを用いた。
(4)蒸留水中で十分に洗浄する。
(5)40℃、100mMの水素化ホウ素ナトリウム水溶液に浸漬し、10分間保持して金属イオンを還元する。
(6)蒸留水中で十分に洗浄する。
(7)窒素雰囲気下で乾燥する。
 これによって、金属光沢を示す金属薄膜(膜厚100nm程度)が得られた。
(8)当該金属薄膜が形成されたアクリル板を、オーブンを用いて140℃で5時間保持する。
 これによって、抵抗値10kΩ程度の透明な酸化インジウム膜を備えた素子が得られた。なお、抵抗値は抵抗率計(三菱化学製、ロレスタGP)を用いて表面抵抗率を測定することによって求めた。
 図1の(a)は、本発明の一実施形態にかかるセンサの縦断面を透過型電子顕微鏡によって観察した結果を示す写真である。また、図1の(b)は、上記縦断面のうち、薄膜層および有機膜の縦断面を示す模式図である。図1の(a)(b)に示すように、上記酸化インジウム膜は、粒子径が1nm~100nmである酸化インジウム粒子による積層構造を持った、膜厚100nm程度の薄膜層であった。
 上記酸化インジウム膜は、図1の(b)に示すように、表面付近から内部(有機膜側)へ向かうにつれて粒子径が小さくなるという特徴を有していた。表面付近に存在する酸化インジウム粒子の粒子径は50~100nmであり、内部へ行くほど粒子径が小さくなる、いわゆるグラデーション構造を取っていることが分かった。図1の(b)に示すように、上記酸化インジウム粒子は、有機膜の内部に埋設された状態になっているものも存在していた。
 このように、上記(1)~(8)の工程によって得られた金属薄膜は、バインダ等を用いることなく有機膜に強固に保持される。また、比較データは示さないが、上記金属薄膜はスパッタリング等の従来公知の方法によって作製される金属膜と比べて組織が疎であり、それゆえに電気抵抗が高いことが分かった。
 〔実施例3:センサの作製およびセンサによる光照射の検出〕
 上記素子の両端に導電ペーストを用いて四端子の配線を行い、外側二端子に電源を接続し、内側二端子で電位差の検出を行える回路を形成した。図2は、作製した本発明の一実施形態にかかるセンサ10の外観を示す模式図である。図2において、1は有機膜および酸化インジウム膜を備えた素子、2a、2bは外側の端子、3a、3bは内側の端子、4は電圧計、5は電流計、6は光源である。本発明にかかるセンサ10は、素子1、外側の端子2a、2b、および内側の端子3a、3bを備えている。なお、本明細書では、上記素子のことをセンサと称する場合もある。
 センサ10の上部に光源6を設置した。センサ10の両端から0.1mAの電流を流しながら、光源6から、50mW/cmの光を、センサ10の10cm真上からセンサ10の光源側の面全体に満遍なく照射し、数秒後に照射を停止した。
 図3は、センサ10に光を照射後、照射を停止した場合に、センサ10が示した抵抗値の変化を表すグラフである。数秒間光を照射すると抵抗値が急激に減少したが、照射を止めると、その時点から抵抗値が徐々に回復した。
 このように、有機膜上に形成した上記酸化インジウム膜を備えた本発明にかかるセンサは、光が照射されると抵抗値が減少し、光の照射を停止すると抵抗値が回復するため、光の照射および停止を検出することが可能である。また、図2に示すような単純な構造体によって簡便に光照射を検出できることが明らかになった。
 〔実施例4:センサによる水素の検出〕
 上記センサ10を水素ガス雰囲気中に載置し、水素ガス検知センサとしての利用について検討を行った。配管部分以外密閉された容器中にセンサ10を設置し、ロータリーポンプで数分間真空引きした後、水素ガスを1気圧となるように導入した。その状態で、実施例3と同様に、センサ10の上部に設置した光源6からセンサ10の光源側の面全体に満遍なく光を照射し、数秒後に照射を停止した。
