WO2019124315A1 - プラズマ発生装置 - Google Patents

プラズマ発生装置 Download PDF

Info

Publication number
WO2019124315A1
WO2019124315A1 PCT/JP2018/046370 JP2018046370W WO2019124315A1 WO 2019124315 A1 WO2019124315 A1 WO 2019124315A1 JP 2018046370 W JP2018046370 W JP 2018046370W WO 2019124315 A1 WO2019124315 A1 WO 2019124315A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor surface
waveguide
slot
conductor
plasma
Prior art date
Application number
PCT/JP2018/046370
Other languages
English (en)
French (fr)
Inventor
浩孝 豊田
陽香 鈴木
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2019561077A priority Critical patent/JP7182290B2/ja
Priority to CN201880081297.5A priority patent/CN111492720B/zh
Priority to US16/954,582 priority patent/US11152193B2/en
Publication of WO2019124315A1 publication Critical patent/WO2019124315A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the technical field of the present specification relates to a plasma generating apparatus that generates plasma using microwaves.
  • Plasma technology is applied to the fields of electricity, chemistry, and materials. Plasma generates highly chemically reactive radicals and ultraviolet light in addition to electrons and cations. Radicals are used, for example, for film formation and etching of semiconductors. Ultraviolet light is used, for example, for sterilization. Such abundant plasma products have broadened the base of plasma technology applications.
  • Patent Document 1 discloses a plasma generation apparatus that transmits microwaves from a microwave generation unit to a waveguide and generates plasma from slots (slit-like through holes) provided in the waveguide. (See FIG. 1, FIG. 4, etc. of Patent Document 1).
  • the technique of the present specification is made to solve the problems of the above-described conventional techniques. That is, it is an object of the present invention to provide a plasma generating apparatus which generates a stronger electric field in a slot in a plasma generating apparatus which generates plasma from a slot by incidence of microwaves.
  • the plasma generation apparatus in the first aspect has a waveguide extending in the z direction in the xyz Cartesian coordinate system, and a microwave generation unit generating microwaves transmitting the waveguide in the z direction.
  • the waveguide has a first conductor surface facing the inside of the waveguide, a second conductor surface facing the inside of the waveguide, and a slot penetrating from the first conductor surface to the outside of the waveguide And.
  • the first conductor surface and the second conductor surface are electrically connected and face each other.
  • the first length in the y direction of the first conductor surface in the cross section perpendicular to the z direction is shorter than the second length in the y direction of the second conductor surface in the cross section perpendicular to the z direction.
  • the first length includes the length in the y direction of the slot in a cross section perpendicular to the z direction.
  • the second length is less than the distance in the x direction between the first and second conductor planes.
  • the first length is shorter than the second length. Therefore, when microwaves are transmitted to this waveguide, a strong electric field is formed at the locations of the slots (slit-like through holes). In addition, since gas is ejected from the slot, plasma is generated outside the slot. The plasma is formed in an elongated region along the shape of the slot.
  • a plasma generating device that generates a stronger electric field in the slot in a plasma generating device that generates plasma from the slot by the incidence of microwaves.
  • sectional drawing (the 4) which shows the cross-sectional shape of the waveguide of 2nd Embodiment. It is sectional drawing (the 5) which shows the cross-sectional shape of the waveguide of 2nd Embodiment. It is sectional drawing (the 6) which shows the cross-sectional shape of the waveguide of 2nd Embodiment. It is sectional drawing (the 7) which shows the cross-sectional shape of the waveguide of 2nd Embodiment. It is a see-through
  • FIG. 1 is a schematic block diagram of a plasma generating apparatus 100 according to the first embodiment.
  • the plasma generating apparatus 100 generates a plasma using a waveguide for transmitting microwaves.
  • the plasma generating apparatus 100 includes a waveguide 110, a microwave generator 120, an isolator 130, a power monitor 140, an EH tuner 150, a termination 160, and connection waveguides 171, 172, 173, 174. And airtight window waveguides 181 and 182, and a gas supply unit 190.
  • the waveguide 110, the connecting waveguides 171, 172, 173, 174, and the airtight waveguides 181, 182 are all rectangular waveguides.
  • the central axes of the waveguide 110, the coupling waveguides 171, 172, 173, 174 and the airtight waveguides 181, 182 are common.
  • the waveguide 110 extends in the z direction.
  • the waveguide 110 has a slot 111.
  • the slot 111 is a slit-like through hole provided in the waveguide 110. Plasma is generated at the slot 111. Details will be described later.
  • the long side of the cross section perpendicular to the central axis of the waveguide 110 is, for example, 96 mm.
  • the short side of the cross section perpendicular to the central axis of the waveguide 110 is, for example, 27 mm.
  • the material of the waveguide 110 may be, for example, a metal such as copper, aluminum, iron, stainless steel, or an alloy thereof.
  • the microwave generator 120 is for generating microwaves transmitted through the waveguide 110.
  • the microwaves transmit through the waveguide 110 in the z-direction.
  • the microwave is, for example, a sine wave or a rectangular wave.
  • the microwave may be in TE 10 mode.
  • the microwave generator 120 is, for example, a magnetron, a klystron, a gyrotron, or a traveling wave tube.
  • the frequency of the microwaves generated by the microwave generator 120 is, for example, 2.45 GHz. Of course, other frequencies may be used. These are only examples, and the configuration of the microwave generation unit 120 may be different from the above.
  • the isolator 130 is for suppressing the incidence of the reflected microwave wave on the microwave generator 120.
  • the isolator 130 transmits the microwaves transmitted from the microwave generator 120 toward the waveguide 110, and releases the microwaves from the waveguide 110 toward the microwave generator 120. Thereby, it is possible to prevent the reflected wave of the microwave from the waveguide 110 and the like from being incident on the microwave generation unit 120.
  • the power monitor 140 is for measuring the power of the microwave to be transmitted to the waveguide 110.
  • the power monitor 140 can also measure the reflected wave from the waveguide 110.
  • the EH tuner 150 has an E-tuner unit and an H-tuner unit.
  • the EH tuner 150 adjusts the impedance by taking in and out the plunger of the E-tuner unit and the plunger of the H-tuner unit.
  • the terminal portion 160 is a member for absorbing microwaves.
  • the microwaves transmitted through the waveguide 110 generate a plasma over the area of the slot 111. Therefore, the intensity of the microwave reaching the end portion 160 is sufficiently weak.
  • the termination unit 160 may also reflect part of the microwaves.
  • the connecting waveguides 171, 172, 173, 174 are normal rectangular waveguides.
  • the material of the connecting waveguides 171, 172, 173, 174 may be, for example, a metal such as copper, aluminum, iron, stainless steel, or an alloy thereof.
  • the hermetic window waveguides 181 and 182 are partitions located on both sides of the waveguide 110. Therefore, the hermetic window waveguides 181 and 182 are disposed on both sides of the waveguide 110.
  • the gas supply unit 190 supplies gas to the waveguide 110.
  • the gas supplied from the gas supply unit 190 is plasmatized when ejected from the slot 111.
  • the gas supplied by the gas supply unit 190 is, for example, a rare gas such as Ar or Ne.
  • nitrogen gas or oxygen gas may be used. Of course, it may be normal air. Alternatively, it may be a mixed gas obtained by mixing these gases.
  • FIG. 2 is a cross-sectional view showing the cross section of the waveguide 110 of the plasma generation apparatus 100 of the first embodiment.
  • FIG. 2 shows the II-II cross section of FIG.
  • the waveguide 110 has a first wall 110a, a second wall 110b, a third wall 110c, and a fourth wall 110d.
  • the first wall portion 110 a and the second wall portion 110 b extend in the transmission direction of the waveguide 110 while facing each other.
  • the third wall 110 c and the fourth wall 110 d extend in the transmission direction of the waveguide 110 in a state of facing each other.
  • the first wall 110 a and the second wall 110 b correspond to short sides in a cross section perpendicular to the transmission direction of the waveguide 110.
  • the third wall 110 c and the fourth wall 110 d correspond to long sides in a cross section perpendicular to the transmission direction of the waveguide 110.
  • the third wall 110 c is continuous with the first wall 110 a and the second wall 110 b.
  • the fourth wall 110d is continuous with the first wall 110a and the second wall 110b.
  • the first wall 110 a of the waveguide 110 has a slot 111.
  • the slot 111 penetrates from the first conductor surface S1 described later to the outside of the waveguide 110.
  • the longitudinal direction of the slot 111 is formed at an angle not perpendicular to the transmission direction of the waveguide 110.
  • the longitudinal direction of the slot 111 is within ⁇ 5 ° with respect to the transmission direction of the waveguide 110. More preferably, the longitudinal direction of the slot 111 is parallel to the transmission direction of the waveguide 110.
  • the waveguide 110 has a first location E1a and a second location E1b at the location of the slot 111.
  • the first place E1a and the second place E1b face each other across the opening of the slot 111.
  • the waveguide 110 has a metal member 112 in contact with the first wall portion 110a and the third wall portion 110c.
  • the metal member 112 is a rectangular solid first metal member.
  • the metal member 112 is in contact with the first wall portion 110a and the third wall portion 110c.
  • the material of the metal member 112 is, for example, a metal such as copper, aluminum, iron, stainless steel, or an alloy thereof.
  • the material of the metallic material 112 may be the same as the material of the waveguide 110.
  • the metal member 112 does not close the slot 111. Therefore, the slot 111 is disposed on the side closer to the fourth wall 110 d in the first wall 110 a.
  • the first wall portion 110 a has a slot 111 and a first conductor surface S 1 facing the inside of the waveguide 110.
  • the second wall 110 b has a second conductor surface S 2 facing the inside of the waveguide 110.
  • the third wall 110 c has a third conductor surface S 3 facing the inside of the waveguide 110.
  • the fourth wall 110 d has a fourth conductor surface S 4 facing the inside of the waveguide 110.
  • the first conductor surface S1 is a surface exposed to the inside of the waveguide 110. The same applies to other conductor surfaces. Since the metal member 112 is present, the length of the first conductor surface S1 in the cross section perpendicular to the transmission direction of the waveguide 110 is shorter by that amount.
  • the first conductor surface S1 and the second conductor surface S2 are surfaces parallel to the yz plane.
  • the first conductor surface S1 and the second conductor surface S2 may be surfaces including surfaces parallel to the yz plane.
  • the third conductor surface S3 and the fourth conductor surface S4 are surfaces parallel to the xz plane.
  • the third conductor surface S3 and the fourth conductor surface S4 may be surfaces including surfaces parallel to the xz plane.
  • the first conductor surface S1 and the second conductor surface S2 are electrically conductive and opposed to each other.
  • the third conductor surface S3 and the fourth conductor surface S4 are electrically conductive and opposed to each other.
  • the third conductor surface S3 is continuous with the second conductor surface S2. Because the metal member 112 is present, the waveguide 110 has a first partial surface S3a and a second partial surface S3b.
  • the first partial surface S3a and the second partial surface S3b are connection surfaces that connect the first conductor surface S1 and the third conductor surface S3.
  • the first partial surface S3a faces the fourth conductor surface S4.
  • the second partial surface S3b faces the second conductor surface S2.
  • the fourth conductor surface S4 is continuous with the first conductor surface S1 and the second conductor surface S2.
  • the first partial surface S3a, the second partial surface S3b, and the third conductor surface S3 are arranged in order from the side of the first conductor surface S1.
  • FIG. 2 shows a cross section perpendicular to the z direction.
  • the first length L1 in the y direction of the first conductor surface S1 in the cross section perpendicular to the z direction is greater than the second length L2 in the y direction of the second conductor surface S2 in the cross section perpendicular to the z direction short.
  • the first length L1 includes the length of the slot 111 in the y direction in a cross section perpendicular to the z direction.
  • the second length L2 is shorter than the distance in the x direction between the first conductor surface S1 and the second conductor surface S2.
  • the waveguide 110 has a gas supply hole (not shown) for supplying gas to the inside of the waveguide 110.
  • the gas supply holes are holes for supplying the gas from the gas supply unit 190 to the waveguide 110.
  • the gas supplied from the gas supply holes is spouted from the slot 111.
  • Plasma Generation Region A strong electric field is formed between the first portion E1a and the second portion E1b in the waveguide 110. Also, gas is ejected from the slot 111 toward the outside of the waveguide 110. Therefore, the gas is plasmified.
  • FIG. 3 is a view showing a plasma generation region P1 in the waveguide 110.
  • the plasma generation region P ⁇ b> 1 is a linear region along the slot 111 and is a region outside the waveguide 110.
  • the plasma generation region P1 shown in FIG. 3 is drawn conceptually. Therefore, the actual plasma generation region P1 may be larger or smaller than the range shown in FIG.
  • the first distance L1 on the side of the first wall 110a in which the slot 111 is present is smaller than the second distance L2 on the side of the second wall 110b.
  • the impedance on the first wall 110a side is smaller than the impedance on the second wall 110b side. That is, the voltage on the first wall 110 a side is smaller than the voltage on the second wall 110 b side.
  • the current on the first wall 110 a side is larger than the current on the second wall 110 b side.
  • the surface current flowing through the waveguide 110 is large on the first wall portion 110 a side.
  • the current j flows in the direction of the arrow J1 in FIG.
  • the current j is suddenly cut off.
  • the first term on the right side of equation (1) suddenly becomes zero.
  • the second term on the right side ⁇ D / ⁇ t, sharply increases.
  • a strong electric field is formed between the first portion E1a and the second portion E1b in the waveguide 110. Therefore, plasma can be generated with high efficiency.
  • the gas supply unit 190 supplies the gas to the waveguide 110. Thereby, the gas is ejected from the slot 111 of the waveguide 110.
  • the microwave generation unit 120 generates microwaves and transmits the microwaves to the waveguide 110.
  • a strong electric field is formed between the first point E1a and the second point E1b. Therefore, the gas ejected from the slot 111 is plasmatized. That is, plasma is generated in the plasma generation region P1.
  • the waveguide 110 in the first embodiment has the metal member 112 on the surface in contact with the first wall 110 a and the third wall 110 c.
  • the first wall portion 110 a is a short side of a cross section perpendicular to the central axis of the waveguide 110.
  • the first wall 110 a of the waveguide 110 has a slot 111.
  • the slot 111 is formed in the first wall 110a. That is, the slot 111 is formed on a short side of a cross section perpendicular to the central axis of the waveguide 110 and in contact with the metal member 112.
  • a very strong electric field is formed between the first point E1a and the second point E1b of the slot 111.
  • gas is ejected from the slot 111, plasma is generated outside the slot 111. This plasma is formed in a rod-like elongated area along the slot.
  • Modification 7-1 Device Configuration
  • a plasma generator 200 shown in FIG. 4 may be used.
  • the plasma generator 200 has a circulator 260 and a waveguide 276 instead of the end portion 160.
  • a reaction chamber for plasma processing the substrate may be provided instead of the end portion 160.
  • the dimensions of the waveguide The long side of the cross section perpendicular to the transmission direction of the waveguide 110 may be, for example, 72.1 mm.
