WO2012124040A1 - 電磁波伝搬媒体 - Google Patents

電磁波伝搬媒体 Download PDF

Info

Publication number
WO2012124040A1
WO2012124040A1 PCT/JP2011/055918 JP2011055918W WO2012124040A1 WO 2012124040 A1 WO2012124040 A1 WO 2012124040A1 JP 2011055918 W JP2011055918 W JP 2011055918W WO 2012124040 A1 WO2012124040 A1 WO 2012124040A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave propagation
propagation medium
conductor layer
face
Prior art date
Application number
PCT/JP2011/055918
Other languages
English (en)
French (fr)
Inventor
崇秀 寺田
博史 篠田
和規 原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/055918 priority Critical patent/WO2012124040A1/ja
Priority to CN2011800597500A priority patent/CN103262344A/zh
Priority to US13/884,605 priority patent/US9252473B2/en
Priority to JP2013504434A priority patent/JP5629817B2/ja
Publication of WO2012124040A1 publication Critical patent/WO2012124040A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line

Definitions

  • the present invention relates to an electromagnetic wave propagation medium such as a waveguide or an electromagnetic wave transmission sheet for propagating an electromagnetic wave, and more particularly to a technique effective when applied to an electromagnetic wave propagation medium in which a standing wave influence and a plurality of interfaces exist. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-114696
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-114696
  • An electromagnetic wave transmission sheet that is substantially equal to a natural number multiple of half the wavelength of the electromagnetic wave to be transmitted is disclosed.
  • Patent Document 2 discloses an electromagnetic wave distribution waveguide for propagating electromagnetic waves, and a plurality of electromagnetic waves branched from the electromagnetic wave distribution waveguide and provided with a plurality of slots, respectively.
  • a plasma processing apparatus comprising a radiation waveguide is disclosed. Also, there are provided a plurality of power supply windows for communicating the electromagnetic wave distribution waveguides and the respective electromagnetic wave radiation waveguides, and each power supply window has an opening width that is closer to the electromagnetic wave propagation direction side.
  • the center axis parallel to the longitudinal direction of the electromagnetic wave emission waveguide is set so as to be larger and disposed on the side opposite to the electromagnetic wave propagation direction side, and the corresponding electromagnetic wave emission waveguide It is disclosed that it is set to be offset toward the electromagnetic wave propagation direction side with respect to the central axis.
  • Patent Document 3 provides a plurality of coupling holes in a waveguide disposed in a plasma generation chamber and sequentially positions toward the distal end side of the waveguide.
  • a plasma generator in which coupling coefficients of coupling holes are sequentially increased and a plurality of dielectric windows corresponding to the respective coupling holes of the waveguide are provided in the plasma generation chamber.
  • the interval between the coupling holes is set to (2n + 1) ⁇ ⁇ g / 2
  • the interval between the selected coupling hole and the short-circuit plate at the tip of the waveguide is set to ⁇ g / 4.
  • ⁇ g is an in-tube wavelength of the waveguide
  • n is an integer.
  • the electromagnetic wave transmission sheet described in Patent Document 1 includes an electromagnetic wave absorbing medium that reduces reflection in the traveling direction of propagating electromagnetic waves in order to realize stable communication. However, if an electromagnetic wave absorbing medium is used, the manufacturing cost increases and the utilization efficiency of electric power used for communication is lowered.
  • a slot (matching) provided at a position farthest from the electromagnetic wave distribution waveguide among the plurality of slots provided in the respective electromagnetic wave emission waveguides.
  • the area of the slot is set larger than the area of the other slots.
  • an electromagnetic wave propagation medium that can realize stable communication without using the electromagnetic wave absorbing medium or the matching box is desired.
  • Patent Document 1 when a plurality of communication devices are arranged on the electromagnetic wave transmission sheet, when power such as a communication signal is input from the electromagnetic wave interface, the communication device located near the electromagnetic wave interface is Can receive a large amount of power.
  • a communication device located far from the electromagnetic wave interface has a problem that power is difficult to reach because the power is taken up by a communication device on the way. Therefore, communication with multiple terminals and uniform power distribution have been difficult.
  • the size of the slot is larger as the slot is arranged in the direction of propagation of electromagnetic waves, that is, the direction opposite to the electromagnetic wave interface of the electromagnetic wave transmission sheet. If so, the power easily reaches the communication device located far from the electromagnetic wave interface.
  • the slot size if the number of communication devices increases, for example, the difference between a large slot size and a small one becomes significant, so the electromagnetic wave transmission sheet requires precise processing. In other words, there are problems such as an increase in the installation interval of communication devices and the need for a large communication device in order to accommodate a large slot.
  • the structure which offsets the electric power feeding window described in the said patent document 2 to the electromagnetic wave propagation direction side is a means for adjusting the phase difference of the electromagnetic waves output from each electric power feeding window, and solves the said subject. Does not contribute.
  • An object of the present invention is to provide an electromagnetic wave propagation medium that realizes stable communication.
  • Another object of the present invention is to provide an electromagnetic wave propagation medium in which power can easily reach a position far from the electromagnetic wave interface.
  • the present invention can provide an electromagnetic wave propagation medium that realizes stable communication without using an electromagnetic wave absorbing medium or a matching box. Further, it is possible to provide an electromagnetic wave propagation medium in which power can easily reach a position far from the electromagnetic wave interface without adjusting the slot size.
  • An electromagnetic wave propagation medium having two second end faces along long sides facing each other through an electromagnetic wave propagation space, wherein the wavelength of the electromagnetic wave in the electromagnetic wave propagation space is ⁇ and the integer is n, the first conductor layer And the second conductor layer are short-circuited at the first end face that reflects the electromagnetic wave, the electromagnetic wave output interface located at a position farther from the electromagnetic wave input interface is ⁇ / 4 + n ⁇ ⁇ / from the short-circuited first end face.
  • the electromagnetic wave output interface that is located farther from the electromagnetic wave input interface is short-circuited. It is installed close to a distance of n ⁇ ⁇ / 2 from the first end face.
  • FIG. 3 is a perspective view showing a second electromagnetic wave propagation medium including a mesh-shaped first conductor layer.
  • FIG. 5 is a perspective view showing a fourth electromagnetic wave propagation medium including a mesh-shaped first conductor layer. It is a perspective view which expands and shows the principal part of the electromagnetic wave propagation medium by Example 1 of this invention, (a) is a perspective view which shows the 5th electromagnetic wave propagation medium provided with a flat 1st conductor layer, (b).
  • FIG. 5 is a perspective view showing a fourth electromagnetic wave propagation medium including a mesh-shaped first conductor layer.
  • FIG. 10 is a perspective view showing a sixth electromagnetic wave propagation medium including a mesh-shaped first conductor layer. It is sectional drawing which expanded the principal part along the direction where the long side of the electromagnetic wave propagation medium by Example 1 of this invention extends.
  • (A) is sectional drawing at the time of installing an electromagnetic wave output interface only in an upper surface conductor
  • (b) is a sectional view at the time of installing an electromagnetic wave output interface in an upper surface conductor and a lower surface conductor, respectively.
  • FIG. 2 is a cross-sectional view of the main part showing an electromagnetic wave propagation medium having an inclination in the thickness of the electromagnetic wave propagation space
  • FIGS. 3C and 3D are cross-sectional views of the main part showing the electromagnetic wave propagation medium having an inclination in the thickness of the first conductor layer.
  • the number of elements when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
  • the constituent elements including element steps and the like
  • the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
  • the term “conductor” refers to a conductor in the electromagnetic wave frequency band used for propagation of electromagnetic waves
  • the term “electromagnetic wave propagation space” refers to electromagnetic waves used for propagation of electromagnetic waves.
  • a dielectric material in a frequency band Accordingly, there is no direct restriction on whether it is a conductor, a semiconductor, or an insulator with respect to a direct current. Further, the conductor and the dielectric are defined by their characteristics in relation to the electromagnetic wave, and do not limit the aspect or constituent material such as whether it is fixed, liquid, or gas.
  • FIG. 1 is a schematic diagram showing the overall configuration of the electromagnetic wave propagation medium
  • FIG. 2 is a cross-sectional view showing an enlarged end of the electromagnetic wave propagation medium
  • FIGS. 3 to 5 are enlarged views of the main part of the electromagnetic wave propagation medium.
  • FIG. 6 is a cross-sectional view showing an enlarged main part of the electromagnetic wave propagation medium
  • FIGS. 7 and 8 are perspective views showing an enlarged main part of the electromagnetic wave propagation medium
  • FIG. 9 is a communication device. It is a perspective view which expands and shows the principal part of the electromagnetic wave propagation medium which installed A.
  • the electromagnetic wave propagation medium 1 has a structure in which a planar electromagnetic wave propagation space 4 is sandwiched between a first conductor layer 2 and a second conductor layer 3, and includes at least one electromagnetic wave input interface 5.
  • a plurality of electromagnetic wave output interfaces 6 are provided on the first conductor layer 2.
  • the electromagnetic wave propagation medium 1 has a long side along the traveling direction of the propagating electromagnetic wave (first direction; the x direction shown in FIG. 1), and is orthogonal to the traveling direction of the electromagnetic wave (perpendicular to the first direction).
  • the second direction the y direction shown in FIG. 1).
  • first conductor layer 2 and the second conductor layer 3 are formed so that the two side surfaces (first end surfaces) 7a and 7b of the electromagnetic wave propagation space 4 along the direction in which the short sides extend and the direction in which the long sides extend.
  • the two electromagnetic wave propagation spaces 4 are short-circuited or opened at the two side surfaces (second end surfaces) 8 and 8, and the electromagnetic waves can be reflected at the first end surfaces 7 a and 7 b and the second end surfaces 8 and 8.
  • short means that the conductor layer ML is formed on the side surface of the electromagnetic wave propagation space 4 and the first conductor layer 2 and the second conductor layer 3 are connected as shown in FIG.
  • “open” means that the conductor layer ML is not formed on the side surface of the electromagnetic wave propagation space 4 and the first conductor layer 2 and the first conductor layer 3. Is not connected.
  • the electromagnetic wave input interface 5 is provided at a position near the first end face 7 a, and the electromagnetic wave output interface 6 is provided between the electromagnetic wave input interface 5 and the first end face 7 a. Absent. On the other hand, a plurality of electromagnetic wave output interfaces 6 are provided between the electromagnetic wave input interface 5 and the other first end face 7 b located far from the electromagnetic wave input interface 5.
  • the size of the short side of the electromagnetic wave propagation medium 1 is, for example, 1 ⁇ 2 of the wavelength of the propagating electromagnetic wave, and the thickness of the electromagnetic wave propagation space 4 is set smaller than the wavelength of the propagating electromagnetic wave.
  • the wavelength is about 12 cm. Therefore, the short side size of the electromagnetic wave propagation medium 1 is 6 cm and the long side size. Can be 60 cm.
  • FIG. 3A shows an enlarged perspective view of a main part of the first electromagnetic wave propagation medium 1A according to the first embodiment.
  • the electromagnetic wave propagation medium 1A has a structure in which an electromagnetic wave propagates in an electromagnetic wave propagation space sandwiched between a flat plate-like first conductor layer 2P and a flat plate-like second conductor layer 3, and a plurality of electromagnetic wave output interfaces 6a are, for example, It is a slot opened in one conductor layer 2P. Further, the electromagnetic wave input interface 5 is disposed at a position near the first end face 7a of the electromagnetic wave propagation medium 1A, and the electromagnetic wave output interface 6a is not disposed between the electromagnetic wave input interface 5 and the first end face 7a. A plurality of electromagnetic wave output interfaces 6a are arranged between the electromagnetic wave input interface 5 and the other first end face 7b.
  • first end face 7b which is located far from the electromagnetic wave input interface 5 and reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is short-circuited (FIG. 2A).
  • the first end face 7a and the two second end faces 8 and 8 that are close to the electromagnetic wave input interface 5 may be either short-circuited or opened.
  • the electromagnetic wave input from the electromagnetic wave input interface 5 propagates in the electromagnetic wave propagation space and is reflected by the first end face 7b. Therefore, the standing wave S1 is generated by the electromagnetic wave traveling toward the first end face 7b and the electromagnetic wave reflected by the first end face 7b.
  • the phase is rotated by 180 degrees. Therefore, the electromagnetic wave directed toward the first end face 7b and the electromagnetic wave reflected by the first end face 7b at a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end face 7b.
  • is the wavelength of the electromagnetic wave propagating in the electromagnetic wave propagation space
  • n is a natural number
  • the wavelength of the electromagnetic wave is about 12 cm, and if the relative dielectric constant of the electromagnetic wave propagation space is 4, the wavelength of the electromagnetic wave is About 6 cm.
  • the position of the electromagnetic wave output interface 6a is set closer to the distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end face 7b as the position is farther from the electromagnetic wave input interface 5. That is, the electromagnetic wave output interface 6a that is farther from the electromagnetic wave input interface 5 is closer to the antinode of the standing wave S1, and the electromagnetic wave output interface 6a that is closer to the electromagnetic wave input interface 5 is closer to the node of the standing wave S1. .
  • the interval of the electromagnetic wave output interface 6a is set to be shorter than ⁇ / 2.
  • FIG. 3B shows an enlarged perspective view of a main part of the second electromagnetic wave propagation medium 1B according to the first embodiment.
  • the electromagnetic wave propagation medium 1B has a structure in which an electromagnetic wave propagates in an electromagnetic wave propagation space sandwiched between a mesh-like first conductor layer 2M and a flat plate-like second conductor layer 3, and the plurality of electromagnetic wave output interfaces 6b include, for example, a first electromagnetic wave output interface 6b. It is a mark attached to one conductor layer 2M, and is realized by various methods such as printing or protrusion. Further, the electromagnetic wave input interface 5 is disposed at a position close to the first end face 7a of the electromagnetic wave propagation medium 1B, and the electromagnetic wave output interface 6b is not disposed between the electromagnetic wave input interface 5 and the first end face 7a.
  • a plurality of electromagnetic wave output interfaces 6b are arranged between the electromagnetic wave input interface 5 and the other first end face 7b. Further, the first end face 7b which is located far from the electromagnetic wave input interface 5 and reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is short-circuited (FIG. 2A). The first end face 7a and the two second end faces 8 and 8 that are close to the electromagnetic wave input interface 5 may be either short-circuited or opened. The interval between the conductor meshes of the first conductor layer 2M is constant.
  • the electromagnetic wave propagation medium 1B uses a mesh-like first conductor layer 2M instead of the flat plate-like first conductor layer 2P of the electromagnetic wave propagation medium 1A described above. If the upper conductor (first conductor layer 2M) is meshed, an electromagnetic wave is output from any position. Therefore, a large amount of power is output at a location near the electromagnetic input interface 5 as it is, and power is output at a distant location. Hard to reach. Therefore, a plurality of electromagnetic wave output interfaces 6b are installed in the electromagnetic wave propagation medium 1B. For example, when a communication device is installed in the electromagnetic wave propagation medium 1B, where the communication device is installed, the electromagnetic wave input interface 5 is far away. The power can be easily reached.
  • the electromagnetic wave output interface 6b that is farther from the electromagnetic wave input interface 5 is closer to the antinode of the standing wave S1 and the electromagnetic wave output interface 6b that is closer to the electromagnetic wave input interface 5 is more constant. It becomes close to the node of standing wave S1.
  • the interval of the electromagnetic wave output interface 6b is set to be shorter than ⁇ / 2.
  • FIG. 4A shows an enlarged perspective view of a main part of the third electromagnetic wave propagation medium 1C according to the first embodiment.
  • the electromagnetic wave propagation medium 1C has a structure in which an electromagnetic wave propagates in an electromagnetic wave propagation space sandwiched between a flat plate-like first conductor layer 2P and a flat plate-like second conductor layer 3, and the plurality of electromagnetic wave output interfaces 6a are, for example, It is a slot opened in one conductor layer 2P. Further, the electromagnetic wave input interface 5 is disposed at a position near the first end surface 7a of the electromagnetic wave propagation medium 1C, and the electromagnetic wave output interface 6a is not disposed between the electromagnetic wave input interface 5 and the first end surface 7a. A plurality of electromagnetic wave output interfaces 6a are arranged between the electromagnetic wave input interface 5 and the other first end face 7b.
  • first end face 7b that is located far from the electromagnetic wave input interface 5 and reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is open (FIG. 2B).
  • the first end face 7a and the two second end faces 8 and 8 that are close to the electromagnetic wave input interface 5 may be either short-circuited or opened.
  • the electromagnetic wave is reflected by the first end face 7b, and the standing wave S2 is generated. Since the phase does not rotate when the electromagnetic wave is reflected by the first end face 7b, the phase between the electromagnetic wave directed to the first end face 7b and the electromagnetic wave reflected by the first end face 7b is at a distance of n ⁇ ⁇ / 2 from the first end face 7b. At the distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end face 7b, the phases of the electromagnetic wave toward the first end face 7b and the electromagnetic wave reflected by the first end face 7b are reversed and weakened.
  • the position of the electromagnetic wave output interface 6a is set closer to the distance of n ⁇ ⁇ / 2 from the first end face 7b as the distance from the electromagnetic wave input interface 5 increases. That is, the electromagnetic wave output interface 6a that is farther from the electromagnetic wave input interface 5 is closer to the antinode of the standing wave S2, and the electromagnetic wave output interface 6a that is closer to the electromagnetic wave input interface 5 is closer to the node of the standing wave S2. .
  • the interval of the electromagnetic wave output interface 6a is set to be shorter than ⁇ / 2.
  • FIG. 4B shows an enlarged perspective view of a main part of the fourth electromagnetic wave propagation medium 1D according to the first embodiment.
  • the electromagnetic wave propagation medium 1D has a structure in which an electromagnetic wave propagates in an electromagnetic wave propagation space sandwiched between a mesh-like first conductor layer 2M and a flat plate-like second conductor layer 3, and the plurality of electromagnetic wave output interfaces 6b include, for example, a first electromagnetic wave output interface 6b. It is a mark attached to one conductor layer 2M, and is realized by various methods such as printing or protrusion.
  • the electromagnetic wave input interface 5 is disposed at a position near the first end surface 7a of the electromagnetic wave propagation medium 1D, and the electromagnetic wave output interface 6b is not disposed between the electromagnetic wave input interface 5 and the first end surface 7a.
  • a plurality of electromagnetic wave output interfaces 6b are arranged between the electromagnetic wave input interface 5 and the other first end face 7b. Further, the first end face 7b that is located far from the electromagnetic wave input interface 5 and reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is open (FIG. 2B). The first end face 7a and the two second end faces 8 and 8 that are close to the electromagnetic wave input interface 5 may be either short-circuited or opened. The interval between the conductor meshes of the first conductor layer 2M is constant.
  • the electromagnetic wave propagation medium 1D uses a mesh-like first conductor layer 2M instead of the flat plate-like first conductor layer 2P of the electromagnetic wave propagation medium 1C described above.
  • the electromagnetic wave output interface 6b located farther from the electromagnetic wave input interface 5 is closer to the antinode of the standing wave S2 and the electromagnetic wave output interface 6b located closer to the electromagnetic wave input interface 5 is more constant. It becomes close to the node of standing wave S2.
  • the interval of the electromagnetic wave output interface 6b is set to be shorter than ⁇ / 2.
  • FIG. 5A shows an enlarged perspective view of a main part of the fifth electromagnetic wave propagation medium 1E according to the first embodiment.
  • the electromagnetic wave propagation medium 1E has a structure in which an electromagnetic wave propagates in an electromagnetic wave propagation space sandwiched between a flat plate-like first conductor layer 2P and a flat plate-like second conductor layer 3.
  • the plurality of electromagnetic wave output interfaces 6a include, for example, a first electromagnetic wave output interface 6a. It is a slot opened in one conductor layer 2P. Further, the electromagnetic wave input interface 5 is disposed at a position near the first end surface 7a of the electromagnetic wave propagation medium 1E, and the electromagnetic wave output interface 6a is not disposed between the electromagnetic wave input interface 5 and the first end surface 7a. A plurality of electromagnetic wave output interfaces 6a are arranged between the electromagnetic wave input interface 5 and the other first end face 7b.
  • the two second end faces 8 and 8 along the direction in which the long side extends are short-circuited (FIG. 2A).
  • the two first end faces 7a and 7b along the direction in which the short side extends may be either short-circuited or opened.
  • the electromagnetic wave propagation medium 1E utilizes the standing wave S3 generated by the two second end faces 8 and 8.
  • the electromagnetic wave input from the electromagnetic wave input interface 5 enters a resonance state between the two second end faces 8 and 8, and a standing wave S3 is generated.
  • the position of the electromagnetic wave output interface 6a is set closer to the distance of ⁇ / 4 + n ⁇ ⁇ / 2 from one second end face 8 as the distance from the electromagnetic wave input interface 5 increases. That is, the electromagnetic wave output interface 6a farther away from the electromagnetic wave input interface 5 is closer to the antinode of the standing wave S3, and the electromagnetic wave output interface 6a closer to the electromagnetic wave input interface 5 is closer to the node of the standing wave S3. .
  • the electromagnetic wave output interface 6a is the first end surface. It is installed at a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from 7b. Alternatively, when the first end face 7b is open, the electromagnetic wave output interface 6a is installed at a distance of n ⁇ ⁇ / 2 from the first end face 7b.
  • the configuration of the electromagnetic wave propagation medium 1E and the configuration of the electromagnetic wave propagation medium 1A or the electromagnetic wave propagation medium 1C may be used in combination.
  • the electromagnetic wave output interface 6a located farther from the electromagnetic wave input interface 5 is installed closer to the distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the short-circuited first end surface 7b and the short-circuited second end surface 8.
  • the electromagnetic wave output interface 6a that is farther from the electromagnetic wave input interface 5 is closer to the distance n ⁇ ⁇ / 2 from the opened first end face 7b, and ⁇ / 4 + n ⁇ ⁇ / from the short-circuited second end face 8. Install close to 2 distance.
  • FIG. 5B shows an enlarged perspective view of a main part of the sixth electromagnetic wave propagation medium 1F according to the first embodiment.
  • the electromagnetic wave propagation medium 1F has a structure in which an electromagnetic wave propagates in an electromagnetic wave propagation space sandwiched between a mesh-like first conductor layer 2M and a flat plate-like second conductor layer 3, and the plurality of electromagnetic wave output interfaces 6b are, for example, It is a mark attached to one conductor layer 2M, and is realized by various methods such as printing or protrusion. Further, the electromagnetic wave input interface 5 is disposed at a position close to the first end surface 7a of the electromagnetic wave propagation medium 1F, and the electromagnetic wave output interface 6b is not disposed between the electromagnetic wave input interface 5 and the first end surface 7a. A plurality of electromagnetic wave output interfaces 6b are arranged between the electromagnetic wave input interface 5 and the other first end face 7b.
  • the two second end faces 8 and 8 along the direction in which the long side extends are short-circuited (FIG. 2A).
  • the two first end faces 7a and 7b along the direction in which the short side extends may be either short-circuited or opened.
  • the interval between the conductor meshes of the first conductor layer 2M is constant.
  • the electromagnetic wave propagation medium 1F uses a mesh-like first conductor layer 2M instead of the flat plate-like first conductor layer 2P of the electromagnetic wave propagation medium 1E described above.
  • the electromagnetic wave output interface 6b that is farther from the electromagnetic wave input interface 5 is closer to the antinode of the standing wave S3 and the electromagnetic wave output interface 6b that is closer to the electromagnetic wave input interface 5 is more constant. It becomes close to the node of standing wave S3.
  • the electromagnetic wave output interface 6b when the first end face 7b is short-circuited, the electromagnetic wave output interface 6b is installed at a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end face 7b. Alternatively, when the first end face 7b is opened, the electromagnetic wave output interface 6b is installed at a distance of n ⁇ ⁇ / 2 from the first end face 7b.
  • the structure of the electromagnetic wave propagation medium 1F and the structure of the electromagnetic wave propagation medium 1B or the electromagnetic wave propagation medium 1D may be used in combination. That is, the electromagnetic wave output interface 6b located farther from the electromagnetic wave input interface 5 is set closer to the distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the short-circuited first end surface 7b and the short-circuited second end surface 8.
