WO2023182159A1 - 電磁波伝達シートおよび電磁波伝達シートの接続構造体 - Google Patents

電磁波伝達シートおよび電磁波伝達シートの接続構造体 Download PDF

Info

Publication number
WO2023182159A1
WO2023182159A1 PCT/JP2023/010374 JP2023010374W WO2023182159A1 WO 2023182159 A1 WO2023182159 A1 WO 2023182159A1 JP 2023010374 W JP2023010374 W JP 2023010374W WO 2023182159 A1 WO2023182159 A1 WO 2023182159A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave transmission
transmission sheet
layer
slot antenna
Prior art date
Application number
PCT/JP2023/010374
Other languages
English (en)
French (fr)
Inventor
啓 綱田
晋一郎 松沢
直人 菊地
健太朗 水野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023182159A1 publication Critical patent/WO2023182159A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • the present disclosure relates to an electromagnetic wave transmission sheet that two-dimensionally propagates electromagnetic waves and a connection structure of the electromagnetic wave transmission sheet.
  • an electromagnetic wave transmission sheet is a sheet made of a dielectric material, with a conductive layer made of a conductive material provided entirely on one surface, and a mesh layer made of a mesh-like conductive material provided on the other surface. It has a similar structure.
  • Patent Document 1 describes an electromagnetic wave interface for inputting and outputting electromagnetic waves to and from an electromagnetic wave transmission sheet.
  • the electromagnetic wave interface includes a rectangular patch antenna with multiple feed points. By placing this electromagnetic wave interface on the mesh layer, input and output of electromagnetic waves is performed.
  • Patent Document 2 describes that input and output of electromagnetic waves is performed by placing a radiator on an electromagnetic wave transmission sheet.
  • the radiator is a stack of a dielectric layer and a conductive layer, and the dielectric layer is placed in contact with the electromagnetic wave transmission sheet.
  • Patent Document 3 describes connecting the electromagnetic wave transmission sheets by wrapping the ends of the two electromagnetic wave transmission sheets between a pair of conductive plates so as to sandwich them from the front and back sides.
  • Patent Documents 1 and 2 an electromagnetic wave interface and a radiator are separately prepared to output electromagnetic waves from the electromagnetic wave transmission sheet, which results in a complicated structure and high cost.
  • the electromagnetic wave radiation from the mesh layer of the electromagnetic wave transmission sheet is weak, and the electric field strength rapidly decreases as you move away from the electromagnetic wave transmission sheet. Therefore, if there is a gap between the electromagnetic wave interface or radiator and the electromagnetic wave transmission sheet, the transmission loss will sharply increase. There is a problem of increasing
  • the electromagnetic wave transmission sheet connection method disclosed in Patent Document 3 requires a separate conductor plate, which also results in a more complicated structure and higher cost. Furthermore, since the heights of the two electromagnetic wave transmission sheets to be connected must be made the same, the application is limited. For example, it could not be applied to connecting two electromagnetic wave transmission sheets of different heights.
  • An object of the present disclosure is to realize an electromagnetic wave transmission sheet and a connection structure of the electromagnetic wave transmission sheet that can easily radiate electromagnetic waves.
  • a first aspect of the present disclosure includes a dielectric layer made of a dielectric material, a conductive layer provided entirely on one surface of the dielectric layer, a conductive layer made of a conductive material, and a conductive layer provided on the other surface of the dielectric layer.
  • the present invention is an electromagnetic wave transmission sheet having a mesh layer made of a mesh-like conductor, and a slot antenna is provided in the conductor layer or the mesh layer.
  • a second aspect of the present disclosure is a connection structure of electromagnetic wave transmission sheets in which the electromagnetic wave transmission sheets according to the first aspect of the present disclosure are connected to each other, wherein the slot antenna of one of the electromagnetic wave transmission sheets , a connecting structure of electromagnetic wave transmission sheets, in which the slot antenna of the other electromagnetic wave transmission sheet is arranged to face the slot antenna.
  • the slot antenna may be provided on a conductive layer. It can function as an antenna more fully than when it is provided in a mesh layer.
  • the slot antenna may have a cross-slot planar pattern.
  • cross slots it is possible to efficiently transmit and receive electromagnetic waves regardless of the propagation mode of the electromagnetic waves propagating through the electromagnetic wave transmission sheet.
  • the slot antenna may have a planar pattern of a single slot, and the long side direction thereof may be perpendicular to the electric field direction of the electromagnetic wave propagating through the electromagnetic wave transmission sheet. This enables efficient transmission and reception of electromagnetic waves.
  • the surface of one electromagnetic wave transmission sheet and the surface of the other electromagnetic wave transmission sheet are made to be conductive. It may be arranged in layers.
  • electromagnetic waves can be easily radiated from the electromagnetic wave transmission sheet. Furthermore, the electromagnetic wave transmission sheets can be easily connected to each other.
  • FIG. 1 is a cross-sectional view showing the configuration of an electromagnetic wave transmission sheet according to a first embodiment.
  • FIG. 2 is a plan view of the electromagnetic wave transmission sheet shown in FIG. 1 as viewed from below.
  • 6 is a diagram showing a modification of the planar pattern of the slot antenna 4.
  • FIG. 6 is a diagram showing a modification of the planar pattern of the slot antenna 4.
  • FIG. 6 is a diagram showing a modification of the planar pattern of the slot antenna 4.
  • FIG. 3 is a plan view of an electromagnetic wave transmission sheet according to a second embodiment. A diagram showing port positions of a patch antenna.
  • FIG. 1 is a diagram showing the configuration of an electromagnetic wave transmission sheet according to the first embodiment.
  • the electromagnetic wave transmission sheet of the first embodiment includes a dielectric layer 1 made of a dielectric, a conductive layer 2 provided on one surface of the dielectric layer 1, and a conductive layer 2 provided on the other side of the dielectric layer 1.
  • a mesh layer 3 made of a mesh-like conductor is provided on the surface of the conductor.
  • the dielectric layer 1 is a sheet-like structure made of dielectric.
  • the dielectric layer 1 may be any low-loss dielectric material, such as resin or rubber.
  • the dielectric constituting the dielectric layer 1 is preferably a material with a relative dielectric constant, that is, a value of 1 to 5 at the frequency of the electromagnetic waves propagated in the electromagnetic wave transmission sheet.
  • the dielectric constituting the dielectric layer 1 it is preferable to use a material that can be repeatedly bent, from the viewpoint of flexibility in the arrangement of the electromagnetic wave transmission sheet.
  • the dielectric layer 1 may be formed by molding the dielectric material itself into a sheet shape, or may be formed by processing dielectric fibers such as cloth or nonwoven fabric into a sheet shape.
  • the thickness of the dielectric layer 1 is, for example, 0.5 to 10 mm.
  • the mesh layer 3 is provided on the other surface of the dielectric layer 1. Furthermore, the mesh layer 3 is made of a mesh-like conductor.
  • the mesh layer 3 may be made of any material as long as it is a conductor, and may be the same material as the conductor layer 2.
  • the shape of the mesh may be square, diamond, regular hexagon, etc.
  • the mesh line width is, for example, 0.1 to 2 mm, and the mesh period is, for example, 2 to 20 mm. Further, the thickness of the mesh layer 3 is, for example, 0.5 to 100 ⁇ m.