  • the short side of the cross section perpendicular to the transmission direction of the waveguide 110 may be, for example, 34 mm.
  • the dimension of the cross-sectional shape of the waveguide 110 may be other than the above.
  • Impedance Matching Device In this embodiment, an EH tuner 150 is used. However, instead of the EH tuner 150, other impedance matching devices may be used.
  • gas is supplied from the gas supply unit 190 to the waveguide 110, and then microwaves are transmitted to the waveguide 110.
  • these orders may be reversed. That is, microwaves may be transmitted to the waveguide 110, and then gas may be supplied from the gas supply unit 190 to the waveguide 110.
  • the waveguide of the second embodiment has a metal member different from the waveguide of the first embodiment.
  • FIG. 5 is a cross-sectional view (part 1) showing the cross-sectional shape of the waveguide 210 of the second embodiment.
  • the waveguide 210 has a metal member 212.
  • the metal member 212 is a hexahedron.
  • the height of the metal member 212 decreases with distance from the first wall 110a. That is, the distance between the fourth wall 110 d and the metal member 212 increases as the distance from the first wall 110 a increases.
  • connection surface of the metal member 212 and the fourth conductor surface S4 increases with distance from the first conductor surface S1.
  • the connection surface is a surface connecting the first conductor surface S1 and the third conductor surface S3 in the metal member 212.
  • FIG. 6 is a cross-sectional view (part 2) showing the cross-sectional shape of the waveguide 310 of the second embodiment.
  • the waveguide 310 has a metal member 312.
  • the metal member 312 is a hexahedron.
  • the width of the metal member 312 decreases with distance from the third wall 110c. That is, the distance between the second wall portion 110 b and the metal member 312 increases as the distance from the third wall portion 110 c increases.
  • connection surface of the metal member 312 and the fourth conductor surface S4 increases with distance from the first conductor surface S1.
  • the connection surface is a surface connecting the first conductor surface S1 and the third conductor surface S3 in the metal member 312.
  • FIG. 7 is a cross-sectional view (part 3) showing the cross-sectional shape of the waveguide 410 of the second embodiment.
  • the waveguide 410 has a metal member 412.
  • the metal member 412 is a pentagonal prism.
  • the corner located at the diagonal of the corner in contact with the first wall portion 110a and the third wall portion 110c is chamfered.
  • connection surface of the metal member 412 and the fourth conductor surface S4 increases with distance from the first conductor surface S1.
  • the connection surface is a surface connecting the first conductor surface S1 and the third conductor surface S3 in the metal member 412.
  • FIG. 8 is a cross-sectional view (part 4) showing the cross-sectional shape of the waveguide 510 of the second embodiment.
  • the waveguide 510 has a metal member 512.
  • the metal member 512 is a triangular prism.
  • the height of the metal member 512 decreases with distance from the first wall 110a. That is, the distance between the fourth wall 110 d and the metal member 512 increases as the distance from the first wall 110 a increases.
  • the width of the metal member 512 decreases with distance from the third wall 110c. That is, the distance between the second wall portion 110 b and the metal member 512 increases as the distance from the third wall portion 110 c increases.
  • connection surface of the metal member 512 and the fourth conductor surface S4 increases with distance from the first conductor surface S1.
  • the connection surface is a surface connecting the first conductor surface S1 and the third conductor surface S3 in the metal member 512.
  • FIG. 9 is a cross-sectional view (part 5) showing the cross-sectional shape of the waveguide 610 of the second embodiment.
  • the waveguide 610 has a first metal member 612a and a second metal member 612b.
  • the first metal member 612a is in contact with the first wall portion 110a and the third wall portion 110c.
  • the second metal member 612b is in contact with the first wall 110a and the fourth wall 110d.
  • the slot 111 is disposed at a position where the hole is not closed by the first metal member 612 a and the second metal member 612 b. That is, the slot 111 is provided at a position between the first metal member 612a and the second metal member 612b in the first wall portion 110a.
  • the inner surface of the waveguide 610 in the first metal member 612a is a first connection surface.
  • the inner surface of the waveguide 610 in the second metal member 612b is a second connection surface.
  • the first connection surface connects the slot 111 or the first conductor surface to the third conductor surface.
  • the second connection surface connects the slot 111 or the first conductor surface to the fourth conductor surface.
  • FIG. 10 is a cross-sectional view (part 6) showing the cross-sectional shape of the waveguide 710 of the second embodiment.
  • the waveguide 710 has a metal member 712.
  • the metal member 712 is a rectangular parallelepiped.
  • the metal member 712 contacts the first wall 110 a and is disposed at a position not contacting any of the second wall 110 b, the third wall 110 c, and the fourth wall 110 d.
  • the slot 111 is disposed at a position where the hole is not closed by the metal member 712 in the first wall portion 110 a.
  • the distance from the third wall 110c to the metal member 712 is equal to the distance from the fourth wall 110d to the metal member 712.
  • the distance from the third wall 110 c to the metal member 712 may be different from the distance from the fourth wall 110 d to the metal member 712.
  • the slot 111 may be formed at a position closer to the third wall 110 c or may be formed at a position closer to the fourth wall 110 d.
  • FIG. 11 is a cross-sectional view (part 7) showing the cross-sectional shape of the waveguide 810 of the second embodiment. As shown in FIG. 11, a waveguide 810 in which two slots 111 are formed in the first wall 110a may be used.
  • the inter-metal distance inside the waveguide is smaller on the side of the first wall portion 110a where the slot 111 is formed, and on the side of the second surface 110d where the slot 111 is not formed. large.
  • the electric field strength in the slot 111 can be increased by reducing the metal-to-metal distance on the side of the first wall portion 110 a in which the slot 111 is formed.
  • Second Connection Surface instead of the first connection surface, a second connection surface may be provided to connect the first conductor surface S1 and the fourth conductor surface S4.
  • the third embodiment will be described.
  • the waveguide of the third embodiment has a metal member different from that of the waveguide of the first embodiment.
  • FIG. 12 is a transparent perspective view showing the structure of the waveguide 110 of the third embodiment.
  • the waveguide 110 has a metal member 812.
  • the metal member 812 has a main body 812 a and an attachment 812 b.
  • the main body portion 812a and the attachment portion 812b are rectangular parallelepipeds.
  • the main body 812a and the attachment 812b are integrated.
  • the attachment 812 b is disposed in parallel with the main body 812 a at a position parallel to the transmission direction of the waveguide 110 and adjacent to the main body 812 a.
  • the width a1 of the attachment 812b is the same as the width a of the main portion 812a.
  • the height b1 of the attachment 812b is less than the height b of the main portion 812a.
  • the length c1 of the attachment 812b is shorter than the length of the main portion 812a.
  • the attachment 812 b suppresses the reflection of microwaves transmitted from the microwave generator 120 toward the waveguide 110 to the microwave generator 120. Therefore, the amount of attenuation by which the microwaves reach the location of the slot 111 is small. Moreover, the reflected wave which goes to the microwave generation part 120 can be suppressed.
  • FIG. 12 has one attachment 812 b for the main body 812 a.
  • the waveguide 110 may have two appendages 812b.
  • one attachment 812 b is disposed on each side of the main body 812 a. Thereby, the reflected wave in the both ends of the main-body part 812a can be suppressed suitably.
  • FIG. 13 shows a waveguide 910 of the fourth embodiment.
  • the shape of the waveguide 910 is close to that of a rectangular waveguide.
  • the waveguide 910 has a first wall 910a, a second wall 910b, a third wall 910c, and a fourth wall 910d.
  • the first wall 910 a has a slot 111. Therefore, the first wall portion 910a has a first portion E1a and a second portion E1b.
  • the first wall 910 a and the second wall 910 b extend in the transmission direction of the waveguide 910 while facing each other.
  • the third wall 910 c and the fourth wall 910 d extend in the transmission direction of the waveguide 910 while facing each other.
  • the first wall 910 a and the second wall 910 b correspond to the short side in the cross section perpendicular to the transmission direction of the waveguide 910.
  • the fourth wall portion 910 d corresponds to a long side in a cross section perpendicular to the transmission direction of the waveguide 910.
  • the third wall 910 c is continuous with the first wall 910 a and the second wall 910 b.
  • the fourth wall 910 d is continuous with the first wall 910 a and the second wall 910 b.
  • the first wall portion 910 a has a first conductor surface S 1 facing the inside of the waveguide 910.
  • the second wall portion 910 b has a second conductor surface S 2 facing the inside of the waveguide 910.
  • the third wall portion 910 c has a third conductor surface S 3 facing the inside of the waveguide 910.
  • the fourth wall portion 910 d has a fourth conductor surface S 4 facing the inside of the waveguide 910.
  • the first conductor surface S1, the second conductor surface S2, the third conductor surface S3 and the fourth conductor surface S4 are the first conductor surface S1 and the second conductor surface S2 of the first embodiment. The same as the third conductor surface S3 and the fourth conductor surface S4.
  • the first length L1 of the first conductor surface S1 in the y direction in the cross section perpendicular to the z direction is the y direction of the second conductor surface S2 in the cross section perpendicular to the z direction. Less than the second length L 2 of
  • the inner conductor surface of the waveguide 910 of the fourth embodiment is the same as the inner conductor surface of the waveguide 110 of the first embodiment. Surface current flows to the surface of each conductor surface. Therefore, it is sufficient if the thickness of the metal including the conductor surface is a certain level or more. Thus, even with the waveguide 910 of the fourth embodiment, it is possible to generate a suitable plasma in the slot 111 as in the waveguide 110 of the first embodiment.
  • the fourth embodiment may be freely combined with the first embodiment, the second embodiment, the third embodiment, and these modifications.
  • the plasma generating apparatus has a waveguide extending in the z direction in the xyz orthogonal coordinate system of FIG. 14 and a microwave generating unit generating microwaves transmitting the waveguide in the z direction.
  • the waveguide has a first conductor surface facing the inside of the waveguide, a second conductor surface facing the inside of the waveguide, and a slot penetrating from the first conductor surface to the outside of the waveguide And.
  • the first conductor surface and the second conductor surface are electrically connected and face each other.
  • the first length in the y direction of the first conductor surface in the cross section perpendicular to the z direction is shorter than the second length in the y direction of the second conductor surface in the cross section perpendicular to the z direction.
  • the first length includes the length in the y direction of the slot in a cross section perpendicular to the z direction.
  • the second length is less than the distance in the x direction between the first and second conductor planes.
  • the first conductor surface and the second conductor surface include planes parallel to the yz plane.
  • the first conductor surface and the second conductor surface may be surfaces parallel to the yz plane.
  • the waveguide faces the inside of the waveguide and is continuous with the second conductor surface, and the third conductor surface and the fourth conductor surface, which are opposite to each other, and the first connection surface and the second connection surface And at least one of the The third conductor plane and the fourth conductor plane include planes parallel to the xz plane.
  • the first connection surface connects the slot or the first conductor surface to the third conductor surface.
  • the second connection surface connects the slot or the first conductor surface to the fourth conductor surface.
  • the distance between the first connection surface and the fourth conductor surface increases with distance from the first conductor surface (for example, FIGS. 5 to 8).
  • the distance between the second connection surface and the third conductor surface increases with distance from the first conductor surface (for example, FIGS. 5 to 8).
  • the waveguide faces the inside of the waveguide and is continuous with the second conductor surface, and the third and fourth conductor surfaces facing each other and the inside of the waveguide A fifth conductor surface facing a portion of the third conductor surface, and a sixth conductor surface facing the inside of the waveguide and facing a portion of the fourth conductor surface.
  • the third conductor plane and the fourth conductor plane include planes parallel to the xz plane. The length in the x direction of the fifth conductor surface and the length in the x direction of the sixth conductor surface are shorter than the distance between the first conductor surface and the second conductor surface (for example, FIG. 10 and FIG. Figure 11).
  • the waveguide faces the inside of the waveguide and is continuous with the second conductor surface, and the third and fourth conductor surfaces facing each other and the inside of the waveguide
  • a fifth conductor surface continuous with the first conductor surface
  • a sixth conductor surface facing the inside of the waveguide and continuous with the third conductor surface.
  • the sixth conductor surface is located between the third conductor surface and the fifth conductor surface.
  • the waveguide has the following formula: 0.24 ⁇ A ⁇ 3.6 ⁇ a ⁇ 0.56 ⁇ A ⁇ 8.4 A: Distance between the first conductor surface and the second conductor surface in a cross section perpendicular to the transmission direction of the waveguide a: First conductor surface and sixth in the cross section perpendicular to the transmission direction of the waveguide Fill the distance between the conductor surface of the sensor (for example, FIG. 16).
  • the waveguide has a seventh surface at a position adjacent in the z direction from the fifth conductor surface.
  • the distance between the seventh conductor surface and the fourth conductor surface is larger than the distance between the fifth conductor surface and the fourth conductor surface (for example, FIG. 12).
  • the longitudinal direction of the slot is formed at an angle not perpendicular to the transmission direction of the waveguide.
  • FIG. 14 is a diagram for explaining the shape of the rectangular waveguide used for the simulation.
  • the x-axis is the long side direction in the cross section perpendicular to the central axis of the rectangular waveguide.
  • the y-axis is the short side direction in a cross section perpendicular to the central axis of the rectangular waveguide.
  • the z-axis is a direction parallel to the central axis of the rectangular waveguide.
  • the microwaves are transmitted inside the rectangular waveguide while being reflected by the inner wall of the rectangular waveguide.
  • the long side direction of the slot is parallel to the z axis.
  • the length of the slot in the long side direction (z-axis direction) is 30 mm.
  • the short side length of the slot is 1 mm.
  • the thickness of the rectangular waveguide is 1 mm.
  • the input voltage is 1 W.
  • the frequency of the microwaves is 2.45 GHz.
  • FIG. 15 is a graph showing the relationship between the position in the x-axis direction and the electric field strength in the slot.
  • the horizontal axis in FIG. 15 is the position (mm) in the x-axis direction.
  • the vertical axis in FIG. 15 is the electric field strength in the slot. That is, it is the electric field strength between the first place E1a and the second place E1b.
  • K1 of FIG. 15 shows the case where a slot is provided on the surface of K1 of FIG. K2 of FIG. 15 shows the case where a slot is provided on the surface of K2 of FIG.
  • the microwaves propagated to the waveguide are TE 10 modes. Therefore, the electric field strength is the same no matter where in the plane K2 of FIG. 14 the slot is provided.
  • the electric field strength in the slot in the plane of K1 in FIG. 14 is weak near the center of the long side and strong near the end of the long side.