  • the electromagnetic wave output interface 6b located farther from the electromagnetic wave input interface 5 is closer to the distance n ⁇ ⁇ / 2 from the opened first end face 7b and is short-circuited from the second end face 8 that is short-circuited to ⁇ / 4 + n ⁇ ⁇ / Install close to 2 distance.
  • FIG. 6 (a) and 6 (b) are enlarged cross-sectional views of the main part along the direction in which the long side of the electromagnetic wave propagation medium according to Example 1 extends.
  • FIG. 6A is a cross-sectional view of the main part corresponding to the electromagnetic wave propagation medium 1A along the line AA ′ in FIG.
  • the electromagnetic wave output interface 6a is provided only on the conductor (first conductor layer 2P) on the upper surface. However, as shown in FIG. 6B, the electromagnetic wave output interface 6a may be provided on the upper conductor (first conductor layer 2P) and the lower conductor (second conductor layer 3), respectively.
  • the electromagnetic wave propagation medium 1A has been described here, similarly, in the electromagnetic wave propagation media 1C and 1E, the electromagnetic wave output interface 6a is connected to the upper conductor (first conductor layer 2P) and the lower conductor (second conductor layer 3), respectively. May be provided.
  • the conductor on the lower surface (second conductor layer 3) is meshed, and the conductor on the upper surface (first conductor layer 2M) and the conductor on the lower surface (second conductor layer 3) are used.
  • Each may be provided with an electromagnetic wave output interface 6b.
  • FIG. 7 is an enlarged perspective view of a main part of a seventh electromagnetic wave propagation medium 1G, which is a modification of the first electromagnetic wave propagation medium 1A according to the first embodiment
  • FIG. 8 shows a fifth electromagnetic wave propagation medium according to the first embodiment.
  • the perspective view which expanded the principal part of the 8th electromagnetic wave propagation medium 1H which is a modification of 1E is shown.
  • the electromagnetic wave input interface 5 is provided in the vicinity of one end (first end surface 7a) of the electromagnetic wave propagation medium 1A.
  • the electromagnetic wave input interface 5 may be provided near the center of the electromagnetic wave propagation medium 1G.
  • the electromagnetic wave input interface 5 is provided in the vicinity of one end portion (first end surface 7a).
  • the electromagnetic wave input interface 5 may be provided near the center of the electromagnetic wave propagation medium 1H.
  • electromagnetic waves input from the electromagnetic wave input interface 5 propagate in a plurality of directions
  • a plurality of electromagnetic wave output interfaces 6a may be installed in each propagation direction.
  • first electromagnetic wave propagation medium 1A and the fifth electromagnetic wave propagation medium 1E have been described.
  • other electromagnetic wave propagation media second electromagnetic wave propagation medium 1B, third electromagnetic wave propagation medium 1C, fourth electromagnetic wave propagation medium
  • FIG. 9 shows an enlarged perspective view of a main part of the first electromagnetic wave propagation medium 1A in which the communication device according to the first embodiment is installed.
  • One communication device 10 is opposed to the electromagnetic wave input interface 5 and each electromagnetic wave output interface 6a of the electromagnetic wave propagation medium 1A, and the communication device 10 opposed to the electromagnetic wave input interface 5 is connected to the communication device 10 opposed to each electromagnetic wave output interface 6a. connect.
  • the electromagnetic wave interface 11 of the communication apparatus 10 is disposed at a position suitable for electromagnetic wave input / output with respect to the electromagnetic wave input interface 5 and the electromagnetic wave output interface 6a facing each other.
  • the communication device 10 has substantially the same size as the installation interval of the electromagnetic wave output interface 6a or a size smaller than the installation interval of the electromagnetic wave output interface 6a. That is, the size of the communication device 10 is smaller than n ⁇ ⁇ / 2, and preferably smaller than ⁇ / 2. In other words, the wavelength of the electromagnetic wave propagated in the electromagnetic wave propagation space may be selected according to the size of the communication device 10.
  • the electromagnetic wave propagation medium 1 (1A to 1H) according to the first embodiment when the configuration of the electromagnetic wave propagation medium 1 (1A to 1H) according to the first embodiment is applied, the farther the position of the electromagnetic wave output interface 6 (6a, 6b) is from the electromagnetic wave input interface 5, the electromagnetic wave propagation medium is. Installed near the antinodes of the standing waves S1 and S2 generated by the reflected waves on the first end surface 7 (7b) of 1 (1A to 1H) or the standing waves S3 generated by the reflected waves on the second end surface 8 Thus, it is possible to realize the electromagnetic wave propagation medium 1 (1A to 1H) in which power easily reaches the electromagnetic wave output interface 6 (6a, 6b) located far from the electromagnetic wave input interface 5.
  • FIGS. 10 and 11 are perspective views showing an enlarged main part of the electromagnetic wave propagation medium.
  • the electromagnetic wave output interface has a mesh shape, and the density of the conductor mesh is adjusted so that power can easily reach a place far from the electromagnetic wave input interface.
  • FIG. 10A shows an enlarged perspective view of a main part of the first electromagnetic wave propagation medium 21A according to the second embodiment.
  • the electromagnetic wave propagation medium 21A has a structure in which a planar electromagnetic wave propagation space is sandwiched between a mesh-shaped first conductor layer 22M and a flat plate-like second conductor layer 23, and at least one electromagnetic wave input interface 25 is a first electromagnetic wave input interface 25. Provided on the conductor layer 22M. Further, the electromagnetic wave input interface 25 is disposed at a position close to the first end surface 27a, and the electromagnetic wave output interface 26a is not disposed between the electromagnetic wave input interface 25 and the first first end surface 27a. Further, the electromagnetic wave propagation medium 21A has a long side in the traveling direction of the propagating electromagnetic wave (a first direction), a strip having a short side in the direction (second direction) perpendicular to the traveling direction of the electromagnetic waves.
  • the two side surfaces (second end surfaces) 28, 28 of the space are short-circuited or opened.
  • the first conductor layer 22M has a mesh shape, but the conductor mesh becomes sparse as the distance from the electromagnetic wave input interface 25 increases.
  • the conductor mesh becomes coarse, the electromagnetic wave output from the inside of the electromagnetic wave propagation medium 21A through the conductor mesh to the outside increases.
  • the conductor mesh may be discretely roughened as the distance from the electromagnetic wave input interface 25 increases.
  • the conductor mesh may be sparse by thinning the conductor, or the electromagnetic wave input interface 25 is the center. It may be sparse by laying a conductor mesh radially.
  • FIG. 10B shows an enlarged perspective view of a main part of the second electromagnetic wave propagation medium 21B according to the second embodiment.
  • the electromagnetic wave propagation medium 21B is located far from the electromagnetic wave interface 25 in the above-described electromagnetic wave propagation medium 21A, short-circuits the first end face 27b that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIG. 2A), and further A plurality of electromagnetic wave output interfaces 26b are added between the interface 25 and the first end face 27b.
  • the first end face 27a and the two second end faces 28, 28 located close to the electromagnetic wave input interface 25 may be short-circuited or opened.
  • the plurality of electromagnetic wave output interfaces 26b are marks attached to the first conductor layer 22M, for example.
  • the electromagnetic wave output interface 26b is installed at a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end surface 27b by utilizing the standing wave S1 generated by the electromagnetic wave directed to the first end surface 27b and the electromagnetic wave reflected by the first end surface 27b.
  • FIG. 10C is an enlarged perspective view of the main part of the third electromagnetic wave propagation medium 21C according to the second embodiment.
  • the electromagnetic wave propagation medium 21C is located far from the electromagnetic wave interface 25 in the above-described electromagnetic wave propagation medium 21A, and opens the first end face 27b that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIG. 2B).
  • a plurality of electromagnetic wave output interfaces 26b are added between the interface 25 and the first end face 27b.
  • the first end face 27a and the two second end faces 28, 28 located close to the electromagnetic wave input interface 25 may be short-circuited or opened.
  • the plurality of electromagnetic wave output interfaces 26b are marks attached to the first conductor layer 22M, for example.
  • the electromagnetic wave output interface 26b is installed at a distance of n ⁇ ⁇ / 2 from the first end face 27b by utilizing the standing wave S2 generated by the electromagnetic wave directed to the first end face 27b and the electromagnetic wave reflected by the first end face 27b.
  • FIG. 11A is an enlarged perspective view of a main part of the fourth electromagnetic wave propagation medium 21D according to the second embodiment.
  • the electromagnetic wave propagation medium 21D has a structure in which a flat electromagnetic wave propagation space is sandwiched between a flat plate-like first conductor layer 22P and a flat plate-like second conductor layer 23, and includes at least one electromagnetic wave input interface 25 and a plurality of electromagnetic wave input interfaces 25
  • the electromagnetic wave output interface 26c is provided on the first conductor layer 22M. Further, the electromagnetic wave input interface 25 is disposed at a position close to the first end surface 27a, and the electromagnetic wave output interface 26c is not disposed between the electromagnetic wave input interface 25 and the first first end surface 27a. A plurality of electromagnetic wave output interfaces 26c are arranged between the other first end surface 27b.
  • the electromagnetic wave propagation medium 21D has a strip shape having a long side in the traveling direction (first direction) of the propagating electromagnetic wave and a short side in a direction (second direction) orthogonal to the traveling direction of the electromagnetic wave.
  • the plurality of electromagnetic wave output interfaces 26c are, for example, slots opened in the first conductor layer 22P, and conductors are arranged in a mesh shape in the openings.
  • the conductor mesh of the electromagnetic wave output interface 26 c becomes sparse as the distance from the electromagnetic wave input interface 25 increases.
  • the conductor mesh of the electromagnetic wave output interface 26c may be discretely roughened as the distance from the electromagnetic wave input interface 25 increases, or the conductor constituting the conductor mesh of the electromagnetic wave output interface 26c may be sparse due to thinning. Alternatively, it may be sparse by laying a conductor mesh in a radial pattern around the electromagnetic wave input interface 25.
  • the electromagnetic wave propagation medium 21D is located far from the electromagnetic wave interface 25 and shorts the first end face 27b that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIG. 2 (a)).
  • the first end face 27a and the two second end faces 28, 28 located close to the electromagnetic wave input interface 25 may be short-circuited or opened.
  • the electromagnetic wave output interface 26c is installed at a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end surface 27b by utilizing the standing wave S1 generated by the electromagnetic wave directed to the first end surface 27b and the electromagnetic wave reflected by the first end surface 27b.
  • FIG. 11B is an enlarged perspective view of the main part of the fifth electromagnetic wave propagation medium 21E according to the second embodiment.
  • the electromagnetic wave propagation medium 21E is located far from the electromagnetic wave interface 25 in the above-described electromagnetic wave propagation medium 21D, and opens the first end face 27b that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIG. 2B).
  • the first end face 27a and the two second end faces 28, 28 located close to the electromagnetic wave input interface 25 may be short-circuited or opened.
  • the electromagnetic wave output interface 26c is installed at a distance of n ⁇ ⁇ / 2 from the first end face 27b by utilizing the standing wave S2 generated by the electromagnetic wave directed to the first end face 27b and the electromagnetic wave reflected by the first end face 27b.
  • the electromagnetic wave output interfaces 26b and 26c located farther from the electromagnetic wave input interface 25 are ⁇ / 4 + n ⁇ ⁇ from the short-circuited first end face 27b or second end face 28. May be installed close to a distance of / 2 or may be installed close to a distance of n ⁇ ⁇ / 2 from the opened first end face 27b.
  • the electromagnetic wave output interfaces 26b and 26c are provided only on the first conductor layers 22M and 22P. However, similarly to the first conductor layers 22M and 22P, the electromagnetic wave output interface 26b is also provided on the second conductor layer 23. 26c may be installed. Further, the position of the electromagnetic wave input interface 25 may be installed anywhere in the electromagnetic wave propagation media 21A to 21E.
  • the conductor mesh is made sparser in a place farther from the electromagnetic wave input interface 25, so It is possible to realize the electromagnetic wave propagation media 21A to 21E that can easily reach the electric power. Further, if the electromagnetic wave output interfaces 26b and 26c are installed at predetermined locations, the electromagnetic wave propagation media 21A to 21E that can easily reach the electromagnetic wave output interfaces 26b and 26c located far from the electromagnetic wave input interface 25 can be realized. .
  • the electromagnetic wave propagation media 21A to 21E that can easily reach the electromagnetic wave output interfaces 26b and 26c located far from the electromagnetic wave input interface 25 are realized. Can do.
  • a communication device is installed to face the electromagnetic wave input interface 25 and the electromagnetic wave output interfaces 26b and 26c, and a communication device facing the electromagnetic wave input interface 25 is connected to each electromagnetic wave output interface 26b and 26c. It is possible to communicate with the facing communication device. At this time, it is desirable that the communication device has substantially the same size as the installation interval of the electromagnetic wave output interfaces 26b and 26c or a size smaller than the installation interval of the electromagnetic wave output interfaces 26b and 26c. In other words, the wavelength of the electromagnetic wave propagated in the electromagnetic wave propagation space may be selected according to the size of the communication device.
  • FIGS. 12, FIG. 14, and FIG. 15 are perspective views showing enlarged main parts of the electromagnetic wave propagation medium
  • FIG. 13 is a cross-sectional view showing enlarged ends of the electromagnetic wave propagation medium.
  • the electromagnetic wave propagation medium according to Example 3 adjusts the distance between the surface of the first conductor layer (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer (the surface in contact with the electromagnetic wave propagation space). This makes it easy to reach power far away from the electromagnetic input interface.
  • FIG. 12A is an enlarged perspective view of a main part of the first electromagnetic wave propagation medium 31A according to the third embodiment.
  • the electromagnetic wave propagation medium 31A has a structure in which a planar electromagnetic wave propagation space is sandwiched between a mesh-like first conductor layer 32M and a flat plate-like second conductor layer 33, and at least one electromagnetic wave input interface 35 is a first electromagnetic wave input interface 35. Provided on the conductor layer 32M. Further, the electromagnetic wave input interface 35 is disposed at a position close to the first end surface 37a, and the electromagnetic wave output interface 36a is not disposed between the electromagnetic wave input interface 35 and the first first end surface 37a. Furthermore, the electromagnetic wave propagation medium 31A has a strip shape having a long side in the traveling direction (first direction) of the propagating electromagnetic wave and a short side in the direction (second direction) orthogonal to the traveling direction of the electromagnetic wave.
  • the two side surfaces (second end surfaces) 38 and 38 of the propagation space are short-circuited or opened.
  • the surface of the first conductor layer 32M (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer 33 (in contact with the electromagnetic wave propagation space) at the first end surface 37a located near the electromagnetic wave input interface 25.
  • the surface of the first conductor layer 32M (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer 33 (the surface opposite to the surface in contact with the electromagnetic wave propagation space).
  • the surface of the first conductor layer 32M (surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer 33 (electromagnetic wave propagation space).
  • the distance from the electromagnetic wave input interface 35 decreases as the distance from the electromagnetic wave input interface 35 increases.
  • the electromagnetic wave propagation medium includes an upper conductor (first conductor layer 32M), a lower conductor (second conductor layer 33), and an electromagnetic wave propagation space 34.
  • the conductor (first conductor layer 32M) on the upper surface is formed in a mesh shape.
  • the thickness of the electromagnetic wave propagation space 34 decreases as the distance from the electromagnetic wave input interface increases.
  • the thickness of the first conductor layer 32M decreases as the distance from the electromagnetic wave input interface increases.
  • the first end face 37b far from the electromagnetic wave input interface is short-circuited, and in the electromagnetic wave propagation medium shown in FIGS. 13B and 13D, The first end face 37b located far from the electromagnetic wave input interface is open.
  • an electromagnetic wave receiving device is installed on the surface of the first conductor layer 32M (the surface opposite to the surface in contact with the electromagnetic wave propagation space), and affects the propagation amount of the electromagnetic wave propagating in the electromagnetic wave propagation space 34.
  • the thickness of the first conductor layer 32M or the thickness of the electromagnetic wave propagation space 34 will be described below.
  • the electromagnetic wave receiving device acts strongly on the electromagnetic wave propagation space 34 arranged closer to receive the electromagnetic wave.
  • the electromagnetic wave receiving device receives the electromagnetic wave by acting strongly on the electromagnetic wave propagating in the upper part of the electromagnetic wave propagation space 34. Therefore, the electromagnetic wave propagating in the lower part of the electromagnetic wave propagation space 34 is not received so much. That is, when the electromagnetic wave propagation space 34 is thick, the ratio of the electromagnetic wave received by the electromagnetic wave receiving device out of the electromagnetic waves propagating through the electromagnetic wave propagation space 34 is reduced. Therefore, if the thickness of the first conductor layer 32M is constant, the electromagnetic wave propagation space 34 located closer to the electromagnetic wave input interface is thickened (the surface of the first conductor layer 32M (the surface opposite to the surface in contact with the electromagnetic wave propagation space). Surface) and the back surface of the second conductor layer 33 (the surface in contact with the electromagnetic wave propagation space) is increased), so that a larger electromagnetic wave is propagated to a place far from the electromagnetic wave input interface.
  • the electromagnetic wave receiving device is less likely to receive the electromagnetic wave propagating through the electromagnetic wave propagation space 34 as the first conductor layer 32M is thicker. Therefore, if the thickness of the electromagnetic wave propagation space 34 is constant, the first conductor layer 32M near the electromagnetic wave input interface is thickened (the surface of the first conductor layer 32M (on the side opposite to the surface in contact with the electromagnetic wave propagation space). Surface) and the back surface of the second conductor layer 33 (the surface in contact with the electromagnetic wave propagation space) is increased), so that a larger electromagnetic wave is propagated to a place far from the electromagnetic wave input interface.
  • the structure of the electromagnetic wave propagation medium is not limited to the structure shown in FIGS. 13A to 13D, and a protective layer is provided on the surface of the first conductor layer 32M (the surface opposite to the surface in contact with the electromagnetic wave propagation space). In this case, the same effect can be obtained by adjusting the thickness of the protective layer. Further, the thickness of the second conductor layer 33 may be adjusted so that the cross-sectional view of the electromagnetic wave propagation medium is rectangular.
  • FIG. 12B shows an enlarged perspective view of a main part of the second electromagnetic wave propagation medium 31B according to the third embodiment.
  • the electromagnetic wave propagation medium 31B is located far from the electromagnetic wave input interface 35 in the above-described electromagnetic wave propagation medium 31A, and short-circuits the first end face 37b that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIGS. 13A and 13C). Furthermore, a plurality of electromagnetic wave output interfaces 36b are added between the electromagnetic wave input interface 35 and the first end face 37b. The first end face 37a and the two second end faces 38, 38 located close to the electromagnetic wave input interface 35 may be short-circuited or opened. The plurality of electromagnetic wave output interfaces 36b are marks attached to the first conductor layer 32M, for example.
  • the electromagnetic wave output interface 36b is installed at a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end surface 37b by utilizing the standing wave S1 generated by the electromagnetic wave directed to the first end surface 37b and the electromagnetic wave reflected by the first end surface 37b.
  • FIG. 12C shows an enlarged perspective view of the main part of the third electromagnetic wave propagation medium 31C according to the third embodiment.
  • the electromagnetic wave propagation medium 31C is located far from the electromagnetic wave input interface 35 in the above-described electromagnetic wave propagation medium 31A, and opens the first end face 37 that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIGS. 13B and 13D). Furthermore, a plurality of electromagnetic wave output interfaces 36b are added between the electromagnetic wave input interface 35 and the first end face 37b. The first end face 37a and the two second end faces 38, 38 located close to the electromagnetic wave input interface 35 may be short-circuited or opened.
  • the plurality of electromagnetic wave output interfaces 36b are marks attached to the first conductor layer 32M, for example.
  • the electromagnetic wave output interface 36b is installed at a distance of n ⁇ ⁇ / 2 from the first end surface 37b by utilizing the standing wave S2 generated by the electromagnetic wave directed to the first end surface 37b and the electromagnetic wave reflected by the first end surface 37b.
  • FIG. 14A is an enlarged perspective view of a main part of the fourth electromagnetic wave propagation medium 31D according to the third embodiment.
  • the electromagnetic wave propagation medium 31D has a structure in which a flat electromagnetic wave propagation space is sandwiched between a flat first conductor layer 32P and a flat second conductor layer 33, and includes at least one electromagnetic wave input interface 35 and a plurality of electromagnetic wave input interfaces 35.
  • the electromagnetic wave output interface 36a is provided on the first conductor layer 32M.
  • the electromagnetic wave output interface 36a is, for example, a slot opened in the first conductor layer 32P.
  • the electromagnetic wave input interface 35 is disposed at a position close to the first end surface 37a, and the electromagnetic wave output interface 36a is not disposed between the electromagnetic wave input interface 35 and the first end surface 37a.
  • a plurality of electromagnetic wave output interfaces 6a are arranged between the other first end surface 37b.
  • the electromagnetic wave propagation medium 31D has a strip shape having a long side in the traveling direction (first direction) of the propagating electromagnetic wave and a short side in a direction (second direction) orthogonal to the traveling direction of the electromagnetic wave.
  • the surface of the first conductor layer 32P (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer 33 (in contact with the electromagnetic wave propagation space) in the first end surface 37a located near the electromagnetic wave input interface 35.
  • the surface of the first conductor layer 32P (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer 33 (the surface opposite to the surface in contact with the electromagnetic wave propagation space).
  • the surface of the first conductor layer 32P (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer 33 (the electromagnetic wave propagation space) are formed longer than the distance from the electromagnetic wave propagation space. The distance from the electromagnetic wave input interface 35 becomes shorter as the distance from the electromagnetic wave input interface 35 increases.
  • the electromagnetic wave propagation medium 31D is located far from the electromagnetic wave interface 35, and shorts the first end face 37b that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIGS. 13A and 13C).
  • the first end face 37a and the two second end faces 38, 38 located close to the electromagnetic wave input interface 35 may be short-circuited or opened.
  • the electromagnetic wave output interface 36a is installed at a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from the first end surface 37b by utilizing the standing wave S1 generated by the electromagnetic wave directed to the first end surface 37b and the electromagnetic wave reflected by the first end surface 37b.
  • FIG. 14B is an enlarged perspective view of the main part of the fifth electromagnetic wave propagation medium 31E according to the third embodiment.
  • the electromagnetic wave propagation medium 31E is located far from the electromagnetic wave interface 35 in the above-described electromagnetic wave propagation medium 31D, and opens the first end face 37b that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave (FIGS. 13B and 13D). ing.
  • the first end face 37a and the two second end faces 38, 38 located close to the electromagnetic wave input interface 35 may be short-circuited or opened.
  • the electromagnetic wave output interface 36a is installed at a distance of n ⁇ ⁇ / 2 from the first end surface 37b by utilizing the standing wave S2 generated by the electromagnetic wave directed to the first end surface 37b and the electromagnetic wave reflected by the first end surface 37b.
  • FIG. 15 is an enlarged perspective view of a main part of the sixth electromagnetic wave propagation medium 31F according to the third embodiment.
  • the electromagnetic wave propagation medium 31F has a structure in which an electromagnetic wave propagates in an electromagnetic wave propagation space sandwiched between a mesh-like first conductor layer 32M and a flat plate-like second conductor layer 33.
  • the two first end faces 37a and 37b and the two second end faces 38 and 38 may be either short-circuited or opened.
  • the electromagnetic wave input interface 35 is disposed at a position close to the first end surface 37a of the electromagnetic wave propagation medium 31F, and the electromagnetic wave output interface 36a is not disposed between the electromagnetic wave input interface 35 and the first end surface 37a. .
  • the distance between the two second end surfaces 38 and 38 across the electromagnetic wave propagation space becomes shorter as the distance from the electromagnetic wave input interface 35 increases.
  • the electromagnetic wave propagation medium 31F shortens the distance between the two second end faces 38 and 38 sandwiching the electromagnetic wave propagation space at a location far from the electromagnetic wave input interface 35, thereby receiving the electromagnetic wave among the electromagnetic waves propagating in the electromagnetic wave propagation space.
  • the proportion of electromagnetic waves received by the device increases.