  • the mesh of the mesh layer 3 may be constructed by weaving linear conductors, or may be constructed by making holes in a film-like conductor. Furthermore, the mesh openings may be filled with a dielectric material.
  • the conductor layer 2 is provided over the entire surface of one surface of the dielectric layer 1.
  • the conductor layer 2 functions as a ground conductor.
  • the material of the conductor layer 2 may be any material as long as it is a conductor, such as Cu, Al, Ag, Au, stainless steel, etc.
  • the sheet resistance of the conductor layer 2 is preferably 1 ⁇ / ⁇ or less. This is to efficiently propagate electromagnetic waves.
  • the thickness of the conductor layer 2 is, for example, 0.5 to 100 ⁇ m.
  • a slot antenna 4 is provided in a region of the conductor layer 2 where electromagnetic waves are radiated to the outside.
  • the slot antenna 4 functions as an antenna for transmitting and receiving electromagnetic waves by providing through holes in a predetermined planar pattern in a part of the conductor layer 2.
  • the slot antenna 4 may be provided at any position where it is desired to radiate electromagnetic waves.
  • the radiation direction of the electromagnetic waves from the slot antenna 4 is perpendicular to the surface of the electromagnetic wave transmission sheet.
  • the conductor layer 2 is formed on the entire surface of one side of the dielectric layer 1, but since it is open at the slot antenna 4, it means that it is the entire surface excluding that part. do.
  • FIG. 2 is a plan view of the end of the electromagnetic wave transmission sheet viewed from the conductor layer 2 side.
  • a plurality of slot antennas 4 are arranged in a row at equal intervals at the end of the electromagnetic wave transmission sheet.
  • the arrangement direction of the plurality of slot antennas 4 is the width direction of the electromagnetic wave transmission sheet, in other words, the direction perpendicular to the propagation direction of the electromagnetic waves.
  • the spacing between adjacent slot antennas 4 is arbitrary as long as they do not interfere with each other.
  • the planar pattern of the slot antenna 4 is a cross-shaped cross slot.
  • the cross slot is a pattern in which two rectangles are combined in a cross shape, and the length of the rectangle is, for example, an effective wavelength, in other words, 1/2 of the wavelength of the electromagnetic wave propagating through the electromagnetic wave transmission sheet.
  • the long side directions of the two rectangles of the cross slot are parallel to the width direction of the electromagnetic wave transmission sheet and the direction perpendicular thereto.
  • the two rectangles may intersect at their respective centers, or may be offset from the center and intersect.
  • the cross slots enable stable transmission and reception of electromagnetic waves regardless of the propagation mode of the electromagnetic waves propagating through the electromagnetic wave transmission sheet. Therefore, the cross slot is suitable for two-way communication using the electromagnetic wave transmission sheet.
  • planar pattern of the slot antenna 4 is not limited to the cross slot pattern. Any planar pattern may be used as long as it functions as an antenna and can transmit and receive electromagnetic waves.
  • it may be a single slot with a rectangular pattern as shown in FIG. 3(a).
  • the length of the long side of the rectangle is, for example, 1/2 of the effective wavelength.
  • the direction of the long side of the rectangle is parallel to the electric field direction of the electromagnetic waves propagating through the electromagnetic wave transmission sheet, the electromagnetic waves cannot be efficiently transmitted and received.
  • a single slot is suitable for one-way communication using an electromagnetic wave transmission sheet.
  • FIG. 3(b) it may be a bowtie-shaped tapered slot.
  • a tapered slot is a pattern in which two triangles face each other so that their vertices overlap, and the width of the line increases as it moves away from the center of the line.
  • the resonant frequency can be changed by changing the size by enlarging or reducing the planar pattern while maintaining a similar shape. Therefore, by using a plurality of similar planar patterns of different sizes, transmission and reception may be performed in a plurality of frequency bands.
  • FIG. 4 is an example in which planar patterns of cross slots of different sizes are alternately arranged in a line.
  • the larger slot antenna 4A can transmit and receive in the 2.4 GHz band
  • the smaller slot antenna 4B can transmit and receive in the 5.2 GHz band, allowing communication in the same frequency band as wireless LAN. becomes.
  • a combination of different planar patterns may be used. For example, as shown in FIG. 5, single slots whose long sides are perpendicular to each other may be arranged alternately. As in the case of the cross slot, stable transmission and reception of electromagnetic waves is possible regardless of the propagation mode of the electromagnetic waves propagating through the electromagnetic wave transmission sheet.
  • the plurality of slot antennas 4 are arranged in one row in the first embodiment, they may be arranged in two or more rows. When arranged in two or more rows, it may be arranged in a square lattice shape or a regular triangular lattice shape, for example.
  • Transmission and reception of electromagnetic waves by the slot antenna 4 can be used to connect electromagnetic wave transmission sheets.
  • the two electromagnetic wave transmission sheets are arranged in an overlapping manner so that the slot antenna 4 of one electromagnetic wave transmission sheet faces the slot antenna 4 of the other electromagnetic wave transmission sheet, good. Since the connection is normally made at the end of the electromagnetic wave transmission sheet, the slot antenna 4 is provided at the end of the electromagnetic wave transmission sheet.
  • the electromagnetic waves radiated from the slot antenna 4 of one electromagnetic wave transmission sheet can be received by the slot antenna 4 of the other electromagnetic wave transmission sheet. Therefore, the electromagnetic waves propagating through one electromagnetic wave transmission sheet can be propagated to the other electromagnetic wave transmission sheet.
  • the plane pattern of the slot antenna 4 of one electromagnetic wave transmission sheet and the plane pattern of the slot antenna 4 of the other electromagnetic wave transmission sheet may be different, but may have the same pattern. It is preferable that This is to efficiently transmit and receive electromagnetic waves. Further, the interval between the slot antenna 4 of one electromagnetic wave transmission sheet and the slot antenna 4 of the other electromagnetic wave transmission sheet is preferably as small as possible, for example, preferably 1/5 or less of the effective wavelength. The slot antenna 4 of one electromagnetic wave transmission sheet may be in contact with the slot antenna 4 of the other electromagnetic wave transmission sheet.
  • the distance between one slot antenna 4 and the other slot antenna 4 may be fixed, or the slot antennas 4 may be prevented from being displaced from each other.
  • it may be fixed using an adhesive or a spacer.
  • the adhesive and spacer may be dielectric or conductive.
  • the electromagnetic wave transmission sheet of the first embodiment by arranging an antenna on the mesh layer 3, it is possible to input electromagnetic waves to the electromagnetic wave transmission sheet or output electromagnetic waves from the electromagnetic wave transmission sheet.
  • the antenna is, for example, a patch antenna with a planar pattern such as a rectangle or a circle.
  • the conductor layer 2 and the mesh layer 3 may be exchanged with each other in a predetermined region (see FIG. 12).
  • the conductor layer 2 is formed on one surface of the dielectric layer 1 and the mesh layer 3 is formed on the other surface, while the mesh layer 3 is formed on one surface without the conductor layer 2 partially. , the other surface is partially provided with the conductor layer 2 without the mesh layer 3.