  • the maximum value of the electric field strength in the slot is at both ends in the long side direction.
  • the electric field strength in the slot when the slot is provided on the short side is larger than the electric field strength in the slot when the slot is provided on the long side.
  • the same electric field strength is exhibited at any position. Therefore, it is more preferable to provide slots on the shorter side than to provide slots on the longer side. This is because higher electric field strength can be obtained in the slot.
  • FIG. 16 is a diagram for explaining the shape of a waveguide used for simulation.
  • the x-axis is the long side direction in the cross section perpendicular to the central axis of the waveguide.
  • the y-axis is the short side direction in the cross section perpendicular to the central axis of the waveguide.
  • the z-axis is a direction parallel to the central axis of the waveguide.
  • the length A in the long side direction is 96 mm.
  • the length B in the short side direction is 27 mm.
  • the length a in the long side direction of the metal member 112 is 32 mm.
  • the length b in the short side direction of the metal member 112 is 22 mm.
  • the length of the slot in the long side direction (z-axis direction) is 30 mm.
  • the short side length of the slot is 1 mm.
  • the thickness of the rectangular waveguide is 1 mm.
  • the input voltage is 1 W.
  • the frequency of the microwaves is 2.45 GHz.
  • FIG. 17 is a graph showing the relationship between the position in the x-axis direction of the waveguide provided with the metal member and the electric field strength.
  • the horizontal axis in FIG. 17 is the position (mm) in the x-axis direction.
  • the vertical axis in FIG. 17 is the electric field intensity (kV / m) in the waveguide.
  • the metal member 112 is disposed in the region of (64 ⁇ x ⁇ 96, 0 ⁇ y ⁇ 22) in the xy plane.
  • the presence of the metal member 112 makes the electric field strength very strong in the region of x ⁇ 60 mm.
  • the width A of the waveguide is the distance between the first conductor surface and the second conductor surface in a cross section perpendicular to the transmission direction of the waveguide.
  • the width a of the metal member 112 is the width of the metal member 112 in the direction of the long side in the cross section perpendicular to the transmission direction of the waveguide.
  • the height B of the waveguide is 27 mm.
  • the input power is 1 W.
  • the frequency of the microwaves is 2.45 GHz.
  • FIG. 18 is a graph (part 1) showing the relationship between the width A of the waveguide and the width a of the metal member 112.
  • the horizontal axis of FIG. 18 is the width A (mm) of the waveguide.
  • the vertical axis in FIG. 18 is the width a (mm) of the metal member 112 when the maximum current density is realized with respect to the width A (mm) of the waveguide.
  • the width a (mm) of the metal member 112 in the case of realizing the maximum current density is the metal member 112 when the current density becomes maximum when the width a is fixed and a graph of the width a and the current density is drawn. Width a (mm).
  • the height b of the metal member 112 was plotted for 22 mm and 13.5 mm.
  • the width a (mm) of the metal member 112 when achieving the maximum current density with respect to the width A (mm) of the waveguide does not depend on the height b of the metal member 112.
  • FIG. 19 is a graph (part 2) showing the relationship between the width A of the waveguide and the width a of the metal member 112.
  • the horizontal axis in FIG. 19 is the width A (mm) of the waveguide.
  • the vertical axis in FIG. 19 is the width a (mm) of the metal member 112 in the case of achieving the maximum current density with respect to the width A (mm) of the waveguide.
  • the microwave frequency is 2.0 GHz, 2.45 GHz, and 3.0 GHz, respectively, is plotted.
  • the width a (mm) of the metal member 112 when achieving the maximum current density with respect to the width A (mm) of the waveguide does not depend on the frequency of the microwave.
  • Formula (2) is a straight line which approximates the width a (mm) point of the metal member 112 in the case of realizing the maximum current density with respect to the width A (mm) of the waveguide. That is, when the formula (2) is satisfied, the electric field strength between the first place E1a and the second place E1b of the slot 111 takes the maximum value.
  • the relationship between the width A of the waveguide and the width a of the metal member 112 may be in the range of ⁇ 40% from equation (2).
  • the range is shown in the following equation (3). 0.24 ⁇ A-3.6 ⁇ a ⁇ 0.56 ⁇ A-8.4 (3)
  • the relationship between the width A of the waveguide and the width a of the metal member 112 may be in the range of ⁇ 20% from the equation (2). In that case, the electric field strength between the first place E1a and the second place E1b of the slot 111 takes a higher value than in the case of the formula (3).
  • the range is shown in the following equation (4). 0.32 ⁇ A-4.8 ⁇ a ⁇ 0.48 ⁇ A-7.2 (4)
  • Microwave Mode Generally, the electromagnetic waves in the waveguide are transmitted in the TE 10 mode. When many modes are transmitted, the energy loss of the electromagnetic wave is large.
  • the microwave is transmitted in TE 10 mode when the following equation is satisfied. v 0 / 2f ⁇ A ⁇ v 0 / f B ⁇ v 0 / 2f v 0 : Speed of light in vacuum f: Frequency of microwave
  • FIG. 20 is a diagram schematically showing an electric field and a magnetic field formed inside the waveguide during microwave propagation.
  • the electric field is formed in the upward or downward direction of FIG.
  • the magnetic field is formed to swirl in a direction perpendicular to the electric field.
  • FIG. 21 is a diagram showing the direction of the current flowing on the inner surface of the waveguide when the electromagnetic field of FIG. 20 is formed.
  • the broken line in FIG. 21 indicates the flow of current.
  • FIG. 22 is a graph showing the relationship between the microwave output and the electric field strength formed in the slot in the plasma generation apparatus of the first embodiment and the conventional plasma generation apparatus.
  • the horizontal axis in FIG. 22 is the output of the microwave power supply 120.
  • the vertical axis in FIG. 22 is the electric field strength in the slot.
  • the discharge start voltage of Ar gas is about 30 kV / m.
  • the discharge start voltage of nitrogen gas is about 100 kV / m.
  • the conventional plasma generator can plasmify Ar gas using a microwave of about 1400 W, but can not plasmify nitrogen gas even using a microwave of about 3000 W.
  • the plasma generating apparatus 100 according to the first embodiment can plasma Ar gas using a microwave of about 200 W, and can plasma nitrogen gas using a microwave of about 1700 W.
  • the plasma generation apparatus 100 can use not only a rare gas but also a molecular gas as a plasma gas.
  • Influence of Metal Member A simulation was conducted on the case where a metal member was placed inside the waveguide. The conditions at that time are as follows.
  • the width (inner width) of the waveguide is 96 mm.
  • the height (inner width) of the waveguide is 27 mm.
  • the width of the metal member is 32 mm.
  • the height of the metal member is 22 mm.
  • the input power of the microwave is 1 W.
  • the frequency of the microwaves is 2.45 GHz.
  • FIG. 23 is a simulation result showing the electric field strength inside the waveguide of the plasma generating apparatus 100 of the first embodiment.
  • the metal member is disposed inside the waveguide and on the right side of FIG. In this case, the electric field strength is strong around the metal member. That is, this result is consistent with FIG.
  • the scattering parameters are part of the components of the scattering matrix.
  • the scattering parameter of the single waveguide in the plasma generating apparatus 100 of the first embodiment, and the scattering parameter when the waveguide of the first embodiment and the ordinary waveguide are connected was calculated.
  • a waveguide having a metal member and a normal waveguide are connected. Therefore, the scattering parameters after connection with a normal waveguide are important.
  • FIG. 24 is a graph showing scattering parameters of a single waveguide provided with a metal member.
  • the horizontal axis in FIG. 24 is the frequency of the incident microwaves.
  • the vertical axis in FIG. 24 is a scattering parameter.
  • the conditions at this time are the same as in FIG.
  • the proportion of reflected waves is very small.
  • the scattering parameters were calculated when a waveguide having a metal member was connected to a normal waveguide. In that case, a reflected wave was generated.
  • FIG. 25 is a graph showing scattering parameters when a waveguide having a metal member with an appendage and a conventional waveguide are connected.
  • the horizontal and vertical axes in FIG. 25 are the same as in FIG.
  • the size of each part at this time is the same as that of FIG.
  • the other conditions are the same as in FIG.
  • an S 21 approximately 0 dB, S 11 indicating a ratio of the reflected wave is less than -30 dB.
  • the proportion of the reflected wave is sufficiently small.
  • Example 1 Experiment 1 (noble gas) 1-1.
  • Experimental Method Plasma was generated using the plasma generator 100 of the first embodiment.
  • the cross-sectional shape of the waveguide was the same as in FIG.
  • the slot length was 1.1 m.
  • the width of the slot was 0.1 mm.
  • the output of the microwave power supply 120 was 0.5 kW.
  • the plasma gas was Ar gas.
  • the flow rate of Ar gas was 14 slm.
  • FIG. 26 is a diagram (part 1) in which a photograph at the time of plasma generation of the plasma generator 100 and a graph of the plasma emission intensity are combined.
  • the upper part of FIG. 26 shows a photograph at the time of plasma generation.
  • the lower part of FIG. 26 shows a graph of the plasma emission intensity.
  • the horizontal axis in FIG. 26 is the position of the slot of the plasma generator 100.
  • the vertical axis in FIG. 26 is the plasma emission intensity.
  • the emission intensity of plasma is a time average of the intensity of light emitted by the plasma at that position.
  • FIG. 26 The left end of FIG. 26 is the microwave input side. As shown in FIG. 26, the emission intensity of the plasma was substantially constant over the length of the slot. For this reason, plasma treatment can be performed at one time over a long range of about 1 m.
  • Experiment 2 (molecular gas) 1-1. Experimental Method Plasma was generated using the plasma generator 100 of the first embodiment. The cross-sectional shape of the waveguide was the same as in FIG. The slot length was 0.8 m. The width of the slot was 0.1 mm. The output of the microwave power supply 120 was 5.0 kW. The plasma gas was N 2 gas. The flow rate of N 2 gas was 10 slm.
  • FIG. 27 is a diagram (part 2) in which a photograph during plasma generation of the plasma generating apparatus 100 and a graph of the plasma emission intensity are combined.
  • the upper part of FIG. 27 shows a photograph at the time of plasma generation.
  • the lower part of FIG. 27 shows a graph of the plasma emission intensity.
  • the horizontal axis in FIG. 27 is the position of the slot of the plasma generator 100.
  • the vertical axis in FIG. 27 is the emission intensity of plasma.
  • FIG. 27 The left end of FIG. 27 is the microwave input side. As shown in FIG. 27, the emission intensity of the plasma was substantially constant over the length of the slot. For this reason, plasma treatment can be performed at one time over a long range of about 1 m.
  • the plasma generating apparatus 100 can use not only a rare gas such as Ar gas but also a molecular gas such as nitrogen gas as a plasma gas. Therefore, the plasma generation apparatus 100 can irradiate various plasmas to the material to be processed. That is, the plasma processing apparatus 100 can be used for various applications.
  • the plasma in the stable region may irradiate the plasma to the material to be treated and the plasma in the unstable region may not irradiate the plasma to the material to be treated.
  • the plasma generation apparatus in the first aspect has a waveguide extending in the z direction in the xyz Cartesian coordinate system, and a microwave generation unit generating microwaves transmitting the waveguide in the z direction.
  • the waveguide has a first conductor surface facing the inside of the waveguide, a second conductor surface facing the inside of the waveguide, and a slot penetrating from the first conductor surface to the outside of the waveguide And.
  • the first conductor surface and the second conductor surface are electrically connected and face each other.
  • the first length in the y direction of the first conductor surface in the cross section perpendicular to the z direction is shorter than the second length in the y direction of the second conductor surface in the cross section perpendicular to the z direction.
  • the first length includes the length in the y direction of the slot in a cross section perpendicular to the z direction.
  • the second length is less than the distance in the x direction between the first and second conductor planes.
  • the first conductor surface and the second conductor surface are surfaces parallel to the yz plane.
  • the waveguide faces the inside of the waveguide and is continuous with the second conductor surface, and the third conductor surface and the fourth conductor surface facing each other, And at least one of a first connection surface and a second connection surface.
  • the third conductor plane and the fourth conductor plane include planes parallel to the xz plane.
  • the first connection surface connects the slot or the first conductor surface to the third conductor surface.
  • the second connection surface connects the slot or the first conductor surface to the fourth conductor surface.
  • the distance between the first connection surface and the fourth conductor surface is larger as the distance from the first conductor surface is increased.
  • the distance between the second connection surface and the third conductor surface is larger as the distance from the first conductor surface is increased.
  • the waveguide faces the inside of the waveguide and is continuous with the second conductor surface, and the third conductor surface and the fourth conductor surface facing each other, A fifth conductor surface facing the inside of the waveguide and facing a part of the third conductor surface, and a sixth conductor surface facing the inside of the waveguide and facing a part of the fourth conductor surface And a conductor surface.
  • the third conductor plane and the fourth conductor plane include planes parallel to the xz plane.
  • the x-direction length of the fifth conductor surface and the x-direction length of the sixth conductor surface are shorter than the distance between the first conductor surface and the second conductor surface.
  • the waveguide faces the inside of the waveguide and is continuous with the second conductor surface, and the third conductor surface and the fourth conductor surface facing each other, A fifth conductor surface facing the inside of the waveguide and continuous with the first conductor surface, and a sixth conductor surface facing the inside of the waveguide and continuous with the third conductor surface.
  • the sixth conductor surface is located between the third conductor surface and the fifth conductor surface.
  • the waveguide has the following formula: 0.24 ⁇ A ⁇ 3.6 ⁇ a ⁇ 0.56 ⁇ A ⁇ 8.4 A: Distance between the first conductor surface and the second conductor surface in a cross section perpendicular to the transmission direction of the waveguide a: First conductor surface and sixth in the cross section perpendicular to the transmission direction of the waveguide The distance between the conductor surface of the
  • the waveguide has a seventh surface at a position adjacent in the z direction from the fifth conductor surface.
  • the distance between the seventh conductor surface and the fourth conductor surface is greater than the distance between the fifth conductor surface and the fourth conductor surface.
  • the longitudinal direction of the slot is formed at an angle not perpendicular to the transmission direction of the waveguide.
  • plasma generator 110 waveguide 110a: first wall 110b: second wall 110c: third wall 110d: fourth wall 111: slots 112, 212, 312, 412, 512 , 612a, 612b, 712 Metal member 120
  • Microwave generator 130 Isolator 140
  • Power monitor 150 EH tuner 160 Termination 171, 172, 173, 174 Waveguide for connection 181, 182 Airtight window conductor Wave tube 190 ... gas supply unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Waveguides (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本技術は、より強い電界をスロット(111)に発生させることを図ったプラズマ発生装置(100)を提供する。導波管(110)は、導波管(110)の内側に面する第1の導体面(S1)と、導波管(110)の内側に面する第2の導体面(S2)と、第1の導体面(S1)から導波管(110)の外部まで貫通するスロット(111)と、を有する。第1の導体面(S1)と第2の導体面(S2)とは、導通しているとともに互いに対向している。z方向に垂直な断面における第1の導体面(S1)のy方向の第1の長さ(L1)が、z方向に垂直な断面における第2の導体面(S2)のy方向の第2の長さ(L2)よりも短い。第1の長さ(L1)は、z方向に垂直な断面におけるスロット(111)のy方向の長さを含む。第2の長さ(L2)は、第1の導体面(S1)と第2の導体面(S2)との間のx方向の距離よりも短い。