  • the electromagnetic wave output interfaces 36a and 36b located farther from the electromagnetic wave input interface 35 are ⁇ / 4 + n from the short-circuited first end face 37b or one second end face 38. -You may install close to the distance of (lambda) / 2, or you may install close to the distance of n * lambda / 2 from the open 1st end surface 37b.
  • the conductor mesh of the first conductor layer 32M of the electromagnetic wave propagation media 31A to 31C, 31F may be made sparser as far away from the electromagnetic wave input interface 35.
  • a conductor mesh may be provided at the opening of the electromagnetic wave output interface 36a of the electromagnetic wave propagation media 31D and 31E, and the conductive mesh may be made sparser as the opening of the electromagnetic wave output interface 36a is located farther from the electromagnetic wave input interface 35.
  • the electromagnetic wave output interfaces 36a and 36b are provided only on the first conductor layers 32M and 32P. However, similarly to the first conductor layers 32M and 32P, the electromagnetic wave output interface 36a is also provided on the second conductor layer 33. 36b may be installed. Further, the position of the electromagnetic wave input interface 35 may be installed anywhere in the electromagnetic wave propagation media 31A to 31F.
  • the first conductor layer in which the communication device is installed The distance between the surface of 32M, 32P (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the back surface of the second conductor layer 33 (the surface in contact with the electromagnetic wave propagation space) is shortened, or in the electromagnetic wave propagation medium 31F, the electromagnetic wave
  • the electromagnetic wave propagation media 31A to 31F in which power easily reaches a place far from the electromagnetic wave input interface 35.
  • the electromagnetic wave output interfaces 36a and 36b are installed at predetermined locations, the electromagnetic wave propagation media 31A to 31F that can easily reach the electromagnetic wave output interfaces 36a and 36b located far from the electromagnetic wave input interface 35 can be realized. .
  • the electromagnetic wave propagation media 31A to 31F that can easily reach the electromagnetic wave output interfaces 36b and 36c located far from the electromagnetic wave input interface 35 are realized. Can do.
  • a communication device is installed to face the electromagnetic wave input interface 35 and the electromagnetic wave output interfaces 36a and 36b.
  • a communication device facing the electromagnetic wave input interface 35 is connected to each electromagnetic wave output interface 36a and 36b. It is possible to communicate with the facing communication device.
  • the communication device has substantially the same size as the installation interval of the electromagnetic wave output interfaces 36a and 36b or a size smaller than the installation interval of the electromagnetic wave output interfaces 36a and 36b.
  • the wavelength of the electromagnetic wave propagated in the electromagnetic wave propagation space may be selected according to the size of the communication device.
  • FIGS. 16 to 19 are enlarged perspective views showing the main part of the electromagnetic wave propagation medium.
  • the shape of the first end face that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is adjusted to reduce the influence of the standing wave.
  • a shape in which a first end surface that reflects electromagnetic waves is divided into two with a step will be described.
  • FIG. 16A is an enlarged perspective view of the main part of the first electromagnetic wave propagation medium 41A according to the fourth embodiment.
  • the electromagnetic wave propagation medium 41A has a structure in which a planar electromagnetic wave propagation space is sandwiched between a mesh-like first conductor layer 42M and a flat plate-like second conductor layer 43, and at least one electromagnetic wave input interface is a first conductor. It is provided in the layer 42M.
  • the electromagnetic wave propagation medium 41A has a strip shape having a long side in the traveling direction (first direction) of the propagating electromagnetic wave and a short side in the direction orthogonal to the traveling direction of the electromagnetic wave (second direction).
  • the electromagnetic wave propagation medium 41A has two surfaces (first end surfaces 47bv1 and 47bv2) having different distances from the electromagnetic wave input interface, and one first end surface 47bv that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave, It is divided into two surfaces (first end surfaces 47bv1, 47bv2) so that a step is generated in the direction in which the short side extends.
  • the length of one second side surface 48 along the long side of the electromagnetic wave propagation medium 41 ⁇ / b> A is shorter than the length of the other second side surface 48.
  • is the circumference ratio.
  • the electromagnetic waves propagating toward the first end face 47bv1 and the first end face 47bv2 overlap with the electromagnetic waves reflected by the first end face 47bv1 and the first end face 47bv2, respectively, and generate the standing wave S1a and the standing wave S1b. Since the distance between the first end face 47bv1 and the first end face 47bv2 has a phase difference of 90 degrees with respect to the propagating electromagnetic wave, the standing wave S1a and the standing wave S1b also have a phase difference of 90 degrees. Therefore, the standing wave S1a and the standing wave S1b cancel each other because their antinodes and nodes appear at the same position. Therefore, the influence of standing waves in the electromagnetic wave propagation space can be reduced.
  • FIG. 16B shows an enlarged perspective view of a main part of the second electromagnetic wave propagation medium 41B according to the fourth embodiment.
  • the electromagnetic wave propagation medium 41B is obtained by opening the first end face 47bv1 and the first end face 7bv2 in the electromagnetic wave propagation medium 41A described above.
  • the first end face 47bv1 and the first end face 47bv2 have a difference of ⁇ / 4 + n ⁇ ⁇ / 2 in the distance in which the long side of the electromagnetic wave propagation medium 41B extends. Therefore, the standing wave S2a and the standing wave S2b are generated when the electromagnetic waves are reflected by the first end face 47bv1 and the first end face 47bv2, respectively, and the standing wave S2a and the standing wave S2b have a phase difference of 90 degrees. Because of each other, negate each other's belly and node. Therefore, the influence of standing waves in the electromagnetic wave propagation space can be reduced.
  • FIG. 17A is an enlarged perspective view of the main part of the third electromagnetic wave propagation medium 41C according to the fourth embodiment.
  • the electromagnetic wave propagation medium 41C has two surfaces (first end surfaces 47bh1 and 47bh2) having different distances from the electromagnetic wave input interface, and the first end surface 47bh that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave has a long side. Is divided into two surfaces (first end surfaces 47bh1, 47bh2) so that a step is generated in the extending direction.
  • the length of the first conductor layer 42 ⁇ / b> M along the long side of the electromagnetic wave propagation medium 41 ⁇ / b> A is shorter than the length of the second conductor layer 43.
  • the first end face 47bh1 and the first end face 47bh2 are short-circuited. Further, the first end face 47bh1 and the first end face 47bh2 have a difference of ⁇ / 4 + n ⁇ ⁇ / 2 in the distance in which the long side of the electromagnetic wave propagation medium 41C extends.
  • the standing wave S1a and the standing wave S1b appear to cancel each other with their antinodes and nodes at the same position, thereby reducing the influence of the standing wave on the electromagnetic wave propagation. be able to.
  • FIG. 17B is an enlarged perspective view of a main part of the fourth electromagnetic wave propagation medium 41D according to the fourth embodiment.
  • the electromagnetic wave propagation medium 41D is obtained by opening the first end face 47bh1 and the first end face 47bh2 in the electromagnetic wave propagation medium 41C described above.
  • the standing wave S2a and the standing wave S2b appear to cancel each other with their antinodes and nodes at the same position, thereby reducing the influence of the standing wave in the electromagnetic wave propagation space. can do.
  • 18 (a) and 18 (b) are enlarged perspective views of main parts of the fifth electromagnetic wave propagation medium 41E and the sixth electromagnetic wave propagation medium 41F according to the fourth embodiment, respectively.
  • a flat plate-like first conductor layer 42P is formed instead of the mesh-like first conductor layer 42M constituting the electromagnetic wave propagation medium 41A, and the first conductor layer 42P includes a plurality of first conductor layers 42P.
  • An electromagnetic wave output interface 46a is installed.
  • a flat plate-like first conductor layer 42P is formed instead of the mesh-like first conductor layer 42M constituting the above-described electromagnetic wave propagation medium 41B, and the first conductor layer 42P includes A plurality of electromagnetic wave output interfaces 46a are installed.
  • the plurality of electromagnetic wave output interfaces 46a are, for example, slots opened in the first conductor layer 42P.
  • the electromagnetic wave output interface 46a may be installed at any position of the electromagnetic wave propagation media 41E and 41F.
  • 19 (a) and 19 (b) are enlarged perspective views of the main parts of the seventh electromagnetic wave propagation medium 41G and the eighth electromagnetic wave propagation medium 41H according to Example 4, respectively.
  • a flat plate-like first conductor layer 42P is formed instead of the mesh-like first conductor layer 42M constituting the above-described electromagnetic wave propagation medium 41C, and the first conductor layer 42P includes a plurality of first conductor layers 42P.
  • An electromagnetic wave output interface 46a is installed.
  • a flat plate-like first conductor layer 42P is formed instead of the mesh-like first conductor layer 42M constituting the electromagnetic wave propagation medium 41D, and the first conductor layer 42P includes A plurality of electromagnetic wave output interfaces 46a are installed.
  • the plurality of electromagnetic wave output interfaces 46a are, for example, slots opened in the first conductor layer 42P.
  • the electromagnetic wave output interface 46a may be installed at any position of the electromagnetic wave propagation media 41G and 41H.
  • FIGS. 20 to 22 are enlarged perspective views showing the main part of the electromagnetic wave propagation medium.
  • the influence of the standing wave is reduced by adjusting the shape of the first end face that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave, similarly to the fourth embodiment described above.
  • a shape in which the first end surface that reflects electromagnetic waves is divided into m (m ⁇ 3) with a step will be described.
  • FIG. 20A is an enlarged perspective view of the main part of the first electromagnetic wave propagation medium 51A according to the fifth embodiment.
  • the electromagnetic wave propagation medium 51A has a structure in which a planar electromagnetic wave propagation space is sandwiched between a mesh-like first conductor layer 52M and a flat plate-like second conductor layer 53, and at least one electromagnetic wave input interface is a first conductor. It is provided in the layer 52M.
  • the electromagnetic wave propagation medium 51A has a strip shape having a long side in the traveling direction (first direction) of the propagating electromagnetic wave and a short side in a direction (second direction) orthogonal to the traveling direction of the electromagnetic wave.
  • the electromagnetic wave propagation medium 51A has three surfaces (first end surfaces 57bv1, 57bv2, 57bv3) having different distances from the electromagnetic wave input interface, and one first end surface 57bv that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave. However, it is divided into three surfaces (first end surfaces 57bv1, 57bv2, 57bv3) so that a step is generated in the direction in which the short side extends.
  • the length of one second side surface 58 along the long side of the electromagnetic wave propagation medium 51 ⁇ / b> A is shorter than the length of the other second side surface 58.
  • the effect can be obtained by forming not only two first surfaces 57bv but also three or more surfaces. Further, the same effect can be obtained even if the first end faces 57bv1, 57bv2, and 57bv3 are not short-circuited but opened.
  • FIG. 20B shows an enlarged perspective view of a main part of the second electromagnetic wave propagation medium 51B according to the fifth embodiment.
  • the electromagnetic wave propagation medium 51B has a configuration in which the number of divided surfaces of the first end face 57bv constituting the above-described electromagnetic wave propagation medium 51A is increased, and the first end face 57bvc has n ⁇ in the direction in which the long side extends. Over the length of ⁇ / 2, it is formed obliquely in the direction in which the short side extends.
  • the first end face 57bvc is short-circuited. This is equivalent to increasing the number of first end faces 57bv1, 57bv2, and 57bv3 constituting the electromagnetic wave propagation medium 51A, and the influence of standing waves can be reduced. The same effect can be obtained even if the first end face 57bvc is open.
  • FIG. 21 (a) is an enlarged perspective view of the main part of the third electromagnetic wave propagation medium 51C according to the fifth embodiment.
  • the electromagnetic wave propagation medium 51C has three surfaces (first end surfaces 57bh1, 57bh2, 57bh3) having different distances from the electromagnetic wave input interface, and one first end surface 57bh that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave has It is divided into three surfaces (first end surfaces 57bh1, 57bh2, 57bh3) so that a step is generated in the direction in which the long side extends.
  • the length of the first conductor layer 52M along the long side of the electromagnetic wave propagation medium 51C is shorter than the length of the second conductor layer 53.
  • the first end surface 57bh1, the first end surface 57bh2, and the first end surface 57bh3 are not short-circuited, but the same effect can be obtained.
  • FIG. 21B is an enlarged perspective view of a main part of the fourth electromagnetic wave propagation medium 51D according to the fifth embodiment.
  • the electromagnetic wave propagation medium 51D has a configuration in which the number of divided surfaces of the first end face 57bh constituting the above-described electromagnetic wave propagation medium 51C is increased, and the first end face 57bhc is n ⁇ in the direction in which the long side extends. Over the length of ⁇ / 2, it is formed obliquely in the direction in which the long side extends.
  • the first end face 57bhc is short-circuited. This is equivalent to increasing the number of the first end faces 57bh1, 57bh2, 57bh3 constituting the electromagnetic wave propagation medium 51C, and the influence of standing waves can be reduced. The same effect can be obtained even if the first end face 57bhc is open.
  • FIG. 22 (a) shows an enlarged perspective view of the main part of the fifth electromagnetic wave propagation medium 51E according to the fifth embodiment.
  • the electromagnetic wave propagation medium 51E has a plurality of surfaces (first end surfaces 57bv1, 57bv2, 57bv3) having different distances from the electromagnetic wave input interface, and one of the first end surfaces 57bv that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave, It is divided into a plurality of surfaces (first end surfaces 57bv1, 57bv2, 57bv3) so that a step is generated in the direction in which the long side extends. That is, the electromagnetic wave propagation medium 51E has a first end face 57bv in which the three first end faces 57bv1, 57bv2, and 57bv3 constituting the first end face 57bv of the electromagnetic wave propagation medium 51A described above are repeated. Thereby, similarly to the electromagnetic wave propagation medium 41A described above, the antinodes and nodes of the standing wave cancel each other, and the influence of the standing wave in the electromagnetic wave propagation space can be reduced.
  • the same effect can be obtained regardless of whether the first end faces 57bv1, 57bv2, and 57bv3 are short-circuited or opened.
  • variety along the direction where the short side of 1st end surface 57bv1, 57bv2, 57bv3 extends is more than (lambda) / 4.
  • FIG. 22B is an enlarged perspective view of the main part of the sixth electromagnetic wave propagation medium 51F according to the fifth embodiment.
  • the electromagnetic wave propagation medium 51F has a configuration in which the first end face 57bv constituting the above-described electromagnetic wave propagation medium 51E is divided, and the first end face 57bvc extends in the direction in which the long side extends by n ⁇ ⁇ /
  • the two sides (first end surfaces 57bvc1 and 57bvc2) are formed obliquely in the direction in which the short side extends over the length of 2. Thereby, the influence of a standing wave can be reduced similarly to the above-mentioned electromagnetic wave propagation medium 51E.
  • the width along the direction in which the short sides of the first end faces 57bvc1 and 57bvc2 extend is preferably ⁇ / 4 or more.
  • an electromagnetic wave having a plurality of first end surfaces 57bh obtained by repeating the three first end surfaces 57bh1, 57bh2, and 57bh3 constituting the first end surface 57bh of the electromagnetic wave propagation medium 51C, or a plurality of first end surfaces 57bhc of the electromagnetic wave propagation medium 51D.
  • a propagation medium can also be constructed.
  • the mesh-shaped first conductor film 52M is formed.
  • a plate-shaped first conductor layer is formed, and the first conductor is formed.
  • a plurality of electromagnetic wave output interfaces may be provided in the layer, and similarly, the influence of standing waves can be reduced. In this case, since the influence of the standing wave is reduced, the electromagnetic wave output interface may be installed at any position of the electromagnetic wave propagation medium.
  • FIGS. 23 to 25 are enlarged perspective views showing the main part of the electromagnetic wave propagation medium.
  • the influence of the standing wave is reduced by adjusting the shape of the first end face that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave, as in the fourth and fifth embodiments. Yes.
  • a description will be given of a shape in which the first end surface that reflects electromagnetic waves is divided into m (m ⁇ 2) pieces without forming a step.
  • FIG. 23 (a) shows an enlarged perspective view of a main part of the first electromagnetic wave propagation medium 61A according to the sixth embodiment.
  • the electromagnetic wave propagation medium 61A has a structure in which a planar electromagnetic wave propagation space is sandwiched between a mesh-like first conductor layer 62M and a flat plate-like second conductor layer 63, and at least one electromagnetic wave input interface is a first conductor. It is provided in the layer 62M.
  • the electromagnetic wave propagation medium 61A has a strip shape having a long side in the traveling direction (first direction) of the propagating electromagnetic wave and a short side in a direction (second direction) orthogonal to the traveling direction of the electromagnetic wave.
  • one first end face 67bv that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is divided into two in the middle of the direction in which the short side extends, and a surface in which one is short-circuited, It is comprised by two surfaces (67bv1, 67bv2) of the surface which open
  • the first conductor layer 62M and the second conductor layer 63 are connected.
  • a conductor layer is not formed on substantially half (first end face 67bv2) of the first end face 67b on the other second side face 68 side along the long side of the magnetic wave propagation medium 61A.
  • the two second end faces 68 and 68 may be either short-circuited or opened.
  • the standing wave S1 generated on one first end face 67bv1 and the standing wave S2 generated on the other first end face 67bv2 have a phase difference of 90 degrees.
  • the nodes can cancel each other, and the influence of standing waves in the electromagnetic wave propagation space can be reduced.
  • FIG. 23B is an enlarged perspective view of the main part of the second electromagnetic wave propagation medium 61B according to the sixth embodiment.
  • the electromagnetic wave propagation medium 61B is configured by two surfaces (67bh1, 67bh2) that are short-circuited and open surfaces of one first end surface 67bv that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave.
  • the direction of division is different. That is, one first end face 67bh that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is divided into two substantially in the middle of the thickness direction of the electromagnetic wave propagation space, and one first end face on the second conductor layer 63 side.
  • a conductor layer is formed on 67bh1, and no conductor layer ML is formed on the first end face 67bh2 on the first conductor layer 62M side.
  • the electromagnetic wave propagation medium 61B cancels the antinodes and nodes of the standing wave with each other in the same manner as the electromagnetic wave propagation medium 61A described above, the influence of the standing wave in the electromagnetic wave propagation space can be reduced.
  • FIGS. 24 (a) and 24 (b) are enlarged perspective views of the main part of the third electromagnetic wave propagation medium 61C and the fourth electromagnetic wave propagation medium 61D according to Example 6, respectively.
  • the first end face 67bv that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is divided into two in the middle of the direction in which the short side extends. It is composed of two surfaces (67bv1, 67bv2), one surface short-circuited and the other surface opened.
  • a flat plate-like first conductor layer 62P is formed instead of the mesh-like first conductor layer 62M constituting the electromagnetic wave propagation medium 61A, and a plurality of electromagnetic wave output interfaces 66a are installed on the first conductor layer 62P. Has been.
  • the electromagnetic wave propagation medium 61D has one first end face 67bh that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave divided into two in the middle of the thickness direction of the electromagnetic wave propagation space. It is constituted by two surfaces (6bh1, 67bh2), one surface short-circuited and the other surface opened.
  • a flat plate-like first conductor layer 62P is formed instead of the mesh-like first conductor layer 62M constituting the electromagnetic wave propagation medium 61B, and a plurality of electromagnetic wave output interfaces 66a are installed on the first conductor layer 62P. Has been.
  • the plurality of electromagnetic wave output interfaces 66a are, for example, slots opened in the first conductor layer 62P.
  • the electromagnetic wave output interface 66a may be installed at any position of the electromagnetic wave propagation media 61C and 61D.
  • FIG. 25 is an enlarged perspective view of the main part of the fifth electromagnetic wave propagation medium 61E according to the sixth embodiment.
  • one first end surface 67bv that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is divided into four in the direction in which the short side extends, and a shorted surface (first end surface 67bv1), Open surfaces (first end surface 67bv2) are alternately arranged.
  • the standing wave S1 generated on the first end face 67bv1 and the standing wave S2 generated on the first end face 67bv2 have a phase difference of 90 degrees as in the electromagnetic wave propagation medium 61A described above.
  • the antinodes and nodes of the standing wave cancel each other, and the influence of the standing wave in the electromagnetic wave propagation medium 61E can be reduced.
  • variety along the direction where the short side of 1st end surface 67bv1, 67bv2 extends is (lambda) / 4 or more.
  • the electromagnetic wave output interface may be installed at any position of the electromagnetic wave propagation medium 61E.
  • the first end faces 67bv and 67bh may be divided into a plurality of pieces as in the electromagnetic wave propagation medium 61E, and the antinodes and nodes of the standing wave cancel each other. The influence of standing waves in the propagation space can be reduced.
  • Example 4 Example 5, and Example 6, the electromagnetic wave propagation medium 41A that can reduce the influence of the standing wave by adjusting the shape of the first end surface that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave.
  • the structures and effects of ⁇ 41H, 51A to 51F, and 61A to 61E have been described.
  • the electromagnetic wave propagation media 41A to 41H, 51A to 51F, and 61A to 61E are combined with other forms.
  • the first end face that reflects the electromagnetic wave in the traveling direction of the electromagnetic wave is divided into a plurality (for example, two or four) along the direction in which the short side extends, and the shorted surface and the open surface May be combined with the electromagnetic wave propagation media 41A to 41H and 51A to 51F that form surfaces with different distances in the direction in which the long sides extend.
  • the composite of the electromagnetic wave propagation medium comprised by the several electromagnetic wave propagation medium may be sufficient.
  • the first end face 47bv1 and the first end face 47bv2 of the electromagnetic wave propagation medium 41A may be configured by one electromagnetic wave propagation medium, and the two electromagnetic wave propagation media may be combined.
  • the first end faces 57bv1, 57bv2, and 57bv3 of the electromagnetic wave propagation medium 51A may be configured by a combination of three electromagnetic wave propagation media.
  • the first end faces 61bv1 and 61bv2 of the electromagnetic wave propagation medium 61A may be configured by a combination of two electromagnetic wave propagation media.
  • Example 4, 5 and 6 mentioned above are the structures which reduce the influence of a standing wave, the standing wave which the direction where a long side extends, and the direction where a short side extends are reduced. It is also possible to use the standing wave in combination with the first embodiment described above.
  • an electromagnetic wave propagation medium in which the configuration of the electromagnetic wave propagation medium 1E is combined with the configuration of the electromagnetic wave propagation medium 61C will be described.
  • the electromagnetic wave propagation medium 61C is provided with one electromagnetic wave input interface and a plurality of electromagnetic wave output interfaces, and an electromagnetic wave output interface located farther from the electromagnetic wave input interface is closer to a distance of ⁇ / 4 + n ⁇ ⁇ / 2 from one second end face. It is good to install.
  • the standing waves in the direction in which the short side extends can be utilized, and from the electromagnetic wave input interface. It is possible to realize an electromagnetic wave propagation medium in which power easily reaches an electromagnetic wave output interface located at a distant position.
  • an electromagnetic wave input interface is provided, the first conductor layer is a conductor mesh, and the conductor mesh of the first conductor layer is further away from the electromagnetic wave input interface. Make sparse.
  • an electromagnetic wave output interface (slot) having a conductor mesh in the opening is formed, and the conductor mesh is made sparser as the electromagnetic wave output interface is located farther from the electromagnetic wave input interface.
  • An electromagnetic wave input interface is provided for the configurations of the electromagnetic wave propagation media 41A to 41H, 51A to 51F, and 61A to 61E, and the surface of the first conductor layer (the surface opposite to the surface in contact with the electromagnetic wave propagation space) and the second conductor layer
  • the distance from the back surface should be shorter as the distance from the electromagnetic wave input interface increases.
  • an electromagnetic wave propagation medium that reduces the influence of standing waves can be realized by adjusting the end face of the electromagnetic wave propagation medium. Thereby, restrictions on the installation location of the electromagnetic wave output interface are eased.
  • communication devices can be installed in the configurations of the fourth, fifth, sixth, and seventh embodiments, and communication can be performed between the communication devices.
  • the installation interval of the communication device can be set according to the convenience of the communication device, for example, the size.
  • the present invention can be applied to an electromagnetic wave propagation medium that propagates an electromagnetic wave used in a signal transmission system or the like.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguides (AREA)
  • Waveguide Aerials (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 電磁波の電磁波伝搬空間(4)における波長をλ、整数をnとしたときに、第1導体層(2)と第2導体層(3)とが第1端面(7b)において短絡している場合は、電磁波入力インタフェース(5)から離れた位置にある電磁波出力インタフェース(6)ほど、短絡した第1端面(7b)からλ/4+n・λ/2の距離に近づけて設置され、第1導体層(2)と第2導体層(3)とが第1端面(7b)において短絡していない場合は、電磁波入力インタフェース(5)から離れた位置にある電磁波出力インタフェース(6)ほど、短絡していない第1端面(7b)からn・λ/2の距離に近づけて設置される。