  • the length L of the conductor layer 2 in the propagation direction of the electromagnetic waves is 0.6 times or more the effective wavelength. It becomes possible to replace the electromagnetic wave transmission sheet without significantly affecting the propagation characteristics.
  • the slot antennas 4 provided on the conductor layer 2 are opposed to each other, when the electromagnetic wave transmission sheets are viewed from one direction in the normal direction to the surface, one electromagnetic wave transmission The surface of the sheet is on the conductor layer 2 side, and the other surface of the electromagnetic wave transmission sheet is on the mesh layer 3 side. Therefore, by replacing the conductor layer 2 and the mesh layer 3 midway, the surfaces of both electromagnetic wave transmission sheets can be aligned to the conductor layer 2 side, and when the electromagnetic wave transmission sheets are viewed from the opposite direction of the normal to the surface. can be aligned on the mesh layer 3 side.
  • a predetermined area of the mesh layer 3 of one electromagnetic wave transmission sheet is replaced with the conductor layer 2, and the slot antenna 4 is provided on the conductor layer 2, so that both The surfaces may be aligned (see FIG. 7).
  • a protective layer made of a dielectric material and covering the conductor layer 2 and mesh layer 3 may be provided.
  • the protective layer may be made of the same material as the dielectric layer 1.
  • the electromagnetic wave transmission sheet of the first embodiment by providing the slot antenna 4 in the conductive layer 2, electromagnetic waves can be easily and efficiently radiated. Moreover, the electromagnetic wave transmission sheets can be electrically connected to each other by simply overlapping the two electromagnetic wave transmission sheets so that one slot antenna 4 and the other slot antenna 4 face each other. Furthermore, this connection method can also connect electromagnetic wave transmission sheets with different structures. For example, it is also possible to connect electromagnetic wave transmission sheets with different thicknesses.
  • the slot antenna 4 was provided on the conductor layer 2, but it may be provided on the mesh layer 3 as shown in FIG.
  • the slot antenna 4 provided on the conductor layer 2 and the slot antenna 4 provided on the mesh layer 3 may be made to face each other and the two electromagnetic wave transmission sheets may be connected, or the slot antenna provided on the mesh layer 3 may be connected.
  • Two electromagnetic wave transmission sheets may be connected by making them face each other.
  • the slot antenna 4 is provided on the mesh layer 3, the function as an antenna becomes weaker than when the slot antenna 4 is provided on the conductor layer 2, and the intensity of the radiated electromagnetic waves becomes weaker.
  • the interval between the slot antenna 4 of one electromagnetic wave transmission sheet and the slot antenna 4 of the other electromagnetic wave transmission sheet is preferably set to, for example, 1/10 or less of the free space wavelength.
  • the conductive layer 2 and the mesh layer 3 may be replaced in the area where the slot antenna 4 is provided, and the slot antenna 4 may be provided on the conductive layer 2.
  • the conductor layer 2 may be simply replaced with a solid conductor layer 2 without being replaced, that is, both sides of the dielectric layer 1 may be provided with the conductor layer 2, and the slot antenna 4 may be provided on the conductor layer 2.
  • the transmission loss of two connected electromagnetic wave transmission sheets was simulated under the following conditions.
  • the frequency of input and output electromagnetic waves was 2.4 to 2.5 GHz.
  • the length of one electromagnetic wave transmission sheet was 400 mm, the width was 300 mm, and two electromagnetic wave transmission sheets were arranged so that their ends overlapped by 60 mm.
  • the length direction of the electromagnetic wave transmission sheet will be referred to as the x-axis direction
  • the width direction will be referred to as the y-axis direction
  • the direction perpendicular to the surface of the electromagnetic wave transmission sheet will be referred to as the z-axis direction.
  • Each slot antenna 4 of one electromagnetic wave transmission sheet and each slot antenna 4 of the other electromagnetic wave transmission sheet were made to face each other at a distance S in the z-axis direction.
  • the mesh line width of the mesh layer 3 was 1 mm, and the period was 6 mm.
  • the dielectric layer 1 had a dielectric constant of 1.9 and a thickness of 1 mm.
  • the material of the conductor layer 2 and the mesh layer 3 was Al, and the thickness was 0.1 mm.
  • the planar pattern of the slot antenna 4 was a cross slot.
  • the length of the two rectangles constituting the cross slot was 47 mm, the width was 5 mm, and a pattern was formed in which the two rectangles overlapped at the center of each. Further, the distance between the centers of adjacent cross slots was 54 mm. Further, the long sides of the two rectangles of the cross slot were aligned in the x-axis direction and the y-axis direction, respectively.
  • Input and output of electromagnetic waves to the electromagnetic wave transmission sheet was performed by placing a square patch antenna on the mesh layer 3 of the electromagnetic wave transmission sheet.
  • the patch antennas were placed at the center of each end on the opposite side to the overlapping side.
  • Each side of the square of the patch antenna was aligned in the x-axis direction and the y-axis direction.
  • the patch antenna has two ports.
  • the ports of the patch antenna on the electromagnetic wave input side will be referred to as ports 1 and 2
  • the ports on the electromagnetic wave output side will be referred to as ports 3 and 4. As shown in FIG.
  • port 1 is arranged a predetermined distance away from the center of the patch antenna in the x-axis direction and in the opposite direction to the overlap side
  • port 2 is arranged a predetermined distance from the center of the patch antenna in the negative y-axis direction. Arranged in a staggered manner.
  • port 3 was placed a predetermined distance away from the center of the patch antenna in the x-axis direction and in the direction opposite to the overlap side
  • port 4 was placed a predetermined distance away from the center of the patch antenna in the positive y-axis direction.
  • the electric field becomes a propagation mode in the y-axis direction
  • radio waves can be efficiently output from port 3.
  • electromagnetic waves when electromagnetic waves are input to the electromagnetic wave transmission sheet from port 2, the electric field becomes a propagation mode in the x-axis direction, and radio waves can be efficiently output from port 4.
  • FIG. 10 is a graph showing the relationship between the distance S (mm) between the slot antennas 4 and the transmission loss (dB).
  • the transmission loss is the difference from the transmission coefficient when a single electromagnetic wave transmission sheet without connections is used. Further, the transmission coefficient was an average between 2.4 GHz and 2.5 GHz.
  • S31 is the transmission loss when electromagnetic waves are input from port 1 and electromagnetic waves are output from port 3
  • S42 is the transmission loss when electromagnetic waves are input from port 2 and electromagnetic waves are output from port 4.
  • S31 had a distance S of 12 mm or less, and S42 had a distance S of 18 mm or less and 10 dB or less. Therefore, it was found that if the distance S is made sufficiently small, the transmission loss can be suppressed to 10 dB or less, and the electromagnetic wave transmission sheets can be connected with low loss. It is presumed that the distance S may be set to, for example, 1/10 or less of the free space wavelength.
  • FIG. 11A and 11B are graphs showing the transmission loss when the distance S is 6 mm and the plane pattern of the slot antenna 4 is a cross slot or a single slot, respectively.
  • FIG. 11A is S31
  • FIG. 11B is S42. be.
  • the electromagnetic wave transmission sheet of the present disclosure can be used as a two-dimensional communication medium, for example, for in-vehicle communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Waveguide Aerials (AREA)
  • Waveguide Connection Structure (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