Description

プラズマ発生装置
 本明細書の技術分野は、マイクロ波を用いてプラズマを発生させるプラズマ発生装置に関する。
 プラズマ技術は、電気、化学、材料の各分野に応用されている。プラズマは、電子、陽イオンの他に、化学反応性の高いラジカルや紫外線を発生させる。ラジカルは、例えば、成膜や半導体のエッチングに用いられる。紫外線は、例えば、殺菌に用いられる。このように豊富なプラズマ生成物が、プラズマ技術の応用分野の裾野を広げている。
 プラズマを発生させるためにマイクロ波を用いる装置がある。例えば、特許文献1には、マイクロ波発生部から導波管にマイクロ波を伝送させるとともに、導波管に設けたスロット(スリット状の貫通孔)からプラズマを発生させるプラズマ発生装置が開示されている(特許文献1の図1、図4等参照)。
特開2014-175051号公報
 特許文献1の技術では、スロットからプラズマを噴出させる。しかし、スロットの箇所で発生する電界は必ずしも大きくは無い。安定なプラズマを発生させるためには、スロットにより大きい電界を発生させることが必要である。
 本明細書の技術は、前述した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは、マイクロ波を入射することによりスロットからプラズマを発生させるプラズマ発生装置においてより強い電界をスロットに発生させることを図ったプラズマ発生装置を提供することである。
 第1の態様におけるプラズマ発生装置は、xyz直交座標系におけるz方向に延伸する導波管と、導波管をz方向に伝送するマイクロ波を発生させるマイクロ波発生部と、を有する。導波管は、導波管の内側に面する第1の導体面と、導波管の内側に面する第2の導体面と、第1の導体面から導波管の外部まで貫通するスロットと、を有する。第1の導体面と第2の導体面とは、導通しているとともに互いに対向している。z方向に垂直な断面における第1の導体面のy方向の第1の長さが、z方向に垂直な断面における第2の導体面のy方向の第2の長さよりも短い。第1の長さは、z方向に垂直な断面におけるスロットのy方向の長さを含む。第2の長さは、第1の導体面と第2の導体面との間のx方向の距離よりも短い。
 このプラズマ発生装置においては、第1の長さが第2の長さよりも短い。そのため、この導波管にマイクロ波が伝送すると、スロット(スリット状の貫通孔)の箇所に強い電界が形成される。また、スロットからガスが噴出するため、スロットの外側にはプラズマが生成される。このプラズマは、スロットの形状に沿った細長い領域に形成される。
 本明細書では、マイクロ波を入射することによりスロットからプラズマを発生させるプラズマ発生装置においてより強い電界をスロットに発生させることを図ったプラズマ発生装置が提供されている。
第1の実施形態のプラズマ発生装置の概略構成図である。 第1の実施形態のプラズマ発生装置の導波管の断面を示す断面図である。 第1の実施形態のプラズマ発生装置の導波管におけるプラズマ発生領域を示す図である。 第1の実施形態の変形例におけるプラズマ発生装置の概略構成図である。 第2の実施形態の導波管の断面形状を示す断面図(その1)である。 第2の実施形態の導波管の断面形状を示す断面図(その2)である。 第2の実施形態の導波管の断面形状を示す断面図(その3)である。 第2の実施形態の導波管の断面形状を示す断面図(その4)である。 第2の実施形態の導波管の断面形状を示す断面図(その5)である。 第2の実施形態の導波管の断面形状を示す断面図(その6)である。 第2の実施形態の導波管の断面形状を示す断面図(その7)である。 第3の実施形態の導波管の構造を示す透視斜視図である。 第4の実施形態のプラズマ発生装置の導波管の断面を示す断面図である。 シミュレーションに用いる方形導波管の形状を説明するための図である。 方形導波管におけるx軸方向の位置とスロット内の電界強度との関係を示すグラフである。 シミュレーションに用いる導波管の形状を説明するための図である。 金属部材を備える導波管のx軸方向の位置と電界強度との関係を示すグラフである。 導波管の幅と金属部材の幅との関係を示すグラフ(その1)である。 導波管の幅と金属部材の幅との関係を示すグラフ(その2)である。 マイクロ波伝播中における導波管の内部に形成される電界および磁界を模式的に示す図である。 図20の電磁界が形成される場合に導波管の内側の表面に流れる電流の向きを示す図である。 第1の実施形態のプラズマ発生装置および従来のプラズマ発生装置におけるマイクロ波出力とスロットに形成される電界強度との関係を示すグラフである。 第1の実施形態のプラズマ発生装置の導波管の内部の電界強度を示すシミュレーション結果である。 金属部材がある導波管単体の散乱パラメータを示すグラフである。 付属部付きの金属部材を有する導波管と通常の導波管とを接続した場合の散乱パラメータを示すグラフである。 プラズマ発生装置のプラズマ発生時の写真とプラズマの放出強度のグラフとを組み合わせた図(その1)である。 プラズマ発生装置のプラズマ発生時の写真とプラズマの放出強度のグラフとを組み合わせた図(その2)である。
 以下、具体的な実施形態について、マイクロ波を用いてプラズマを発生させるプラズマ発生装置を例に挙げて図を参照しつつ説明する。説明のために、xyz直交座標系を用いる。そのために、導波管の延伸方向をz方向とする(後述する図14および図16参照)。
(第1の実施形態)
1.プラズマ発生装置
 図1は、第1の実施形態のプラズマ発生装置100の概略構成図である。プラズマ発生装置100は、マイクロ波を伝送させる導波管を用いてプラズマを発生させる。プラズマ発生装置100は、導波管110と、マイクロ波発生部120と、アイソレーター130と、パワーモニター140と、EHチューナー150と、終端部160と、連結用導波管171、172、173、174と、気密窓導波管181、182と、ガス供給部190と、を有する。
 導波管110と、連結用導波管171、172、173、174と、気密導波管181、182とは、いずれも方形導波管である。導波管110と、連結用導波管171、172、173、174と、気密導波管181、182との中心軸は、共通である。
 導波管110は、z方向に延伸している。導波管110は、スロット111を有する。スロット111は、導波管110に設けられたスリット状の貫通孔である。スロット111の箇所ではプラズマが発生する。詳細については後述する。導波管110の中心軸に垂直な断面の長辺は、例えば96mmである。導波管110の中心軸に垂直な断面の短辺は、例えば27mmである。導波管110の材質は、例えば、銅、アルミニウム、鉄、ステンレス等の金属、またはこれらの合金であるとよい。
 マイクロ波発生部120は、導波管110を伝送するマイクロ波を発生させるためのものである。マイクロ波は、導波管110をz方向に伝送する。マイクロ波は、例えば、正弦波また矩形波である。マイクロ波は、TE10モードであるとよい。マイクロ波発生部120は、例えば、マグネトロン、クライストロン、ジャイロトロン、進行波管である。マイクロ波発生部120が発生するマイクロ波の周波数は、例えば2.45GHzである。もちろん、これ以外の周波数であってもよい。これらは例示であり、マイクロ波発生部120の構成は、上記と異なっていてもよい。
 アイソレーター130は、マイクロ波の反射波がマイクロ波発生部120に入射することを抑制するためのものである。アイソレーター130は、マイクロ波発生部120から伝送されるマイクロ波を導波管110に向かって伝送させるとともに、導波管110からマイクロ波発生部120に向かうマイクロ波を逃がす。これにより、導波管110等からのマイクロ波の反射波がマイクロ波発生部120に入射することを防止することができる。
 パワーモニター140は、導波管110に伝送させるマイクロ波の電力を計測するためのものである。パワーモニター140は、導波管110からの反射波を計測することもできる。
 EHチューナー150は、Eチューナー部とHチューナー部とを有する。EHチューナー150は、Eチューナー部のプランジャーとHチューナー部のプランジャーとを出し入れすることによりインピーダンスを調整する。
 終端部160は、マイクロ波を吸収するための部材である。導波管110を伝送するマイクロ波は、スロット111の領域にわたってプラズマを発生させる。そのため、終端部160に到達するマイクロ波の強度は十分に弱い。また、終端部160は、マイクロ波の一部を反射させてもよい場合がある。
 連結用導波管171、172、173、174は、通常の方形導波管である。連結用導波管171、172、173、174の材質は、例えば、銅、アルミニウム、鉄、ステンレス等の金属、またはこれらの合金であるとよい。
 気密窓導波管181、182は、導波管110の両側に位置する仕切りである。そのため、気密窓導波管181、182は、導波管110の両側に配置されている。
 ガス供給部190は、導波管110にガスを供給する。ガス供給部190から供給されるガスは、スロット111から噴出される際にプラズマ化される。ガス供給部190が供給するガスは、例えば、Ar、Ne等の希ガスである。もしくは、窒素ガスや酸素ガスであってもよい。もちろん、通常の空気であってもよい。または、これらのガスを混合した混合ガスであってもよい。
2.導波管の構造
 図2は、第1の実施形態のプラズマ発生装置100の導波管110の断面を示す断面図である。図2は、図1のII-II 断面を示している。図2に示すように、導波管110は、第1の壁部110aと、第2の壁部110bと、第3の壁部110cと、第4の壁部110dと、を有する。第1の壁部110aと第2の壁部110bとは互いに対向した状態で導波管110の伝送方向に延伸している。第3の壁部110cと第4の壁部110dとは互いに対向した状態で導波管110の伝送方向に延伸している。第1の壁部110aおよび第2の壁部110bは、導波管110の伝送方向に垂直な断面における短辺に相当する。第3の壁部110cおよび第4の壁部110dは、導波管110の伝送方向に垂直な断面における長辺に相当する。第3の壁部110cは、第1の壁部110aおよび第2の壁部110bに連なっている。第4の壁部110dは、第1の壁部110aおよび第2の壁部110bに連なっている。
2-1.スロットと金属部材
 導波管110の第1の壁部110aは、スロット111を有する。スロット111は、後述する第1の導体面S1から導波管110の外部まで貫通している。スロット111の長手方向は、導波管110の伝送方向に対して垂直でない角度で形成されている。好ましくは、スロット111の長手方向は、導波管110の伝送方向に対して±5°以下の範囲内である。さらに好ましくは、スロット111の長手方向は、導波管110の伝送方向に対して平行である。導波管110は、スロット111の箇所に第1箇所E1aと第2箇所E1bとを有する。第1箇所E1aおよび第2箇所E1bは、スロット111の開口部を挟んで対面している。
 導波管110は、第1の壁部110aおよび第3の壁部110cに接する金属部材112を有する。金属部材112は、直方体形状の第1の金属部材である。金属部材112は、第1の壁部110aおよび第3の壁部110cに接触している。金属部材112の材料は、例えば、銅、アルミニウム、鉄、ステンレス等の金属、またはこれらの合金である。金属材料112の材料は、導波管110の材料と同じであるとよい。もちろん、金属部材112はスロット111を塞いでいない。そのため、スロット111は、第1の壁部110aにおける第4の壁部110dに近い側に配置されている。
2-2.導体面と導体面間の距離
 第1の壁部110aは、スロット111と、導波管110の内側に面する第1の導体面S1と、を有する。第2の壁部110bは、導波管110の内側に面する第2の導体面S2を有する。第3の壁部110cは、導波管110の内側に面する第3の導体面S3を有する。第4の壁部110dは、導波管110の内側に面する第4の導体面S4を有する。第1の導体面S1は、導波管110の内部に露出している面である。他の導体面についても同様である。金属部材112が存在するため、導波管110の伝送方向に垂直な断面における第1の導体面S1の長さは、その分だけ短い。
 第1の導体面S1と第2の導体面S2とは、yz平面に平行な面である。第1の導体面S1と第2の導体面S2とは、yz平面に平行な面を含む面であってもよい。第3の導体面S3と第4の導体面S4とは、xz平面に平行な面である。第3の導体面S3と第4の導体面S4とは、xz平面に平行な面を含む面であってもよい。第1の導体面S1と第2の導体面S2とは、導通しているとともに互いに対向している。第3の導体面S3と第4の導体面S4とは、導通しているとともに互いに対向している。