Description

電磁波伝搬媒体
 本発明は、電磁波を伝搬する導波管または電磁波伝達シートなどの電磁波伝搬媒体に関し、特に、定在波の影響および複数のインタフェースが存在する電磁波伝搬媒体に適用して有効な技術に関するものである。
 例えば、特開2010-114696号公報(特許文献1)には、メッシュ状の電極を有し、伝達する電磁波の進行方向に垂直方向の幅の長さが、垂直方向で共振状態となるように、伝達する電磁波の波長の半分の自然数倍に略等しい電磁波伝達シートが開示されている。
 また、特開2005-317462号公報(特許文献2)には、電磁波を伝播する電磁波分配用導波管と、電磁波分配用導波管から分岐し、複数のスロットが夫々設けられた複数の電磁波放射用導波管とを具備するプラズマ処理装置が開示されている。また、電磁波分配用導波管と各電磁波放射用導波管とを連通させる複数の給電窓が設けられており、各給電窓は、電磁波伝播方向側に配置されているものほど、開口幅が大きくなるように設定されているとともに、電磁波伝播方向側とは反対側に配置されているものほど、電磁波放射用導波管の長手方向と平行な中心軸が、対応する電磁波放射用導波管の中心軸に対して電磁波伝播方向側にオフセットするように設定されていることが開示されている。
 また、特開2002-280196号公報(特許文献3)には、プラズマ発生室に配設された導波管に複数の結合孔を設け、かつ、導波管の先端側に向かって順次位置する結合孔の結合係数を順次大きく形成し、さらに、プラズマ発生室には導波管の各々の結合孔に対応させた複数の誘電体窓を設けたプラズマ発生装置が開示されている。また、結合孔の間隔を(2n+1)・λg/2に設定し、選択の結合孔と導波管の先端の短絡板との間隔をλg/4に設定することが記載されている。ここで、λgは導波管の管内波長、nは整数である。
特開2010-114696号公報 特開2005-317462号公報 特開2002-280196号公報
 上記特許文献1に記載された電磁波伝達シートは、安定した通信を実現するために、伝搬する電磁波の進行方向の反射を低減する電磁波吸収媒体を備えている。しかし、電磁波吸収媒体を使用すると、製造コストが増大し、また、通信に用いる電力の利用効率が低くなる。
 また、上記特許文献2に記載されたプラズマ処理装置では、各電磁波放射用導波管に設けられた複数のスロットのうち、電磁波分配用導波管から最も離れた位置に設けられたスロット(マッチングスロット)の面積を、他のスロットの面積よりも大きく設定している。これにより、電磁波放射用導波管の各スロットで分配しきれなかった余分な電磁波を、マッチングスロットを介して処理容器内に放出し、電磁波放射用導波管終端で反射してくる電磁波(反射波)の影響を抑えている。しかし、本来放出すべき空間とは異なる処理容器内に余分な電磁波を放出しているため、電力の利用効率が低くなる。
 そのため、上記電磁波吸収媒体または上記マッチングボックスを用いずに、安定した通信を実現できる電磁波伝搬媒体が望まれている。
 さらに、上記特許文献1に記載されているように、電磁波伝達シートの上に通信装置を複数並べた場合、電磁波インタフェースから通信信号などの電力を入力すると、電磁波インタフェースから近い位置にある通信装置は大きな電力を受け取ることができる。しかし、電磁波インタフェースから遠い位置にある通信装置には、途中の通信装置に電力を取られてしまうため、電力が届きにくいという問題がある。そのため、多端末との通信および均等な電力配分が困難であった。
 これに対して、上記特許文献2および3に記載されているように、スロットを、電磁波伝搬方向、つまり電磁波伝達シートの電磁波インタフェースとは逆の方向側に配置されているものほどそのサイズが大きくなるように設定すると、電磁波インタフェースから遠い位置にある通信装置にも電力が届きやすくなる。しかし、スロットサイズを調整する場合、通信装置の数が多くなると、例えばスロットサイズの大きいものと小さいものとの差が著しくなるため電磁波伝達シートに精密な加工が必要となる、電磁波伝達シートが巨大となる、通信装置の設置間隔が大きくなる、大きいサイズのスロットに対応するため大きな通信装置が必要となるなどの課題が生じてしまう。
 なお、上記特許文献2に記載されている給電窓を電磁波伝播方向側にオフセットする構成は、各給電窓から出力される電磁波同士の位相差を調整するための手段であり、上記課題の解決には寄与しない。
 本発明の目的は、安定した通信を実現する電磁波伝搬媒体を提供することにある。
 また、本発明の目的は、電磁波インタフェースから遠い位置にも電力が届きやすい電磁波伝搬媒体を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 本発明は、電磁波吸収媒体またはマッチングボックスを用いずに、安定した通信を実現する電磁波伝搬媒体を提供することができる。また、スロットサイズを調整することなく、電磁波インタフェースから遠い位置にも電力が届きやすい電磁波伝搬媒体を提供することができる。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 第1導体層と、第2導体層と、第1導体層と第2導体層とにより上下を挟まれた電磁波伝搬空間と、少なくとも1つの電磁波入力インタフェースと、複数の電磁波出力インタフェースとを備え、電磁波が伝搬する第1方向に長辺を有し、第1方向と直交する第2方向に短辺を有し、電磁波伝搬空間を介して対向する短辺に沿った2つの第1端面と、電磁波伝搬空間を介して対向する長辺に沿った2つの第2端面とを有する電磁波伝搬媒体であって、電磁波の電磁波伝搬空間における波長をλ、整数をnとしたときに、第1導体層と第2導体層とが、電磁波を反射する第1端面において短絡している場合は、電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、上記短絡した第1端面からλ/4+n・λ/2の距離に近づけて設置され、第1導体層と第2導体層とが、電磁波を反射する第1端面において短絡していない場合は、電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、上記短絡していない第1端面からn・λ/2の距離に近づけて設置される。
本発明の実施例1による電磁波伝搬媒体の全体の構成を示す模式図である。 本発明の実施例1による電磁波伝搬媒体の端部を拡大して示す断面図であり、(a)は短絡状態の端部、(b)は開放状態の端部を示している。 本発明の実施例1による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)は平板状の第1導体層を備える第1の電磁波伝搬媒体を示す斜視図、(b)はメッシュ状の第1導体層を備える第2の電磁波伝搬媒体を示す斜視図である。 本発明の実施例1による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)は平板状の第1導体層を備える第3の電磁波伝搬媒体を示す斜視図、(b)はメッシュ状の第1導体層を備える第4の電磁波伝搬媒体を示す斜視図である。 本発明の実施例1による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)は平板状の第1導体層を備える第5の電磁波伝搬媒体を示す斜視図、(b)はメッシュ状の第1導体層を備える第6の電磁波伝搬媒体を示す斜視図である。 本発明の実施例1による電磁波伝搬媒体の長辺が延在する方向に沿った要部を拡大した断面図である。(a)は上面の導体のみに電磁波出力インタフェースを設置した場合の断面図、(b)は上面の導体および下面の導体にそれぞれ電磁波出力インタフェースを設置した場合の断面図である。 本発明の実施例1による第1の電磁波伝搬媒体の変形例である第7の電磁波伝搬媒体の要部を拡大して示す斜視図である。 本発明の実施例1による第5の電磁波伝搬媒体の変形例である第8の電磁波伝搬媒体の要部を拡大して示す斜視図である。 本発明の実施例1による通信装置を設置した電磁波伝搬媒体の要部を拡大して示す斜視図である。 本発明の実施例2による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)、(b)、および(c)は、それぞれ導体メッシュの疎密に分布のあるメッシュ状の第1導体層を備える第1、第2、および第3の電磁波伝搬媒体を示す斜視図である。 本発明の実施例2による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ導体メッシュの疎密に分布のあるメッシュ状の電磁波出力インタフェースを備える第4および第5の電磁波伝搬媒体を示す斜視図である。 本発明の実施例3による第1導体層の表面と第2導体層の裏面との距離に傾斜を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)、(b)、および(c)は、それぞれメッシュ状の第1導体層を備える第1、第2、および第3の電磁波伝搬媒体を示す斜視図である。 本発明の実施例3による第1導体層の表面と第2導体層の裏面との距離に傾斜を有する電磁波伝搬媒体の端部を拡大して示す断面図であり、(a)および(b)は、電磁波伝搬空間の厚さに傾斜を有する電磁波伝搬媒体を示す要部断面図、(c)および(d)は、第1導体層の厚さに傾斜を有する電磁波伝搬媒体を示す要部断面図である。 本発明の実施例3による第1導体層の表面と第2導体層の裏面との距離に傾斜を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ平板状の第1導体層を備える第4および第5の電磁波伝搬媒体を示す斜視図である。 本発明の実施例3による電磁波伝搬空間を挟む2つの第2端面の距離に傾斜を有するメッシュ状の第1導体層を備える第6の電磁波伝搬媒体の要部を拡大して示す斜視図である。 本発明の実施例4による第1端面に段差を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれメッシュ状の第1導体層を備える第1および第2の電磁波伝搬媒体を示す斜視図である。 本発明の実施例4による第1端面に段差を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれメッシュ状の第1導体層を備える第3および第4の電磁波伝搬媒体を示す斜視図である。 本発明の実施例4による第1端面に段差を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ平板状の第1導体層を備える第5および第6の電磁波伝搬媒体を示す斜視図である。 本発明の実施例4による第1端面に段差を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ平板状の第1導体層を備える第7および第8の電磁波伝搬媒体を示す斜視図である。 本発明の実施例5による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ第1端面に複数の段差を有し、メッシュ状の第1導体層を備える第1の電磁波伝搬媒体、および第1端面に傾斜を有し、メッシュ状の第1導体層を備える第2の電磁波伝搬媒体を示す斜視図である。 本発明の実施例5による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ第1端面に複数の段差を有し、メッシュ状の第1導体層を備える第3の電磁波伝搬媒体、および第1端面に傾斜を有し、メッシュ状の第1導体層を備える第4の電磁波伝搬媒体を示す斜視図である。 本発明の実施例5による電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ第1端面に複数の段差を有し、メッシュ状の第1導体層を備える第5の電磁波伝搬媒体、および第1端面に傾斜を有し、メッシュ状の第1導体層を備える第6の電磁波伝搬媒体を示す斜視図である。 本発明の実施例6による短絡および開放の2つの面からなる第1端面を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれメッシュ状の第1導体層を備える第1および第2の電磁波伝搬媒体を示す斜視図である。 本発明の実施例6による短絡および開放の2つの面からなる第1端面を有する電磁波伝搬媒体の要部を拡大して示す斜視図であり、(a)および(b)は、それぞれ平板状の第1導体層を備える第3および第4の電磁波伝搬媒体を示す斜視図である。 本発明の実施例6による短絡の面および開放の面を交互に配した第1端面を有するメッシュ状の第1導体層を備える第6の電磁波伝搬媒体の要部を拡大して示す斜視図である。
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 また、以下の実施の形態において、「導体」と言うときは、電磁波の伝搬に用いる電磁波周波数帯において導電体であるものを指し、「電磁波伝搬空間」と言うときは、電磁波の伝搬に用いる電磁波周波数帯において誘電体であるものを指す。従って、例えば直流電流に対して導体であるか半導体であるか絶縁体であるか等によって、直接的には何ら制約されるものではない。また、導体と誘電体とは、電磁波との関係においてその特性により定義されるものであって、固定であるか液体であるか気体であるか等の態様または構成材料を制限するものではない。
 また、以下の実施の形態で用いる図面においては、平面図または斜視図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 本実施例1による電磁波伝搬媒体について図1~図9を用いて説明する。図1は、電磁波伝搬媒体の全体の構成を示す模式図、図2は、電磁波伝搬媒体の端部を拡大して示す断面図、図3~図5は、電磁波伝搬媒体の要部を拡大して示す斜視図、図6は、電磁波伝搬媒体の要部を拡大して示す断面図、図7および図8は、電磁波伝搬媒体の要部を拡大して示す斜視図、図9は、通信装置を設置した電磁波伝搬媒体の要部を拡大して示す斜視図である。
 図1に示すように、電磁波伝搬媒体1は、第1導体層2と第2導体層3とにより平面状の電磁波伝搬空間4の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェース5と、複数の電磁波出力インタフェース6とが第1導体層2に設けられている。また、電磁波伝搬媒体1は、伝搬する電磁波の進行方向(第1方向;図1に示すx方向)に沿って長辺を有し、その電磁波の進行方向と直交する方向(第1方向と直交する第2方向;図1に示すy方向)に沿って短辺を有する帯状である。
 また、第1導体層2および第2導体層3は、短辺が延在する方向に沿った電磁波伝搬空間4の2つの側面(第1端面)7a,7bおよび長辺が延在する方向に沿った電磁波伝搬空間4の2つの側面(第2端面)8,8において短絡または開放されており、第1端面7a,7bおよび第2端面8,8において電磁波は反射することができる。ここで、「短絡(short)」とは、図2(a)に示すように、電磁波伝搬空間4の側面に導体層MLが形成されて第1導体層2と第2導体層3とが繋がっている状態であり、「開放(open)」とは、図2(b)に示すように、電磁波伝搬空間4の側面に導体層MLが形成されず第1導体層2と第1導体層3とが繋がっていない状態である。
 また、電磁波伝搬媒体1では、一方の第1端面7aから近い位置に電磁波入力インタフェース5が設けられ、電磁波入力インタフェース5と一方の第1端面7aとの間には電磁波出力インタフェース6は設けられていない。これに対して、電磁波入力インタフェース5と、電磁波入力インタフェース5から遠い位置にある他方の第1端面7bとの間には複数の電磁波出力インタフェース6が設けられている。
 電磁波伝搬媒体1の短辺のサイズは、例えば伝搬する電磁波の波長の1/2とし、電磁波伝搬空間4の厚さは、伝搬する電磁波の波長よりも小さく設定する。例えば2.4GHz帯の周波数を用いた場合、電磁波伝搬空間の比誘電率が1であれば、波長は約12cmであることから、電磁波伝搬媒体1の短辺のサイズを6cm、長辺のサイズを60cmとすることができる。
 図3(a)に、実施例1による第1の電磁波伝搬媒体1Aの要部を拡大した斜視図を示す。
 電磁波伝搬媒体1Aは、平板状の第1導体層2Pと平板状の第2導体層3とに挟まれた電磁波伝搬空間に電磁波が伝搬する構造であり、複数の電磁波出力インタフェース6aは、例えば第1導体層2Pに開けたスロットである。また、電磁波伝搬媒体1Aの一方の第1端面7aから近い位置に電磁波入力インタフェース5が配置され、電磁波入力インタフェース5と一方の第1端面7aとの間には電磁波出力インタフェース6aは配置されず、電磁波入力インタフェース5と他方の第1端面7bとの間には複数の電磁波出力インタフェース6aが配置されている。さらに、電磁波入力インタフェース5から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面7bは短絡(図2(a))している。電磁波入力インタフェース5から近い位置にある第1端面7a、および2つの第2端面8,8は短絡または開放いずれでもよい。
 電磁波入力インタフェース5から入力された電磁波は、電磁波伝搬空間を伝搬して一方の第1端面7bで反射する。そのため、第1端面7bに向かう電磁波と第1端面7bで反射した電磁波とで定在波S1が発生する。電磁波が第1端面7bで反射する際、位相が180度回転するため、第1端面7bからλ/4+n・λ/2の距離では第1端面7bに向かう電磁波と第1端面7bで反射した電磁波との位相が一致し強めあい、第1端面7bからn・λ/2の距離では、第1端面7bに向かう電磁波と第1端面7bで反射した電磁波との位相が反転し弱めあう。ここで、λは電磁波伝搬空間を伝搬する電磁波の波長、nは自然数である。
 例えば2.4GHz帯の周波数を用いると、電磁波伝搬空間の比誘電率が1であれば、電磁波の波長は約12cmであり、電磁波伝搬空間の比誘電率が4であれば、電磁波の波長は約6cmとなる。
 この定在波S1を活用し、電磁波出力インタフェース6aの位置を電磁波入力インタフェース5から遠いほど第1端面7bからλ/4+n・λ/2の距離に近づけて設置する。つまり、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6aほど、定在波S1の腹に近く、電磁波入力インタフェース5から近い位置にある電磁波出力インタフェース6aほど、定在波S1の節に近くなる。例えば電磁波出力インタフェース6aの間隔をλ/2より短く設定する。
 図3(b)に、実施例1による第2の電磁波伝搬媒体1Bの要部を拡大した斜視図を示す。
 電磁波伝搬媒体1Bは、メッシュ状の第1導体層2Mと平板状の第2導体層3とに挟まれた電磁波伝搬空間に電磁波が伝搬する構造であり、複数の電磁波出力インタフェース6bは、例えば第1導体層2Mに付される目印であり、印字または突起などの様々な方法により実現される。また、電磁波伝搬媒体1Bの一方の第1端面7aから近い位置に電磁波入力インタフェース5が配置され、電磁波入力インタフェース5と一方の第1端面7aとの間には電磁波出力インタフェース6bは配置されず、電磁波入力インタフェース5と他方の第1端面7bとの間には複数の電磁波出力インタフェース6bが配置されている。さらに、電磁波入力インタフェース5から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面7bは短絡(図2(a))している。電磁波入力インタフェース5から近い位置にある第1端面7a、および2つの第2端面8,8は短絡または開放いずれでもよい。第1導体層2Mの導体メッシュの間隔は一定である。
 電磁波伝搬媒体1Bは、前述の電磁波伝搬媒体1Aの平板状の第1導体層2Pに代えて、メッシュ状の第1導体層2Mを使用したものである。上面の導体(第1導体層2M)をメッシュ状にすると、どの位置からでも電磁波が出力するため、そのままでは電磁波入力インタフェース5から近い場所で多くの電力が出力されて、遠い場所には電力が届きにくい。そこで、電磁波伝搬媒体1Bには、複数の電磁波出力インタフェース6bを設置しておき、例えば電磁波伝搬媒体1Bに通信装置を設置する場合、通信装置をどこに設置すれば、電磁波入力インタフェース5から遠い場所にも電力を届きやすくできるかが分かるようにしている。
 前述の電磁波伝搬媒体1Aと同様に、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6bほど、定在波S1の腹に近く、電磁波入力インタフェース5から近い位置にある電磁波出力インタフェース6bほど、定在波S1の節に近くなる。例えば電磁波出力インタフェース6bの間隔をλ/2より短く設定する。