電磁波伝達シートは、誘電体からなる誘電体層(1)と、誘電体層の一方の面に設けられた導電体層(2)と、誘電体層の他方の面に設けられたメッシュ状の導電体からなるメッシュ層(3)と、によって構成されている。導電体層は、誘電体層の一方の面に全面に設けられている。導電体層のうち、電磁波を外部に放射させる領域には、スロットアンテナ(4)が設けられている。スロットアンテナは、導電体層の一部に所定の平面パターンの貫通孔を設けることで、電磁波を送受信するアンテナとして機能させたものである。

Description

電磁波伝達シートおよび電磁波伝達シートの接続構造体 関連出願への相互参照
 本出願は、2022年3月22日に出願された日本特許出願番号2022-045551号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、電磁波を2次元的に伝搬させる電磁波伝達シートおよび電磁波伝達シートの接続構造体に関するものである。
 有線による1次元的な通信や、電磁波の空間伝搬による3次元的な通信に替わる通信として、電磁波伝達シートによる2次元的な通信が知られている。電磁波伝達シートは、特許文献1のように、誘電体からなるシートの一方の面に全面的に導電体からなる導電体層を設け、他方の面にメッシュ状の導電体からなるメッシュ層を設けた構造である。
 特許文献1には、電磁波伝達シートとの電磁波の入出力を行うための電磁波インターフェイスが記載されている。電磁波インターフェイスは、複数の給電点を有した方形のパッチアンテナを備える。この電磁波インターフェイスをメッシュ層上に置くことで、電磁波の入出力を行う。
 特許文献2には、放射器を電磁波伝達シート上に配置することで電磁波の入出力を行うことが記載されている。放射器は、誘電体層と導電体層の積層であり、誘電体層が電磁波伝達シートに接するように配置する。
 また、電磁波伝達シートを車載通信などに利用する場合、大きな電磁波伝達シートを製造することは困難であるため、複数の電磁波伝達シートを接続する必要がある。そこで特許文献3には、2枚の電磁波伝達シートの端部を、一対の導電体板で裏表から挟むように包み込むことで電磁波伝達シート同士を接続することが記載されている。
特開2011-193604号公報 特開2014-107755号公報 特開2010-56952号公報
 特許文献1、2では、電磁波インターフェイスや放射器を別途用意して電磁波伝達シートからの電磁波の出力を行っており、構造の複雑化、高コスト化を招くことになる。また、電磁波伝達シートのメッシュ層からの電磁波放射は弱く、電磁波伝達シートから離れると電界強度が急激に低下するため、電磁波インターフェイスや放射器と電磁波伝達シートに隙間が生じると、その透過損失が急激に増大するという問題がある。
 また、特許文献3の電磁波伝達シートの接続方法では、別途導電体板が必要となり、やはり構造の複雑化、高コスト化を招くことになる。さらに、接続する2枚の電磁波伝達シートの高さを揃える必要があるため、適用が限定的である。たとえば、高さの異なる2枚の電磁波伝達シートの接続には適用できなかった。
 本開示は、簡易に電磁波を放射させることが可能な電磁波伝達シートおよび電磁波伝達シートの接続構造体を実現することを目的とする。
 本開示の第1の観点は、誘電体からなる誘電体層と、前記誘電体層の一方の面に全面に設けられ、導電体からなる導電体層と、前記誘電体層の他方の面に設けられ、メッシュ状の導電体からなるメッシュ層と、を有した電磁波伝達シートであって、前記導電体層または前記メッシュ層に、スロットアンテナが設けられている、電磁波伝達シートである。
 また、本開示の第2の観点は、上記本開示の第1の観点における電磁波伝達シート同士が接続された電磁波伝達シートの接続構造体であって、一方の前記電磁波伝達シートの前記スロットアンテナと、他方の前記電磁波伝達シートの前記スロットアンテナとが対向するように配置されている、電磁波伝達シートの接続構造体である。
 本開示において、スロットアンテナは、導電体層に設けられていてもよい。メッシュ層に設ける場合よりもアンテナとしての機能を十分に発揮させることができる。
 本開示において、スロットアンテナは平面パターンがクロススロットであってもよい。クロススロットとすることで、電磁波伝達シートを伝搬する電磁波の伝搬モードによらず、効率的に電磁波の送受信が可能となる。
 本開示において、スロットアンテナは平面パターンが単スロットであり、その長辺方向が電磁波伝達シートを伝搬する電磁波の電界方向と直交するようにしてもよい。これにより効率的に電磁波の送受信が可能となる。
 本開示の電磁波伝達シートの接続構造体において、一方の電磁波伝達シートの所定領域において導電体層とメッシュ層を入れ替えることにより、一方の電磁波伝達シートの面と他方の電磁波伝達シートの面を導電体層に揃えてもよい。
 本開示によれば、電磁波伝達シートからの電磁波放射を簡易に行うことができる。また、電磁波伝達シート同士の接続も容易に行うことができる。
第1実施形態の電磁波伝達シートの構成を示した断面図。 図1の電磁波伝達シートを紙面下方から見た平面図。 スロットアンテナ4の平面パターンの変形例を示した図。 スロットアンテナ4の平面パターンの変形例を示した図。 スロットアンテナ4の平面パターンの変形例を示した図。 電磁波伝達シート同士を接続した構造を示した断面図。 電磁波伝達シート同士を接続した構造を示した断面図。 第2実施形態の電磁波伝達シートの平面図。 パッチアンテナのポート位置を示した図。 スロットアンテナ間の距離S(mm)と透過損失(dB)の関係を示したグラフ。 スロットアンテナの平面パターンをクロススロット、単スロットとした場合のそれぞれの透過損失を示したグラフ。 導電体層とメッシュ層を入れ替えた例を示した図。