 図4は、水素ガス雰囲気中でセンサ10に光を照射後、光照射を停止した場合にセンサ10が示した抵抗値の変化を表すグラフである。数秒間光を照射すると抵抗値が急激に減少したのは実施例3と同様の傾向であったが、水素ガス雰囲気中では光の照射を止めた後も抵抗値が減少する傾向が見られた。
 このように、センサ10の抵抗値は、実施例3のように水素が存在しない大気下では光照射を停止後に回復するのに対し、水素雰囲気下では光照射を停止後も減少することが分かる。それゆえ、水素存在の有無による抵抗値の挙動の違いを利用することにより、センサ10を水素ガス検知センサとして用いることができる。
 〔実施例5:水深測定用センサ〕
 内部の気圧をそれぞれ0.1MPa、1MPa、10MPaに保った密封容器7a、7b、7cに、同一構造を有するセンサ10a,10b,10cをそれぞれ封入し、光照射が行えるように構成した。図5は、真空度の異なる密封容器中に封入されたセンサを示す模式図である。
 図5に示すように、実施例3と同様にセンサ10a,10b,10cそれぞれの両端から0.1mAの電流を流しながら、光源6a,6b,6cから、それぞれセンサ10a,10b,10cの光源側の面全体に満遍なく光を照射し、数秒後に照射を停止した。光の照射強度は全て同じである。なお、図5に示されているセンサの構成は図2に示したものと同じであるため、センサを構成する素子および端子については符号を省略している。また、電圧計および電流計も図2に示すものと同じであるため、符号を省略している。
 結果を図6に示す。図6は真空度の異なる雰囲気下において、それぞれのセンサが示した抵抗値の回復時間の違いを表すグラフである。
 図6より、容器内の気圧が高いほど、抵抗値の回復速度が速いことが分かる。この結果から、気圧の変化により抵抗値の回復時間が変化することが分かる。この変化を利用することにより、本発明にかかるセンサを気圧センサとして用いることができる。
 また、この変化を利用すると、本発明にかかるセンサを、例えば水深測定用センサとして用いることが可能である。図7は本発明にかかるセンサを用いた水深測定用センサの構成を示す模式図である。図7において8は弾性体であり、周囲の圧力により内部の気圧が変化する。上記弾性体はゴム状の弾性体であることが好ましい。その他図2に示す部材と同じ部材には、図2で用いたのと同じ符号を付している。
 図7に示すように、センサ10および光源6をゴム状の弾性体8に封入し、水中に沈める。水深が深くなることで周囲の水圧が変化するため弾性体は収縮し、弾性体内部の気圧が変化する。測定したい地点において、センサ10に対して光照射を行い、照射終了後に素子が示す抵抗値回復の傾きを検出することにより、弾性体内部の気圧を測定できる。
 弾性体内部の気圧と、水圧および水深とには相関があるため、種々の地点において上記抵抗値回復の傾きと弾性体内部の気圧との相関関係を求め、さらに、弾性体内部の気圧と、水圧および水深との相関関係を求める。そして、上記抵抗値回復の傾きと、水圧および水深との相関関係を示す検量線を作成することにより、センサ10を水深測定用センサとして用い、水深を測定することができる。
 図6には、弾性体8に光源6が封入されている形態を示したが、弾性体8の外部から。弾性体8の内部に封入されたセンサ10に光を照射してもよい。この場合は光の照射を効率的に行うため、弾性体8は透明であることが好ましい。
 本発明は、光センサ、水素ガス検知センサ、気圧センサ、水深センサに適用できる。
1 有機膜および酸化インジウム膜を備えた素子
2a、2b 外側の端子
3a、3b 内側の端子
4 電圧計
5 電流計
6、6a、6b、6c 光源
7a、7b、7c 密封容器
8 弾性体
10、10a、10b、10c センサ
 