 図4(a)に、実施例1による第3の電磁波伝搬媒体1Cの要部を拡大した斜視図を示す。
 電磁波伝搬媒体1Cは、平板状の第1導体層2Pと平板状の第2導体層3とに挟まれた電磁波伝搬空間に電磁波が伝搬する構造であり、複数の電磁波出力インタフェース6aは、例えば第1導体層2Pに開けたスロットである。また、電磁波伝搬媒体1Cの一方の第1端面7aから近い位置に電磁波入力インタフェース5が配置され、電磁波入力インタフェース5と一方の第1端面7aとの間には電磁波出力インタフェース6aは配置されず、電磁波入力インタフェース5と他方の第1端面7bとの間には複数の電磁波出力インタフェース6aが配置されている。さらに、電磁波入力インタフェース5から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面7bは開放(図2(b))している。電磁波入力インタフェース5から近い位置にある第1端面7a、および2つの第2端面8,8は短絡または開放いずれでもよい。
 電磁波伝搬媒体1Cでは、第1端面7bで電磁波が反射し、定在波S2が発生する。電磁波が第1端面7bで反射する際、位相は回転しないため、第1端面7bからn・λ/2の距離では第1端面7bに向かう電磁波と第1端面7bで反射した電磁波との位相が一致し強めあい、第1端面7bからλ/4+n・λ/2の距離では、第1端面7bに向かう電磁波と第1端面7bで反射した電磁波との位相が反転し弱めあう。
 この定在波S2を活用し、電磁波出力インタフェース6aの位置を電磁波入力インタフェース5から遠いほど第1端面7bからn・λ/2の距離に近づけて設置する。つまり、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6aほど、定在波S2の腹に近く、電磁波入力インタフェース5から近い位置にある電磁波出力インタフェース6aほど、定在波S2の節に近くなる。例えば電磁波出力インタフェース6aの間隔をλ/2より短く設定する。
 図4(b)に、実施例1による第4の電磁波伝搬媒体1Dの要部を拡大した斜視図を示す。
 電磁波伝搬媒体1Dは、メッシュ状の第1導体層2Mと平板状の第2導体層3とに挟まれた電磁波伝搬空間に電磁波が伝搬する構造であり、複数の電磁波出力インタフェース6bは、例えば第1導体層2Mに付される目印であり、印字または突起などの様々な方法により実現される。また、電磁波伝搬媒体1Dの一方の第1端面7aから近い位置に電磁波入力インタフェース5が配置され、電磁波入力インタフェース5と一方の第1端面7aとの間には電磁波出力インタフェース6bは配置されず、電磁波入力インタフェース5と他方の第1端面7bとの間には複数の電磁波出力インタフェース6bが配置されている。さらに、電磁波入力インタフェース5から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面7bは開放(図2(b))している。電磁波入力インタフェース5から近い位置にある第1端面7a、および2つの第2端面8,8は短絡または開放いずれでもよい。第1導体層2Mの導体メッシュの間隔は一定である。
 電磁波伝搬媒体1Dは、前述の電磁波伝搬媒体1Cの平板状の第1導体層2Pに代えて、メッシュ状の第1導体層2Mを使用したものである。
 前述の電磁波伝搬媒体1Cと同様に、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6bほど、定在波S2の腹に近く、電磁波入力インタフェース5から近い位置にある電磁波出力インタフェース6bほど、定在波S2の節に近くなる。例えば電磁波出力インタフェース6bの間隔をλ/2より短く設定する。
 図5(a)に、実施例1による第5の電磁波伝搬媒体1Eの要部を拡大した斜視図を示す。
 電磁波伝搬媒体1Eは、平板状の第1導体層2Pと平板状の第2導体層3とに挟まれた電磁波伝搬空間に電磁波が伝搬する構造であり、複数の電磁波出力インタフェース6aは、例えば第1導体層2Pに開けたスロットである。また、電磁波伝搬媒体1Eの一方の第1端面7aから近い位置に電磁波入力インタフェース5が配置され、電磁波入力インタフェース5と一方の第1端面7aとの間には電磁波出力インタフェース6aは配置されず、電磁波入力インタフェース5と他方の第1端面7bとの間には複数の電磁波出力インタフェース6aが配置されている。さらに、長辺が延在する方向に沿った2つの第2端面8,8はそれぞれ短絡(図2(a))している。短辺が延在する方向に沿った2つの第1端面7a,7bは短絡または開放いずれでもよい。
 電磁波伝搬媒体1Eは、2つの第2端面8,8により発生する定在波S3を活用する。例えば2つの第2端面8,8がそれぞれ短絡し、2つの第2端面8,8の距離がn・λ/2の電磁波伝搬媒体1Eの構成について説明する。電磁波入力インタフェース5から入力された電磁波は、2つの第2端面8,8の間で共振状態となり、定在波S3が発生する。この定在波S3を活用し、電磁波出力インタフェース6aの位置を電磁波入力インタフェース5から遠いほど一方の第2端面8からλ/4+n・λ/2の距離に近づけて設置する。つまり、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6aほど、定在波S3の腹に近く、電磁波入力インタフェース5から近い位置にある電磁波出力インタフェース6aほど、定在波S3の節に近くなる。
 また、第1端面7bに向かう電磁波と第1端面7bで反射した電磁波とで発生する定在波S1を活用し、第1端面7bが短絡されている場合は、電磁波出力インタフェース6aは第1端面7bからλ/4+n・λ/2の距離に設置する。または、第1端面7bが開放されている場合は、電磁波出力インタフェース6aは第1端面7bからn・λ/2の距離に設置する。
 また、電磁波伝搬媒体1Eの構成と、前述の電磁波伝搬媒体1Aまたは電磁波伝搬媒体1Cの構成とを併せて用いてもよい。つまり、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6aほど、短絡した第1端面7bおよび短絡した一方の第2端面8からλ/4+n・λ/2の距離に近づけて設置する。または、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6aほど、開放した第1端面7bからn・λ/2の距離に近づけ、かつ短絡した一方の第2端面8からλ/4+n・λ/2の距離に近づけて設置する。
 図5(b)に、実施例1による第6の電磁波伝搬媒体1Fの要部を拡大した斜視図を示す。
 電磁波伝搬媒体1Fは、メッシュ状の第1導体層2Mと平板状の第2導体層3とに挟まれた電磁波伝搬空間に電磁波が伝搬する構造であり、複数の電磁波出力インタフェース6bは、例えば第1導体層2Mに付される目印であり、印字または突起などの様々な方法により実現される。また、電磁波伝搬媒体1Fの一方の第1端面7aから近い位置に電磁波入力インタフェース5が配置され、電磁波入力インタフェース5と一方の第1端面7aとの間には電磁波出力インタフェース6bは配置されず、電磁波入力インタフェース5と他方の第1端面7bとの間には複数の電磁波出力インタフェース6bが配置されている。さらに、長辺が延在する方向に沿った2つの第2端面8,8はそれぞれ短絡(図2(a))している。短辺が延在する方向に沿った2つの第1端面7a,7bは短絡または開放いずれでもよい。第1導体層2Mの導体メッシュの間隔は一定である。
 電磁波伝搬媒体1Fは、前述の電磁波伝搬媒体1Eの平板状の第1導体層2Pに代えて、メッシュ状の第1導体層2Mを使用したものである。
 前述の電磁波伝搬媒体1Eと同様に、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6bほど、定在波S3の腹に近く、電磁波入力インタフェース5から近い位置にある電磁波出力インタフェース6bほど、定在波S3の節に近くなる。
 また、前述の電磁波伝搬媒体1Eと同様に、第1端面7bが短絡されている場合は、電磁波出力インタフェース6bは第1端面7bからλ/4+n・λ/2の距離に設置する。または、第1端面7bが開放されている場合は、電磁波出力インタフェース6bは第1端面7bからn・λ/2の距離に設置する。
 また、前述の電磁波伝搬媒体1Eと同様に、電磁波伝搬媒体1Fの構成と、前述の電磁波伝搬媒体1Bまたは電磁波伝搬媒体1Dの構成とを併せて用いてもよい。つまり、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6bほど、短絡した第1端面7bおよび短絡した一方の第2端面8からλ/4+n・λ/2の距離に近づけて設置する。または、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6bほど、開放した第1端面7bからn・λ/2の距離に近づけ、かつ短絡した一方の第2端面8からλ/4+n・λ/2の距離に近づけて設置する。
 図6(a)および(b)に、実施例1による電磁波伝搬媒体の長辺が延在する方向に沿った要部を拡大した断面図を示す。図6(a)は、前述の図3(a)のA-A′線に沿った電磁波伝搬媒体1Aに該当する要部断面図を示している。
 図6(a)に示すように、電磁波伝搬媒体1Aでは、上面の導体(第1導体層2P)のみに電磁波出力インタフェース6aを設けている。しかし、図6(b)に示すように、上面の導体(第1導体層2P)および下面の導体(第2導体層3)にそれぞれ電磁波出力インタフェース6aを設けてもよい。ここでは、電磁波伝搬媒体1Aについて説明したが、同様に、電磁波伝搬媒体1C,1Eにおいても上面の導体(第1導体層2P)および下面の導体(第2導体層3)にそれぞれ電磁波出力インタフェース6aを設けてもよい。また、電磁波伝搬媒体1B,1D,1Fにおいては、下面の導体(第2導体層3)をメッシュ状とし、上面の導体(第1導体層2M)および下面の導体(第2導体層3)にそれぞれ電磁波出力インタフェース6bを設けてもよい。
 図7に、実施例1による第1の電磁波伝搬媒体1Aの変形例である第7の電磁波伝搬媒体1Gの要部を拡大した斜視図、図8に、実施例1による第5の電磁波伝搬媒体1Eの変形例である第8の電磁波伝搬媒体1Hの要部を拡大した斜視図を示す。
 例えば前述の電磁伝搬媒体1Aでは、電磁波入力インタフェース5は電磁波伝搬媒体1Aの一方の端部(第1端面7a)付近に設けた。しかし、図7に示すように、電磁波入力インタフェース5は電磁波伝搬媒体1Gの中央付近に設けてもよい。
 また、例えば前述の電磁伝搬媒体1Eでは、電磁波入力インタフェース5は一方の端部(第1端面7a)付近に設けた。しかし、図8に示すように、電磁波入力インタフェース5は電磁波伝搬媒体1Hの中央付近に設けてもよい。
 電磁波入力インタフェース5から入力された電磁波は複数の方向に伝搬するが、それぞれの伝搬方向に複数の電磁波出力インタフェース6aを設置すればよい。
 ここでは、第1の電磁波伝搬媒体1Aおよび第5の電磁波伝搬媒体1Eの変形例について説明したが、他の電磁波伝搬媒体(第2の電磁波伝搬媒体1B、第3の電磁波伝搬媒体1C、第4の電磁波伝搬媒体1D、または第6の電磁波伝搬媒体1F)についても同様である。
 図9に、実施例1による通信装置を設置した第1の電磁波伝搬媒体1Aの要部を拡大した斜視図を示す。
 電磁波伝搬媒体1Aの電磁波入力インタフェース5および各電磁波出力インタフェース6aにそれぞれ通信装置10が1つずつ対向し、電磁波入力インタフェース5に対向した通信装置10が各電磁波出力インタフェース6aに対向した通信装置10と通信する。このとき、通信装置10の電磁波インタフェース11は、それぞれ対向する電磁波入力インタフェース5および各電磁波出力インタフェース6aに対して、電磁波の入出力に好適な位置に配置される。
 また、通信装置10は電磁波出力インタフェース6aの設置間隔とほぼ同じサイズまたは電磁波出力インタフェース6aの設置間隔よりも小さいサイズであることが好ましい。つまり、通信装置10のサイズは、n・λ/2より小さく、好ましくはλ/2より小さいことが望ましい。言い換えれば、通信装置10のサイズに合わせて、電磁波伝搬空間に伝搬させる電磁波の波長を選択してもよい。
 このように、本実施例1に係る電磁波伝搬媒体1(1A~1H)の構成を適用すれば、電磁波出力インタフェース6(6a,6b)の位置を、電磁波入力インタフェース5から遠いほど、電磁波伝搬媒体1(1A~1H)の第1端面7(7b)での反射波により生じる定在波S1,S2、または第2端面8での反射波により生じる定在波S3の腹の近くに設置することにより、電磁波入力インタフェース5から遠い位置にある電磁波出力インタフェース6(6a,6b)にも電力が届きやすい電磁波伝搬媒体1(1A~1H)を実現することができる。
 本実施例2による電磁波伝搬媒体について図10および図11を用いて説明する。図10および図11は、電磁波伝搬媒体の要部を拡大して示す斜視図である。
 本実施例2による電磁波伝搬媒体は、電磁波出力インタフェースをメッシュ状とし、その導体メッシュの疎密を調整して、電磁波入力インタフェースから遠い場所にも電力が届きやすくしている。
 図10(a)に、実施例2による第1の電磁波伝搬媒体21Aの要部を拡大した斜視図を示す。
 電磁波伝搬媒体21Aは、メッシュ状の第1導体層22Mと平板状の第2導体層23とにより平面状の電磁波伝搬空間の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェース25が第1導体層22Mに設けられている。また、一方の第1端面27aから近い位置に電磁波入力インタフェース25が配置され、電磁波入力インタフェース25と一方の第1端面27aとの間には電磁波出力インタフェース26aは配置されていない。さらに、電磁波伝搬媒体21Aは、伝搬する電磁波の進行方向(第1方向)に長辺を有し、その電磁波の進行方向と直交する方向(第2方向)に短辺を有する帯状である。
 また、前述の電磁波伝搬媒体1と同様に、短辺が延在する方向に沿った電磁波伝搬空間の2つの側面(第1端面)27a,27bおよび長辺が延在する方向に沿った電磁波伝搬空間の2つの側面(第2端面)28,28において短絡または開放されている。
 第1導体層22Mはメッシュ状であるが、導体メッシュは電磁波入力インタフェース25から遠ざかるほど疎になる。導体メッシュが粗くなると、導体メッシュを介して電磁波伝搬媒体21Aの内部から外部へ出力される電磁波は大きくなる。導体メッシュは電磁波入力インタフェース25から遠ざかるほど離散的に粗くなっていってもよく、導体メッシュを構成する導体が細くなることで疎になっていってもよく、または電磁波入力インタフェース25を中心とした放射線状に導体メッシュを敷設することで疎になっていってもよい。
 図10(b)に、実施例2による第2の電磁波伝搬媒体21Bの要部を拡大した斜視図を示す。
 電磁波伝搬媒体21Bは、前述の電磁波伝搬媒体21Aにおいて、電磁波インタフェース25から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面27bを短絡(図2(a))し、さらに、電磁波インタフェース25と第1端面27bとの間に複数の電磁波出力インタフェース26bを追加したものである。電磁波入力インタフェース25から近い位置にある第1端面27a、および2つの第2端面28,28は短絡または開放いずれでもよい。複数の電磁波出力インタフェース26bは、例えば第1導体層22Mに付される目印である。
 電磁波出力インタフェース26bは第1端面27bに向かう電磁波と第1端面27bで反射した電磁波とで発生する定在波S1を活用し、第1端面27bからλ/4+n・λ/2の距離に設置される。
 図10(c)に、実施例2による第3の電磁波伝搬媒体21Cの要部を拡大した斜視図を示す。
 電磁波伝搬媒体21Cは、前述の電磁波伝搬媒体21Aにおいて、電磁波インタフェース25から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面27bを開放(図2(b))し、さらに、電磁波インタフェース25と第1端面27bとの間に複数の電磁波出力インタフェース26bを追加したものである。電磁波入力インタフェース25から近い位置にある第1端面27a、および2つの第2端面28,28は短絡または開放いずれでもよい。複数の電磁波出力インタフェース26bは、例えば第1導体層22Mに付される目印である。
 電磁波出力インタフェース26bは第1端面27bに向かう電磁波と第1端面27bで反射した電磁波とで発生する定在波S2を活用し、第1端面27bからn・λ/2の距離に設置される。
 図11(a)に、実施例2による第4の電磁波伝搬媒体21Dの要部を拡大した斜視図を示す。
 電磁波伝搬媒体21Dは、平板状の第1導体層22Pと平板状の第2導体層23とにより平面状の電磁波伝搬空間の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェース25と、複数の電磁波出力インタフェース26cとが第1導体層22Mに設けられている。また、一方の第1端面27aから近い位置に電磁波入力インタフェース25が配置され、電磁波入力インタフェース25と一方の第1端面27aとの間には電磁波出力インタフェース26cは配置されず、電磁波入力インタフェース25と他方の第1端面27bとの間には複数の電磁波出力インタフェース26cが配置される。さらに、電磁波伝搬媒体21Dは、伝搬する電磁波の進行方向(第1方向)に長辺を有し、その電磁波の進行方向と直交する方向(第2方向)に短辺を有する帯状である。
 複数の電磁波出力インタフェース26cは、例えば第1導体層22Pに開けたスロットであり、その開口部には導体がメッシュ状に配置されている。
 電磁波出力インタフェース26cの導体メッシュは電磁波入力インタフェース25から遠ざかるほど疎になる。電磁波出力インタフェース26cの導体メッシュが粗くなると、電磁波出力インタフェース26cを介して電磁波伝搬媒体21Dの内部から外部へ出力される電磁波は大きくなる。電磁波出力インタフェース26cの導体メッシュは、電磁波入力インタフェース25から遠ざかるほど離散的に粗くなっていってもよく、電磁波出力インタフェース26cの導体メッシュを構成する導体が細くなることで疎になっていってもよく、または、電磁波入力インタフェース25を中心とした放射線状に導体メッシュを敷設することで疎になっていってもよい。
 また、電磁波伝搬媒体21Dは、電磁波インタフェース25から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面27bを短絡(図2(a))している。電磁波入力インタフェース25から近い位置にある第1端面27a、および2つの第2端面28,28は短絡または開放いずれでもよい。
 電磁波出力インタフェース26cは第1端面27bに向かう電磁波と第1端面27bで反射した電磁波とで発生する定在波S1を活用し、第1端面27bからλ/4+n・λ/2の距離に設置される。
 図11(b)に、実施例2による第5の電磁波伝搬媒体21Eの要部を拡大した斜視図を示す。
 電磁波伝搬媒体21Eは、前述の電磁波伝搬媒体21Dにおいて、電磁波インタフェース25から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面27bを開放(図2(b))している。電磁波入力インタフェース25から近い位置にある第1端面27a、および2つの第2端面28,28は短絡または開放いずれでもよい。
 電磁波出力インタフェース26cは第1端面27bに向かう電磁波と第1端面27bで反射した電磁波とで発生する定在波S2を活用し、第1端面27bからn・λ/2の距離に設置される。
 なお、本実施例2に前述した実施例1を組み合わせて、電磁波入力インタフェース25から遠い位置にある電磁波出力インタフェース26b,26cほど、短絡した第1端面27bまたは第2端面28からλ/4+n・λ/2の距離に近づけて設置する、または開放した第1端面27bからn・λ/2の距離に近づけて設置してもよい。
 また、本実施例2では、電磁波出力インタフェース26b,26cを第1導体層22M,22Pのみに設置したが、第1導体層22M,22Pと同様に、第2導体層23にも電磁波出力インタフェース26b,26cを設置してもよい。また、電磁波入力インタフェース25の位置も電磁波伝搬媒体21A~21Eのどこに設置してもよい。