 以下、本開示の実施形態について図を参照に説明する。
 (第1実施形態)
 図1は、第1実施形態の電磁波伝達シートの構成を示した図である。図1のように、第1実施形態の電磁波伝達シートは、誘電体からなる誘電体層1と、誘電体層1の一方の面に設けられた導電体層2と、誘電体層1の他方の面に設けられたメッシュ状の導電体からなるメッシュ層3と、によって構成されている。この電磁波伝達シートでは、誘電体層1内部とメッシュ層3の表面に電磁波を伝搬させることができ、高速な通信が可能である。
 誘電体層1は、誘電体からなるシート状の構造体である。誘電体層1は、低損失な任意の誘電体材料でよく、たとえば樹脂、ゴムなどである。誘電体層1を構成する誘電体は、好ましくは比誘電率、つまり電磁波伝達シートにおいて伝搬させる電磁波の周波数における値が1~5の材料である。誘電体層1を構成する誘電体には、電磁波伝達シートの配置の自由度の点から、繰り返し折り曲げ可能な材料を用いるとよい。誘電体層1は、誘電体材料自体をシート状に成型したものであってもよいし、布や不織布のように誘電体からなる繊維をシート状に加工したものであってもよい。誘電体層1の厚さは、たとえば0.5~10mmである。
 メッシュ層3は、誘電体層1の他方の面に設けられている。また、メッシュ層3は、メッシュ状の導電体からなる。メッシュ層3の材料は、導電体であれば任意の材料でよく、導電体層2と同一材料でもよい。メッシュの目の形状は正方形、ひし形、正六角形などである。メッシュの線幅は、たとえば0.1~2mm、メッシュの周期は、たとえば2~20mmである。また、メッシュ層3の厚さは、たとえば0.5~100μmである。メッシュ層3のメッシュは、線状の導電体を編み込むことで構成してもよいし、フィルム状の導電体に孔を開けることによって構成してもよい。また、メッシュの目は誘電体によって埋められていてもよい。
 導電体層2は、誘電体層1の一方の面に全面に設けられている。導電体層2は、グランド導体として機能するものである。導電体層2の材料は、導電体であれば任意の材料でよく、たとえばCu、Al、Ag、Au、ステンレス、などである。導電体層2のシート抵抗は、1Ω/□以下が好ましい。効率的に電磁波を伝搬するためである。導電体層2の厚さは、たとえば0.5~100μmである。
 導電体層2のうち、電磁波を外部に放射させる領域には、スロットアンテナ4が設けられている。スロットアンテナ4は、導電体層2の一部に所定の平面パターンの貫通孔を設けることで、電磁波を送受信するアンテナとして機能させたものである。スロットアンテナ4を設ける位置は、電磁波を放射させたい任意の位置でよい。スロットアンテナ4からの電磁波の放射方向は、電磁波伝達シートの面に垂直方向となる。なお、上記したように、導電体層2は誘電体層1の一方の面の全面に形成されているが、スロットアンテナ4において開口しているため、その部分を除いた全面であることを意味する。
 図2は、電磁波伝達シートの端部を導電体層2側から見た平面図である。図2のように、電磁波伝達シートの端部には、複数のスロットアンテナ4が一列に等間隔に配列して設けられている。複数のスロットアンテナ4の配列方向は、電磁波伝達シートの幅方向、換言すれば電磁波の伝搬方向に垂直な方向である。隣接するスロットアンテナ4の間隔は、互いに干渉しない範囲であれば任意である。スロットアンテナ4の平面パターンは、十字型のクロススロットである。クロススロットは、2つの長方形を十字型に組み合わせたパターンであり、長方形の長さはたとえば実効波長、換言すれば電磁波伝達シートを伝搬中の電磁波の波長の1/2である。クロススロットの2つの長方形の長辺方向は、それぞれ電磁波伝達シートの幅方向とそれに垂直な方向に平行である。2つの長方形はそれぞれの中心でクロスさせてもよいし、中心からずらしてクロスさせてもよい。クロススロットとすることで、電磁波伝達シートを伝搬する電磁波の伝搬モードによらず安定して電磁波の送受信が可能となる。そのため、クロススロットは電磁波伝達シートによる双方向通信に好適である。
 もちろん、スロットアンテナ4の平面パターンはクロススロットに限らない。アンテナとして機能し電磁波の送受信が可能なパターンであれば、任意の平面パターンとしてよい。
 たとえば、図3(a)のように長方形のパターンとされる単スロットとしてもよい。長方形の長辺の長さは、たとえば実効波長の1/2である。この場合、長方形の長辺の方向と、電磁波伝達シートを伝搬する電磁波の電界方向とを直交させることで、効率的にスロットアンテナ4を介して電磁波の送受信を行うことができる。長方形の長辺の方向と、電磁波伝達シートを伝搬する電磁波の電界方向とが平行である場合は、効率的に電磁波の送受信ができない。単スロットは、電磁波伝達シートによる一方向通信に好適である。
 また、たとえば、図3(b)のように、ボウタイ型とされるテーパースロットとしてもよい。テーパースロットは、2つの三角形を頂点が重なるように向い合せたパターンであり、線路の中央から離れるほど線路の幅が広がるようなパターンである。テーパースロットとすることで、広帯域化を図ることができる。
 スロットアンテナ4では、その平面パターンについて相似形を保ったまま拡大縮小してサイズを変えることで共振周波数を変えることができる。そこで、サイズの異なる相似形の平面パターンを複数用いることで、複数の周波数帯で送受信できるようにしてもよい。図4は、サイズの異なるクロススロットの平面パターンを交互に一列に配置した例である。たとえば、サイズの大きい方のスロットアンテナ4Aは2.4GHz帯、サイズの小さい方のスロットアンテナ4Bは5.2GHz帯の送受信が可能とすることで、無線LANと同様の周波数帯での通信が可能となる。