 第3の導体面S3は、第2の導体面S2に連なっている。金属部材112が存在するため、導波管110は、第1部分面S3aと第2部分面S3bとを有する。第1部分面S3aと第2部分面S3bとは、第1の導体面S1と第3の導体面S3とを接続する接続面である。第1部分面S3aは、第4の導体面S4と対面している。第2部分面S3bは、第2の導体面S2と対面している。第4の導体面S4は、第1の導体面S1および第2の導体面S2に連なっている。第1部分面S3aと第2部分面S3bと第3の導体面S3とは、第1の導体面S1の側から順に配置されている。
 図2はz方向に垂直な断面を示している。z方向に垂直な断面における第1の導体面S1のy方向の第1の長さL1が、z方向に垂直な断面における第2の導体面S2のy方向の第2の長さL2よりも短い。第1の長さL1は、z方向に垂直な断面におけるスロット111のy方向の長さを含む。第2の長さL2は、第1の導体面S1と第2の導体面S2との間のx方向の距離よりも短い。
2-3.ガス供給孔
 導波管110は、導波管110の内部にガスを供給するためのガス供給孔(図示せず)を有する。ガス供給孔は、ガス供給部190から導波管110にガスを供給するための孔である。ガス供給孔から供給されたガスは、スロット111から噴出するようになっている。
3.プラズマ発生領域
 導波管110における第1箇所E1aと第2箇所E1bとの間には、強い電界が形成される。また、スロット111から導波管110の外部に向かってガスが噴出する。そのため、そのガスはプラズマ化される。
 図3は、導波管110におけるプラズマ発生領域P1を示す図である。図3に示すように、プラズマ発生領域P1は、スロット111に沿う直線状の領域であって導波管110の外側の領域である。ただし、図3に示すプラズマ発生領域P1は、概念的に描かれたものである。そのため、実際のプラズマ発生領域P1は、図3に示す範囲より大きくてもよいし小さくてもよい。
4.スロットにおける電界強度
 本実施形態のプラズマ発生装置100では、スロット111の第1箇所E1aと第2箇所E1bとの間に強い電界が発生する。その理由について説明する。
 図2に示すように、スロット111が存在する第1の壁部110a側の第1の距離L1は、第2の壁部110b側の第2の距離L2よりも小さい。第1の壁部110a側のインピーダンスは、第2の壁部110b側のインピーダンスよりも小さい。つまり、第1の壁部110a側の電圧は、第2の壁部110b側の電圧よりも小さい。第1の壁部110a側の電流は、第2の壁部110b側の電流よりも大きい。このように、導波管110を流れる表面電流は、第1の壁部110a側で大きい。
 次式は、アンペール-マックスウェルの方程式である。
   ∇×H = j + ∂D/∂t             ………(1)
ここで、電流jは、図3の矢印J1の向きに流れる表面電流の密度である。前述のように、スロット111の付近に流れる表面電流は、第2の壁部110b側に流れる表面電流よりも大きい。
 スロット111がない領域においては、図3の矢印J1の向きに電流jが流れる。しかし、マイクロ波がスロット111のある領域を伝播しようとすると、電流jが急に遮断されることとなる。式(1)の右辺の第1項が急激にゼロになる。このように右辺の第1項が急激にゼロになる代わりに、右辺の第2項である∂D/∂tが急激に大きくなる。その結果、導波管110における第1箇所E1aと第2箇所E1bとの間に強い電界が形成される。そのため、高効率でプラズマを発生させることができる。
5.プラズマ発生装置の動作方法
 まず、ガス供給部190が導波管110にガスを供給する。これにより、導波管110のスロット111からガスが噴出する。次に、マイクロ波発生部120がマイクロ波を発生させるとともに導波管110に向けてマイクロ波を伝送させる。導波管110のスロット111の箇所では、第1箇所E1aと第2箇所E1bとの間に強い電界が形成される。そのため、スロット111から噴出するガスはプラズマ化される。すなわち、プラズマ発生領域P1にプラズマが発生する。
6.本実施形態の効果
 第1の実施形態における導波管110は、第1の壁部110aおよび第3の壁部110cに接する面に金属部材112を有する。第1の壁部110aは、導波管110の中心軸に垂直な断面の短辺である。そして、導波管110の第1の壁部110aには、スロット111がある。スロット111は、第1の壁部110aに形成されている。つまり、スロット111は、導波管110の中心軸に垂直な断面の短辺であって金属部材112が接する壁部に形成されている。導波管110にマイクロ波が伝送すると、スロット111の第1箇所E1aおよび第2箇所E1bの間には非常に強い電界が形成される。また、スロット111からガスが噴出するため、スロット111の外側にはプラズマが生成される。このプラズマは、スロットに沿った棒状の細長い領域に形成される。
7.変形例
7-1.装置構成
 図4に示すプラズマ発生装置200を用いてもよい。プラズマ発生装置200は、終端部160の代わりに、サーキュレーター260と、導波管276と、を有する。
 また、終端部160の代わりに、基板にプラズマ処理するための反応室を有していてもよい。
7-2.導波管の寸法
 導波管110の伝送方向に垂直な断面の長辺は、例えば72.1mmであってもよい。導波管110の伝送方向に垂直な断面の短辺は、例えば34mmであってもよい。また、導波管110の断面形状の寸法は、上記以外であってもよい。
7-3.インピーダンス整合器
 本実施形態では、EHチューナー150を用いる。しかし、EHチューナー150の代わりに、その他のインピーダンス整合器を用いてもよい。
7-4.プラズマ発生装置の動作順序
 本実施形態では、ガス供給部190から導波管110にガスを供給し、続いてマイクロ波を導波管110に伝送させる。しかし、これらの順序は逆であってもよい。つまり、マイクロ波を導波管110に伝送させ、続いてガス供給部190から導波管110にガスを供給してもよい。
7-5.組み合わせ
 上記の変形例を自由に組み合わせてもよい。
(第2の実施形態)
 第2の実施形態について説明する。第2の実施形態の導波管は、第1の実施形態の導波管と異なる金属部材を有する。
1.金属部材の形状
1-1.第1の形状
 図5は、第2の実施形態の導波管210の断面形状を示す断面図(その1)である。図5に示すように、導波管210は、金属部材212を有する。金属部材212は、六面体である。導波管210の中心軸に垂直な断面では、第1の壁部110aから遠ざかるにつれて金属部材212の高さは小さくなっている。つまり、第1の壁部110aから遠ざかるほど、第4の壁部110dと金属部材212との間の距離は広がっている。
 金属部材212における接続面と第4の導体面S4との間の距離は、第1の導体面S1から遠ざかるほど大きい。ここで接続面とは、金属部材212における第1の導体面S1と第3の導体面S3とを接続している面である。
1-2.第2の形状
 図6は、第2の実施形態の導波管310の断面形状を示す断面図(その2)である。図6に示すように、導波管310は、金属部材312を有する。金属部材312は、六面体である。導波管310の中心軸に垂直な断面では、第3の壁部110cから遠ざかるにつれて金属部材312の幅は小さくなっている。つまり、第3の壁部110cから遠ざかるほど、第2の壁部110bと金属部材312との間の距離は広がっている。
 金属部材312における接続面と第4の導体面S4との間の距離は、第1の導体面S1から遠ざかるほど大きい。ここで接続面とは、金属部材312における第1の導体面S1と第3の導体面S3とを接続している面である。
1-3.第3の形状
 図7は、第2の実施形態の導波管410の断面形状を示す断面図(その3)である。図7に示すように、導波管410は、金属部材412を有する。金属部材412は、五角柱である。金属部材412においては、第1の壁部110aおよび第3の壁部110cとに接触する角の対角に位置する角が、面取りされている。
 金属部材412における接続面と第4の導体面S4との間の距離は、第1の導体面S1から遠ざかるほど大きい。ここで接続面とは、金属部材412における第1の導体面S1と第3の導体面S3とを接続している面である。
1-4.第4の形状
 図8は、第2の実施形態の導波管510の断面形状を示す断面図(その4)である。図8に示すように、導波管510は、金属部材512を有する。金属部材512は、三角柱である。導波管510の中心軸に垂直な断面では、第1の壁部110aから遠ざかるにつれて金属部材512の高さは小さくなっている。つまり、第1の壁部110aから遠ざかるほど、第4の壁部110dと金属部材512との間の距離は広がっている。導波管510の中心軸に垂直な断面では、第3の壁部110cから遠ざかるにつれて金属部材512の幅は小さくなっている。つまり、第3の壁部110cから遠ざかるほど、第2の壁部110bと金属部材512との間の距離は広がっている。
 金属部材512における接続面と第4の導体面S4との間の距離は、第1の導体面S1から遠ざかるほど大きい。ここで接続面とは、金属部材512における第1の導体面S1と第3の導体面S3とを接続している面である。
2.金属部材の配置
2-1.第1の配置
 図9は、第2の実施形態の導波管610の断面形状を示す断面図(その5)である。図9に示すように、導波管610は、第1の金属部材612aおよび第2の金属部材612bを有する。第1の金属部材612aは、第1の壁部110aおよび第3の壁部110cに接触している。第2の金属部材612bは、第1の壁部110aおよび第4の壁部110dに接触している。第1の金属部材612aと第2の金属部材612bとの間に、わずかに隙間がある。スロット111は、第1の金属部材612aと第2の金属部材612bとで孔が塞がれない位置に配置されている。つまり、スロット111は、第1の壁部110aにおける第1の金属部材612aと第2の金属部材612bとの間の位置に設けられている。
 この場合、第1の金属部材612aにおける導波管610の内側の面は、第1の接続面である。第2の金属部材612bにおける導波管610の内側の面は、第2の接続面である。第1の接続面は、スロット111または第1の導体面と第3の導体面とを接続している。第2の接続面は、スロット111または第1の導体面と第4の導体面とを接続している。
2-2.第2の配置
 図10は、第2の実施形態の導波管710の断面形状を示す断面図(その6)である。図10に示すように、導波管710は、金属部材712を有する。金属部材712は、直方体である。金属部材712は、第1の壁部110aに接触するとともに、第2の壁部110b、第3の壁部110c、第4の壁部110dのいずれにも接触しない位置に配置されている。スロット111は、第1の壁部110aであって金属部材712に孔を塞がれない位置に配置されている。図10では、第3の壁部110cから金属部材712までの距離と、第4の壁部110dから金属部材712までの距離とは等しい。しかし、第3の壁部110cから金属部材712までの距離と、第4の壁部110dから金属部材712までの距離とは異なっていてもよい。そして、スロット111は、第3の壁部110cに近い側の位置に形成されていてもよいし、第4の壁部110dに近い側の位置に形成されていてもよい。
 図11は、第2の実施形態の導波管810の断面形状を示す断面図(その7)である。図11のように、第1の壁部110aに2本のスロット111を形成した導波管810を用いてもよい。
3.本実施形態の効果
 このように、金属部材212、312、412、512、612a、612b、712を用いた場合であっても、スロット111における第1箇所E1aと第2箇所E1bとの間の電界強度は十分に大きい。
 上記の金属部材においては、導波管の内部における金属間距離が、スロット111が形成されている第1の壁部110aの側で小さく、スロット111が形成されていない第2面110dの側で大きい。
 このように、スロット111が形成されている第1の壁部110aの側で金属間距離を小さくすることにより、スロット111における電界強度を高めることができる。
4.変形例
4-1.第2の接続面
 第1の接続面の代わりに、第1の導体面S1と第4の導体面S4とを接続する第2の接続面を設けてもよい。
4-2.組み合わせ
 第2の実施形態および変形例を第1の実施形態とその変形例と自由に組み合わせてもよい。
(第3の実施形態)
 第3の実施形態について説明する。第3の実施形態の導波管は、第1の実施形態の導波管と異なる金属部材を有する。
1.金属部材の形状
 図12は、第3の実施形態の導波管110の構造を示す透視斜視図である。図12に示すように、導波管110は、金属部材812を有する。金属部材812は、本体部812aと付属部812bとを有する。本体部812aおよび付属部812bは直方体である。本体部812aと付属部812bとは一体である。付属部812bは、導波管110の伝送方向に平行な方向であって本体部812aに隣接する位置に本体部812aと並んで配置されている。
 付属部812bの幅a1は、本体部812aの幅aと同じである。付属部812bの高さb1は、本体部812aの高さbより低い。付属部812bの長さc1は、本体部812aの長さより短い。
2.金属部材の効果
 付属部812bは、マイクロ波発生部120から導波管110に向かって伝送されるマイクロ波が、マイクロ波発生部120に反射されることを抑制する。そのため、マイクロ波がスロット111の箇所に到達するまでに減衰する減衰量は小さい。また、マイクロ波発生部120に向かう反射波を抑制することができる。
3.変形例
3-1.2個の付属部
 図12には、本体部812aに対して一つの付属部812bを有する。しかし、導波管110は、2個の付属部812bを有していてもよい。その場合には、本体部812aの両側に1個ずつの付属部812bが配置される。これにより、本体部812aの両端部における反射波を好適に抑制することができる。
3-2.組み合わせ
 第3の実施形態および変形例を第1の実施形態および第2の実施形態とこれらの変形例と自由に組み合わせてもよい。
(第4の実施形態)
 第4の実施形態について説明する。
1.導波管の形状
 図13は、第4の実施形態の導波管910を示す。導波管910の形状は、方形導波管に近い形状である。導波管910は、第1の壁部910aと第2の壁部910bと第3の壁部910cと第4の壁部910dとを有する。第1の壁部910aは、スロット111を有する。そのため、第1の壁部910aは、第1箇所E1aおよび第2箇所E1bを有する。第1の壁部910aと第2の壁部910bとは互いに対向した状態で導波管910の伝送方向に延伸している。第3の壁部910cと第4の壁部910dとは互いに対向した状態で導波管910の伝送方向に延伸している。
 第1の壁部910aおよび第2の壁部910bは、導波管910の伝送方向に垂直な断面における短辺に相当する。第4の壁部910dは、導波管910の伝送方向に垂直な断面における長辺に相当する。第3の壁部910cは、第1の壁部910aおよび第2の壁部910bに連なっている。第4の壁部910dは、第1の壁部910aおよび第2の壁部910bに連なっている。
 第1の壁部910aは、導波管910の内側に面する第1の導体面S1を有する。第2の壁部910bは、導波管910の内側に面する第2の導体面S2を有する。第3の壁部910cは、導波管910の内側に面する第3の導体面S3を有する。第4の壁部910dは、導波管910の内側に面する第4の導体面S4を有する。第1の導体面S1と第2の導体面S2と第3の導体面S3と第4の導体面S4とは、第1の実施形態の第1の導体面S1と第2の導体面S2と第3の導体面S3と第4の導体面S4と同じである。
 したがって、図13に示すように、z方向に垂直な断面における第1の導体面S1のy方向の第1の長さL1が、z方向に垂直な断面における第2の導体面S2のy方向の第2の長さL2よりも短い。
2.効果
 第4の実施形態の導波管910の内側の導体面は、第1の実施形態の導波管110の内側の導体面と同じである。表面電流は各々の導体面の表面に流れる。そのため、導体面を含む金属の厚みはある程度以上あれば十分である。このように第4の実施形態の導波管910であっても、第1の実施形態の導波管110と同様にスロット111に好適なプラズマを発生させることができる。
3.変形例
 第4の実施形態を第1の実施形態と第2の実施形態と第3の実施形態とこれらの変形例と自由に組み合わせてもよい。
(実施形態の小括)
 プラズマ発生装置は、図14のxyz直交座標系におけるz方向に延伸する導波管と、導波管をz方向に伝送するマイクロ波を発生させるマイクロ波発生部と、を有する。導波管は、導波管の内側に面する第1の導体面と、導波管の内側に面する第2の導体面と、第1の導体面から導波管の外部まで貫通するスロットと、を有する。第1の導体面と第2の導体面とは、導通しているとともに互いに対向している。z方向に垂直な断面における第1の導体面のy方向の第1の長さが、z方向に垂直な断面における第2の導体面のy方向の第2の長さよりも短い。第1の長さは、z方向に垂直な断面におけるスロットのy方向の長さを含む。第2の長さは、第1の導体面と第2の導体面との間のx方向の距離よりも短い。第1の導体面と第2の導体面とは、yz平面に平行な面を含む。また、第1の導体面と第2の導体面とは、yz平面に平行な面であってもよい。
 導波管は、導波管の内側に面して第2の導体面に連なるとともに、互いに対向する第3の導体面と第4の導体面と、第1の接続面と第2の接続面との少なくとも一方と、を有する。第3の導体面と第4の導体面とは、xz平面に平行な面を含んでいる。第1の接続面は、スロットまたは第1の導体面と第3の導体面とを接続する。第2の接続面は、スロットまたは第1の導体面と第4の導体面とを接続する。
 また、第1の接続面と第4の導体面との間の距離は、第1の導体面から遠ざかるほど大きい(例えば、図5から図8)。
 また、第2の接続面と第3の導体面との間の距離は、第1の導体面から遠ざかるほど大きい(例えば、図5から図8)。
 また、導波管は、導波管の内側に面して第2の導体面に連なるとともに、互いに対向する第3の導体面および第4の導体面と、導波管の内側に面して第3の導体面の一部と対面する第5の導体面と、導波管の内側に面して第4の導体面の一部と対面する第6の導体面と、を有する。第3の導体面と第4の導体面とは、xz平面に平行な面を含んでいる。第5の導体面のx方向の長さおよび第6の導体面のx方向の長さは、第1の導体面と第2の導体面との間の距離よりも短い(例えば、図10および図11)。
 また、導波管は、導波管の内側に面して第2の導体面に連なるとともに、互いに対向する第3の導体面および第4の導体面と、導波管の内側に面して第1の導体面と連なる第5の導体面と、導波管の内側に面して第3の導体面と連なる第6の導体面と、を有する。第6の導体面は、第3の導体面と第5の導体面との間に位置している。導波管が、次式
   0.24・A-3.6 ≦ a ≦ 0.56・A-8.4
      A:導波管の伝送方向に垂直な断面における第1の導体面と第2の導体面との間の距離
      a:導波管の伝送方向に垂直な断面における第1の導体面と第6の導体面との間の距離
を満たす(例えば、図16)。
 また、導波管は、第5の導体面からz方向に隣接する位置に第7面を有する。第7の導体面と第4の導体面との間の距離は、第5の導体面と第4の導体面との間の距離よりも大きい(例えば、図12)。
 また、スロットの長手方向は、導波管の伝送方向に対して垂直でない角度で形成されている。
(シミュレーション)
1.方形導波管とスロットの位置との関係
 図14は、シミュレーションに用いる方形導波管の形状を説明するための図である。x軸は、方形導波管の中心軸に垂直な断面における長辺方向である。y軸は、方形導波管の中心軸に垂直な断面における短辺方向である。z軸は、方形導波管の中心軸に平行な方向である。マイクロ波は、方形導波管の内壁に反射されながら方形導波管の内部を伝送する。スロットの長辺方向は、z軸に平行である。
 ここで、スロットの位置について説明する。図14に示すように、長辺上にスロットを設けた場合(図14のK1)と、短辺上にスロットを設けた場合(図14のK2)とについて、シミュレーションを実施した。スロットの長辺方向(z軸方向)の長さは30mmである。スロットの短辺方向の長さは1mmである。方形導波管の板厚は1mmである。入力電圧は1Wである。マイクロ波の周波数は2.45GHzである。
 図15は、x軸方向の位置とスロット内の電界強度との関係を示すグラフである。図15の横軸は、x軸方向の位置(mm)である。図15の縦軸は、スロット内の電界強度である。すなわち、第1箇所E1aと第2箇所E1bとの間の電界強度である。図15のK1は、図14のK1の面にスロットを設けた場合を示す。図15のK2は、図14のK2の面にスロットを設けた場合を示す。この導波管に伝播させるマイクロ波はTE10モードである。そのため、図14のK2の面のどの位置にスロットを設けたとしても、電界強度は同じである。
 図15に示すように、図14のK1の面におけるスロット内の電界強度は、長辺の中央付近で弱く、長辺の端部付近で強い。スロット内の電界強度の最大値は、長辺方向の両端部である。
 また、図15に示すように、短辺上にスロットを設けた場合におけるスロット内の電界強度は、長辺上にスロットを設けた場合におけるスロット内の電界強度よりも大きい。前述のように、短辺上にスロットを設けた場合には、どの位置においても同様の電界強度を示す。したがって、長辺上にスロットを設けるよりも、短辺上にスロットを設けるほうが好ましい。スロット内においてより高い電界強度が得られるからである。
2.金属部材
 次に、金属部材を備える第1の実施形態の導波管110のシミュレーション結果について説明する。
2-1.金属部材と電界強度
 図16は、シミュレーションに用いる導波管の形状を説明するための図である。x軸は、導波管の中心軸に垂直な断面における長辺方向である。y軸は、導波管の中心軸に垂直な断面における短辺方向である。z軸は、導波管の中心軸に平行な方向である。
 長辺方向の長さAは96mmである。短辺方向の長さBは27mmである。金属部材112の長辺方向の長さaは32mmである。金属部材112の短辺方向の長さbは22mmである。スロットの長辺方向(z軸方向)の長さは30mmである。スロットの短辺方向の長さは1mmである。方形導波管の板厚は1mmである。入力電圧は1Wである。マイクロ波の周波数は2.45GHzである。
 図17は、金属部材を備える導波管のx軸方向の位置と電界強度との関係を示すグラフである。図17の横軸は、x軸方向の位置(mm)である。図17の縦軸は、導波管における電界強度(kV/m)である。図16に示すように、xy平面において(64≦x≦96、0≦y≦22)の領域に金属部材112が配置されている。
 この場合には、金属部材112があることにより、x≧60mmの領域で電界強度が非常に強くなる。金属部材112がある場合におけるx=96mmの電界強度は、およそ2.5kV/mである。金属部材112がない場合におけるx=96mmの電界強度は、およそ0.8kV/mである。したがって、金属部材112があることにより、x=96mmの位置の電界強度は、3.1倍に増加している。
2-2.導波管の幅と金属部材の幅との関係
 導波管の幅Aと金属部材112の幅aとの関係について説明する。導波管の幅Aは、導波管の伝送方向に垂直な断面における第1の導体面と第2の導体面との間の距離である。金属部材112の幅aは、導波管の伝送方向に垂直な断面における長辺の方向の金属部材112の幅である。導波管の高さBは27mmである。入力電力は1Wである。マイクロ波の周波数は2.45GHzである。
 図18は、導波管の幅Aと金属部材112の幅aとの関係を示すグラフ(その1)である。図18の横軸は、導波管の幅A(mm)である。図18の縦軸は、導波管の幅A(mm)に対して最大電流密度を実現する場合の金属部材112の幅a(mm)である。最大電流密度を実現する場合の金属部材112の幅a(mm)とは、幅Aを固定して幅aと電流密度とのグラフを描いたときに電流密度が最大となるときの金属部材112の幅a(mm)である。ここで、金属部材112の高さbは22mmの場合と13.5mmの場合とをプロットした。
 図18に示すように、導波管の幅A(mm)に対して最大電流密度を実現する場合の金属部材112の幅a(mm)は、金属部材112の高さbに依存しない。
 次に、導波管の高さBおよび金属部材112の幅bを固定して、マイクロ波の周波数を変えた場合について説明する。
 図19は、導波管の幅Aと金属部材112の幅aとの関係を示すグラフ(その2)である。図19の横軸は、導波管の幅A(mm)である。図19の縦軸は、導波管の幅A(mm)に対して最大電流密度を実現する場合の金属部材112の幅a(mm)である。ここで、マイクロ波の周波数がそれぞれ2.0GHz、2.45GHz、3.0GHzの場合についてプロットした。
 図19に示すように、導波管の幅A(mm)に対して最大電流密度を実現する場合の金属部材112の幅a(mm)は、マイクロ波の周波数に依存しない。
 導波管の幅A(mm)に対して最大電流密度を実現する場合の金属部材112の幅a(mm)は、次式で表される。
   a = 0.4・A-6                 ………(2)
 式(2)は、導波管の幅A(mm)に対して最大電流密度を実現する場合の金属部材112の幅a(mm)点を近似する直線である。すなわち、式(2)を満たす場合に、スロット111の第1箇所E1aおよび第2箇所E1bの間における電界強度が最大値をとる。
 実際には、導波管の幅Aと金属部材112の幅aとの関係は、式(2)から±40%の範囲内であってもよい。その範囲を次の式(3)に示す。
   0.24・A-3.6 ≦ a ≦ 0.56・A-8.4 ………(3)
 式(3)の場合であっても、スロット111の第1箇所E1aおよび第2箇所E1bの間における電界強度が十分に高い値をとる。
 導波管の幅Aと金属部材112の幅aとの関係は、式(2)から±20%の範囲内であってもよい。その場合には、スロット111の第1箇所E1aおよび第2箇所E1bの間における電界強度が式(3)の場合よりも高い値をとる。その範囲を次の式(4)に示す。
   0.32・A-4.8 ≦ a ≦ 0.48・A-7.2 ………(4)
3.マイクロ波のモード
 一般的に、導波管内の電磁波はTE10モードで伝送される。多くのモードが伝送されると、電磁波のエネルギー損失が大きいためである。次式を満たすときに、マイクロ波がTE10モードで伝送される。
   v/2f < A < v/f
   B < v/2f
      v:真空中の光速
      f :マイクロ波の周波数
4.導波管内の表面電流
 図20は、マイクロ波伝播中における導波管の内部に形成される電界および磁界を模式的に示す図である。電界は、図20の上方向または下方向に向かう向きに形成される。磁界は、電界に垂直な向きに渦を巻くように形成される。
 図21は、図20の電磁界が形成される場合に導波管の内側の表面に流れる電流の向きを示す図である。図21の破線が電流の流れを示している。
5.放電開始電界
 図22は、第1の実施形態のプラズマ発生装置および従来のプラズマ発生装置におけるマイクロ波出力とスロットに形成される電界強度との関係を示すグラフである。図22の横軸は、マイクロ波電源120の出力である。図22の縦軸は、スロットにおける電界強度である。
 Arガスの放電開始電圧は30kV/m程度である。窒素ガスの放電開始電圧は100kV/m程度である。図22に示すように、従来のプラズマ発生装置は、1400W程度のマイクロ波を用いてArガスをプラズマ化できるが、3000W程度のマイクロ波を用いても窒素ガスをプラズマ化できない。第1の実施形態のプラズマ発生装置100は、200W程度のマイクロ波を用いてArガスをプラズマ化でき、1700W程度のマイクロ波を用いて窒素ガスをプラズマ化できる。
 図22に示すように、マイクロ波を用いたプラズマ発生装置により、窒素ガス等の分子ガスをプラズマ化することは一般に難しい。放電開始電界が高いからである。後述する実験で説明するように、プラズマ発生装置100は、希ガスのみならず分子ガスをプラズマガスとして用いることができる。
6.金属部材の影響
 導波管の内部に金属部材を配置した場合についてシミュレーションを行った。その際の条件は下記の通りである。導波管の幅(内幅)は96mmである。導波管の高さ(内幅)は27mmである。金属部材の幅は32mmである。金属部材の高さは22mmである。マイクロ波の入力電力は1Wである。マイクロ波の周波数は2.45GHzである。
6-1.導波管の内部の電界強度
 図23は、第1の実施形態のプラズマ発生装置100の導波管の内部の電界強度を示すシミュレーション結果である。図23では、導波管の内部であって図23の右側に金属部材が配置されている。この場合には、金属部材の周囲で電界強度が強い。つまり、この結果は図17と矛盾しない。
6-2.散乱パラメータ
 次に、散乱パラメータについてシミュレーションを行った。散乱パラメータは散乱行列の成分の一部である。その際に、第1の実施形態のプラズマ発生装置100のうちの導波管単体の散乱パラメータと、第1の実施形態の導波管と通常の導波管とを接続した場合の散乱パラメータと、を計算した。プラズマ発生装置100では、金属部材のある導波管と、通常の導波管とが接続されている。そのため、通常の導波管との接続後の散乱パラメータが重要である。
 図24は、金属部材がある導波管単体の散乱パラメータを示すグラフである。図24の横軸は、入射するマイクロ波の周波数である。図24の縦軸は、散乱パラメータである。このときの条件は図16と同様である。図24に示すように、S21がほぼ0dBであり、反射波の割合を示すS11が-80dB以下である。このように、反射波の割合は非常に小さい。
 次に、金属部材がある導波管を通常の導波管と接続した場合の散乱パラメータを計算した。その場合には、反射波が発生した。
 図25は、付属部付きの金属部材を有する導波管と通常の導波管とを接続した場合の散乱パラメータを示すグラフである。図25の横軸および縦軸は、図24と同様である。このときの各部のサイズは図12と同様である。その他の条件は図16と同様である。図25に示すように、S21がほぼ0dBであり、反射波の割合を示すS11が-30dB以下である。このように、反射波の割合は十分に小さい。
(実験)
1.実験1(希ガス)
1-1.実験方法
 第1の実施形態のプラズマ発生装置100を用いてプラズマを発生させた。導波管の断面形状は図2と同様であった。スロットの長さは1.1mであった。スロットの幅は0.1mmであった。マイクロ波電源120の出力は0.5kWであった。プラズマガスはArガスであった。Arガスの流量は14slmであった。
1-2.実験結果
 図26は、プラズマ発生装置100のプラズマ発生時の写真とプラズマの放出強度のグラフとを組み合わせた図(その1)である。図26の上段にプラズマ発生時の写真を示す。図26の下段にプラズマの放出強度のグラフを示す。図26の横軸は、プラズマ発生装置100のスロットの位置である。図26の縦軸は、プラズマの放出強度である。プラズマの放出強度とは、その位置におけるプラズマが発する光の強度の時間平均である。
 図26の左端がマイクロ波の入力側である。図26に示すように、プラズマの放出強度は、スロットの長さ方向にわたってほぼ一定であった。このため、1m程度にわたる長い範囲について一度にプラズマ処理を実施することができる。
2.実験2(分子ガス)
1-1.実験方法
 第1の実施形態のプラズマ発生装置100を用いてプラズマを発生させた。導波管の断面形状は図2と同様であった。スロットの長さは0.8mであった。スロットの幅は0.1mmであった。マイクロ波電源120の出力は5.0kWであった。プラズマガスはNガスであった。Nガスの流量は10slmであった。
2-2.実験結果
 図27は、プラズマ発生装置100のプラズマ発生時の写真とプラズマの放出強度のグラフとを組み合わせた図(その2)である。図27の上段にプラズマ発生時の写真を示す。図27の下段にプラズマの放出強度のグラフを示す。図27の横軸は、プラズマ発生装置100のスロットの位置である。図27の縦軸は、プラズマの放出強度である。
 図27の左端がマイクロ波の入力側である。図27に示すように、プラズマの放出強度は、スロットの長さ方向にわたってほぼ一定であった。このため、1m程度にわたる長い範囲について一度にプラズマ処理を実施することができる。
3.実験のまとめ
 このように、第1の実施形態のプラズマ発生装置100は、Arガス等の希ガスのみならず、窒素ガス等の分子ガスをプラズマガスとして用いることができる。そのため、プラズマ発生装置100は、被処理材に対して種々のプラズマを照射することができる。つまり、このプラズマ処理装置100を多様な用途に用いることができる。
 図26および図27に示すように、マイクロ波の入力側の反対側では、プラズマの放出強度がやや不安定な領域がある。しかし、マイクロ波の入力側から幅広い安定領域が存在している。そのため、工業的に利用する際には、安定領域のプラズマが被処理材にプラズマを照射し、不安定領域のプラズマが被処理材にプラズマを照射しないようにすればよい。
(付記)
 第1の態様におけるプラズマ発生装置は、xyz直交座標系におけるz方向に延伸する導波管と、導波管をz方向に伝送するマイクロ波を発生させるマイクロ波発生部と、を有する。導波管は、導波管の内側に面する第1の導体面と、導波管の内側に面する第2の導体面と、第1の導体面から導波管の外部まで貫通するスロットと、を有する。第1の導体面と第2の導体面とは、導通しているとともに互いに対向している。z方向に垂直な断面における第1の導体面のy方向の第1の長さが、z方向に垂直な断面における第2の導体面のy方向の第2の長さよりも短い。第1の長さは、z方向に垂直な断面におけるスロットのy方向の長さを含む。第2の長さは、第1の導体面と第2の導体面との間のx方向の距離よりも短い。
 第2の態様におけるプラズマ発生装置においては、第1の導体面と第2の導体面とは、yz平面に平行な面である。
 第3の態様におけるプラズマ発生装置においては、導波管は、導波管の内側に面して第2の導体面に連なるとともに、互いに対向する第3の導体面と第4の導体面と、第1の接続面と第2の接続面との少なくとも一方と、を有する。第3の導体面と第4の導体面とは、xz平面に平行な面を含んでいる。第1の接続面は、スロットまたは第1の導体面と第3の導体面とを接続する。第2の接続面は、スロットまたは第1の導体面と第4の導体面とを接続する。
 第4の態様におけるプラズマ発生装置においては、第1の接続面と第4の導体面との間の距離は、第1の導体面から遠ざかるほど大きい。
 第5の態様におけるプラズマ発生装置においては、第2の接続面と第3の導体面との間の距離は、第1の導体面から遠ざかるほど大きい。
 第6の態様におけるプラズマ発生装置においては、導波管は、導波管の内側に面して第2の導体面に連なるとともに、互いに対向する第3の導体面および第4の導体面と、導波管の内側に面して第3の導体面の一部と対面する第5の導体面と、導波管の内側に面して第4の導体面の一部と対面する第6の導体面と、を有する。第3の導体面と第4の導体面とは、xz平面に平行な面を含んでいる。第5の導体面のx方向の長さおよび第6の導体面のx方向の長さは、第1の導体面と第2の導体面との間の距離よりも短い。
 第7の態様におけるプラズマ発生装置においては、導波管は、導波管の内側に面して第2の導体面に連なるとともに、互いに対向する第3の導体面および第4の導体面と、導波管の内側に面して第1の導体面と連なる第5の導体面と、導波管の内側に面して第3の導体面と連なる第6の導体面と、を有する。第6の導体面は、第3の導体面と第5の導体面との間に位置している。導波管が、次式
   0.24・A-3.6 ≦ a ≦ 0.56・A-8.4
      A:導波管の伝送方向に垂直な断面における第1の導体面と第2の導体面との間の距離
      a:導波管の伝送方向に垂直な断面における第1の導体面と第6の導体面との間の距離
を満たす。
 第8の態様におけるプラズマ発生装置においては、導波管は、第5の導体面からz方向に隣接する位置に第7面を有する。第7の導体面と第4の導体面との間の距離は、第5の導体面と第4の導体面との間の距離よりも大きい。
 第9の態様におけるプラズマ発生装置においては、スロットの長手方向は、導波管の伝送方向に対して垂直でない角度で形成されている。
100…プラズマ発生装置
110…導波管
110a…第1の壁部
110b…第2の壁部
110c…第3の壁部
110d…第4の壁部
111…スロット
112、212、312、412、512、612a、612b、712…金属部材
120…マイクロ波発生部
130…アイソレーター
140…パワーモニター
150…EHチューナー
160…終端部
171、172、173、174…連結用導波管
181、182…気密窓導波管
190…ガス供給部

Claims (9)

  1. xyz直交座標系におけるz方向に延伸する導波管と、
    前記導波管をz方向に伝送するマイクロ波を発生させるマイクロ波発生部と、
    を有し、
     前記導波管は、
      前記導波管の内側に面する第1の導体面と、
      前記導波管の内側に面する第2の導体面と、
      前記第1の導体面から前記導波管の外部まで貫通するスロットと、
    を有し、
     前記第1の導体面と前記第2の導体面とは、
      導通しているとともに互いに対向しており、
     z方向に垂直な断面における前記第1の導体面のy方向の第1の長さが、
      z方向に垂直な断面における前記第2の導体面のy方向の第2の長さよりも短く、
     前記第1の長さは、
      z方向に垂直な断面における前記スロットのy方向の長さを含み、
     前記第2の長さは、
      前記第1の導体面と前記第2の導体面との間のx方向の距離よりも短いこと
    を含むプラズマ発生装置。
  2. 請求項1に記載のプラズマ発生装置において、
     前記第1の導体面と前記第2の導体面とは、
      yz平面に平行な面であること
    を含むプラズマ発生装置。
  3. 請求項1または請求項2に記載のプラズマ発生装置において、
     前記導波管は、
      前記導波管の内側に面して前記第2の導体面に連なるとともに、互いに対向する第3の導体面と第4の導体面と、
     第1の接続面と第2の接続面との少なくとも一方と、
    を有し、
     前記第3の導体面と前記第4の導体面とは、
      xz平面に平行な面を含んでおり、
     前記第1の接続面は、
      前記スロットまたは前記第1の導体面と前記第3の導体面とを接続し、
     前記第2の接続面は、
      前記スロットまたは前記第1の導体面と前記第4の導体面とを接続すること
    を含むプラズマ発生装置。
  4. 請求項3に記載のプラズマ発生装置において、
     前記第1の接続面と前記第4の導体面との間の距離は、
      前記第1の導体面から遠ざかるほど大きいこと
    を含むプラズマ発生装置。
  5. 請求項3または請求項4に記載のプラズマ発生装置において、
     前記第2の接続面と前記第3の導体面との間の距離は、
      前記第1の導体面から遠ざかるほど大きいこと
    を含むプラズマ発生装置。
  6. 請求項1または請求項2に記載のプラズマ発生装置において、
     前記導波管は、
      前記導波管の内側に面して前記第2の導体面に連なるとともに、互いに対向する第3の導体面および第4の導体面と、
      前記導波管の内側に面して前記第3の導体面の一部と対面する第5の導体面と、
      前記導波管の内側に面して前記第4の導体面の一部と対面する第6の導体面と、
    を有し、
     前記第3の導体面と前記第4の導体面とは、
      xz平面に平行な面を含んでおり、
     前記第5の導体面のx方向の長さおよび前記第6の導体面のx方向の長さは、
      前記第1の導体面と前記第2の導体面との間の距離よりも短いこと
    を含むプラズマ発生装置。
  7. 請求項1または請求項2に記載のプラズマ発生装置において、
     前記導波管は、
      前記導波管の内側に面して前記第2の導体面に連なるとともに、互いに対向する第3の導体面および第4の導体面と、
      前記導波管の内側に面して前記第1の導体面と連なる第5の導体面と、
      前記導波管の内側に面して前記第3の導体面と連なる第6の導体面と、
    を有し、
     前記第6の導体面は、前記第3の導体面と前記第5の導体面との間に位置しており、
     前記導波管が、次式
       0.24・A-3.6 ≦ a ≦ 0.56・A-8.4
          A:前記導波管の伝送方向に垂直な断面における前記第1の導体面と前記第2の導体面との間の距離
          a:前記導波管の伝送方向に垂直な断面における前記第1の導体面と前記第6の導体面との間の距離
    を満たすこと
    を含むプラズマ発生装置。
  8. 請求項7に記載のプラズマ発生装置において、
     前記導波管は、
      前記第5の導体面からz方向に隣接する位置に第7面を有し、
     前記第7の導体面と前記第4の導体面との間の距離は、
      前記第5の導体面と前記第4の導体面との間の距離よりも大きいこと
    を含むプラズマ発生装置。
  9. 請求項1から請求項8までのいずれか1項に記載のプラズマ発生装置において、
     前記スロットの長手方向は、
      前記導波管の伝送方向に対して垂直でない角度で形成されていること
    を含むプラズマ発生装置。
PCT/JP2018/046370 2017-12-18 2018-12-17 プラズマ発生装置 WO2019124315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019561077A JP7182290B2 (ja) 2017-12-18 2018-12-17 プラズマ発生装置
CN201880081297.5A CN111492720B (zh) 2017-12-18 2018-12-17 等离子体产生装置
US16/954,582 US11152193B2 (en) 2017-12-18 2018-12-17 Plasma generation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017242257 2017-12-18
JP2017-242257 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019124315A1 true WO2019124315A1 (ja) 2019-06-27

Family

ID=66993395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046370 WO2019124315A1 (ja) 2017-12-18 2018-12-17 プラズマ発生装置

Country Status (4)

Country Link
US (1) US11152193B2 (ja)
JP (1) JP7182290B2 (ja)
CN (1) CN111492720B (ja)
WO (1) WO2019124315A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236799A (ja) * 1993-02-10 1994-08-23 Daihen Corp プラズマ処理装置
JPH08138889A (ja) * 1994-09-16 1996-05-31 Daihen Corp プラズマ処理装置
JP2001250810A (ja) * 2000-03-06 2001-09-14 Shibaura Mechatronics Corp プラズマ処理装置
JP2002526903A (ja) * 1998-10-01 2002-08-20 ザ・ユニバーシティ・オブ・テネシー・リサーチ・コーポレイション プラズマ放電を発生させるためのスロット付導波管構造
JP2017228354A (ja) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 マイクロ波供給装置、プラズマ処理装置、及び、プラズマ処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4114108C1 (ja) * 1991-04-30 1991-12-19 Schott Glaswerke, 6500 Mainz, De
US5955382A (en) * 1995-10-30 1999-09-21 Kabushiki Kaisha Toshiba Microwave excitation plasma processing apparatus and microwave excitation plasma processing method
TW200532060A (en) * 2004-03-19 2005-10-01 Adv Lcd Tech Dev Ct Co Ltd Plasma treatment apparatus and plasma treatment
JP4302010B2 (ja) * 2004-07-14 2009-07-22 三菱重工業株式会社 プラズマ処理装置及びプラズマ処理方法
JP4703371B2 (ja) * 2005-11-04 2011-06-15 国立大学法人東北大学 プラズマ処理装置
JP5762708B2 (ja) * 2010-09-16 2015-08-12 国立大学法人名古屋大学 プラズマ生成装置、プラズマ処理装置及びプラズマ処理方法
JP5629817B2 (ja) * 2011-03-14 2014-11-26 株式会社日立製作所 電磁波伝搬媒体
WO2012147771A1 (ja) * 2011-04-28 2012-11-01 東海ゴム工業株式会社 マイクロ波プラズマ生成装置、およびそれを用いたマグネトロンスパッタ成膜装置
JP5725574B2 (ja) * 2013-03-05 2015-05-27 東京エレクトロン株式会社 マイクロ波導波装置、プラズマ処理装置及びプラズマ処理方法
US9345121B2 (en) * 2014-03-28 2016-05-17 Agilent Technologies, Inc. Waveguide-based apparatus for exciting and sustaining a plasma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236799A (ja) * 1993-02-10 1994-08-23 Daihen Corp プラズマ処理装置
JPH08138889A (ja) * 1994-09-16 1996-05-31 Daihen Corp プラズマ処理装置
JP2002526903A (ja) * 1998-10-01 2002-08-20 ザ・ユニバーシティ・オブ・テネシー・リサーチ・コーポレイション プラズマ放電を発生させるためのスロット付導波管構造
JP2001250810A (ja) * 2000-03-06 2001-09-14 Shibaura Mechatronics Corp プラズマ処理装置
JP2017228354A (ja) * 2016-06-20 2017-12-28 東京エレクトロン株式会社 マイクロ波供給装置、プラズマ処理装置、及び、プラズマ処理方法

Also Published As

Publication number Publication date
JP7182290B2 (ja) 2022-12-02
CN111492720A (zh) 2020-08-04
US20200335308A1 (en) 2020-10-22
JPWO2019124315A1 (ja) 2021-03-04
CN111492720B (zh) 2022-07-15
US11152193B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
JP5421551B2 (ja) プラズマ処理装置及びプラズマ処理方法
US8568556B2 (en) Plasma processing apparatus and method for using plasma processing apparatus
KR20040010228A (ko) 플라즈마 처리 장치
US20120018410A1 (en) Microwave Plasma Generating Plasma and Plasma Torches
WO2010084655A1 (ja) プラズマ処理装置
JP2014175051A (ja) マイクロ波導波装置、プラズマ処理装置及びプラズマ処理方法
JP2003086581A (ja) 大面積プラズマ生成用アンテナ
JP2004152876A (ja) スロットアレイアンテナおよびプラズマ処理装置
JP5478058B2 (ja) プラズマ処理装置
WO2019124315A1 (ja) プラズマ発生装置
JP6576712B2 (ja) マイクロ波プラズマ生成装置
KR101229780B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
WO2010090058A1 (ja) プラズマ処理装置
WO2014103604A1 (ja) マイクロ波プラズマ生成装置
JPWO2008153052A1 (ja) プラズマ処理装置およびプラズマ処理装置の使用方法
US9307626B2 (en) System for generating electromagnetic waveforms, subatomic paticles, substantially charge-less particles, and/or magnetic waves with substantially no electric field
JP5324137B2 (ja) プラズマ処理装置及びプラズマ処理方法
RU2090970C1 (ru) Способ формирования электромагнитного импульса с коротким фронтом
RU2124248C1 (ru) Способ создания однородной плазмы с рабочей зоной большой площади на основе разряда в вч-свч диапазонах и устройство для его осуществления (варианты)
KR100771508B1 (ko) 마이크로웨이브 플라즈마 방전 시스템
Ney et al. A study of electric-field breakdown in E-plane lines at centimeter and millimeter wavelengths
JP2005243650A (ja) スロットアレイアンテナおよびプラズマ処理装置
Variola High power couplers for linear accelerators
CN116234137A (zh) 一种多模式微波等离子体发生装置
JP5324138B2 (ja) プラズマ処理装置及びプラズマ処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891487

Country of ref document: EP

Kind code of ref document: A1