Claims (12)

  1.  3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有する下地組成物を、基板またはフィルム上に塗布し、重合して、有機膜を形成する有機膜形成工程と、
     上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、上記酸性基を金属(M1)塩にする金属塩生成工程と、
     上記金属(M1)イオンを含有する水溶液で処理した有機膜を、上記金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする金属固定工程と、
     上記金属(M2)イオンを還元して上記有機膜表面に金属膜を形成する還元工程と、
     上記金属膜を酸化する酸化工程と、
    を含む方法によって製造された酸化金属膜を備え、
     光、水素ガスおよび気圧を検出可能であることを特徴とするセンサ。
  2.  上記酸化金属膜は、1nm以上100nm以下の粒子径を持つ上記金属(M2)の酸化物である酸化金属粒子を備え、
     上記酸化金属膜は、上記センサの縦断面において、上記基板またはフィルムの面であって上記有機膜が形成されている面と平行に、上記酸化金属膜の左端から右端までを結ぶ直線を取った場合に、
     上記直線を横切る上記酸化金属粒子の平均粒子径が、上記酸化金属膜の表面から上記有機膜に向かうにしたがって小さくなっていることを特徴とする、請求項1に記載のセンサ。
  3.  上記酸性基が、フェノール基、安息香酸基、フタル酸基、サリチル酸基、アセチルサリチル酸基およびベンゼンスルホン酸基からなる群より選ばれる1以上の官能基を含むことを特徴とする請求項1または2に記載のセンサ。
  4.  上記3つ以上の反応基を有する付加重合性化合物の反応基が、アクリロイル基および/またはメタクリロイル基を含むことを特徴とする請求項1から3のいずれか1項に記載のセンサ。
  5.  上記親水性官能基が、エチレンオキシド基および/またはプロピレンオキシド基を含むことを特徴とする請求項1から4のいずれか1項に記載のセンサ。
  6.  上記金属(M1)がカリウムまたはナトリウムであることを特徴とする請求項1から5のいずれか1項に記載のセンサ。
  7.  上記金属(M2)がインジウム、亜鉛およびスズからなる群より選ばれる1以上の金属であることを特徴とする請求項1から6のいずれか1項に記載のセンサ。
  8.  請求項1から7のいずれか1項に記載のセンサと、弾性体とを備え、
     上記センサが上記弾性体の内部に封入されてなることを特徴とする、水深測定用センサ。
  9.  3つ以上の反応基を有する付加重合性化合物と、酸性基を有する付加重合性化合物と、親水性官能基を有する付加重合化合物と、を含有する下地組成物を、基板またはフィルム上に塗布し、重合して、有機膜を形成する有機膜形成工程と、
     上記有機膜を、金属(M1)イオンを含有する水溶液で処理することによって、上記酸性基を金属(M1)塩にする金属塩生成工程と、
     上記金属(M1)イオンを含有する水溶液で処理した有機膜を、上記金属(M1)イオンよりもイオン化傾向の低い金属(M2)イオンを含有する金属(M2)イオン水溶液で処理することによって、上記酸性基の金属(M1)塩を、金属(M2)塩とする金属固定工程と、
     上記金属(M2)イオンを還元して上記有機膜表面に金属膜を形成する還元工程と、
     上記金属膜を酸化して酸化金属膜を得る酸化工程と、を含むことを特徴とする、酸化金属膜を備えたセンサの製造方法。
  10.  請求項1から7のいずれか1項に記載のセンサに対して光を照射する工程と、
     上記光の照射を停止する工程と、
     上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出する工程と、を含むことを特徴とする、光の照射および停止を検出する方法。
  11.  水素ガス雰囲気下において、請求項1から7のいずれか1項に記載のセンサに対して光を照射する工程と、
     上記光の照射を停止する工程と、
     上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を検出する工程と、を含むことを特徴とする、水素ガスの検出方法。
  12.  異なる大気圧下において、請求項1から7のいずれか1項に記載のセンサに対して光を照射する工程と、
     上記光の照射を停止する工程と、
     上記光の照射中と上記光を停止した後とにおいて上記センサが示す抵抗値の変化を、それぞれの大気圧下において検出する工程と、を含むことを特徴とする、気圧の測定方法。
PCT/JP2011/056630 2011-03-15 2011-03-18 酸化金属膜を備えたセンサおよびその利用 WO2012124127A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/002,640 US9711666B2 (en) 2011-03-15 2011-03-18 Sensor provided with metal oxide film and use thereof
EP11861099.7A EP2688108B1 (en) 2011-03-15 2011-03-18 Sensor provided with metal oxide film and use thereof
CN201180068902.3A CN103403877B (zh) 2011-03-15 2011-03-18 具有氧化金属膜的传感器及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-057277 2011-03-15
JP2011057277A JP4853596B1 (ja) 2011-03-15 2011-03-15 酸化金属膜を備えたセンサおよびその利用