 異なる平面パターンを組み合わせて用いてもよい。たとえば、図5のように、長辺方向が互いに直交する単スロットを交互に並べて配置してもよい。クロススロットの場合と同様に、電磁波伝達シートを伝搬する電磁波の伝搬モードによらず安定して電磁波の送受信が可能となる。
 また、スロットアンテナ4は複数である必要はないが、効率的に電磁波の送受信を行う点から複数設けることが好ましい。隣接するスロットアンテナ4間の距離は等間隔でなくともよい。また、第1実施形態では複数のスロットアンテナ4を一列に配置しているが、2列以上に配置してもよい。2列以上に配列する場合、たとえば正方格子状であってもよいし、正三角格子状の配列でもよい。
 スロットアンテナ4による電磁波の送受信は、電磁波伝達シート同士の接続に利用することができる。その場合、図6に示すように、一方の電磁波伝達シートのスロットアンテナ4と他方の電磁波伝達シートのスロットアンテナ4とが対向するように、2枚の電磁波伝達シートをオーバーラップさせて配置すればよい。通常、電磁波伝達シートの端部で接続するので、スロットアンテナ4は電磁波伝達シートの端部に設ける。このように2枚の電磁波伝達シートを配置することで、一方の電磁波伝達シートのスロットアンテナ4から放射された電磁波を、他方の電磁波伝達シートのスロットアンテナ4で受信することができる。よって、一方の電磁波伝達シートを伝搬する電磁波を、他方の電磁波伝達シートに伝搬させることができる。
 上記のようにして電磁波伝達シート同士を接続する場合、一方の電磁波伝達シートのスロットアンテナ4の平面パターンと、他方の電磁波伝達シートのスロットアンテナ4の平面パターンは異なっていてもよいが、同一パターンとすることが好ましい。効率的に電磁波の送受信を行うためである。また、一方の電磁波伝達シートのスロットアンテナ4と、他方の電磁波伝達シートのスロットアンテナ4の間隔は、なるべく小さいことが好ましく、たとえば実効波長の1/5以下が好ましい。一方の電磁波伝達シートのスロットアンテナ4と、他方の電磁波伝達シートのスロットアンテナ4とが接していてもよい。
 電磁波伝達シート同士の接続において、一方のスロットアンテナ4の平面パターンと他方のスロットアンテナ4の平面パターンとが平面視において一致するように対向させることが好ましいが、ずれていたとしても電磁波の送受信が可能な範囲であれば許容される。
 一方のスロットアンテナ4と他方のスロットアンテナ4との間隔を固定したり、スロットアンテナ4の相互の位置ずれが生じないようにしてもよい。たとえば、接着剤やスペーサなどで固定してもよい。その場合、接着剤やスペーサは誘電体でも導電体でもよい。
 第1実施形態の電磁波伝達シートでは、メッシュ層3上にアンテナを配置することで電磁波伝達シートへの電磁波の入力、あるいは電磁波伝達シートからの電磁波の出力を行うことができる。アンテナは、たとえば矩形、円などの平面パターンのパッチアンテナである。
 導電体層2とメッシュ層3は、所定の領域で相互に入れ替えてもよい(図12参照)。つまり、誘電体層1の一方の面に導電体層2、他方の面にメッシュ層3をそれぞれ形成しつつ、一方の面については導電体層2を部分的に備えないでメッシュ層3を備え、他方の面についてはメッシュ層3を部分的に備えないで導電体層2を備えるようにする。入れ替える場合、電磁波の伝搬方向における導電体層2の長さLが実効波長の0.6倍以上となるようにするとよい。電磁波伝達シートの伝搬特性に大きな影響を与えることなく入れ替えが可能となる。第1実施形態による電磁波伝達シートの接続では、導電体層2に設けられたスロットアンテナ4を対向させるため、電磁波伝達シートを表面に対する法線方向の一方向から視た場合に、一方の電磁波伝達シートの面は導電体層2側、他方の電磁波伝達シートの面はメッシュ層3側となる。そこで、導電体層2とメッシュ層3を途中で入れ替えれば、双方の電磁波伝達シートの面を導電体層2側に揃えられ、電磁波伝達シートを表面に対する法線方向の反対方向から視た場合にはメッシュ層3側に揃えることができる。また、一方の電磁波伝達シートのメッシュ層3のうちの所定領域、具体的にはスロットアンテナ4を設ける領域を導電体層2に置き換え、その導電体層2にスロットアンテナ4を設けて、双方の面を揃えてもよい(図7参照)。
 誘電体からなり、導電体層2やメッシュ層3を覆う保護層を設けてもよい。この場合、保護層を誘電体層1と同一材料としてもよい。
 以上、第1実施形態の電磁波伝達シートでは、導電体層2にスロットアンテナ4を設けることで簡便かつ効率的に電磁波を放射させることができる。また、一方のスロットアンテナ4と他方のスロットアンテナ4とが対向するように2枚の電磁波伝達シートを重ね合わせるだけで、電磁波伝達シート同士を電気的に接続することができる。また、この接続方法は、構造の異なる電磁波伝達シートの接続も可能である。たとえば、厚さの異なる電磁波伝達シートの接続も可能である。
(第2実施形態)
 第1実施形態では、スロットアンテナ4を導電体層2に設けていたが、図8に示すようにメッシュ層3に設けてもよい。この場合、導電体層2に設けたスロットアンテナ4とメッシュ層3に設けたスロットアンテナ4とを対向させて2枚の電磁波伝達シートを接続してもよいし、メッシュ層3に設けたスロットアンテナ4同士を対向させて2枚の電磁波伝達シートを接続してもよい。ただし、メッシュ層3にスロットアンテナ4を設けると、導電体層2にスロットアンテナ4を設ける場合に比べてアンテナとしての機能が弱くなり、放射される電磁波の強度が弱くなる。そのため、一方の電磁波伝達シートのスロットアンテナ4と他方の電磁波伝達シートのスロットアンテナ4との間隔を十分に近づけるとよい。メッシュ層3に設けたスロットアンテナ4同士を対向させる場合には、その間隔はたとえば自由空間波長の1/10以下とするとよい。
 上述のように、メッシュ層3にスロットアンテナ4を設けると、アンテナとしての機能が弱まる。そこで、スロットアンテナ4を設ける領域において導電体層2とメッシュ層3とを入れ替え、導電体層2にスロットアンテナ4を設けるようにしてもよい。あるいは、入れ替えずに単にベタ一面の導電体層2に置き換え、つまり誘電体層1の両面を導電体層2とし、その導電体層2にスロットアンテナ4を設けてもよい。
 次に、本実施形態に関する各種実験結果について説明する。
 以下のような条件で、接続された2枚の電磁波伝達シートの透過損失をシミュレーションした。入出力する電磁波の周波数は2.4~2.5GHzとした。
 1枚の電磁波伝達シートの長さを400mm、幅を300mmとし、端部が60mmオーバーラップするように2枚の電磁波伝達シートを配置した。以下、電磁波伝達シートの長さ方向をx軸方向、幅方向をy軸方向、電磁波伝達シートの面に垂直方向をz軸方向とする。
 2枚の電磁波伝達シートをオーバーラップさせた領域に、5つのスロットアンテナ4をy軸方向に等間隔に一列に配列させた。そして、一方の電磁波伝達シートの各スロットアンテナ4と、他方の電磁波伝達シートの各スロットアンテナ4とを、z軸方向に距離S隔てて対向させた。メッシュ層3のメッシュの線幅は1mm、周期は6mmとした。誘電体層1は比誘電率1.9とし、厚さは1mmとした。導電体層2およびメッシュ層3の材料はAlとし、厚さは0.1mmとした。
 スロットアンテナ4の平面パターンはクロススロットとした。クロススロットを構成する2つの長方形の長さは47mm、幅は5mmとし、2つの長方形のそれぞれの中心で重ねたパターンとした。また、隣接するクロススロットの中心間の距離は54mmとした。また、クロススロットの2つの長方形の長辺はそれぞれx軸方向とy軸方向に揃えた。
 電磁波伝達シートへの電磁波の入出力は、正方形のパッチアンテナを電磁波伝達シートのメッシュ層3上に配置して行った。パッチアンテナはオーバーラップさせている側とは反対側の端部中央にそれぞれ配置した。パッチアンテナの正方形の各辺はx軸方向、y軸方向に揃えて配置した。パッチアンテナには2つのポートを設けた。以下、電磁波入力側のパッチアンテナのポートをポート1、2とし、電磁波出力側のポートをポート3、4とする。図9のように、ポート1はパッチアンテナの中心からx軸方向であってオーバーラップ側とは反対方向に所定距離ずらして配置し、ポート2はパッチアンテナの中心からy軸負方向に所定距離ずらして配置した。また、ポート3はパッチアンテナの中心からx軸方向であってオーバーラップ側とは反対方向に所定距離ずらして配置し、ポート4はパッチアンテナの中心からy軸正方向に所定距離ずらして配置した。この場合、ポート1から電磁波伝達シートに電磁波を入力すると、電界がy軸方向の伝搬モードとなり、ポート3から効率的に電波を出力させることができる。一方、ポート2から電磁波伝達シートに電磁波を入力すると、電界がx軸方向の伝搬モードとなり、ポート4から効率的に電波を出力させることができる。
 図10は、スロットアンテナ4間の距離S(mm)と透過損失(dB)の関係を示したグラフである。透過損失は、接続のない1枚の電磁波伝達シートとした場合の透過係数との差である。また、透過係数は2.4GHzから2.5GHzの間での平均とした。S31は、ポート1から電磁波を入力しポート3から電磁波を出力する場合の透過損失、S42は、ポート2から電磁波を入力しポート4から電磁波を出力する場合の透過損失である。
 図10のように、S31は距離Sが12mm以下、S42は距離Sが18mm以下で10dB以下となった。よって、距離Sを十分に小さくすれば、透過損失を10dB以下に抑えることができ、電磁波伝達シート同士を損失少なく接続できることがわかった。距離Sは、たとえば自由空間波長の1/10以下とすればよいことが推察される。
 図11A、図11Bは、距離Sを6mmとし、スロットアンテナ4の平面パターンをクロススロット、単スロットとした場合のそれぞれの透過損失を示したグラフであり、図11AはS31、図11BはS42である。単スロットは、その長辺方向がx軸方向とy軸方向の2種類とした。
 図11A、図11Bのように、クロススロットの場合はS31、S42のいずれも低かった。したがって、クロススロットの場合はパッチアンテナのポート位置によらず低損失であることがわかった。つまり、電磁波伝達シートを伝搬する電磁波の電界方向によらず、低損失であることがわかった。
 一方、x軸方向の単スロットの場合、S42は透過損失が低かったがS31は透過損失が高かった。また、y軸方向の単スロットの場合、S31は透過損失が低かったがS42は透過損失が高かった。このように、単スロットの場合、パッチアンテナのポート位置に応じて単スロットの長辺方向を変えることで、損失を低減できることがわかった。具体的には、パッチアンテナのポート位置を変えることによって電磁波伝達シートを伝搬する電磁波の電界方向を単スロットの長辺方向と直交させることで、損失を低減できることがわかった。
 本開示の電磁波伝達シートは、2次元的な通信の媒体として利用でき、たとえば車載の通信に利用できる。