 このように、本実施例2に係る電磁波伝搬媒体21A~21Eの構成を適用すれば、電磁波入力インタフェース25から遠い場所ほど、導体メッシュを疎にすることで、電磁波入力インタフェース25から遠い場所にも電力が届きやすい電磁波伝搬媒体21A~21Eを実現することができる。また、電磁波出力インタフェース26b,26cを所定の場所に設置すれば、電磁波入力インタフェース25から遠い位置にある電磁波出力インタフェース26b,26cにも電力が届きやすい電磁波伝搬媒体21A~21Eを実現することができる。
 また、本実施例2と前述した実施例1とを組み合わせることで、電磁波入力インタフェース25から遠い位置ある電磁波出力インタフェース26b,26cにも、さらに電力が届きやすい電磁波伝搬媒体21A~21Eを実現することができる。
 また、本実施例2の構成に通信装置を電磁波入力インタフェース25および各電磁波出力インタフェース26b,26cにそれぞれ対向させて設置し、電磁波入力インタフェース25に対向した通信装置が各電磁波出力インタフェース26b,26cに対向した通信装置と通信することができる。このとき、通信装置は電磁波出力インタフェース26b,26cの設置間隔とほぼ同じサイズまたは電磁波出力インタフェース26b,26cの設置間隔よりも小さいサイズであることが望ましい。言い換えれば、通信装置のサイズに合わせて、電磁波伝搬空間に伝搬させる電磁波の波長を選択してもよい。
 本実施例3による電磁波伝搬媒体について図12~図15を用いて説明する。図12、図14、および図15は、電磁波伝搬媒体の要部を拡大して示す斜視図、図13は、電磁波伝搬媒体の端部を拡大して示す断面図である。
 本実施例3による電磁波伝搬媒体は、第1導体層の表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層の裏面(電磁波伝搬空間と接する面)との距離を調整して、電磁波入力インタフェースから遠い場所にも電力が届きやすくしている。
 図12(a)に、実施例3による第1の電磁波伝搬媒体31Aの要部を拡大した斜視図を示す。
 電磁波伝搬媒体31Aは、メッシュ状の第1導体層32Mと平板状の第2導体層33とにより平面状の電磁波伝搬空間の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェース35が第1導体層32Mに設けられている。また、一方の第1端面37aから近い位置に電磁波入力インタフェース35が配置され、電磁波入力インタフェース35と一方の第1端面37aとの間には電磁波出力インタフェース36aは配置されていない。さらに、電磁波伝搬媒体31Aは、伝搬する電磁波の進行方向(第1方向)に長辺を有し、その電磁波の進行方向と直交する方向(第2方向)に短辺を有する帯状である。
 また、前述の電磁波伝搬媒体1と同様に、短辺が延在する方向に沿った電磁波伝搬空間の2つの側面(第1端面)37a,37b、および長辺が延在する方向に沿った電磁波伝搬空間の2つの側面(第2端面)38、38において短絡または開放されている。
 さらに、電磁波入力インタフェース25から近い位置にある第1端面37aにおける第1導体層32Mの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離が、電磁波入力インタフェース25から遠い位置にある第1端面37bにおける第1導体層32Mの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離よりも長く形成されており、第1導体層32Mの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離が、電磁波入力インタフェース35から遠ざかるほど短くなっている。
 図13(a)~(d)に、電磁波入力インタフェースから離れた位置にある電磁波伝搬媒体の端部の拡大断面図を示す。電磁波伝搬媒体は、上面の導体(第1導体層32M)と、下面の導体(第2導体層33)と、電磁波伝搬空間34とで構成されている。上面の導体(第1導体層32M)はメッシュ状に形成されている。
 図13(a)および(b)に示す電磁波伝搬媒体では、電磁波伝搬空間34の厚さが電磁波入力インタフェースから遠ざかるほど薄くなっており、図13(c)および(d)に示す電磁波伝搬媒体では、第1導体層32Mの厚さが電磁波入力インタフェースから遠ざかるほど薄くなっている。また、図13(a)および(c)示す電磁波伝搬媒体では、電磁波入力インタフェースから遠い位置にある第1端面37bは短絡しており、図13(b)および(d)に示す電磁波伝搬媒体では、電磁波入力インタフェースから遠い位置にある第1端面37bは開放している。
 これらの構成において、第1導体層32Mの表面(電磁波伝搬空間と接する面と反対側の面)に電磁波受信装置を設置した場合を想定し、電磁波伝搬空間34を伝搬する電磁波の伝搬量に及ぼす第1導体層32Mの厚さまたは電磁波伝搬空間34の厚さについて、以下に説明する。なお、一般に、電磁波受信装置はより近くに配置された電磁波伝搬空間34に対して強く作用し、電磁波を受信することができる。
 図13(a)および(b)に示す電磁波伝搬媒体の構成においては、電磁波受信装置は、電磁波伝搬空間34の上部を伝搬する電磁波に強く作用して電磁波を受信する。そのため、電磁波伝搬空間34の下部を伝搬する電磁波はあまり受信されない。つまり、電磁波伝搬空間34が厚い場合、電磁波伝搬空間34を伝搬する電磁波のうち電磁波受信装置に受信される電磁波の割合が小さくなる。そこで、第1導体層32Mの厚さが一定であれば、電磁波入力インタフェースから近い位置にある電磁波伝搬空間34を厚くする(第1導体層32Mの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離を長くする)ことで、電磁波入力インタフェースから遠い場所にもより大きな電磁波が伝搬されるようになる。
 また、図13(c)および(d)に示す電磁波伝搬媒体の構成においては、電磁波受信装置は、第1導体層32Mが厚いほど電磁波伝搬空間34を伝搬する電磁波を受信しにくい。そこで、電磁波伝搬空間34の厚さが一定であれば、電磁波入力インタフェースから近い位置にある第1導体層32Mを厚くする(第1導体層32Mの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離を長くする)ことで、電磁波入力インタフェースから遠い場所にもより大きな電磁波が伝搬されるようになる。
 電磁波伝搬媒体の構造は、図13(a)~(d)に示した構造に限らず、第1導体層32Mの表面(電磁波伝搬空間と接する面と反対側の面)に保護層を設置する場合は、保護層の厚さを調整して同様の効果を得ることができる。また、第2導体層33の厚さを調整し、電磁波伝搬媒体の断面図が長方形となるようにしてもよい。
 図12(b)に、実施例3による第2の電磁波伝搬媒体31Bの要部を拡大した斜視図を示す。
 電磁波伝搬媒体31Bは、前述の電磁波伝搬媒体31Aにおいて、電磁波入力インタフェース35から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面37bを短絡(図13(a)、(c))し、さらに、電磁波入力インタフェース35と第1端面37bとの間に複数の電磁波出力インタフェース36bを追加したものである。電磁波入力インタフェース35から近い位置にある第1端面37a、および2つの第2端面38,38は短絡または開放いずれでもよい。複数の電磁波出力インタフェース36bは、例えば第1導体層32Mに付される目印である。
 電磁波出力インタフェース36bは第1端面37bに向かう電磁波と第1端面37bで反射した電磁波とで発生する定在波S1を活用し、第1端面37bからλ/4+n・λ/2の距離に設置される。
 図12(c)に、実施例3による第3の電磁波伝搬媒体31Cの要部を拡大した斜視図を示す。
 電磁波伝搬媒体31Cは、前述の電磁波伝搬媒体31Aにおいて、電磁波入力インタフェース35から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面37を開放(図13(b)、(d))し、さらに、電磁波入力インタフェース35と第1端面37bとの間に複数の電磁波出力インタフェース36bを追加したものである。電磁波入力インタフェース35から近い位置にある第1端面37a、および2つの第2端面38,38は短絡または開放いずれでもよい。複数の電磁波出力インタフェース36bは、例えば第1導体層32Mに付される目印である。
 電磁波出力インタフェース36bは第1端面37bに向かう電磁波と第1端面37bで反射した電磁波とで発生する定在波S2を活用し、第1端面37bからn・λ/2の距離に設置される。
 図14(a)に、実施例3による第4の電磁波伝搬媒体31Dの要部を拡大した斜視図を示す。
 電磁波伝搬媒体31Dは、平板状の第1導体層32Pと平板状の第2導体層33とにより平面状の電磁波伝搬空間の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェース35と、複数の電磁波出力インタフェース36aとが第1導体層32Mに設けられている。電磁波出力インタフェース36aは、例えば第1導体層32Pに開けたスロットである。また、一方の第1端面37aから近い位置に電磁波入力インタフェース35が配置され、電磁波入力インタフェース35と一方の第1端面37aとの間には電磁波出力インタフェース36aは配置されず、電磁波入力インタフェース35と他方の第1端面37bとの間には複数の電磁波出力インタフェース6aが配置される。さらに、電磁波伝搬媒体31Dは、伝搬する電磁波の進行方向(第1方向)に長辺を有し、その電磁波の進行方向と直交する方向(第2方向)に短辺を有する帯状である。
 さらに、電磁波入力インタフェース35から近い位置にある第1端面37aにおける第1導体層32Pの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離が、電磁波入力インタフェース35から遠い位置にある第1端面37bにおける第1導体層32Pの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離よりも長く形成されており、第1導体層32Pの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面と反対側の面)との距離が、電磁波入力インタフェース35から遠ざかるほど短くなっている。
 また、電磁波伝搬媒体31Dは、電磁波インタフェース35から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面37bを短絡(図13(a)、(c))している。電磁波入力インタフェース35から近い位置にある第1端面37a、および2つの第2端面38,38は短絡または開放いずれでもよい。
 電磁波出力インタフェース36aは第1端面37bに向かう電磁波と第1端面37bで反射した電磁波とで発生する定在波S1を活用し、第1端面37bからλ/4+n・λ/2の距離に設置される。
 図14(b)に、実施例3による第5の電磁波伝搬媒体31Eの要部を拡大した斜視図を示す。
 電磁波伝搬媒体31Eは、前述の電磁波伝搬媒体31Dにおいて、電磁波インタフェース35から遠い位置にあり、電磁波の進行方向において電磁波を反射する第1端面37bを開放(図13(b)、(d))している。電磁波入力インタフェース35から近い位置にある第1端面37a、および2つの第2端面38,38は短絡または開放いずれでもよい。
 電磁波出力インタフェース36aは第1端面37bに向かう電磁波と第1端面37bで反射した電磁波とで発生する定在波S2を活用し、第1端面37bからn・λ/2の距離に設置される。
 図15に、実施例3による第6の電磁波伝搬媒体31Fの要部を拡大した斜視図を示す。
 電磁波伝搬媒体31Fは、メッシュ状の第1導体層32Mと平板状の第2導体層33とに挟まれた電磁波伝搬空間に電磁波が伝搬する構造である。2つの第1端面37a,37bおよび2つの第2端面38,38は短絡または開放いずれでもよい。また、電磁波伝搬媒体31Fの一方の第1端面37aから近い位置に電磁波入力インタフェース35が配置され、電磁波入力インタフェース35と一方の第1端面37aとの間には電磁波出力インタフェース36aは配置されていない。さらに、電磁波伝搬空間を挟んだ2つの第2端面38,38の距離は、電磁波入力インタフェース35から遠ざかるほど短くなる。
 電磁波伝搬空間を挟む2つの第2端面38,38の距離が長いほど、電磁波出力インタフェース36bから放射される電磁波が、放射されずに電磁波伝搬空間を伝搬する電磁波よりも減少する。従って、電磁波伝搬媒体31Fは、電磁波入力インタフェース35から遠い場所において、電磁波伝搬空間を挟んだ2つの第2端面38,38の距離を短くすることにより、電磁波伝搬空間を伝搬する電磁波のうち電磁波受信装置に受信される電磁波の割合が大きくなる。
 なお、本実施例3に前述した実施例1を組み合わせて、電磁波入力インタフェース35から遠い位置にある電磁波出力インタフェース36a,36bほど、短絡した第1端面37bまたは一方の第2端面38からλ/4+n・λ/2の距離に近づけて設置する、または開放した第1端面37bからn・λ/2の距離に近づけて設置してもよい。
 また、本実施例3に前述した実施例2を組み合わせて、電磁波伝搬媒体31A~31C,31Fの第1導体層32Mの導体メッシュを、電磁波入力インタフェース35から遠い場所ほど疎にしてもよい。または、電磁波伝搬媒体31D,31Eの電磁波出力インタフェース36aの開口部に導体メッシュを設けて、電磁波入力インタフェース35から遠い位置にある電磁波出力インタフェース36aの開口部ほど導体メッシュを疎にしてもよい。
 また、本実施例3では、電磁波出力インタフェース36a,36bを第1導体層32M,32Pのみに設置したが、第1導体層32M,32Pと同様に、第2導体層33にも電磁波出力インタフェース36a,36bを設置してもよい。また、電磁波入力インタフェース35の位置も電磁波伝搬媒体31A~31Fのどこに設置してもよい。
 このように、本実施例3に係る電磁波伝搬媒体31A~31Fの構成を適用すれば、電磁波入力インタフェース35から遠い場所ほど、電磁波伝搬媒体31A~31Eでは、通信装置が設置される第1導体層32M,32Pの表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層33の裏面(電磁波伝搬空間と接する面)との距離を短くする、または、電磁波伝搬媒体31Fでは、電磁波伝搬空間を挟む2つの第2端面38,38の距離を短くすることで、電磁波入力インタフェース35から遠い場所にも電力が届きやすい電磁波伝搬媒体31A~31Fを実現することができる。また、電磁波出力インタフェース36a,36bを所定の場所に設置すれば、電磁波入力インタフェース35から遠い位置にある電磁波出力インタフェース36a,36bにも電力が届きやすい電磁波伝搬媒体31A~31Fを実現することができる。
 また、本実施例3と前述した実施例1とを組み合わせることで、電磁波入力インタフェース35から遠い位置ある電磁波出力インタフェース36b,36cにも、さらに電力が届きやすい電磁波伝搬媒体31A~31Fを実現することができる。
 また、本実施例3の構成に通信装置を電磁波入力インタフェース35および各電磁波出力インタフェース36a,36bにそれぞれ対向させて設置し、電磁波入力インタフェース35に対向した通信装置が各電磁波出力インタフェース36a,36bに対向した通信装置と通信することができる。このとき、通信装置は電磁波出力インタフェース36a,36bの設置間隔とほぼ同じサイズまたは電磁波出力インタフェース36a,36bの設置間隔よりも小さいサイズであることが望ましい。言い換えれば、通信装置のサイズに合わせて、電磁波伝搬空間に伝搬させる電磁波の波長を選択してもよい。
 本実施例4による電磁波伝搬媒体について図16~図19を用いて説明する。図16~図19は、電磁波伝搬媒体の要部を拡大して示す斜視図である。
 本実施例4による電磁波伝搬媒体は、電磁波の進行方向において電磁波を反射する第1端面の形状を調整して、定在波の影響を低減している。本実施例4では、電磁波を反射する第1端面を、段差をつけて2つに分割した形状について説明する。
 図16(a)に、実施例4による第1の電磁波伝搬媒体41Aの要部を拡大した斜視図を示す。
 電磁波伝搬媒体41Aは、メッシュ状の第1導体層42Mと平板状の第2導体層43とにより平面状の電磁波伝搬空間の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェースが第1導体層42Mに設けられている。また、電磁波伝搬媒体41Aは、伝搬する電磁波の進行方向(第1方向)に長辺を有し、その電磁波の進行方向と直交する方向(第2方向)に短辺を有する帯状である。
 さらに、電磁波伝搬媒体41Aは、電磁波入力インタフェースからの距離が異なる2つの面(第1端面47bv1,47bv2)を有しており、電磁波の進行方向において電磁波を反射する一方の第1端面47bvが、短辺が延在する方向に段差が生じるように2つの面(第1端面47bv1,47bv2)に分割されている。電磁波伝搬媒体41Aの長辺に沿った一方の第2側面48の長さが、他方の第2側面48の長さよりも短く形成されている。
 電磁波伝搬媒体41Aでは、第1端面47bv1および第1端面47bv2はそれぞれ短絡している。また、第1端面47bv1と第1端面47bv2とには、電磁波伝搬媒体41Aの長辺が延在する方向の距離でλ/4+n・λ/2((1、2、・・・、m-1)・λ/(2・m)+n・λ/2;m=2)の差がついている。位相で表現すると、π/2+n・π((1、2、・・・、m-1)・π/m+n・π;m=2)の差がついている。πは円周率である。そして、第1端面47bv1および第1端面47bv2に向かってそれぞれ伝搬する電磁波は、第1端面47bv1および第1端面47bv2でそれぞれ反射する電磁波と重なり合い、定在波S1aおよび定在波S1bを発生させる。第1端面47bv1と第1端面47bv2との距離は伝搬する電磁波に対して90度の位相差がついているので、定在波S1aと定在波S1bとにも位相差の90度がつく。そのため、定在波S1aと定在波S1bとは互いの腹と節とが同じ位置に出現して打ち消しあう。従って、電磁波伝搬空間での定在波の影響を低減することができる。
 図16(b)に、実施例4による第2の電磁波伝搬媒体41Bの要部を拡大した斜視図を示す。
 電磁波伝搬媒体41Bは、前述の電磁波伝搬媒体41Aにおいて、第1端面47bv1および第1端面7bv2をそれぞれ開放したものである。第1端面47bv1と第1端面47bv2とには、電磁波伝搬媒体41Bの長辺が延在する方向の距離でλ/4+n・λ/2の差がついている。そのため、第1端面47bv1および第1端面47bv2でそれぞれ電磁波が反射することにより定在波S2aおよび定在波S2bが発生し、定在波S2aと定在波S2bとは90度の位相差がついているため、互いの腹と節とを打ち消しあう。従って、電磁波伝搬空間での定在波の影響を低減することができる。
 図17(a)に、実施例4による第3の電磁波伝搬媒体41Cの要部を拡大した斜視図を示す。
 電磁波伝搬媒体41Cは、電磁波入力インタフェースからの距離が異なる2つの面(第1端面47bh1,47bh2)を有しており、電磁波の進行方向において電磁波を反射する一方の第1端面47bhが、長辺が延在する方向に段差が生じるように2つの面(第1端面47bh1,47bh2)に分割されている。言い換えると、電磁波伝搬媒体41Aの長辺に沿った第1導体層42Mの長さが、第2導体層43の長さよりも短く形成されている。
 電磁波伝搬媒体41Cでは、第1端面47bh1および第1端面47bh2はそれぞれ短絡している。また、第1端面47bh1と第1端面47bh2とには、電磁波伝搬媒体41Cの長辺が延在する方向の距離でλ/4+n・λ/2の差がついている。これにより、電磁波伝搬媒体41Aと同様に、定在波S1aと定在波S1bとは互いの腹と節とが同じ位置に出現して打ち消しあい、電磁波伝搬での定在波の影響を低減することができる。
 図17(b)に、実施例4による第4の電磁波伝搬媒体41Dの要部を拡大した斜視図を示す。
 電磁波伝搬媒体41Dは、前述の電磁波伝搬媒体41Cにおいて、第1端面47bh1および第1端面47bh2をそれぞれ開放したものである。これにより、電磁波伝搬媒体41Bと同様に、定在波S2aと定在波S2bとは互いの腹と節とが同じ位置に出現して打ち消しあい、電磁波伝搬空間での定在波の影響を低減することができる。
 図18(a)および(b)に、それぞれ実施例4による第5の電磁波伝搬媒体41Eおよび第6の電磁波伝搬媒体41Fの要部を拡大した斜視図を示す。
 電磁波伝搬媒体41Eは、前述の電磁波伝搬媒体41Aを構成するメッシュ状の第1導体層42Mに代えて平板状の第1導体層42Pが形成されており、第1導体層42Pには、複数の電磁波出力インタフェース46aが設置されている。同様に、電磁波伝搬媒体41Fは、前述の電磁波伝搬媒体41Bを構成するメッシュ状の第1導体層42Mに代えて平板状の第1導体層42Pが形成されており、第1導体層42Pには、複数の電磁波出力インタフェース46aが設置されている。複数の電磁波出力インタフェース46aは、例えば第1導体層42Pに開けたスロットである。
 電磁波伝搬媒体41E,41Fの構成においても、定在波の影響が低減されるので、電磁波出力インタフェース46aは電磁波伝搬媒体41E,41Fのどの位置に設置されてもよい。
 図19(a)および(b)に、それぞれ実施例4による第7の電磁波伝搬媒体41Gおよび第8の電磁波伝搬媒体41Hの要部を拡大した斜視図を示す。
 電磁波伝搬媒体41Gは、前述の電磁波伝搬媒体41Cを構成するメッシュ状の第1導体層42Mに代えて平板状の第1導体層42Pが形成されており、第1導体層42Pには、複数の電磁波出力インタフェース46aが設置されている。同様に、電磁波伝搬媒体41Hは、前述の電磁波伝搬媒体41Dを構成するメッシュ状の第1導体層42Mに代えて平板状の第1導体層42Pが形成されており、第1導体層42Pには、複数の電磁波出力インタフェース46aが設置されている。複数の電磁波出力インタフェース46aは、例えば第1導体層42Pに開けたスロットである。
 電磁波伝搬媒体41G,41Hの構成においても、定在波の影響が低減されるので、電磁波出力インタフェース46aは電磁波伝搬媒体41G,41Hのどの位置に設置されてもよい。
 本実施例5による電磁波伝搬媒体について図20~図22を用いて説明する。図20~図22は、電磁波伝搬媒体の要部を拡大して示す斜視図である。
 本実施例5による電磁波伝搬媒体は、前述した実施例4と同様に、電磁波の進行方向において電磁波を反射する第1端面の形状を調整して、定在波の影響を低減している。本実施例5では、電磁波を反射する第1端面を、段差をつけてm(m≧3)個に分割した形状について説明する。
 図20(a)に、実施例5による第1の電磁波伝搬媒体51Aの要部を拡大した斜視図を示す。
 電磁波伝搬媒体51Aは、メッシュ状の第1導体層52Mと平板状の第2導体層53とにより平面状の電磁波伝搬空間の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェースが第1導体層52Mに設けられている。また、電磁波伝搬媒体51Aは、伝搬する電磁波の進行方向(第1方向)に長辺を有し、その電磁波の進行方向と直交する方向(第2方向)に短辺を有する帯状である。
 さらに、電磁波伝搬媒体51Aは、電磁波入力インタフェースからの距離が異なる3つの面(第1端面57bv1,57bv2,57bv3)を有しており、電磁波の進行方向において電磁波を反射する一方の第1端面57bvが、短辺が延在する方向に段差が生じるように3つの面(第1端面57bv1,57bv2,57bv3)に分割されている。電磁波伝搬媒体51Aの長辺に沿った一方の第2側面58の長さが、他方の第2側面58の長さよりも短く形成されている。
 電磁波伝搬媒体51Aでは、第1端面57bv1、第1端面57bv2、および第1端面57bv3はそれぞれ短絡している。また、第1端面57bv1と第1端面57bv2、および第1端面57bv2と第1端面57bv3とには、それぞれ電磁波伝搬媒体51Aの長辺が延在する方向の距離でλ/6+n・λ/2((1、2、・・・、m-1)・λ/(2・m)+n・λ/2;m=3)の差がついている。位相で表現すると、π/3+n・π((1、2、・・・、m-1)・π/m+n・π;m=3)の差がついている。そして、第1端面57bv1、第1端面57bv2、および第1端面57bv3でそれぞれ発生する定在波は60度の位相差を持つため、前述の電磁波伝搬媒体41Aと同様に、定在波の腹と節とを互いに打ち消しあい、電磁波伝搬空間での定在波の影響を低減することができる。
 このように、1つ第1端面57bvは2つの面で形成するだけではなく、3つ以上の面で形成しても効果が得られる。また、第1端面57bv1,57bv2,57bv3は短絡ではなく開放であっても同様の効果が得られる。
 図20(b)に、実施例5による第2の電磁波伝搬媒体51Bの要部を拡大した斜視図を示す。
 電磁波伝搬媒体51Bは、前述の電磁波伝搬媒体51Aを構成する第1端面57bvの分割する面の数を増やした場合の構成であり、第1端面57bvcが、長辺が延在する方向にn・λ/2の長さにわたって、短辺が延在する方向に斜めに形成されている。
 電磁波伝搬媒体51Bでは、第1端面57bvcは短絡している。前述の電磁波伝搬媒体51Aを構成する第1端面57bv1,57bv2,57bv3の面の数を増やしていった場合と同等であり、定在波の影響を低減することができる。また、第1端面57bvcは、開放であっても同様の効果が得られる。
 図21(a)に、実施例5による第3の電磁波伝搬媒体51Cの要部を拡大した斜視図を示す。
 電磁波伝搬媒体51Cは、電磁波入力インタフェースからの距離が異なる3つの面(第1端面57bh1,57bh2、57bh3)を有しており、電磁波の進行方向において電磁波を反射する一方の第1端面57bhが、長辺が延在する方向に段差が生じるように3つの面(第1端面57bh1,57bh2、57bh3)に分割されている。言い換えると、電磁波伝搬媒体51Cの長辺に沿った第1導体層52Mの長さが、第2導体層53の長さよりも短く形成されている。
 電磁波伝搬媒体51Cでは、第1端面57bh1、第1端面57bh2、および第1端面57bh3はそれぞれ短絡している。また、第1端面57bh1と第1端面57bh2、および第1端面57bh2と第1端面57bh3とには、それぞれ電磁波伝搬媒体51Eの長辺が延在する方向の距離でλ/6+n・λ/2((1、2、・・・、m-1)・λ/(2・m)+n・λ/2;m=3)の差がついている。位相で表現すると、π/3+n・π((1、2、・・・、m-1)・π/m+n・π;m=3)の差がついている。そして、第1端面57bh1、第1端面57bh2、および第1端面57bh3でそれぞれ発生する定在波は60度の位相差を持つため、前述の電磁波伝搬媒体41Gと同様に、定在波の腹と節とを互いに打ち消しあい、電磁波伝搬空間での定在波の影響を低減することができる。
 第1端面57bh1、第1端面57bh2、および第1端面57bh3は短絡ではなく開放であっても同様の効果が得られる。
 図21(b)に、実施例5による第4の電磁波伝搬媒体51Dの要部を拡大した斜視図を示す。
 電磁波伝搬媒体51Dは、前述の電磁波伝搬媒体51Cを構成する第1端面57bhの分割する面の数を増やした場合の構成であり、第1端面57bhcが、長辺が延在する方向にn・λ/2の長さにわたって、長辺が延在する方向に斜めに形成されている。
 電磁波伝搬媒体51Dでは、第1端面57bhcは短絡している。前述の電磁波伝搬媒体51Cを構成する第1端面57bh1,57bh2,57bh3の面の数を増やした場合と同等であり、定在波の影響を低減することができる。また、第1端面57bhcは開放であっても同様の効果が得られる。
 図22(a)に、実施例5による第5の電磁波伝搬媒体51Eの要部を拡大した斜視図を示す。
 電磁波伝搬媒体51Eは、電磁波入力インタフェースからの距離が異なる複数の面(第1端面57bv1,57bv2,57bv3)を有しており、電磁波の進行方向において電磁波を反射する一方の第1端面57bvが、長辺が延在する方向に段差が生じるように複数の面(第1端面57bv1,57bv2,57bv3)に分割されている。すなわち、電磁波伝搬媒体51Eは、前述の電磁波伝搬媒体51Aの第1端面57bvを構成する3つの第1端面57bv1,57bv2,57bv3を繰り返した第1端面57bvを有している。これにより、前述の電磁波伝搬媒体41Aと同様に、定在波の腹と節とを互いに打ち消しあい、電磁波伝搬空間での定在波の影響を低減することができる。
 また、第1端面57bv1,57bv2,57bv3は短絡であっても開放であっても同様の効果が得られる。なお、第1端面57bv1,57bv2,57bv3の短辺が延在する方向に沿った幅はλ/4以上であることが好ましい。
 図22(b)に、実施例5による第6の電磁波伝搬媒体51Fの要部を拡大した斜視図を示す。
 電磁波伝搬媒体51Fは、前述の電磁波伝搬媒体51Eを構成する第1端面57bvの分割する面を増やした場合の構成であり、第1端面57bvcが、長辺が延在する方向にn・λ/2の長さにわたって、短辺が延在する方向に斜めに形成されて、2つの面(第1端面57bvc1,57bvc2)を有している。これにより、前述の電磁波伝搬媒体51Eと同様に、定在波の影響を低減することができる。
 また、第1端面57bvc1,57bvc2は短絡であっても開放であっても同様の効果が得られる。なお、第1端面57bvc1,57bvc2の短辺が延在する方向に沿った幅はλ/4以上であることが好ましい。
 また、前述の電磁波伝搬媒体51Cの第1端面57bhを構成する3つの第1端面57bh1,57bh2,57bh3を繰り返した第1端面57bh、または前述の電磁波伝搬媒体51Dの第1端面57bhcを複数有する電磁波伝搬媒体を構成することもできる。
 なお、前述の電磁波伝搬媒体51A~51Fでは、メッシュ状の第1導体膜52Mを形成したが、メッシュ状の第1導体層52Mに代えて平板状の第1導体層を形成し、第1導体層に複数の電磁波出力インタフェースを設置してもよく、同様に、定在波の影響を低減することができる。また、この場合、定在波の影響が低減されているので、電磁波出力インタフェースは電磁波伝搬媒体のどの位置に設置されてもよい。
 本実施例6による電磁波伝搬媒体について図23~図25を用いて説明する。図23~図25は、電磁波伝搬媒体の要部を拡大して示す斜視図である。
 本実施例6による電磁波伝搬媒体は、前述した実施例4,5と同様に、電磁波の進行方向において電磁波を反射する、第1端面の形状を調整して、定在波の影響を低減している。本実施例6では、電磁波を反射する第1端面を、段差をつけずにm(m≧2)個に分割した形状について説明する。
 図23(a)に、実施例6による第1の電磁波伝搬媒体61Aの要部を拡大した斜視図を示す。
 電磁波伝搬媒体61Aは、メッシュ状の第1導体層62Mと平板状の第2導体層63とにより平面状の電磁波伝搬空間の上下を挟む構造を有し、少なくとも1つの電磁波入力インタフェースが第1導体層62Mに設けられている。また、電磁波伝搬媒体61Aは、伝搬する電磁波の進行方向(第1方向)に長辺を有し、その電磁波の進行方向と直交する方向(第2方向)に短辺を有する帯状である。
 さらに、電磁波伝搬媒体61Aは、電磁波の進行方向において電磁波を反射する一方の第1端面67bvが、短辺が延在する方向のほぼ真ん中で2つに分割されており、一方を短絡した面、他方を開放した面の2つの面(67bv1,67bv2)によって構成されている。すなわち、電磁波伝搬媒体61Aの長辺に沿った一方の第2側面68側の第1端面67bのほぼ半分(第1端面67bv1)には、導体層が形成されており、この導体層を介して第1導体層62Mと第2導体層63とが繋がっている。これに対して、磁波伝搬媒体61Aの長辺に沿った他方の第2側面68側の第1端面67bのほぼ半分(第1端面67bv2)には、導体層が形成されていない。第1端面67bv1と第1端面67bv2とには、位相で表現すると、π/2+n・π((1、2、・・・、m-1)・π/m+n・π;m=2)の差がついていることになる。2つの第2端面68,68は短絡または開放のいずれでもよい。
 電磁波伝搬媒体61Aでは、一方の第1端面67bv1で発生する定在波S1と他方の第1端面67bv2で発生する定在波S2とは90度の位相差を持つため、定在波の腹と節とを互いに打ち消しあい、電磁波伝搬空間での定在波の影響を低減することができる。
 図23(b)に、実施例6による第2の電磁波伝搬媒体61Bの要部を拡大した斜視図を示す。
 電磁波伝搬媒体61Bは、前述の電磁波伝搬媒体61Aと同様に、電磁波の進行方向において電磁波を反射する一方の第1端面67bvを短絡した面と開放した面の2つの面(67bh1,67bh2)により構成しているが、分割の方向が異なる。すなわち、電磁波の進行方向において電磁波を反射する一方の第1端面67bhが、電磁波伝搬空間の厚さ方向のほぼ真ん中で2つに分割されており、第2導体層63側の一方の第1端面67bh1には、導体層が形成されており、第1導体層62M側の第1端面67bh2には、導体層MLが形成されていない。第1端面67bh1と第1端面67bh2とには、位相で表現すると、π/2+n・π((1、2、・・・、m-1)・π/m+n・π;m=2)の差がついていることになる。
 電磁波伝搬媒体61Bは、前述の電磁波伝搬媒体61Aと同様に、定在波の腹と節とを互いに打ち消しあうため、電磁波伝搬空間での定在波の影響を低減することができる。
 図24(a)および(b)に、それぞれ実施例6による第3の電磁波伝搬媒体61Cおよび第4の電磁波伝搬媒体61Dの要部を拡大した斜視図を示す。
 電磁波伝搬媒体61Cは、前述の電磁波伝搬媒体61Aと同様に、電磁波の進行方向において電磁波を反射する一方の第1端面67bvが、短辺が延在する方向のほぼ真ん中で2つに分割されており、一方を短絡した面、他方を開放した面の2つの面(67bv1,67bv2)によって構成されている。前述の電磁波伝搬媒体61Aを構成するメッシュ状の第1導体層62Mに代えて平板状の第1導体層62Pが形成されており、第1導体層62Pには、複数の電磁波出力インタフェース66aが設置されている。
 電磁波伝搬媒体61Dは、前述の電磁波伝搬媒体61Bと同様に、電磁波の進行方向において電磁波を反射する一方の第1端面67bhが、電磁波伝搬空間の厚さ方向のほぼ真ん中で2つに分割されており、一方を短絡した面、他方を開放した面の2つの面(6bh1,67bh2)によって構成されている。前述の電磁波伝搬媒体61Bを構成するメッシュ状の第1導体層62Mに代えて平板状の第1導体層62Pが形成されており、第1導体層62Pには、複数の電磁波出力インタフェース66aが設置されている。
 複数の電磁波出力インタフェース66aは、例えば第1導体層62Pに開けたスロットである。電磁波伝搬媒体61C,61Dの構成では、定在波の影響が低減されるので、電磁波出力インタフェース66aは電磁波伝搬媒体61C,61Dのどの位置に設置されてもよい。
 図25に、実施例6による第5の電磁波伝搬媒体61Eの要部を拡大した斜視図を示す。
 電磁波伝搬媒体61Eは、電磁波の進行方向において電磁波を反射する一方の第1端面67bvが、短辺が延在する方向に4つに分割されており、短絡した面(第1端面67bv1)と、開放した面(第1端面67bv2)とが交互に配置されている。電磁波伝搬媒体61Eでは、前述の電磁波伝搬媒体61Aと同様に、第1端面67bv1で発生する定在波S1と、第1端面67bv2で発生する定在波S2とは90度の位相差を持つため、定在波の腹と節とを互いに打ち消しあい、電磁波伝搬媒体61E内での定在波の影響を低減することができる。
 なお、第1端面67bv1,67bv2の短辺が延在する方向に沿った幅はλ/4以上であることが好ましい。また、電磁波伝搬媒体61Eの構成では、定在波の影響が低減されるので、電磁波出力インタフェースは電磁波伝搬媒体61Eのどの位置に設置されてもよい。
 また、前述の電磁波伝搬媒体61B~61Dにおいても、電磁波伝搬媒体61Eと同様に、第1端面67bv,67bhを複数に分割してもよく、定在波の腹と節とを互いに打ち消しあい、電磁波伝搬空間での定在波の影響を低減することができる。
 前述した実施例4、実施例5、および実施例6では、電磁波の進行方向において電磁波を反射する第1端面の形状を調整して、定在波の影響を低減することのできる電磁波伝搬媒体41A~41H,51A~51F,61A~61Eのそれぞれの構造および効果について説明した。
 本実施例7では、電磁波伝搬媒体41A~41H,51A~51F,61A~61Eにそれぞれ他の形態を組み合わせた変形例について説明する。
(1)電磁波の進行方向において電磁波を反射する一方の第1端面を短辺が延在する方向に沿って複数(例えば2つまたは4つ)に分割して、短絡した面と開放した面とを交互に配置した電磁波伝搬媒体61A~61Eに、長辺が延在する方向の距離に差を付けた面を形成する電磁波伝搬媒体41A~41H,51A~51Fを組み合わせてもよい。
(2)また、複数の電磁波伝搬媒体で構成された電磁波伝搬媒体の複合体でも構わない。例えば電磁波伝搬媒体41Aの第1端面47bv1および第1端面47bv2をそれぞれ1つずつの電磁波伝搬媒体で構成し、この2つの電磁波伝搬媒体を組み合わせて構成してもよい。また、電磁波伝搬媒体51Aの第1端面57bv1,57bv2,57bv3についても同様に3つの電磁波伝搬媒体の組み合わせで構成してもよい。また、電磁波伝搬媒体61Aの第1端面61bv1,61bv2を2つの電磁波伝搬媒体の組み合わせで構成してもよい。
(3)また、前述した実施例4,5,6は定在波の影響を低減する構成であるが、長辺が延在する方向の低減する定在波と短辺が延在する方向の定在波とを活用し、前述した実施例1と組み合わせて実施することも可能である。一例として、電磁波伝搬媒体61Cの構成に電磁波伝搬媒体1Eの構成を組み合わせた電磁波伝搬媒体について説明する。電磁波伝搬媒体61Cに1つの電磁波入力インタフェースと複数の電磁波出力インタフェースを設け、電磁波入力インタフェースから遠い位置にある電磁波出力インタフェースほど、一方の第2端面からλ/4+n・λ/2の距離に近づけて設置するとよい。
 このような構成にすることにより、電磁波伝搬媒体の長辺が延在する方向の定在波の影響を低減しつつ、短辺が延在する方向の定在波を活用し、電磁波入力インタフェースから遠い位置にある電磁波出力インタフェースにも電力が届きやすい電磁波伝搬媒体を実現することができる。
(4)また、前述した実施例4,5,6に、前述した実施例2を組み合わせることも可能である。電磁波伝搬媒体41A~41H,51A~51F,61A~61Eの構成に対して、電磁波入力インタフェースを設け、第1導体層を導体メッシュとし、電磁波入力インタフェースから遠い場所ほど、第1導体層の導体メッシュを疎にする。または、開口部に導体メッシュを有する電磁波出力インタフェース(スロット)を形成し、電磁波入力インタフェースから遠い位置にある電磁波出力インタフェースほど導体メッシュを疎にする。
 このような構成にすることにより、電磁波伝搬空間の定在波の影響を低減しつつ、電磁波入力インタフェースから遠い位置にある電磁波出力インタフェースにも電力が届きやすい電磁波伝搬媒体を実現することができる。
(5)また、前述した実施例4,5,6に、前述した実施例3を組み合わせることも可能である。電磁波伝搬媒体41A~41H,51A~51F,61A~61Eの構成に対して、電磁波入力インタフェースを設け、第1導体層の表面(電磁波伝搬空間と接する面と反対側の面)と第2導体層の裏面(電磁波伝搬空間と接する面)との距離を、電磁波入力インタフェースから遠い場所ほど短くするとよい。
(6)また、前述した実施例4,5,6に、実施例1、実施例2、および実施例3を複数組み合わせることにより、定在波の影響を低減しつつ、電磁波入力インタフェースから遠い位置にある電磁波出力インタフェースにも電力が届きやすい電磁波伝搬媒体を実現することができる。
 このように、本実施例7に係る電磁波伝搬媒体の構成を適用すれば、電磁波伝搬媒体の端面を調整することで、定在波の影響を低減する電磁波伝搬媒体が実現することができる。これにより、電磁波出力インタフェースの設置場所の制約が緩和される。
 また、実施例4,5,6,7の構成に通信装置を設置し、通信装置間で通信することができる。このとき、電磁波伝搬媒体内の定在波の影響は低減されているので、通信装置の設置間隔は通信装置の都合、例えばサイズなどに合わせて設定することができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 本発明は、信号伝達システム等に用いる電磁波を伝搬する電磁波伝搬媒体に適用することができる。