Publications (1)

Publication Number Publication Date
WO2012124127A1 true WO2012124127A1 (ja) 2012-09-20

Family

ID=45540515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056630 WO2012124127A1 (ja) 2011-03-15 2011-03-18 酸化金属膜を備えたセンサおよびその利用

Country Status (5)

Country Link
US (1) US9711666B2 (ja)
EP (1) EP2688108B1 (ja)
JP (1) JP4853596B1 (ja)
CN (1) CN103403877B (ja)
WO (1) WO2012124127A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276683A (ja) 1985-09-30 1987-04-08 Toshiba Corp 光センサ
JPH01278077A (ja) 1988-04-29 1989-11-08 Kyocera Corp 光センサー
JPH05347428A (ja) 1992-06-12 1993-12-27 Kanegafuchi Chem Ind Co Ltd 位置検出光半導体装置
JP2007178168A (ja) 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd 水素ガス検知センサ製造方法及び水素ガス検知センサ
JP2008082842A (ja) 2006-09-27 2008-04-10 Epson Toyocom Corp ガスセンサ素子

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978731A (en) 1974-02-25 1976-09-07 United Technologies Corporation Surface acoustic wave transducer
JPS60238497A (ja) 1984-05-09 1985-11-27 Nitto Electric Ind Co Ltd 部分メツキなどの部分処理方法
JPH0711449A (ja) 1993-06-24 1995-01-13 Daiabondo Kogyo Kk メッキ用接着剤組成物
JP3447163B2 (ja) 1995-11-30 2003-09-16 出光興産株式会社 透明導電積層体
JP2001073159A (ja) 1999-09-01 2001-03-21 Nippon Riironaaru Kk ポリイミド樹脂表面への導電性皮膜の形成方法
JP3914386B2 (ja) 2000-12-28 2007-05-16 株式会社ルネサステクノロジ フォトマスク、その製造方法、パターン形成方法および半導体装置の製造方法
JP4632580B2 (ja) 2001-06-26 2011-02-16 奥野製薬工業株式会社 樹脂基材上への導電性皮膜の形成法
US6896981B2 (en) 2001-07-24 2005-05-24 Bridgestone Corporation Transparent conductive film and touch panel
JP2003151366A (ja) 2001-08-02 2003-05-23 Bridgestone Corp 透明導電フィルム及びその製造方法並びにタッチパネル
US6903512B2 (en) 2001-08-07 2005-06-07 Konica Corporation Half mirror film producing method and optical element comprising a half mirror film
JP3866579B2 (ja) 2002-01-25 2007-01-10 富士フイルムホールディングス株式会社 薄層金属膜
JP2004351722A (ja) 2003-05-28 2004-12-16 Nitto Giken Kk 部分蒸着転写箔及びその製造方法
JP3868989B2 (ja) 2003-10-22 2007-01-17 東洋インキ製造株式会社 プロトン受容型センサー、水素ガスセンサー及び酸センサー
JP3997209B2 (ja) 2004-03-01 2007-10-24 大村塗料株式会社 無電解めっき用前処理剤、前処理方法および無電解めっき方法
US20090038957A1 (en) 2004-11-02 2009-02-12 Mitsubishi Chemical Corporation Gold plating liquid and gold plating method
JP2006130877A (ja) 2004-11-09 2006-05-25 Hitachi Maxell Ltd 配線基板用フィルム基材、配線基板用フィルム基材の作製方法及びフレキシブルプリント基板
CN101194042A (zh) 2005-06-09 2008-06-04 欧姆龙株式会社 金属膜和金属布线图案的形成方法、金属膜和金属布线图案形成用底层组合物以及金属膜
JP4155315B2 (ja) 2006-06-28 2008-09-24 オムロン株式会社 金属膜の製造方法、下地組成物、金属膜およびその利用
JP4321652B2 (ja) * 2007-12-27 2009-08-26 オムロン株式会社 金属膜の製造方法
JP4321653B2 (ja) 2007-12-27 2009-08-26 オムロン株式会社 金属膜の製造方法
KR20110050428A (ko) 2008-07-30 2011-05-13 국립대학법인 나고야공업대학 자외선 수광 소자 및 자외선량의 측정 방법
JP5452140B2 (ja) 2009-09-03 2014-03-26 日本航空電子工業株式会社 水素検出用表面プラズモン共鳴素子、表面プラズモン共鳴式光学水素検出器及び表面プラズモン共鳴を利用して光学的に水素を検出する方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276683A (ja) 1985-09-30 1987-04-08 Toshiba Corp 光センサ
JPH01278077A (ja) 1988-04-29 1989-11-08 Kyocera Corp 光センサー
JPH05347428A (ja) 1992-06-12 1993-12-27 Kanegafuchi Chem Ind Co Ltd 位置検出光半導体装置
JP2007178168A (ja) 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd 水素ガス検知センサ製造方法及び水素ガス検知センサ
JP2008082842A (ja) 2006-09-27 2008-04-10 Epson Toyocom Corp ガスセンサ素子