Claims (7)

  1.  誘電体からなる誘電体層と、前記誘電体層の一方の面に全面に設けられ、導電体からなる導電体層と、前記誘電体層の他方の面に設けられ、メッシュ状の導電体からなるメッシュ層と、を有した電磁波伝達シートであって、
     前記導電体層または前記メッシュ層に、スロットアンテナが設けられている、
     電磁波伝達シート。
  2.  前記スロットアンテナは、前記導電体層に設けられている、ことを特徴とする請求項1に記載の電磁波伝達シート。
  3.  前記スロットアンテナは、平面パターンがクロススロットである、請求項1または請求項2に記載の電磁波伝達シート。
  4.  前記スロットアンテナは、平面パターンが単スロットであり、その長辺方向が電磁波伝達シートを伝搬する電磁波の電界方向と直交する、請求項1または請求項2に記載の電磁波伝達シート。
  5.  請求項1から請求項4までのいずれか1項に記載の電磁波伝達シート同士が接続された電磁波伝達シートの接続構造体であって、
     一方の前記電磁波伝達シートの前記スロットアンテナと、他方の前記電磁波伝達シートの前記スロットアンテナとが対向するように配置されている、
     電磁波伝達シートの接続構造体。
  6.  一方の前記電磁波伝達シートの所定領域において前記導電体層とメッシュ層を入れ替えることにより、一方の前記電磁波伝達シートの面と他方の前記電磁波伝達シートの面を前記導電体層に揃えた、請求項5に記載の電磁波伝達シートの接続構造体。
  7.  誘電体からなる誘電体層と、前記誘電体層の一方の面に設けられ、導電体からなる導電体層と、前記誘電体層の他方の面に設けられ、メッシュ状の導電体からなるメッシュ層と、を有し、前記導電体層または前記メッシュ層に、スロットアンテナが設けられている電磁波伝達シートを備え、
     前記電磁波伝達シート同士が接続された電磁波伝達シートの接続構造体であって、
     一方の前記電磁波伝達シートの前記スロットアンテナと、他方の前記電磁波伝達シートの前記スロットアンテナとが対向するように配置されており、
     一方の前記電磁波伝達シートにおいて、前記誘電体層の一方の面では前記導電体層が形成されていると共に該一方の面の所定領域には前記メッシュ層が形成され、前記電磁波伝達シートの表面に対する法線方向の一方向において、一方の前記電磁波伝達シートの面と他方の前記電磁波伝達シートの面が揃って前記導電体層となっている、電磁波伝達シートの接続構造体。
PCT/JP2023/010374 2022-03-22 2023-03-16 電磁波伝達シートおよび電磁波伝達シートの接続構造体 WO2023182159A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045551A JP2023139824A (ja) 2022-03-22 2022-03-22 電磁波伝達シートおよび電磁波伝達シートの接続構造体
JP2022-045551 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182159A1 true WO2023182159A1 (ja) 2023-09-28

Family

ID=88100838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010374 WO2023182159A1 (ja) 2022-03-22 2023-03-16 電磁波伝達シートおよび電磁波伝達シートの接続構造体

Country Status (2)

Country Link
JP (1) JP2023139824A (ja)
WO (1) WO2023182159A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074790A (ja) * 2008-09-22 2010-04-02 Murata Mfg Co Ltd 通信体及びカプラ
JP2010141644A (ja) * 2008-12-12 2010-06-24 Toko Inc 誘電体導波管‐マイクロストリップ変換構造
WO2012124040A1 (ja) * 2011-03-14 2012-09-20 株式会社日立製作所 電磁波伝搬媒体
WO2013008292A1 (ja) * 2011-07-11 2013-01-17 株式会社日立製作所 電磁波伝搬路および電磁波伝搬装置
WO2013080507A1 (ja) * 2011-12-02 2013-06-06 日本電気株式会社 通信シート、スマートシェルフ
WO2013186968A1 (ja) * 2012-06-11 2013-12-19 日本電気株式会社 電磁波伝搬システム、インターフェース装置および電磁波伝搬シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074790A (ja) * 2008-09-22 2010-04-02 Murata Mfg Co Ltd 通信体及びカプラ
JP2010141644A (ja) * 2008-12-12 2010-06-24 Toko Inc 誘電体導波管‐マイクロストリップ変換構造
WO2012124040A1 (ja) * 2011-03-14 2012-09-20 株式会社日立製作所 電磁波伝搬媒体
WO2013008292A1 (ja) * 2011-07-11 2013-01-17 株式会社日立製作所 電磁波伝搬路および電磁波伝搬装置
WO2013080507A1 (ja) * 2011-12-02 2013-06-06 日本電気株式会社 通信シート、スマートシェルフ
WO2013186968A1 (ja) * 2012-06-11 2013-12-19 日本電気株式会社 電磁波伝搬システム、インターフェース装置および電磁波伝搬シート

Also Published As

Publication number Publication date
JP2023139824A (ja) 2023-10-04

Similar Documents

Publication Publication Date Title
EP1748516B1 (en) Plate board type mimo array antenna including isolation element
JP3725766B2 (ja) キャビティ付きスロットアレーアンテナ
CN112164877B (zh) 天线
KR20190002710A (ko) 안테나 어레이에서의 상호 결합을 감소시키기 위한 장치 및 방법
JP2020108147A (ja) アンテナ装置、レーダーシステム、および通信システム
US10566704B2 (en) Antenna apparatus and surface current suppression filter for antenna apparatus
US10003117B2 (en) Two-port triplate-line/waveguide converter having two probes with tips extending in different directions
CN110546815B (zh) 天线装置
KR101605030B1 (ko) 이중편파 도파관슬롯 배열안테나
US20130285865A1 (en) Printed slot-type directional antenna, and system comprising an array of a plurality of printed slot-type directional antennas
CN112074991B (zh) 基片集成波导天线
US9923281B2 (en) Dual antenna system
EP2463957B1 (en) System of multi-beam antennas
JP2005504475A (ja) 広帯域又はマルチバンドアンテナ
WO2023182159A1 (ja) 電磁波伝達シートおよび電磁波伝達シートの接続構造体
JP2010074790A (ja) 通信体及びカプラ
US11342676B2 (en) Antenna
JP5762162B2 (ja) マイクロストリップアンテナ及び該アンテナを使用したアレーアンテナ
RU2432650C1 (ru) Плоская антенна с управляемой поляризационной характеристикой
JP6123801B2 (ja) 電磁波伝搬システム、インターフェース装置および電磁波伝搬シート
WO2013186968A1 (ja) 電磁波伝搬システム、インターフェース装置および電磁波伝搬シート
RU2083035C1 (ru) Высокочастотная плоская антенная решетка
EP3588668B1 (en) Antenna device
JPS6369301A (ja) 偏波共用平面アンテナ
JP3994886B2 (ja) 偏波ダイバーシチアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774755

Country of ref document: EP

Kind code of ref document: A1