Claims (20)

  1.  第1導体層と、第2導体層と、前記第1導体層と前記第2導体層とにより上下を挟まれた電磁波伝搬空間と、少なくとも1つの電磁波入力インタフェースと、複数の電磁波出力インタフェースとを備え、
     電磁波が伝搬する第1方向に長辺を有し、
     前記第1方向と直交する第2方向に短辺を有し、
     前記電磁波伝搬空間を介して対向する前記短辺に沿った2つの第1端面と、前記電磁波伝搬空間を介して対向する前記長辺に沿った2つの第2端面とを有する電磁波伝搬媒体であって、
     前記電磁波の前記電磁波伝搬空間における波長をλ、整数をnとしたときに、
     前記第1端面および前記第2端面のうち前記電磁波が反射する端面において、前記第1導体層と前記第2導体層とが短絡している場合は、前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記端面からλ/4+n・λ/2の距離に近づけて設置され、
     前記端面において、前記第1導体層と前記第2導体層とが短絡していない場合は、前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記端面からn・λ/2の距離に近づけて設置されることを特徴とする電磁波伝搬媒体。
  2.  請求項1記載の電磁波伝搬媒体において、
     対向する2つの前記第2端面の距離がn・λ/2であり、
     2つの前記第2端面においてそれぞれ前記第1導体層と前記第2導体層とが短絡しており、
     前記端面が前記第1端面であることを特徴とする電磁波伝搬媒体。
  3.  請求項2記載の電磁波伝搬媒体において、
     前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記第2端面からλ/4+n・λ/2の距離に近づけて設置されることを特徴とする電磁波伝搬媒体。
  4.  請求項1記載の電磁波伝搬媒体において、
     対向する2つの前記第2端面の距離がn・λ/2であり、
     2つの前記第2端面においてそれぞれ前記第1導体層と前記第2導体層とが短絡しており、
     前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記第2端面からλ/4+n・λ/2の距離に近づけて設置されることを特徴とする電磁波伝搬媒体。
  5.  請求項4記載の電磁波伝搬媒体において、
     前記端面が前記第1端面であることを特徴とする電磁波伝搬媒体。
  6.  請求項1記載の電磁波伝搬媒体において、
     前記電磁波出力インタフェースは、前記第1導体膜、または前記第1導体膜および前記第2導体膜に形成されたスロットであることを特徴とする電磁波伝搬媒体。
  7.  請求項1記載の電磁波伝搬媒体において、
     前記第1導体膜、または前記第1導体膜および前記第2導体膜はメッシュ状の導体を含み、
     前記電磁波出力インタフェースは、前記メッシュ状の導体に付けた目印であることを特徴とする電磁波伝搬媒体。
  8.  請求項1記載の電磁波伝搬媒体において、
     前記第1導体層の表面と前記第2導体層の裏面との距離が、前記電磁波入力インタフェースから離れるに従い、短くなることを特徴とする電磁波伝搬媒体。
  9.  第1導体層と、第2導体層と、前記第1導体層と前記第2導体層とにより上下を挟まれた電磁波伝搬空間と、少なくとも1つの電磁波入力インタフェースとを備え、
     電磁波が伝搬する第1方向に長辺を有し、
     前記第1方向と直交する第2方向に短辺を有し、
     前記電磁波伝搬空間を介して対向する前記短辺に沿った2つの第1端面と、前記電磁波伝搬空間を介して対向する前記長辺に沿った2つの第2端面とを有する電磁波伝搬媒体であって、
     前記第1導体膜、または前記第1導体膜および前記第2導体膜はメッシュ状の導体を含み、
     前記電磁波入力インタフェースから離れた位置にある前記メッシュ状の導体ほど、メッシュ密度が疎であることを特徴とする電磁波伝搬媒体。
  10.  請求項9記載の電磁波伝搬媒体において、
     さらに、複数の電磁波出力インタフェースを備え、
     前記電磁波の前記電磁波伝搬空間における波長をλ、整数をnとしたときに、
     前記第1端面および前記第2端面のうち前記電磁波を反射する端面において、前記第1導体層と前記第2導体層とが短絡している場合は、前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記端面からλ/4+n・λ/2の距離に近づけて設置され、
     前記端面において、前記第1導体層と前記第2導体層とが短絡していない場合は、前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記端面からn・λ/2の距離に近づけて設置されることを特徴とする電磁波伝搬媒体。
  11.  請求項9記載の電磁波伝搬媒体において、
     さらに、複数の電磁波出力インタフェースを備え、
     前記電磁波の前記電磁波伝搬空間における波長をλ、整数をnとしたときに、
     前記第1端面および前記第2端面のうち前記電磁波を反射する端面において、前記第1導体層と前記第2導体層とが短絡している場合は、前記電磁波出力インタフェースは、前記端面からλ/4+n・λ/2の距離に設置され、
     前記端面において、前記第1導体層と前記第2導体層とが短絡していない場合は、前記電磁波出力インタフェースは、前記端面からn・λ/2の距離に設置されることを特徴とする電磁波伝搬媒体。
  12.  請求項9記載の電磁波伝搬媒体において、
     前記電磁波出力インタフェースは、前記第1導体膜、または前記第1導体膜および前記第2導体膜に開けられたスロットであり、前記メッシュ状の導体が前記スロットの内部に形成されていることを特徴とする電磁波伝搬媒体。
  13.  請求項9記載の電磁波伝搬媒体において、
     前記第1導体層の表面と前記第2導体層の裏面との距離が、前記電磁波入力インタフェースから離れるに従い、短くなることを特徴とする電磁波伝搬媒体。
  14.  第1導体層と、前記第1導体層と前記第2導体層とにより上下を挟まれた電磁波伝搬空間とを備え、
     電磁波が伝搬する第1方向に長辺を有し、
     前記第1方向と直交する第2方向に短辺を有し、
     前記電磁波伝搬空間を介して対向する前記短辺に沿った2つの第1端面と、前記電磁波伝搬空間を介して対向する前記長辺に沿った2つの第2端面とを有する電磁波伝搬媒体であって、
     整数をn、円周率をπとしたときに、
     前記第1端面および前記第2端面のうち少なくとも1つの端面が、m(m≧2)個の面に分割して構成されており、前記m(m≧2)個の面の一部における反射波の位相と、前記m(m≧2)個の面の他の一部における反射波の位相とが、n・π+(1、2、・・・、m-1)・π/mの位相差を持つことを特徴とする電磁波伝搬媒体。
  15.  請求項14記載の電磁波伝搬媒体において、
     前記電磁波の前記電磁波伝搬空間における波長をλとしたときに、
     前記m(m≧2)個の面の一部と前記m(m≧2)個の面の他の一部とが、前記第1方向または前記第2方向に、(1、2、・・・、m-1)・λ/(2・m)+n・λ/2の距離を離れていることを特徴とする電磁波伝搬媒体。
  16.  請求項15記載の電磁波伝搬媒体において、
     前記m(m≧2)個の面が、連続した一つの面を構成していることを特徴とする電磁波伝搬媒体。
  17.  請求項14記載の電磁波伝搬媒体において、
     前記m(m≧2)個の面の一部において、前記第1導体層と前記第2導体層とが短絡しており、前記m(m≧2)個の面の他の一部において、前記第1導体層と前記第2導体層とが短絡していないことを特徴とする電磁波伝搬媒体。
  18.  請求項14記載の電磁波伝搬媒体において、
     さらに、少なくとも1つの電磁波入力インタフェースを備え、
     前記第1導体層の表面と前記第2導体層の裏面との距離が、前記電磁波入力インタフェースから離れるに従い、短くなることを特徴とする電磁波伝搬媒体。
  19.  請求項14記載の電磁波伝搬媒体において、
     さらに、少なくとも1つの電磁波入力インタフェースと、複数の電磁波出力インタフェースとを備えており、
     前記電磁波の前記電磁波伝搬空間における波長をλ、整数をnとしたときに、
     前記m(m≧2)個の面により構成された端面を除く、前記第1端面および前記第2端面のうちの前記電磁波が反射する端面において、前記第1導体層と前記第2導体層とが短絡している場合は、前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記端面からλ/4+n・λ/2の距離に近づけて設置され、
     前記端面において、前記第1導体層と前記第2導体層とが短絡していない場合は、前記電磁波入力インタフェースから離れた位置にある電磁波出力インタフェースほど、前記端面からn・λ/2の距離に近づけて設置されることを特徴とする電磁波伝搬媒体。
  20.  請求項14記載の電磁波伝搬媒体において、
     さらに、少なくとも1つの電磁波入力インタフェースを備え、
     前記第1導体膜、または前記第1導体膜および前記第2導体膜はメッシュ状の導体を含み、
     前記電磁波入力インタフェースから離れた位置にある前記メッシュ状の導体ほど、メッシュ密度が疎であることを特徴とする電磁波伝搬媒体。
PCT/JP2011/055918 2011-03-14 2011-03-14 電磁波伝搬媒体 WO2012124040A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/055918 WO2012124040A1 (ja) 2011-03-14 2011-03-14 電磁波伝搬媒体
CN2011800597500A CN103262344A (zh) 2011-03-14 2011-03-14 电磁波传播介质
US13/884,605 US9252473B2 (en) 2011-03-14 2011-03-14 Electromagnetic wave propagation medium
JP2013504434A JP5629817B2 (ja) 2011-03-14 2011-03-14 電磁波伝搬媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055918 WO2012124040A1 (ja) 2011-03-14 2011-03-14 電磁波伝搬媒体

Publications (1)

Publication Number Publication Date
WO2012124040A1 true WO2012124040A1 (ja) 2012-09-20

Family

ID=46830174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055918 WO2012124040A1 (ja) 2011-03-14 2011-03-14 電磁波伝搬媒体

Country Status (4)

Country Link
US (1) US9252473B2 (ja)
JP (1) JP5629817B2 (ja)
CN (1) CN103262344A (ja)
WO (1) WO2012124040A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367918A (zh) * 2013-07-11 2013-10-23 电子科技大学 一种基于准表面等离子体波导的频率扫描阵列天线
JP2013232739A (ja) * 2012-04-27 2013-11-14 Yazaki Corp 分岐部材及びこれを用いた分岐構造
JP2014168134A (ja) * 2013-02-28 2014-09-11 Nec Corp 電磁波伝播シート、電磁波伝播システムおよび電磁波伝播方法
WO2023182159A1 (ja) * 2022-03-22 2023-09-28 株式会社デンソー 電磁波伝達シートおよび電磁波伝達シートの接続構造体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362605B2 (en) * 2011-07-11 2016-06-07 Hitachi, Ltd. Electromagnetic wave propagation path and electromagnetic wave propagation device
WO2013114507A1 (ja) * 2012-02-03 2013-08-08 日本電気株式会社 電磁波伝達シート、及び、電磁波伝送装置
FI127914B (fi) * 2014-08-21 2019-05-15 Stealthcase Oy Sähkömagneettisia aaltoja ohjaava laite ja menetelmä
US10263465B2 (en) * 2015-12-17 2019-04-16 Witricity Corporation Radiative wireless power transmission
WO2019124315A1 (ja) * 2017-12-18 2019-06-27 国立大学法人名古屋大学 プラズマ発生装置
KR20210011284A (ko) * 2019-07-22 2021-02-01 코닝 인코포레이티드 밀리 미터 파(mili meter Wave, mmW) 반사 구조, mmW 반사 지향 구조 및 mmW 투과 구조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226927A (ja) * 1992-02-14 1993-09-03 Mitsubishi Electric Corp スロットアレーアンテナ
JPH10107538A (ja) * 1996-09-26 1998-04-24 Hitachi Cable Ltd 漏洩導波管
JPH11274848A (ja) * 1998-03-26 1999-10-08 Mitsubishi Electric Corp 導波管スロットアレイアンテナ
JP2003318649A (ja) * 2002-02-21 2003-11-07 Matsushita Electric Ind Co Ltd 進行波合成アレーアンテナ装置
JP2009239858A (ja) * 2008-03-28 2009-10-15 Mitsubishi Electric Corp 導波管スロットアレーアンテナ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573746A (en) * 1945-09-19 1951-11-06 Honorary Advisory Council Sci Directive antenna for microwaves
US2596480A (en) * 1946-11-20 1952-05-13 Ca Nat Research Council Directive antenna for microwaves
US3328800A (en) * 1964-03-12 1967-06-27 North American Aviation Inc Slot antenna utilizing variable standing wave pattern for controlling slot excitation
JPH0246006A (ja) * 1988-08-08 1990-02-15 Arimura Giken Kk 分割給電型方形導波線路
US5010351A (en) * 1990-02-08 1991-04-23 Hughes Aircraft Company Slot radiator assembly with vane tuning
JPH09270633A (ja) * 1996-03-29 1997-10-14 Hitachi Ltd Temスロットアレイアンテナ
JP2002280196A (ja) 2001-03-15 2002-09-27 Micro Denshi Kk マイクロ波を利用したプラズマ発生装置
CN100466380C (zh) * 2002-02-21 2009-03-04 松下电器产业株式会社 行波组合阵列天线设备
JP2005317462A (ja) 2004-04-30 2005-11-10 Rikogaku Shinkokai プラズマ処理装置及びプラズマ処理方法
JP5399686B2 (ja) 2008-11-06 2014-01-29 株式会社セルクロス 電磁波伝達シートと無線lanシステムとrfidシステム及び電磁波伝達方法
US8983370B2 (en) * 2009-09-01 2015-03-17 Nec Corporation Communication transmission apparatus, communication coupler and impedance adjusting sheet
US9337894B2 (en) 2010-09-03 2016-05-10 Hitachi, Ltd. Electromagnetic wave transmission medium and electromagnetic wave transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226927A (ja) * 1992-02-14 1993-09-03 Mitsubishi Electric Corp スロットアレーアンテナ
JPH10107538A (ja) * 1996-09-26 1998-04-24 Hitachi Cable Ltd 漏洩導波管
JPH11274848A (ja) * 1998-03-26 1999-10-08 Mitsubishi Electric Corp 導波管スロットアレイアンテナ
JP2003318649A (ja) * 2002-02-21 2003-11-07 Matsushita Electric Ind Co Ltd 進行波合成アレーアンテナ装置
JP2009239858A (ja) * 2008-03-28 2009-10-15 Mitsubishi Electric Corp 導波管スロットアレーアンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RICHARD C. JOHNSON: "Linear Array", ANTENNA ENGINEERING HANDBOOK, 22 July 1999 (1999-07-22), pages 9 - 20-9-22 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232739A (ja) * 2012-04-27 2013-11-14 Yazaki Corp 分岐部材及びこれを用いた分岐構造
JP2014168134A (ja) * 2013-02-28 2014-09-11 Nec Corp 電磁波伝播シート、電磁波伝播システムおよび電磁波伝播方法
CN103367918A (zh) * 2013-07-11 2013-10-23 电子科技大学 一种基于准表面等离子体波导的频率扫描阵列天线
WO2023182159A1 (ja) * 2022-03-22 2023-09-28 株式会社デンソー 電磁波伝達シートおよび電磁波伝達シートの接続構造体

Also Published As

Publication number Publication date
US20130229240A1 (en) 2013-09-05
JP5629817B2 (ja) 2014-11-26
JPWO2012124040A1 (ja) 2014-07-17
US9252473B2 (en) 2016-02-02
CN103262344A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5629817B2 (ja) 電磁波伝搬媒体
JP5695744B2 (ja) 電磁波伝搬装置
JP5644769B2 (ja) サーフェイス通信装置
JP5790648B2 (ja) 構造体
WO2011114746A1 (ja) 構造体
JPWO2012093603A1 (ja) 電磁波伝播シート
US20130193772A1 (en) Surface communication device
JP5761184B2 (ja) 配線基板及び電子装置
US20150008994A1 (en) Interface apparatus
US8797116B2 (en) Surface communication apparatus
WO2017170394A1 (ja) 構造体、構造体の積層構造およびアンテナ構造
JP6570788B2 (ja) 誘電体導波管の接続構造
JP2010074790A (ja) 通信体及びカプラ
Kildal Gap waveguides and PMC packaging: Octave bandwidth mm-and submm-wave applications of soft & hard surfaces, EBGs and AMCs
Ellgardt A scan blindness model for single-polarized tapered-slot arrays in triangular grids
JP2004221718A (ja) 導波管変換器
WO2013027268A1 (ja) 電磁波伝搬媒体
JP4572838B2 (ja) スロットアレーアンテナ
JP6534911B2 (ja) 導波管・マイクロストリップ線路変換器
JP5647528B2 (ja) アンテナ装置
JP5157780B2 (ja) カプラ
JPWO2009048095A1 (ja) 伝送線路を有する回路装置及びプリント回路基板
JP2010074792A (ja) 通信体及びカプラ
Neal Non-perforated electromagnetic band gap ground plane.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504434

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13884605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860732

Country of ref document: EP

Kind code of ref document: A1