Also Published As

Publication number Publication date
CN103403877A (zh) 2013-11-20
JP4853596B1 (ja) 2012-01-11
JP2012193400A (ja) 2012-10-11
US9711666B2 (en) 2017-07-18
EP2688108A4 (en) 2014-11-19
CN103403877B (zh) 2015-09-09
EP2688108B1 (en) 2019-01-16
EP2688108A1 (en) 2014-01-22
US20130341534A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP4155315B2 (ja) 金属膜の製造方法、下地組成物、金属膜およびその利用
JP4321653B2 (ja) 金属膜の製造方法
Akamatsu et al. Surface modification-based synthesis and microstructural tuning of nanocomposite layers: monodispersed copper nanoparticles in polyimide resins
TW201247810A (en) Electroconductive member, method for manufacturing the same, composition, touch panel and solar cell using the same
JP4321652B2 (ja) 金属膜の製造方法
US20050214550A1 (en) Method of forming a pattern, conductive patterned material, and method of forming a conductive pattern
TW201249940A (en) Electroconductive member, method for manufacturing the same, touch panel, solar cell and composition containing metal nanowire
JP2015523680A (ja) 金属のナノ粒子とナノワイヤを含むインクを用いた導電パターンの形成
JP4593619B2 (ja) 金属膜および金属配線パターンの形成方法、金属膜および金属配線パターン形成用下地組成物および金属膜
JP4920318B2 (ja) 導電性パターン形成方法、及びワイヤグリッド型偏光子
US20110008548A1 (en) Process for manufacturing conductive tracks
Kwon et al. Efficient Protection of Silver Nanowire Transparent Electrodes by All-Biorenewable Layer-by-Layer Assembled Thin Films
JP4853596B1 (ja) 酸化金属膜を備えたセンサおよびその利用
CN107245717A (zh) 使用高附着性触媒的无硅烷无电镀金属沉积方法及生成物
JP4458188B2 (ja) ハーフミラーおよびその製造方法
Ng et al. UV direct-writing of metals on polyimide
JP2006104045A (ja) 導電性ガラス基板、導電性ガラス基板形成方法及び導電性パターン形成方法
JP2003289178A (ja) 導電性パターン形成方法
JP2015221925A (ja) 樹脂基材の表面改質処理方法、金属皮膜形成方法及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011861099

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14002640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE