WO2012122444A1 - Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer - Google Patents
Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer Download PDFInfo
- Publication number
- WO2012122444A1 WO2012122444A1 PCT/US2012/028412 US2012028412W WO2012122444A1 WO 2012122444 A1 WO2012122444 A1 WO 2012122444A1 US 2012028412 W US2012028412 W US 2012028412W WO 2012122444 A1 WO2012122444 A1 WO 2012122444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pharmaceutical composition
- triiodofluorescein
- halogenated xanthene
- chemoablative
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/193—Colony stimulating factors [CSF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2006—IL-1
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/2013—IL-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
- A61K38/204—IL-6
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/212—IFN-alpha
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
- A61K38/217—IFN-gamma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/245—Herpetoviridae, e.g. herpes simplex virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16021—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- This invention relates to the fields of oncology and improved therapeutic regimens therefore.
- cytotoxic drugs that target rapidly dividing cells, including alkylating agents like dacarbazine (DTIC) or temozolomide (TMZ), or mitotic inhibitors like paclitaxel, to inhibit or kill the rapidly growing cells typical of cancer.
- DTIC dacarbazine
- TTZ temozolomide
- mitotic inhibitors like paclitaxel
- BRAF serine/threonine-protein kinase B-Raf gene
- EGFR epidermal growth factor receptor
- VEGF vascular endothelial growth factor
- EGFR epidermal growth factor receptor
- VEGF vascular endothelial growth factor
- EGFR epidermal growth factor receptor
- VEGF vascular endothelial growth factor
- these receptors and pathways may play important physiologic roles peripheral to the tumor, leading to toxicity upon their targeting, while the targeted cells also may develop resistance by harnessing alternate biochemical processes or proliferating via selection of resistant clonal subpopulations of tumor cells.
- the challenges posed by these types of targeted therapies are substantially similar to those posed by conventional chemotherapy.
- cancerous tumors employ various methods to evade detection as aberrant tissue and to reduce immune system competency, thereby avoiding potential identification and destruction by the patient's immune system.
- CTLA-4 cytotoxic T lymphocyte-associated antigen 4
- tremelimumab tremelimumab are designed to counter downregulation of the immune system by blocking CTLA-4 activity and thus augmenting T-cell response against cancer.
- Alternate approaches may utilize agents that stimulate certain components of the immune system (i.e., upregulation), including administering non-specific cytokines (such as interleukin 1, 2, or 6, “IL-1", “IL-2” or “IL-6”; interferon-alpha or gamma, "IFN-a” and “IFN- ⁇ ”; and granulocyte macrophage colony stimulating factor, "GM- CSF”), or that attempt to provoke a tumor-specific immune response to certain tumor antigens, such as dendritic cell vaccines and antibodies against specific tumor antigens and even adoptive T-cell therapy. Additional approaches have attempted to elicit systemic response following repeated inoculation of tumors with certain cytokines (such as interleukin 1, 2, or 6, "IL-1", “IL-2” or “IL-6”; interferon-alpha or gamma, "IFN-a” and “IFN- ⁇ ”; and granulocyte macrophage colony stimulating factor, "GM- CSF”), or that attempt to provoke a
- immunostimulatoiy agents such as an intralesional vaccine containing an oncolytic herpes virus encoding GM-CSF or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to express allogeneic major histocompatibility complex (MHC) class I antigens.
- MHC major histocompatibility complex
- immunologic consequences of chemotherapy may at least partially counteract the activity of the immunomodulator, and their respective systemic adverse effects may be additive or synergistic, such a combination of modalities has significant potential shortcomings. While not the topic of Jure-Kunkel and Lee, targeted therapies when combined with immunomodulatory agents can also have these negative effects. Perhaps most importantly, these potential combinations don't appear to afford additive or synergistic tumoricidal potency in terms of immunologic benefit since neither chemotherapy nor metabolic or aberrant gene targeting can be expected to significantly activate an antitumor immune response, while the proposed anti-CTLA-4 targeting is similarly unlikely to increase sensitivity of tumor cells to the companion chemotherapy or tumor specific approach. The possibility of increased tumor burden during induction of immunomodulatory therapy further complicates the picture, raising the possibility that the disease may progress to an unacceptably advanced state during the early phases of the regimen.
- tumors that shrink gradually over a long period of time and slowly release immunoreactive tumor materials in response to any of these conventional systemic therapies may fail to trigger a potent protective response and can instead facilitate reduced antitumor immunity.
- This phenomenon is similar to that underlying low dose therapies for allergies whereby the host is repeatedly exposed to low doses of antigenic material over a prolonged period, eliciting tolerance by causing the immune system to identify these persistent "background” antigens as "self (i.e., a normal part of the host).
- the slow, low dose release of tumor antigens to the immune system in response to many systemic therapies may deceive the immune system into tolerance toward tumor antigens thereby reducing or negating possible antitumor response, potentially prolonging tumor survival, and allowing continued metastatic spread.
- An alternate class of therapies is predicated on physical restriction of delivery of the therapeutic modality to diseased tissue. These localized therapies attempt to maximize potency of the therapy within tumor tissue while reducing systemic exposure.
- Approaches include physical or chemical disruption of tumors using intralesional methods, such as percutaneous ethanol injection therapy (PEIT) and radiofrequency (RF) ablation, and locoregional delivery of potent cytotoxic agents, such as isolated limb perfusion (ILP), isolated limb infusion (ILI) or percutaneous hepatic perfusion (PHP), with melphalan (an alkylating agent) or similar agents.
- PEIT percutaneous ethanol injection therapy
- RF radiofrequency
- IL chemoablation a novel hybrid approach that has been described by one or more of the present inventors (for example in US 7,648,695, USSN 11/951,800 and USSN 12/315,781, which are incorporated herein in their entirety). This approach maximizes local efficacy against injected tumors while minimizing systemic exposure of the patient to the injected agent and resultant potential for systemic adverse effects.
- IL use of a certain specific class of agent for example certain formulations of certain halogenated xanthenes, exemplified by a 10% (w/v) solution of rose bengal disodium in saline, termed "PV-10" and undergoing clinical testing for treatment of metastatic melanoma, breast carcinoma and
- hepatocellular carcinoma can elicit not only highly specific ablation of the injected lesion but also an antitumor immune response (“bystander effect") that can augment local efficacy in the injected tumor and lead to spontaneous regression of uninjected tumors.
- antitumor immune response such as basophils, eosinophils and mast cells
- Treatment of tumors with PV-10 can lead to modulation of this response to one that is more specific and effective (for example, by recruiting mononuclear tumor-infiltrating lymphocytes, TILs, or macrophages into and around the tumor).
- the acute exposure achieved through IL chemoablation is immunologically advantageous relative to the lesser intensity insult produced by a systemic therapy that is spread out over a long duration, and this acute exposure potentially vaccinates the patient against the treated tumor.
- Acute ablation of the injected tumor also quicldy reduces tumor burden, which may be augmented by injecting all or a substantial fraction of a patient's tumors, either in a single treatment session or a series of treatments fractionated over a period of days or weeks. This may reduce the level of immune suppression exerted by the patient's tumor mass, leading to improved ability of their immune system to mount a successful attack against remaining tumor tissue.
- the inherent suitability of IL chemoablation for use against large or multiple cancerous lesions, when present, may further enhance outcome by facilitating in situ inoculation against potentially distinct clonal subpopulations in different tumors (or even within individual tumors) that may arise during tumor growth and metastasis.
- IL chemoablation overcomes many of the shortcomings of prior therapeutic modalities (for example by achieving rapid reduction in tumor burden, maximizing acute exposure to intact tumor antigens in an appropriate context, and affording minimal potential for systemic adverse effects)
- one or more of the present inventors have found that it may not be ideal for all cancer cases, particularly certain advanced cases having rapidly proliferating tumors, those with widely disseminated disease and those that present in forms that are difficult to fully infiltrate with the IL agent. Accordingly, additional advancements are needed in the fields of oncology and improved therapeutic regimens therefore. Summary of the Invention
- the present invention is directed to a method for the treatment of cancer, said method comprising administration of a therapeutically effective amount of an
- intralesional chemoablative pharmaceutical composition or variant of said composition, in combination with a therapeutically effective amount of a systemic immunomodulatory anticancer agent.
- the present invention is also directed to a pharmaceutical composition for the treatment of cancer comprising: a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic immunomodulatory anticancer agent.
- the systemic immunomodulatory anticancer agent comprises anti-CTLA-4 antibodies including ipilimumab and tremelimumab.
- the systemic immunomodulatory anticancer agent is selected from the group consisting of non-specific cytokines, such as interleukin-1, interleukin-2, or interleukin-6 (IL-1, IL-2 or IL-6) and aldesleukin; interferon-alpha or interferon-gamma (IFN-a and IFN- ⁇ ), interferon alfa-2b and pegylated interferon (including pegylated interferon alfa-2a and pegylated interferon alfa-2b); granulocyte macrophage colony st nulating factor (GM- CSF, molgramostim or sargramostim); dendritic cell vaccines and other allogeneic or autologous therapeutic cancer vaccines, including intralesional vaccines containing an oncolytic herpes virus encoding GM-CSF (OncoVex ® ) or a plasmid encoding human leuk
- non-specific cytokines such as interleuk
- the present invention is also directed to a method for the treatment of cancer, said method comprising administration of a therapeutically effective amount of an
- intralesional chemoablative pharmaceutical composition or variant of said composition, in combination with a therapeutically effective amount of a systemic targeted anticancer agent.
- the present invention is also directed to a pharmaceutical composition for the treatment of cancer comprising: a therapeutically effective amount of an intralesional chemoablative pharmaceutical composition; and a therapeutically effective amount of a systemic targeted anticancer agent.
- the systemic targeted anticancer agent is selected from the group consisting of drugs that target protein kinases and the receptors that activate them, including afatinib (BIBW 2992), bevacizumab, cetuximab, dasatinib, E7080, erlotinib, gefitinib, imatinib, lapatimb, nilotinib, panitumui ab, pazopanib, pegaptanib, ranibizumab, sorafenib, sunitimb, trastuzumab and vandetanib; serine/threonine-selective protein kinase inhibitors, including those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also known as PLX4032, RG7204 or R05185426), GSK2118436 and GSK1120212;
- drugs that target protein kinases and the receptors that activate them including a
- aromatase inhibitors including aminoglutethimide, anastrozole, exemestane, fadrozole, formestane, letrozole, testolactone and vorozole; estrogen receptor antagonists, including lasofoxifene, raloxifene, tamoxifen and toremifene; COX-2 inhibitors, including celecoxib, valdecoxib and rofecoxib; angiogenesis blockers, including IFN-a, IL-12, suramin, and thrombospondin (including thrombospondin 1, ABT-510 and ABT-898); and immune cell therapy, including adoptive T-cell transfer and autologous mimune cell therapy.
- estrogen receptor antagonists including lasofoxifene, raloxifene, tamoxifen and toremifene
- COX-2 inhibitors including celecoxib, valdecoxib and rofecoxib
- angiogenesis blockers including IFN
- the intralesional chemoablative pharmaceutical composition comprises an IL chemoablative agent comprising primarily a halogenated xanthene in an appropriate pharmaceutical composition, including a 0.1% (w/v)or higher concentration aqueous solution of the halogenated xanthene or mixtures thereof, or a physiologically acceptable salt of the halogenated xanthene.
- the halogenated xanthene is rose bengal (4,5,6,7-tetrachloro-2',4 , ,5 , ,7'- tetraiodofluorescein) .
- the halogenated xanthene is rose bengal disodium.
- the halogenated xanthene is selected from the group consisting of erythrosin B, phloxine B, 4,5,6,7-tetrabiOmo-2',4',5',7'-tetraiodofiuorescein, 2',4,5,6,7- pentac oro-4 ⁇ 5 ⁇ '-triiodofluorescein, 4,4 5,6,7-pentacliloiO-2',5',7 , -triiodofluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescein, 4,4',5,5',6,7-hexachloro-2',7'- diiodofluorescein, 2',4,5,5',6,7 -hexachloi -4',7'-diiodofluorescein,
- the halogenated xanthene has a concentration of about 0.1% (w/v) up to about 20% (w/v), and that the pharmaceutical composition includes an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2% (w/v).
- the concentration of said electrolyte in the IL chemoablative in a further embodiment of all of the above methods and pharmaceutical compositions, the concentration of said electrolyte in the IL chemoablative
- composition is between 0.5 to 1.5% (w/v).
- the chemoablative pharmaceutical composition has an osmolality of the composition of greater than about 100 mOsm/kg.
- the electrolyte is sodium chloride.
- the pharmaceutical composition comprises a hydrophilic vehicle.
- the phamiaceutical composition has a pH in the range of between about 4 to about 10.
- the pharmaceutical composition has a pH in the range of between about 5 to about 7.
- the methods and pharmaceutical compositions are for the treatment of cancers selected from melanoma, breast cancer, primary and metastatic liver cancer, prostate cancer and small cell and non small cell lung cancer.
- One aspect of the present invention is the result of unanticipated synergy resulting upon combination of certain local therapeutic modalities, and in particular certain local immunomodulative therapies such as for example IL chemoablation with PV-10 or another halogenated xanthene agent, with certain systemic therapeutic modalities.
- This combination can boost the therapeutic activity of both therapeutic modalities with the potential for no significant increase, or even an overall decrease, in morbidity relative to that typically achieved using the component therapies separately.
- IL chemoablation can lead to rapid reduction in a patient's tumor burden, reducing potential for tumor-induced immune suppression, extent and severity of the disease, and continued drag on the patient's immune and other physiologic functions.
- immunomodulatory effects achieved may be superior in breadth and potency to those achieved using prior therapeutic approaches.
- complementary therapeutic modalities offers additive or synergistic benefit, particularly when they contribute immunologic stimulation (i.e., immunodulation) that complements that afforded through IL chemoablation.
- immunologic stimulation i.e., immunodulation
- the use of such complementary immunomodulative therapies may have further advantage in terms of additive or synergistic immunologic interactions that allow one or both therapies to be used at reduced doses (relative to that needed when used individually as monotherapies) while retaining high efficacy, thereby reducing undesirable adverse effects.
- a potent local immunomodulative therapy such as IL chemoablation with, for example, PV-10 or another halogenated xanthene agent
- systemic immunomodulative therapies especially those that elicit immune system upregulation or counter tumor-induced immune system down regulation
- IL chemoablation is well suited to repeat treatment, continued potentiation of the patient's immune system, for example by continued administration of the systemic immunomodulatory therapy, while IL chemoablation is administered one or more times, is a preferred embodiment.
- IL chemoablation may be followed by commencement of systemic immunomodulatory therapy, for example after a delay of several weeks or more when a reduction in local inflammation or other non-specific immunologic effects is desirable.
- the potential of benefits of combining local immunomodulatory therapy with a systemic immunomodulatory therapy regimen may make otherwise undesirable systemic immunomodulatory therapies viable: due to the resultant augmentation in potency of the systemic component of the combination therapy, reduced systemic dose regimens may be possible with commensurate reduction in adverse effects from the systemic therapy. Further, since the adverse effect profile of the local immunomodulatory therapy (i.e., IL chemoablation) is orthogonal to that of most systemic immunomodulatory therapies, a combined local and systemic immunomodulatory therapy is inherently safer and more attractive compared with prior combinations that can produce undesirable additive or synergistic adverse effects.
- IL chemoablation the adverse effect profile of the local immunomodulatory therapy
- a combined local and systemic immunomodulatory therapy is inherently safer and more attractive compared with prior combinations that can produce undesirable additive or synergistic adverse effects.
- the cytotoxicity of the IL treatment may be enhanced at the time of IL treatment; response of any remaining tumor tissue may also be increased to immunologic activation resulting from the IL treatment since the systemic therapy will counter proliferation of residual tumor tissue without interfering with development of the immune response from chemoablation.
- the rapid reduction in tumor burden resulting from IL chemoablation further augments these advantages by reducing immune suppression and physiologic demands from the tumor tissue. Since the systemic targeted therapy is not required to achieve complete control or eradication of substantial tumor masses in this context, but rather serves to augment the activity of the local
- immuiiomodulatory therapy it may be possible to administer the systemic therapy at a reduced dose, thereby minimizing potential adverse effects and making the combined therapy safer and more attractive compared with prior systemic combinations.
- Addition of the immunologic response resulting from the local immunomodulatory therapy component provides a means to counter resistance problems that have plagued many targeted systemic therapies, such as the BRAF inhibitors, particularly when continuous systemic therapies are required to maintain long term control of the disease, since long term control will result from the immune response rather than perpetual reliance on the targeted systemic therapy.
- systemic targeted therapy may be used to control or reduce tumor burden prior to administration of local immunomodulatory therapy in order to enhance responsiveness of the disease to the local immunomodulatory therapy.
- Such an approach is tantamount to "down staging" disease status prior to commencement of local immunomodulatory therapy.
- certain BRAF inhibiting drugs have proven effective at temporarily reducing disease burden in advanced stage metastatic melanoma, but resistance often develops within a period of months, negating long term outcome.
- Treatment of residual disease with local immunomodulatory therapy, such as IL chemotherapy while it remains under control of the targeted therapy provides a means for elimination of residual tumor burden while stimulating long term immunity to recurrence, thereby improving ultimate outcome.
- the rapid reduction in tumor burden resulting from IL chemoablation can mitigate suppression of the immune system by the patient's disease burden while providing critical time for onset of the immune response from vaccination, thereby maximizing potential local and systemic antitumor effects through the combined action of the local immunomodulatory therapy and systemic vaccination.
- Examples of combination therapies and method of treatment within the present invention include but are not limited to the following: [0039] Local irnrnunomodulative therapy combined with one or more systemic inhibitor of immune system down regulation, such as anti-CTLA-4 antibodies including but not limited to ipilimumab and tremelimumab.
- Local irnrnunomodulative therapy combined with one or more systemic immune upregulating agent, including: non-specific cytokines, such as interleuldn-1, -2, or -6 (IL- 1, IL-2 or IL-6) and aldesleukin; interferon-alpha or gamma (IFN-a and IFN- ⁇ ), interferon alfa-2b and pegylated interferon (including pegylated interferon alfa-2a and pegylated interferon alfa-2b); granulocyte macrophage colony stimulating factor (GM- CSF, molgramostim or sargramostim); dendritic cell vaccines and other allogeneic or autologous therapeutic cancer vaccines, including intralesional vaccines containing an oncolytic herpes virus encoding GM-CSF (OncoVex ® )or a plasmid encoding human leukocyte antigen-B7 and beta-2 microglobulin agent designed to
- Local immunomodulative therapy combined with one or more systemic targeted therapy agent, including: drugs that target protein kinases and the receptors that activate them, including but not limited to afatinib (BIBW 2992), bevacizumab, cetuxmiab, dasatinib, E7080, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, panitumumab, pazopanib, pegaptanib, ranibizumab, sorafenib, sunitinib, trastuzumab and vandetanib; serine/threonine-selective protein kinase inhibitors, including but not limited to those targeting the B-Raf/MEK/ERK pathway, such as vemurafenib (also Icnown as PLX4032, RG7204 or R05185426), GSK2118436 and GSK1120212; aroma
- monotherapy dose schedules are set by determining the maximum tolerated dose (MTD) in early-stage clinical trials.
- MTD maximum tolerated dose
- the MTD (or a close variation thereon) is then promulgated to later-stage clinical trials for assessment efficacy and more detailed assessment of safety.
- MTDs frequently become the established therapeutic dose upon completion of clinical testing.
- thrombospondin (ABT-510 a ) 20 mg daily to 100 mg twice daily
- the combination therapies and method of treatment of the present invention will generally allow use of the systemic agent at a level at or below the typical dose schedule for the systemic agent, such as those described in Table 1, when used with a local immunomodulative therapy, such as that described infra.
- Local immunomodulative therapy includes but is not limited to intralesional chemoablation using an IL chemoablative agent consisting primarily of rose bengal (4,5,6,7-tetrachloro-2',4 , ,5 , ,7'-tetraiodofluorescein ) or another halogenated xanthene, including erythrosin B, phloxine B, 4,5,6,7-tetrabi mo-2',4 , ,5',7 , -tetraiodofluorescein, 2',4,5,6,7-pentachloiO-4 , ,5 , ,7 , -triiodofluorescein, 4,4',5,6,7-pentachloro-2',5',7'- triiodofluorescein, 2',4,5,6,7,7'-hexachloro-4',5'-diiodofluorescem,
- physiologically acceptable salt of the halogenated xanthene may be used in this composition.
- the present invention includes immunotherapeutic procedures wherein large amounts of tumor antigen are exposed to a patient's immune system, for example upon intralesional delivery of an immunomodulator, including but not limited to intralesional rose bengal, in combination with one or more systemic immunomodulator, to enhance the immune-mediated antitumor response.
- an immunomodulator including but not limited to intralesional rose bengal, in combination with one or more systemic immunomodulator, to enhance the immune-mediated antitumor response.
- Local immunomodulative therapy includes, as a preferred embodiment, intralesional chemoablation using rose bengal or another halogenated xanthene.
- Malignant melanoma is the most serious form of skin cancer and accounts for 80% of skin cancer deaths.
- Stage 0 melanoma is a very early stage disease known as melanoma in situ. Patients with melanoma in situ are classified as Tis (tumor in situ). The tumor is limited to the epidermis with no invasion of surrounding tissues, lymph nodes, or distant sites. Melanoma in situ is considered to be very low risk for disease recurrence or spread to lymph nodes or distant sites. Treatment is by surgical excision with a margin of healthy skin.
- stage I melanoma the tumor has penetrated in to the skin by less than 1mm but has not spread. Treatment is by wide local excision and the probability of disease free survival in five years is between 90 to 95%.
- Stage II melanoma describes a tumor that has penetrated more than lmm into the skin but has not spread. Wide local excision is the preferred treatment. However, excision at this stage carries a much higher risk and less favorable prognosis than excision of a Stage I tumor.
- Stage III melanoma is characterized by the existence of one or more nodal, in- transit or satellite metastasis but has not spread to distant or visceral sites. In-transit metastases are distant from the primary tumor but not reaching the draining nodal basin. Satellite metastases are intralymphatic extensions of the primary tumor and are typically found closer to the primary tumor than in-transit metastasis. Five year survival for stage III patients ranges from approximately 24% (gross nodal disease) to 80%o (microscopic nodal disease).
- Stage IV melanoma is when the disease has spread to distant sites. Survival of stage IV melanoma drops to approximately 10%.
- Standard treatment for easily removable Stage III tumors is wide area excision together with removal of lymph nodes.
- Adjunct treatment such as radiotherapy and chemotherapy and for regional limb metastases, regional infusion of melphalan or other chemotherapeutic agents may also be given.
- surgery is contraindicated due to the number and/or location of tumors and other treatment options must be considered.
- response levels for these other options are not high.
- melanoma is largely resistant to radiation therapy.
- Systemic chemotherapy also has modest response rates against melanoma. The most effective chemotherapy regimen to-date is single-agent dacarbazine, which is only successful in 10-15% of cases.
- cisplatin vinblastine and DTIC (CVD) regimen
- Dartmouth regimen which is a combination of cisplatin, DTIC, carmustine and tamoxifen.
- chemotherapy agents may be delivered via hyperthermic isolated limb perfusion (ILP).
- IRP hyperthermic isolated limb perfusion
- blood vessels are accessed surgically, the blood flow to and from the limb is stopped using a tourniquet, and a warmed solution of chemotherapy drag is administered directly into the blood of the limb, allowing higher doses of drugs to be dispensed than with systemic treatment.
- a less invasive regional therapy is isolated limb infusion (ILI) whereby vascular access is gained via a percutaneous route in the groin.
- BCG Bacille Calmette Guerin
- IL interferons have yielded mixed results ranging from a report of 45% objective response rate (ORR, 31% CR + 14% PR) for IFN-a to either no result or transient response with IFN- ⁇ . Both regimes produced significant toxicity and side effects.
- IL interleukin-2 appears to be the most promising IL therapy to date with an ORR in 83%) of patients (62%CR + 21% PR) receiving 2-3 weekly IL treatments. Some patients reported flu like symptoms and some authors noted that although new lesions appeared during the course of treatment, some patients experienced a marked slowing of the appearance of new cutaneous lesions.
- IL therapy with cisplatin or IL cisplatin with electroporation has yielded results ranging from 38%ORR (19%CR + 19%PR) to 53% ORR (47%CR + 7% PR).
- ORR reported for lesions with a median diameter of 0.6cm of 53% decreased to 44% for lesions having a median diameter of 3.0cm.
- a method for the treatment of cancer in a patient comprising treatment of the cancer patient with a local immunomodulative therapy combined with one or more systemic immunomodulatory therapy or systemic targeted therapy, wherein said local immunomodulatory therapy comprises intralesional administration of a chemoablative pharmaceutical composition comprising a hydrophilic vehicle containing 4,5,6,7-Tetrachloro-2',4',5',7'-tetraiodofluorescein (i.e. rose bengal), or certain other halogenated xanthene, or a physiologically acceptable salt thereof.
- a chemoablative pharmaceutical composition comprising a hydrophilic vehicle containing 4,5,6,7-Tetrachloro-2',4',5',7'-tetraiodofluorescein (i.e. rose bengal), or certain other halogenated xanthene, or a physiologically acceptable salt thereof.
- the halogenated xanthene be present in this pharmaceutical composition at a concentration of about 0.1 % (w/v) up to about 20% (w/v), and that the pharmaceutical composition include an electrolyte comprising at least one cation selected from the group consisting of sodium, potassium, calcium and magnesium and at least one anion selected from the group consisting of chloride, phosphate and nitrate, wherein the electrolyte is at a concentration of between about 0.1% (w/v) and about 2% (w/v). It is also preferred that the pH of the pharmaceutical composition be between about 4 to about 10.
- physiologically acceptable salt refers to any non-toxic alkali metal, alkaline earth metal, and ammonium salt commonly used in the pharmaceutical industry, including the sodium, potassium, lithium, calcium, magnesium, barium, ammonium and protamine zinc salts, which can be prepared by methods known in the art.
- the salts are sodium, potassium, calcium and ammonium in either the mono or dibasic salt form.
- IL chemoablative pharmaceutical composition is the disodium salt of rose bengal.
- Previous work by one or more of the present inventors (WO 02/05812) reported their discovery that rose bengal exhibits preferential uptake into cancer cells but is essentially excluded from normal cells.
- One or more of the present inventors have also reported their discovery that the nature of the vehicle in which the halogenated xanthene, or a physiologically acceptable salt thereof, is administered can significantly influence the degree of partitioning into tumor cells, hi particular, one or more of the present inventors have surprisingly discovered that at an electrolyte concentration of between about 0.1% (w/v) and about 2.0% (w/v), partitioning into tumor cells may rapidly be increased.
- An approximation of an agent's potential for tissue accmmilation can be estimated based upon the partition coefficient K p .
- This in vitro parameter is purported to have predictive values relating to in vitro delivery at the cellular level.
- a value greater than unity is considered to indicate agents capable of localizing in tissue, and thereby being capable of exhibiting enhanced chemotherapeutic efficacy in such tissue.
- One or more of the present inventors surmise that values much greater than
- K p is detennined by measuring the ratio of equilibrium concentrations of an agent in a lipophilic phase ( -octanol) contacted with an aqueous phase.
- the pH of the IL chemoablative pharmaceutical composition is in the range of between about 4 to about 10, and more preferably between about 5 to about 9, to yield maximum solubility of the halogenated xanthene in an aqueous vehicle and assure compatibility with biological tissue.
- a particularly prefeixed pH is between about 4 to about 7, preferably between about 5 to about 7, more preferably between about 6 to about 7. At these pH values, the halogenated xanthenes generally remain in dibasic form, rather than the water insoluble lactone that forms at low pH.
- the pH of the IL chemoablative pharmaceutical composition may be regulated or adjusted by any suitable means known to those of skill in the art.
- the composition may be buffered or the pH adjusted by addition of acid or base or the like.
- the halogenated xanthenes, or physiologically acceptable salts thereof are weak acids, depending upon halogenated xanthene concentration and/or electrolyte concentration, the pH of the composition may not require the use of a buffer and/or pH modifying agent. It is especially prefeixed, however, that the composition does not contain any buffer, allowing it to conform to the biological environment once administered.
- K p is also dependent upon electrolyte concentration with the K p value increasing with electrolyte concentration.
- Particularly preferred concentrations of electrolyte in the IL chemoablative pharmaceutical composition are between 0.5 to 1.5% (w/v), and even more preferably at a concentration of about 0.8 to 1.2% (w/v) and most preferably at a concentration of about 0.9% (w/v), this latter concentration being especially preferred since it coixesponds to an approximately isotonic solution.
- the electrolyte in the IL chemoablative pharmaceutical composition is sodium chloride.
- Electrolytes at such levels increase the osmolality of the IL chemoablative pharmaceutical composition.
- osmolality may be used to characterize, in part, the electrolyte level of the composition. It is preferred that the osmolality of the composition be greater than about 100 mOsm/kg, and more preferably that the osmolality of the composition be greater than about 250 mOsm/kg and most preferably that it is about 300 - 500 mOsm/kg.
- halogenated xanthene and/or dose of IL chemoablative pharmaceutical composition will be dependent upon factors including, but not limited to, tumor size, number and location.
- intralesional administration may be by percutaneous or intraoperative administration.
- halogenated xanthene concentrations in the IL chemoablative pharmaceutical composition above about 1% (w/v) to 3% (w/v) are particularly useful for chemoablative use, since lower
- the concentration of halogenated xanthene is in the range of from about 3% (w/v) to about 20% (w/v). In another embodiment, the concentration of halogenated xanthene is from about 3% (w/v) to about 10% (w/v). In another embodiment, the concentration of halogenated xanthene is from about 10% (w/v) to about 20% (w/v). In still another embodiment, the concentration of halogenated xanthene is about 10% (w/v).
- concentrations not only can an efficient therapeutic response be obtained, but the solution is also highly stable and can be readily handled both in manufacture and use.
- concentrations may be expressed in weight to volume (w/v), however, concentration in weight to weight (w/w) is substantially equivalent.
- administered by IL administration range from between 0.1 mL/cc lesion volume to about 2 mL/cc lesion volume, most preferably between about 0.25 mL/cc to about 0.75 mL/cc lesion volume.
- Such doses typically correspond to a patient dose of between about 10 mg to about 1500 mg of halogenated xanthene (which are significantly higher than those doses used for diagnostic liver tests).
- the pharmaceutical composition is for IL administration, which is an intracorporeal route, it is further preferred that it be sterile, such as required for conformance to U. S. Pharmacopeia (USP) test ⁇ 71>, and further that it contains negligible levels of pyrogenic material, such that it conforms to USP ⁇ 85> (limulus amebocyte lysate assay) or to USP ⁇ 151> (rabbit pyrogen test), or to substantially equivalent requirements, at a pyrogen or endotoxin level equivalent to not more that (NMT) 10 endotoxin units (EU) per mL.
- USP U. S. Pharmacopeia
- the pharmaceutical composition should conform to requirements limiting content of particulate matter as defined in USP ⁇ 788> (i.e., NMT 3000 particulates greater than 10 microns in size, and NMT 300 particulates greater than 25 microns in size, per container) or substantially equivalent requirements.
- a hydrophilic vehicle is preferred for the pharmaceutical composition to maximize preference of the halogenated xanthene for partitioning into cancerous tissue. Accordingly, it is preferred that the pharmaceutical composition contains a minimum of non-hydrophilic components that might interfere with such petitioning. It is preferred that the hydrophilic vehicle is water, and it is most preferred that this pharmaceutical composition consists substantially of water.
- compositions as described herein are optimally packaged in glass vials having a capacity of approximately 1 to 10 mL, and more preferably approximately 5 mL. Such capacities are well suited as unidose forms (i.e., single use packages) for IL treatments.
- the formulation of the pharmaceutical composition is not buffered.
- packaging containers be made of the USP Type I (low extractable or chemically resistant borosiciliate) or USP Type II (low- extractable soda lime) glass and that the inside surface of such glass containers be surface treated to reduce surface alkalinity of the container that could adversely affect pH or long-term stability.
- Typical surface treatment applicable to such containers is described in USP ⁇ 661>.
- the inside of such surface-treated glass containers should be rinsed with a suitable solvent, such as distilled water one or more times prior to filling in order to remove any residue of such surface treatment.
- a suitable solvent such as distilled water
- such containers have a minimum neck size, for example, of less than 10 mm and more preferably 5 mm or less, to reduce surface area of the closures of the containers (and hence exposure of the medicament to such closures).
- a septum-type closure composed preferably of a pharmaceutical grade elastomeric material with a Teflon or similar inner coating, is particularly suitable for use with the IL chemoablative pharmaceutical composition since it facilitates insertion of a needle into the container for withdrawal of a dose of medicament while exhibiting minimal potential for interaction with the container contents.
- the pharmaceutical composition does not include any preservatives.
- preservatives many of which may deleteriously interfere with the pharmaceutical composition or formulation thereof, or may complex or otherwise interact with or interfere with the delivery of the halogenated xanthene active component.
- a preservative may be used, one or more of the present inventors have found that imidurea is preferred as it does not interact with halogenated xanthenes, either in the pharmaceutical composition or upon administration.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Genetics & Genomics (AREA)
- Oncology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Endocrinology (AREA)
- Biotechnology (AREA)
- Inorganic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicinal Preparation (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2013557888A JP6322413B2 (ja) | 2011-03-10 | 2012-03-09 | 改善されたがん治療のための局所および全身性免疫修飾療法の組み合わせ |
| EP12755115.8A EP2710137B1 (en) | 2011-03-10 | 2012-03-09 | A combination of rose bengal and anti-ctla4 antibody for use in the treatment of cancer |
| CA2828940A CA2828940C (en) | 2011-03-10 | 2012-03-09 | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer |
| ES12755115T ES2699965T3 (es) | 2011-03-10 | 2012-03-09 | Una combinación de rosa de bengala y anticuerpo anti-CTLA4 para su uso en el tratamiento del cáncer |
| CN2012800182901A CN103476943A (zh) | 2011-03-10 | 2012-03-09 | 用于增强治疗癌症的局部和全身性免疫调节疗法的组合 |
| KR1020137026664A KR20140038382A (ko) | 2011-03-10 | 2012-03-09 | 암의 치료 증대를 위한 국소 면역조절 치료제와 전신 면역조절 치료제의 복합제 |
| MX2013010340A MX360254B (es) | 2011-03-10 | 2012-03-09 | Combinacion de terapias inmunomoduladoras local y sistemica para tratamiento mejorado del cancer. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161451395P | 2011-03-10 | 2011-03-10 | |
| US61/451,395 | 2011-03-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012122444A1 true WO2012122444A1 (en) | 2012-09-13 |
Family
ID=46798564
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/028412 Ceased WO2012122444A1 (en) | 2011-03-10 | 2012-03-09 | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer |
Country Status (9)
| Country | Link |
|---|---|
| US (7) | US9107887B2 (enExample) |
| EP (1) | EP2710137B1 (enExample) |
| JP (2) | JP6322413B2 (enExample) |
| KR (1) | KR20140038382A (enExample) |
| CN (1) | CN103476943A (enExample) |
| CA (1) | CA2828940C (enExample) |
| ES (1) | ES2699965T3 (enExample) |
| MX (1) | MX360254B (enExample) |
| WO (1) | WO2012122444A1 (enExample) |
Cited By (94)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2016508987A (ja) * | 2013-01-07 | 2016-03-24 | スーパーラブ ファー イースト リミテッド | インターフェロンの経皮及び/又は経粘膜投薬による骨ガン、皮膚癌、皮下腫瘍、粘膜癌及び/又は粘膜下腫瘍を治療する方法と組成物 |
| JP2016522805A (ja) * | 2013-04-18 | 2016-08-04 | ティーアイエルティー・バイオセラピューティクス・オーワイTILT Biotherapeutics Oy | 増強された養子細胞療法 |
| WO2016176504A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody |
| WO2016176503A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody |
| WO2016191751A1 (en) | 2015-05-28 | 2016-12-01 | Bristol-Myers Squibb Company | Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody |
| WO2016196389A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
| WO2017011666A1 (en) | 2015-07-14 | 2017-01-19 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
| WO2017087870A1 (en) | 2015-11-18 | 2017-05-26 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody |
| JP2017514143A (ja) * | 2014-02-21 | 2017-06-01 | アッヴィ・ステムセントルクス・エル・エル・シー | メラノーマに使用するための抗dll3抗体および薬物コンジュゲート |
| US20170173079A1 (en) * | 2015-12-18 | 2017-06-22 | Provectus Pharmatech, Inc. | Method of Ex Vivo Enhancement of Immune Cell Activity for Cancer Immunotherapy with a Small Molecule Ablative Compound |
| WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
| WO2017176925A1 (en) | 2016-04-05 | 2017-10-12 | Bristol-Myers Squibb Company | Cytokine profiling analysis for predicting prognosis of a patient in need of an anti-cancer treatment |
| US9808524B2 (en) | 2011-03-10 | 2017-11-07 | Provectus Pharmatech, Inc. | Combination of local and systemic immunomodulative therapies for melanoma and liver cancer |
| WO2017201352A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Mrna combination therapy for the treatment of cancer |
| WO2017201350A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
| WO2017201325A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Combinations of mrnas encoding immune modulating polypeptides and uses thereof |
| WO2017201502A1 (en) | 2016-05-20 | 2017-11-23 | Biohaven Pharmaceutical Holding Company Ltd. | Use of glutamate modulating agents with immunotherapies to treat cancer |
| WO2017210453A1 (en) | 2016-06-02 | 2017-12-07 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
| WO2017210637A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer |
| WO2017210631A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
| WO2018081621A1 (en) | 2016-10-28 | 2018-05-03 | Bristol-Myers Squibb Company | Methods of treating urothelial carcinoma using an anti-pd-1 antibody |
| WO2018183928A1 (en) | 2017-03-31 | 2018-10-04 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2018187613A2 (en) | 2017-04-07 | 2018-10-11 | Bristol-Myers Squibb Company | Anti-icos agonist antibodies and uses thereof |
| WO2018213731A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
| WO2018222711A2 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent |
| WO2019075468A1 (en) | 2017-10-15 | 2019-04-18 | Bristol-Myers Squibb Company | TUMOR TREATMENT METHODS |
| WO2019143607A1 (en) | 2018-01-16 | 2019-07-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
| WO2019144098A1 (en) | 2018-01-22 | 2019-07-25 | Bristol-Myers Squibb Company | Compositions and methods of treating cancer |
| WO2019191676A1 (en) | 2018-03-30 | 2019-10-03 | Bristol-Myers Squibb Company | Methods of treating tumor |
| GB201912107D0 (en) | 2019-08-22 | 2019-10-09 | Amazentis Sa | Combination |
| EP3572430A2 (en) | 2014-03-05 | 2019-11-27 | Bristol-Myers Squibb Company | Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
| US10512689B2 (en) | 2015-04-17 | 2019-12-24 | Bristol-Myers Squibb Company | Compositions comprising a combination of nivolumab and ipilimumab |
| WO2020014583A1 (en) | 2018-07-13 | 2020-01-16 | Bristol-Myers Squibb Company | Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a mehtod of treating a cancer or a solid tumor |
| WO2020086724A1 (en) | 2018-10-23 | 2020-04-30 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2020097409A2 (en) | 2018-11-08 | 2020-05-14 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
| WO2020102728A1 (en) | 2018-11-16 | 2020-05-22 | Neoimmunetech, Inc. | Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor |
| WO2020102501A1 (en) | 2018-11-16 | 2020-05-22 | Bristol-Myers Squibb Company | Anti-nkg2a antibodies and uses thereof |
| WO2020109328A1 (en) | 2018-11-26 | 2020-06-04 | Debiopharm International S.A. | Combination treatment of hiv infections |
| WO2020136235A1 (en) | 2018-12-28 | 2020-07-02 | Transgene Sa | M2-defective poxvirus |
| EP3691643A1 (en) | 2017-09-29 | 2020-08-12 | Bristol-Myers Squibb Company | Compositions and methods of treating cancer |
| WO2020198676A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2020198672A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2020243563A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Multi-tumor gene signatures for suitability to immuno-oncology therapy |
| WO2020243568A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy |
| WO2020243570A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Cell localization signature and combination therapy |
| EP3760229A2 (en) | 2014-05-15 | 2021-01-06 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
| WO2021055994A1 (en) | 2019-09-22 | 2021-03-25 | Bristol-Myers Squibb Company | Quantitative spatial profiling for lag-3 antagonist therapy |
| WO2021092380A1 (en) | 2019-11-08 | 2021-05-14 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for melanoma |
| WO2021092220A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
| WO2021092221A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
| US11040027B2 (en) | 2017-01-17 | 2021-06-22 | Heparegenix Gmbh | Protein kinase inhibitors for promoting liver regeneration or reducing or preventing hepatocyte death |
| WO2021127554A1 (en) | 2019-12-19 | 2021-06-24 | Bristol-Myers Squibb Company | Combinations of dgk inhibitors and checkpoint antagonists |
| WO2021158938A1 (en) | 2020-02-06 | 2021-08-12 | Bristol-Myers Squibb Company | Il-10 and uses thereof |
| US20210299055A1 (en) * | 2020-03-26 | 2021-09-30 | Provectus Pharmatech, Inc. | Treatment of Solid Cancerous Tumors by Oral Administration of a Halogenated Xanthene |
| WO2021243207A1 (en) | 2020-05-28 | 2021-12-02 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
| US11242393B2 (en) | 2018-03-23 | 2022-02-08 | Bristol-Myers Squibb Company | Antibodies against MICA and/or MICB and uses thereof |
| WO2022047189A1 (en) | 2020-08-28 | 2022-03-03 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hepatocellular carcinoma |
| WO2022047412A1 (en) | 2020-08-31 | 2022-03-03 | Bristol-Myers Squibb Company | Cell localization signature and immunotherapy |
| EP3773548A4 (en) * | 2018-05-16 | 2022-03-30 | Provectus Pharmatech, Inc. | IN VITRO AND XENOGRAFT ANTITUMORIC ACTIVITY OF A HALOGENATED XANTHENE AGAINST REFRACTORY PEDIATRIC SOLID TUMORS |
| WO2022087402A1 (en) | 2020-10-23 | 2022-04-28 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for lung cancer |
| WO2022120179A1 (en) | 2020-12-03 | 2022-06-09 | Bristol-Myers Squibb Company | Multi-tumor gene signatures and uses thereof |
| WO2022146948A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Subcutaneous administration of pd1/pd-l1 antibodies |
| WO2022146947A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
| WO2022212876A1 (en) | 2021-04-02 | 2022-10-06 | The Regents Of The University Of California | Antibodies against cleaved cdcp1 and uses thereof |
| US11607453B2 (en) | 2017-05-12 | 2023-03-21 | Harpoon Therapeutics, Inc. | Mesothelin binding proteins |
| US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
| WO2023077090A1 (en) | 2021-10-29 | 2023-05-04 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hematological cancer |
| WO2023147371A1 (en) | 2022-01-26 | 2023-08-03 | Bristol-Myers Squibb Company | Combination therapy for hepatocellular carcinoma |
| WO2023161453A1 (en) | 2022-02-24 | 2023-08-31 | Amazentis Sa | Uses of urolithins |
| WO2023164638A1 (en) | 2022-02-25 | 2023-08-31 | Bristol-Myers Squibb Company | Combination therapy for colorectal carcinoma |
| WO2023168404A1 (en) | 2022-03-04 | 2023-09-07 | Bristol-Myers Squibb Company | Methods of treating a tumor |
| WO2023170606A1 (en) | 2022-03-08 | 2023-09-14 | Alentis Therapeutics Ag | Use of anti-claudin-1 antibodies to increase t cell availability |
| WO2023178329A1 (en) | 2022-03-18 | 2023-09-21 | Bristol-Myers Squibb Company | Methods of isolating polypeptides |
| WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
| WO2023196987A1 (en) | 2022-04-07 | 2023-10-12 | Bristol-Myers Squibb Company | Methods of treating tumor |
| US11807692B2 (en) | 2018-09-25 | 2023-11-07 | Harpoon Therapeutics, Inc. | DLL3 binding proteins and methods of use |
| WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
| WO2023213763A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab |
| WO2023235847A1 (en) | 2022-06-02 | 2023-12-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
| WO2024003353A1 (en) | 2022-07-01 | 2024-01-04 | Transgene | Fusion protein comprising a surfactant-protein-d and a member of the tnfsf |
| WO2024040175A1 (en) | 2022-08-18 | 2024-02-22 | Pulmatrix Operating Company, Inc. | Methods for treating cancer using inhaled angiogenesis inhibitor |
| US11976125B2 (en) | 2017-10-13 | 2024-05-07 | Harpoon Therapeutics, Inc. | B cell maturation antigen binding proteins |
| WO2024137776A1 (en) | 2022-12-21 | 2024-06-27 | Bristol-Myers Squibb Company | Combination therapy for lung cancer |
| US12084518B2 (en) | 2015-05-21 | 2024-09-10 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
| WO2024196952A1 (en) | 2023-03-20 | 2024-09-26 | Bristol-Myers Squibb Company | Tumor subtype assessment for cancer therapy |
| US12195544B2 (en) | 2018-09-21 | 2025-01-14 | Harpoon Therapeutics, Inc. | EGFR binding proteins and methods of use |
| WO2025038763A1 (en) | 2023-08-15 | 2025-02-20 | Bristol-Myers Squibb Company | Ceramic hydroxyapatite chromatography flow through method |
| WO2025145207A1 (en) | 2023-12-29 | 2025-07-03 | Bristol-Myers Squibb Company | Combination therapy of kras inhibitor and treg-depleting agent |
| US12371504B2 (en) | 2017-10-13 | 2025-07-29 | Harpoon Therapeutics, Inc. | Trispecific proteins and methods of use |
| WO2025184208A1 (en) | 2024-02-27 | 2025-09-04 | Bristol-Myers Squibb Company | Anti-ceacam5 antibodies and uses thereof |
| WO2025184211A1 (en) | 2024-02-27 | 2025-09-04 | Bristol-Myers Squibb Company | Anti-ceacam5 antibody drug conjugates |
| US12421502B2 (en) | 2013-04-18 | 2025-09-23 | Tilt Biotherapeutics Oy | Enhanced adoptive cell therapy |
| WO2025202222A1 (en) | 2024-03-25 | 2025-10-02 | Institut National de la Santé et de la Recherche Médicale | Therapeutic use of sting and tlrs agonists to induce p16 expression in immune cells |
| WO2025245489A1 (en) | 2024-05-24 | 2025-11-27 | Bristol-Myers Squibb Company | Treatment of tumors in subjects having fgl-1 positive samples |
Families Citing this family (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006030826A1 (ja) | 2004-09-17 | 2006-03-23 | Eisai R & D Management Co., Ltd. | 医薬組成物 |
| JP4989476B2 (ja) | 2005-08-02 | 2012-08-01 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | 血管新生阻害物質の効果を検定する方法 |
| WO2007052849A1 (ja) | 2005-11-07 | 2007-05-10 | Eisai R & D Management Co., Ltd. | 血管新生阻害物質とc-kitキナーゼ阻害物質との併用 |
| CA2652442C (en) * | 2006-05-18 | 2014-12-09 | Eisai R & D Management Co., Ltd. | Antitumor agent for thyroid cancer |
| CN101600694A (zh) * | 2007-01-29 | 2009-12-09 | 卫材R&D管理有限公司 | 未分化型胃癌治疗用组合物 |
| WO2009060945A1 (ja) * | 2007-11-09 | 2009-05-14 | Eisai R & D Management Co., Ltd. | 血管新生阻害物質と抗腫瘍性白金錯体との併用 |
| CA2802644C (en) | 2010-06-25 | 2017-02-21 | Eisai R & D Management Co., Ltd. | Antitumor agent using compounds having kinase inhibitory effect in combination |
| CA2828946C (en) * | 2011-04-18 | 2016-06-21 | Eisai R&D Management Co., Ltd. | Therapeutic agent for tumor |
| US9945862B2 (en) | 2011-06-03 | 2018-04-17 | Eisai R&D Management Co., Ltd. | Biomarkers for predicting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds |
| NZ701324A (en) | 2012-05-04 | 2016-09-30 | Pfizer | Prostate-associated antigens and vaccine-based immunotherapy regimens |
| AU2013308595C1 (en) * | 2012-08-30 | 2019-01-17 | Amgen Inc. | A method for treating melanoma using a herpes simplex virus and an immune checkpoint inhibitor |
| MX2015004979A (es) | 2012-12-21 | 2015-07-17 | Eisai R&D Man Co Ltd | Forma amorfa de derivado de quinolina y metodo para su produccion. |
| SG11201509278XA (en) | 2013-05-14 | 2015-12-30 | Eisai R&D Man Co Ltd | Biomarkers for predicting and assessing responsiveness of endometrial cancer subjects to lenvatinib compounds |
| SMT202100191T1 (it) * | 2014-02-21 | 2021-05-07 | Nektar Therapeutics | Agonisti selettivi per il-2rbeta in combinazione con un anticorpo anti.ctla-4 o un anticorpo anti-pd-1 |
| IL302218B2 (en) | 2014-08-28 | 2024-10-01 | Eisai R&D Man Co Ltd | Methods for manufacturing high-purity lenvatinib and its derivatives |
| WO2016106146A1 (en) | 2014-12-23 | 2016-06-30 | The Regents Of The University Of California | Methods for immunomodulation of cancer and infectious disease therapy |
| CN104459129A (zh) * | 2015-01-05 | 2015-03-25 | 复旦大学附属华山医院 | 一种鉴别活动性与潜伏性结核分枝杆菌感染的诊断试剂盒 |
| JP6792546B2 (ja) | 2015-02-25 | 2020-11-25 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | キノリン誘導体の苦味抑制方法 |
| AU2015384801B2 (en) | 2015-03-04 | 2022-01-06 | Eisai R&D Management Co., Ltd. | Combination of a PD-1 antagonist and a VEGFR/FGFR/RET tyrosine kinase inhibitor for treating cancer |
| EP3311841B1 (en) | 2015-06-16 | 2021-07-28 | PRISM BioLab Co., Ltd. | Anticancer agent |
| CN108135894B (zh) | 2015-08-20 | 2021-02-19 | 卫材R&D管理有限公司 | 肿瘤治疗剂 |
| RU2719486C2 (ru) | 2015-11-11 | 2020-04-17 | Агалиммьюн Лимитед | Гликолипидные соединения и их применение в лечении опухолей |
| US20190111111A1 (en) * | 2016-04-13 | 2019-04-18 | The Regents Of The University Of California | Treatment of Cerebral Cavernous Malformations |
| RU2750539C2 (ru) | 2017-02-08 | 2021-06-29 | Эйсай Ар Энд Ди Менеджмент Ко., Лтд. | Фармацевтическая композиция для лечения опухоли |
| EP4063859A1 (en) | 2017-04-28 | 2022-09-28 | Merck Sharp & Dohme Corp. | Biomarkers for cancer therapeutics |
| AU2018269996A1 (en) | 2017-05-16 | 2019-11-21 | Eisai R&D Management Co., Ltd. | Treatment of hepatocellular carcinoma |
| GB201710097D0 (en) * | 2017-06-23 | 2017-08-09 | Univ Ulster | A sensitizer - peptide conjugate |
| EP3700520B1 (en) | 2017-11-29 | 2024-05-01 | The Rockefeller University | Combination of local and systemic therapies for enhanced treatment of dermatologic conditions |
| AU2019277908A1 (en) | 2018-05-27 | 2021-01-07 | Biolinerx Ltd. | AGI-134 combined with a checkpoint inhibitor for the treatment of solid tumors |
| GB201819853D0 (en) * | 2018-12-05 | 2019-01-23 | Innovation Ulster Ltd | Therapy |
| WO2021101521A1 (en) * | 2019-11-19 | 2021-05-27 | Provecetus Pharmatech, Inc. | Composition and method for treating hematologic cancers |
| US12064507B2 (en) | 2019-11-19 | 2024-08-20 | Provectus Pharmatech, Inc. | Composition and method for oral treatment of leukemia |
| US11419844B2 (en) | 2019-11-19 | 2022-08-23 | Provectus Pharmatech, Inc. | Halogenated xanthene composition and method for treating hematologic cancers |
| US11938182B2 (en) | 2020-03-26 | 2024-03-26 | Provectus Pharmatech, Inc. | Halogenated xanthenes as vaccine adjuvants |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080118567A1 (en) | 1998-08-06 | 2008-05-22 | Provectus Pharmatech. Inc, | Medicaments for Chemotherapeutic Treatment of Disease |
| US20090117199A1 (en) | 1998-08-06 | 2009-05-07 | Scott Timothy C | Method of treatment of cancer |
| US7648695B2 (en) | 1998-08-06 | 2010-01-19 | Provectus Pharmatech, Inc. | Medicaments for chemotherapeutic treatment of disease |
| US20100189651A1 (en) * | 2009-01-12 | 2010-07-29 | Cytomx Therapeutics, Llc | Modified antibody compositions, methods of making and using thereof |
| US20110071217A1 (en) * | 2009-09-18 | 2011-03-24 | Provectus Pharmaceuticals, Inc. | Process for the Synthesis of 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodo-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one (Rose Bengal) and Related Xanthenes |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2553131B1 (fr) * | 1983-10-11 | 1986-02-21 | Ydais Pierre | Ensemble d'elements modulaires permettant la realisation de volumes de rangement et plus particulierement de caves, d'abris de jardin |
| US5725855A (en) | 1991-04-05 | 1998-03-10 | The United States Of America As Represented By The Department Of Health And Human Services | Method of treating tumors with CD8+ -depleted or CD4+ T cell subpopulations |
| US6689757B1 (en) * | 1996-02-12 | 2004-02-10 | M.L. Laboratories Plc | Methods for vaccination and vaccines therefor |
| US20020001567A1 (en) * | 1998-12-21 | 2002-01-03 | Photogen, Inc. | Intracorporeal medicaments for high energy phototherapeutic treatment of disease |
| HU230057B1 (hu) | 1999-04-08 | 2015-06-29 | Merck Sharp & Dohme Corp. | Melanóma-kezelés |
| ATE406157T1 (de) * | 1999-08-13 | 2008-09-15 | Provectus Pharmatech Inc | Verbesserte topische medikamente sowie verfahren zur photodynamischer behandlung von krankheiten |
| WO2005027710A2 (en) | 2002-09-11 | 2005-03-31 | Sequenom, Inc. | Methods for identifying subjects at risk of melanoma and treatments thereof |
| US7378233B2 (en) | 2003-04-12 | 2008-05-27 | The Johns Hopkins University | BRAF mutation T1796A in thyroid cancers |
| US20050019918A1 (en) | 2003-06-03 | 2005-01-27 | Hidetoshi Sumimoto | Treatment of cancer by inhibiting BRAF expression |
| EP1541695A1 (en) | 2003-12-09 | 2005-06-15 | Nanogen Recognomics GmbH | Use of a mutation in the BRAF gene for the determination of the malignancy of melanoma cells |
| CA2566180A1 (en) * | 2004-05-10 | 2005-11-24 | Robert F. Hofmann | Use of targeted oxidative therapeutic formulation in treatment of cancer |
| GB0423554D0 (en) | 2004-10-22 | 2004-11-24 | Cancer Rec Tech Ltd | Therapeutic compounds |
| BRPI0515735A2 (pt) | 2004-11-04 | 2011-10-11 | Pfizer Prod Inc | tratamento de combinação de anticorpo de ctla4 e inibidor de aromatase para cáncer de mama, suas composições farmacêuticas e respectivos usos |
| GB0428082D0 (en) | 2004-12-22 | 2005-01-26 | Welcome Trust The Ltd | Therapeutic compounds |
| US7442507B2 (en) | 2005-01-24 | 2008-10-28 | New York University School Of Medicine | Methods for detecting circulating mutant BRAF DNA |
| BRPI0607579A2 (pt) | 2005-03-23 | 2009-09-15 | Pfizer Prod Inc | uso de anticorpo anti-ctla4 e indolinona para a preparação de medicamentos para o tratamento de cáncer |
| US8110194B2 (en) * | 2005-12-07 | 2012-02-07 | Medarex, Inc. | CTLA-4 antibody dosage escalation regimens |
| EP2007423A2 (en) | 2006-04-05 | 2008-12-31 | Pfizer Products Incorporated | Ctla4 antibody combination therapy |
| JP2009534457A (ja) | 2006-04-26 | 2009-09-24 | キャンサー・リサーチ・テクノロジー・リミテッド | がん治療用化合物としてのイミダゾ[4,5−b]ピリジン−2−オンおよびオキサゾロ[4,5−b]ピリジン−2−オン化合物およびその類似体 |
| US7897762B2 (en) | 2006-09-14 | 2011-03-01 | Deciphera Pharmaceuticals, Llc | Kinase inhibitors useful for the treatment of proliferative diseases |
| JP2009077712A (ja) | 2007-09-11 | 2009-04-16 | F Hoffmann La Roche Ag | B−Rafキナーゼ阻害剤に対する感受性についての診断試験 |
| BRPI0821227A2 (pt) | 2007-12-19 | 2015-06-16 | Cancer Rec Tech Ltd | Composto, composição farmacêutica, método para preparar a mesma, uso de um composto, método para tratar uma doença ou distúrbio, para inibir função de raf e para inibir proliferação celular, inibir progressão do ciclo celular, promover apoptose, ou uma combinação de um ou mais dos mesmos |
| WO2010014784A2 (en) * | 2008-08-01 | 2010-02-04 | Bristol-Myers Squibb Company | Combination of anti-ctla4 antibody with diverse therapeutic regimens for the synergistic treatment of proliferative diseases |
| TW201041888A (en) | 2009-05-06 | 2010-12-01 | Plexxikon Inc | Compounds and methods for kinase modulation, and indications therefor |
| DK2769737T3 (en) * | 2009-07-20 | 2017-07-24 | Bristol Myers Squibb Co | COMBINATION OF ANTI-CTLA4 ANTIBODY WITH ETOPOSIDE FOR SYNERGISTIC TREATMENT OF PROLIFERATIVE DISEASES |
| US9107887B2 (en) | 2011-03-10 | 2015-08-18 | Provectus Pharmaceuticals, Inc. | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer |
-
2012
- 2012-03-09 US US13/416,494 patent/US9107887B2/en active Active
- 2012-03-09 CA CA2828940A patent/CA2828940C/en active Active
- 2012-03-09 EP EP12755115.8A patent/EP2710137B1/en active Active
- 2012-03-09 CN CN2012800182901A patent/CN103476943A/zh active Pending
- 2012-03-09 MX MX2013010340A patent/MX360254B/es active IP Right Grant
- 2012-03-09 JP JP2013557888A patent/JP6322413B2/ja active Active
- 2012-03-09 WO PCT/US2012/028412 patent/WO2012122444A1/en not_active Ceased
- 2012-03-09 KR KR1020137026664A patent/KR20140038382A/ko not_active Ceased
- 2012-03-09 ES ES12755115T patent/ES2699965T3/es active Active
-
2015
- 2015-06-24 US US14/748,608 patent/US9839688B2/en active Active
- 2015-06-24 US US14/748,634 patent/US9808524B2/en active Active
- 2015-06-24 US US14/748,579 patent/US20150290309A1/en not_active Abandoned
-
2017
- 2017-11-06 US US15/804,357 patent/US10471144B2/en active Active
-
2018
- 2018-02-19 JP JP2018026788A patent/JP2018109036A/ja active Pending
-
2019
- 2019-11-08 US US16/678,133 patent/US11071781B2/en active Active
-
2021
- 2021-07-22 US US17/382,943 patent/US20220008534A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080118567A1 (en) | 1998-08-06 | 2008-05-22 | Provectus Pharmatech. Inc, | Medicaments for Chemotherapeutic Treatment of Disease |
| US20090117199A1 (en) | 1998-08-06 | 2009-05-07 | Scott Timothy C | Method of treatment of cancer |
| US7648695B2 (en) | 1998-08-06 | 2010-01-19 | Provectus Pharmatech, Inc. | Medicaments for chemotherapeutic treatment of disease |
| US20100189651A1 (en) * | 2009-01-12 | 2010-07-29 | Cytomx Therapeutics, Llc | Modified antibody compositions, methods of making and using thereof |
| US20110071217A1 (en) * | 2009-09-18 | 2011-03-24 | Provectus Pharmaceuticals, Inc. | Process for the Synthesis of 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodo-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one (Rose Bengal) and Related Xanthenes |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2710137A4 |
Cited By (134)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9808524B2 (en) | 2011-03-10 | 2017-11-07 | Provectus Pharmatech, Inc. | Combination of local and systemic immunomodulative therapies for melanoma and liver cancer |
| US10471144B2 (en) | 2011-03-10 | 2019-11-12 | Provectus Pharmatech, Inc. | Combination of local rose bengal and systemic immunomodulative therapies for enhanced treatment of cancer |
| US9839688B2 (en) | 2011-03-10 | 2017-12-12 | Provectus Pharmatech, Inc. | Combination of rose bengal and systemic immunomodulative therapies for enhanced treatment of cancer |
| US11071781B2 (en) | 2011-03-10 | 2021-07-27 | Provectus Pharmatech, Inc | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer |
| JP2020105223A (ja) * | 2013-01-07 | 2020-07-09 | スーパーラブ ファー イースト リミテッド | インターフェロンの経皮及び/又は経粘膜投薬による骨ガン、皮膚癌、皮下腫瘍、粘膜癌及び/又は粘膜下腫瘍を治療する方法と組成物 |
| JP2016508987A (ja) * | 2013-01-07 | 2016-03-24 | スーパーラブ ファー イースト リミテッド | インターフェロンの経皮及び/又は経粘膜投薬による骨ガン、皮膚癌、皮下腫瘍、粘膜癌及び/又は粘膜下腫瘍を治療する方法と組成物 |
| US12421502B2 (en) | 2013-04-18 | 2025-09-23 | Tilt Biotherapeutics Oy | Enhanced adoptive cell therapy |
| US10787645B2 (en) | 2013-04-18 | 2020-09-29 | Tilt Biotherapeutics Oy | Enhanced adoptive cell therapy |
| JP2016522805A (ja) * | 2013-04-18 | 2016-08-04 | ティーアイエルティー・バイオセラピューティクス・オーワイTILT Biotherapeutics Oy | 増強された養子細胞療法 |
| JP7114532B2 (ja) | 2013-04-18 | 2022-08-08 | ティーアイエルティー・バイオセラピューティクス・オーワイ | 増強された養子細胞療法 |
| JP2020011966A (ja) * | 2013-04-18 | 2020-01-23 | ティーアイエルティー・バイオセラピューティクス・オーワイTILT Biotherapeutics Oy | 増強された養子細胞療法 |
| US10647963B2 (en) | 2013-04-18 | 2020-05-12 | Tilt Biotherapeutics Oy | Enhanced adoptive cell therapy |
| JP2017514143A (ja) * | 2014-02-21 | 2017-06-01 | アッヴィ・ステムセントルクス・エル・エル・シー | メラノーマに使用するための抗dll3抗体および薬物コンジュゲート |
| EP3572430A2 (en) | 2014-03-05 | 2019-11-27 | Bristol-Myers Squibb Company | Treatment of renal cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
| EP3760229A2 (en) | 2014-05-15 | 2021-01-06 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and another anti-cancer agent |
| EP3738610A1 (en) | 2015-04-17 | 2020-11-18 | Bristol-Myers Squibb Company | Compositions comprising a combination of ipilimumab and nivolumab |
| US10512689B2 (en) | 2015-04-17 | 2019-12-24 | Bristol-Myers Squibb Company | Compositions comprising a combination of nivolumab and ipilimumab |
| US11612654B2 (en) | 2015-04-17 | 2023-03-28 | Bristol-Myers Squibb Company | Combination therapy comprising nivolumab and ipilimumab |
| WO2016176503A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody |
| WO2016176504A1 (en) | 2015-04-28 | 2016-11-03 | Bristol-Myers Squibb Company | Treatment of pd-l1-positive melanoma using an anti-pd-1 antibody |
| EP3988571A1 (en) | 2015-04-28 | 2022-04-27 | Bristol-Myers Squibb Company | Treatment of pd-l1-negative melanoma using an anti-pd-1 antibody and an anti-ctla-4 antibody |
| US10174113B2 (en) | 2015-04-28 | 2019-01-08 | Bristol-Myers Squibb Company | Treatment of PD-L1-negative melanoma using an anti-PD-1 antibody and an anti-CTLA-4 antibody |
| US12084518B2 (en) | 2015-05-21 | 2024-09-10 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
| WO2016191751A1 (en) | 2015-05-28 | 2016-12-01 | Bristol-Myers Squibb Company | Treatment of pd-l1 positive lung cancer using an anti-pd-1 antibody |
| US11078278B2 (en) | 2015-05-29 | 2021-08-03 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
| US12152075B2 (en) | 2015-05-29 | 2024-11-26 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
| WO2016196389A1 (en) | 2015-05-29 | 2016-12-08 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
| EP3858859A1 (en) | 2015-07-14 | 2021-08-04 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor; antibody that binds to programmed death-1 receptor (pd-1) or programmed death ligand 1 (pd-l1) |
| WO2017011666A1 (en) | 2015-07-14 | 2017-01-19 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
| US10544224B2 (en) | 2015-07-14 | 2020-01-28 | Bristol-Myers Squibb Company | Method of treating cancer using immune checkpoint inhibitor |
| US11072657B2 (en) | 2015-11-18 | 2021-07-27 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-PD-1 antibody and an anti-CTLA-4 antibody |
| WO2017087870A1 (en) | 2015-11-18 | 2017-05-26 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody |
| EP4609915A2 (en) | 2015-11-18 | 2025-09-03 | Bristol-Myers Squibb Company | Treatment of lung cancer using a combination of an anti-pd-1 antibody and an anti-ctla-4 antibody |
| US20170173079A1 (en) * | 2015-12-18 | 2017-06-22 | Provectus Pharmatech, Inc. | Method of Ex Vivo Enhancement of Immune Cell Activity for Cancer Immunotherapy with a Small Molecule Ablative Compound |
| US10130658B2 (en) * | 2015-12-18 | 2018-11-20 | Provectus Pharmatech, Inc. | Method of ex vivo enhancement of immune cell activity for cancer immunotherapy with a small molecule ablative compound |
| WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
| EP4039699A1 (en) | 2015-12-23 | 2022-08-10 | ModernaTX, Inc. | Methods of using ox40 ligand encoding polynucleotides |
| US12222356B2 (en) | 2016-04-05 | 2025-02-11 | Bristol-Myers Squibb Company | Cytokine profiling analysis |
| WO2017176925A1 (en) | 2016-04-05 | 2017-10-12 | Bristol-Myers Squibb Company | Cytokine profiling analysis for predicting prognosis of a patient in need of an anti-cancer treatment |
| US11209441B2 (en) | 2016-04-05 | 2021-12-28 | Bristol-Myers Squibb Company | Cytokine profiling analysis |
| WO2017201350A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
| EP4137509A1 (en) | 2016-05-18 | 2023-02-22 | ModernaTX, Inc. | Combinations of mrnas encoding immune modulating polypeptides and uses thereof |
| WO2017201325A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Combinations of mrnas encoding immune modulating polypeptides and uses thereof |
| WO2017201352A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Mrna combination therapy for the treatment of cancer |
| EP4186518A1 (en) | 2016-05-18 | 2023-05-31 | ModernaTX, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
| WO2017201502A1 (en) | 2016-05-20 | 2017-11-23 | Biohaven Pharmaceutical Holding Company Ltd. | Use of glutamate modulating agents with immunotherapies to treat cancer |
| US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
| US11083790B2 (en) | 2016-06-02 | 2021-08-10 | Bristol-Myers Squibb Company | Treatment of Hodgkin lymphoma using an anti-PD-1 antibody |
| EP4248990A2 (en) | 2016-06-02 | 2023-09-27 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
| WO2017210453A1 (en) | 2016-06-02 | 2017-12-07 | Bristol-Myers Squibb Company | Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma |
| WO2017210631A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
| US11767361B2 (en) | 2016-06-03 | 2023-09-26 | Bristol-Myers Squibb Company | Method of treating lung cancer |
| EP4386005A2 (en) | 2016-06-03 | 2024-06-19 | Bristol-Myers Squibb Company | Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer |
| WO2017210637A1 (en) | 2016-06-03 | 2017-12-07 | Bristol-Myers Squibb Company | Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer |
| EP3988570A1 (en) | 2016-06-03 | 2022-04-27 | Bristol-Myers Squibb Company | Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer |
| US11332529B2 (en) | 2016-06-03 | 2022-05-17 | Bristol-Myers Squibb Company | Methods of treating colorectal cancer |
| WO2018081621A1 (en) | 2016-10-28 | 2018-05-03 | Bristol-Myers Squibb Company | Methods of treating urothelial carcinoma using an anti-pd-1 antibody |
| EP4491237A2 (en) | 2016-10-28 | 2025-01-15 | Bristol-Myers Squibb Company | Methods of treating urothelial carcinoma using an anti-pd-1 antibody |
| US11040027B2 (en) | 2017-01-17 | 2021-06-22 | Heparegenix Gmbh | Protein kinase inhibitors for promoting liver regeneration or reducing or preventing hepatocyte death |
| WO2018183928A1 (en) | 2017-03-31 | 2018-10-04 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2018187613A2 (en) | 2017-04-07 | 2018-10-11 | Bristol-Myers Squibb Company | Anti-icos agonist antibodies and uses thereof |
| US11607453B2 (en) | 2017-05-12 | 2023-03-21 | Harpoon Therapeutics, Inc. | Mesothelin binding proteins |
| WO2018213731A1 (en) | 2017-05-18 | 2018-11-22 | Modernatx, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
| EP4245375A2 (en) | 2017-05-30 | 2023-09-20 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent |
| WO2018222711A2 (en) | 2017-05-30 | 2018-12-06 | Bristol-Myers Squibb Company | Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent |
| EP3691643A1 (en) | 2017-09-29 | 2020-08-12 | Bristol-Myers Squibb Company | Compositions and methods of treating cancer |
| US11976125B2 (en) | 2017-10-13 | 2024-05-07 | Harpoon Therapeutics, Inc. | B cell maturation antigen binding proteins |
| US12371504B2 (en) | 2017-10-13 | 2025-07-29 | Harpoon Therapeutics, Inc. | Trispecific proteins and methods of use |
| WO2019075468A1 (en) | 2017-10-15 | 2019-04-18 | Bristol-Myers Squibb Company | TUMOR TREATMENT METHODS |
| US11919957B2 (en) | 2017-10-15 | 2024-03-05 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2019143607A1 (en) | 2018-01-16 | 2019-07-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
| WO2019144098A1 (en) | 2018-01-22 | 2019-07-25 | Bristol-Myers Squibb Company | Compositions and methods of treating cancer |
| US11242393B2 (en) | 2018-03-23 | 2022-02-08 | Bristol-Myers Squibb Company | Antibodies against MICA and/or MICB and uses thereof |
| WO2019191676A1 (en) | 2018-03-30 | 2019-10-03 | Bristol-Myers Squibb Company | Methods of treating tumor |
| AU2019268353B2 (en) * | 2018-05-16 | 2023-05-04 | Provectus Pharmatech, Inc. | In vitro and xenograft anti-tumor activity of a halogenated-xanthene against refractory pediatric solid tumors |
| EP3773548A4 (en) * | 2018-05-16 | 2022-03-30 | Provectus Pharmatech, Inc. | IN VITRO AND XENOGRAFT ANTITUMORIC ACTIVITY OF A HALOGENATED XANTHENE AGAINST REFRACTORY PEDIATRIC SOLID TUMORS |
| US11974980B2 (en) | 2018-05-16 | 2024-05-07 | Provectus Pharmatech, Inc. | In vitro and xenograft anti-tumor activity of a halogenated-xanthene against refractory pediatric solid tumors |
| US12377068B2 (en) | 2018-05-16 | 2025-08-05 | Provectus Pharmatech, Inc. | In vitro and xenograft anti-tumor activity of a halogenated-xanthene against refractory pediatric solid tumors |
| WO2020014583A1 (en) | 2018-07-13 | 2020-01-16 | Bristol-Myers Squibb Company | Ox-40 agonist, pd-1 pathway inhibitor and ctla-4 inhibitor combination for use in a mehtod of treating a cancer or a solid tumor |
| US12195544B2 (en) | 2018-09-21 | 2025-01-14 | Harpoon Therapeutics, Inc. | EGFR binding proteins and methods of use |
| US11807692B2 (en) | 2018-09-25 | 2023-11-07 | Harpoon Therapeutics, Inc. | DLL3 binding proteins and methods of use |
| WO2020086724A1 (en) | 2018-10-23 | 2020-04-30 | Bristol-Myers Squibb Company | Methods of treating tumor |
| US12479917B2 (en) | 2018-10-23 | 2025-11-25 | Bristol-Myers Squibb Company | Methods of treating NSCLC comprising administering platinum doublet chemotherapy followed by an anti-PD-1 antibody and an anti-CTLA-4 antibody |
| WO2020097409A2 (en) | 2018-11-08 | 2020-05-14 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
| WO2020102728A1 (en) | 2018-11-16 | 2020-05-22 | Neoimmunetech, Inc. | Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor |
| WO2020102501A1 (en) | 2018-11-16 | 2020-05-22 | Bristol-Myers Squibb Company | Anti-nkg2a antibodies and uses thereof |
| WO2020109328A1 (en) | 2018-11-26 | 2020-06-04 | Debiopharm International S.A. | Combination treatment of hiv infections |
| WO2020136235A1 (en) | 2018-12-28 | 2020-07-02 | Transgene Sa | M2-defective poxvirus |
| KR20210110838A (ko) | 2018-12-28 | 2021-09-09 | 트랜스진 에스.에이. | M2 결함성 폭스바이러스 |
| WO2020198672A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2020198676A1 (en) | 2019-03-28 | 2020-10-01 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2020243563A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Multi-tumor gene signatures for suitability to immuno-oncology therapy |
| WO2020243570A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Cell localization signature and combination therapy |
| WO2020243568A1 (en) | 2019-05-30 | 2020-12-03 | Bristol-Myers Squibb Company | Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy |
| GB201912107D0 (en) | 2019-08-22 | 2019-10-09 | Amazentis Sa | Combination |
| WO2021032861A1 (en) | 2019-08-22 | 2021-02-25 | Amazentis Sa | Combination of an urolithin with an immunotherapy treatment |
| WO2021055994A1 (en) | 2019-09-22 | 2021-03-25 | Bristol-Myers Squibb Company | Quantitative spatial profiling for lag-3 antagonist therapy |
| WO2021092221A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
| WO2021092220A1 (en) | 2019-11-06 | 2021-05-14 | Bristol-Myers Squibb Company | Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy |
| WO2021092380A1 (en) | 2019-11-08 | 2021-05-14 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for melanoma |
| WO2021127554A1 (en) | 2019-12-19 | 2021-06-24 | Bristol-Myers Squibb Company | Combinations of dgk inhibitors and checkpoint antagonists |
| WO2021158938A1 (en) | 2020-02-06 | 2021-08-12 | Bristol-Myers Squibb Company | Il-10 and uses thereof |
| US20210299055A1 (en) * | 2020-03-26 | 2021-09-30 | Provectus Pharmatech, Inc. | Treatment of Solid Cancerous Tumors by Oral Administration of a Halogenated Xanthene |
| WO2021243207A1 (en) | 2020-05-28 | 2021-12-02 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
| WO2022047189A1 (en) | 2020-08-28 | 2022-03-03 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hepatocellular carcinoma |
| WO2022047412A1 (en) | 2020-08-31 | 2022-03-03 | Bristol-Myers Squibb Company | Cell localization signature and immunotherapy |
| WO2022087402A1 (en) | 2020-10-23 | 2022-04-28 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for lung cancer |
| WO2022120179A1 (en) | 2020-12-03 | 2022-06-09 | Bristol-Myers Squibb Company | Multi-tumor gene signatures and uses thereof |
| WO2022146948A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Subcutaneous administration of pd1/pd-l1 antibodies |
| WO2022146947A1 (en) | 2020-12-28 | 2022-07-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
| EP4566674A2 (en) | 2020-12-28 | 2025-06-11 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
| WO2022212876A1 (en) | 2021-04-02 | 2022-10-06 | The Regents Of The University Of California | Antibodies against cleaved cdcp1 and uses thereof |
| WO2023077090A1 (en) | 2021-10-29 | 2023-05-04 | Bristol-Myers Squibb Company | Lag-3 antagonist therapy for hematological cancer |
| WO2023147371A1 (en) | 2022-01-26 | 2023-08-03 | Bristol-Myers Squibb Company | Combination therapy for hepatocellular carcinoma |
| WO2023161453A1 (en) | 2022-02-24 | 2023-08-31 | Amazentis Sa | Uses of urolithins |
| WO2023164638A1 (en) | 2022-02-25 | 2023-08-31 | Bristol-Myers Squibb Company | Combination therapy for colorectal carcinoma |
| WO2023168404A1 (en) | 2022-03-04 | 2023-09-07 | Bristol-Myers Squibb Company | Methods of treating a tumor |
| WO2023170606A1 (en) | 2022-03-08 | 2023-09-14 | Alentis Therapeutics Ag | Use of anti-claudin-1 antibodies to increase t cell availability |
| WO2023178329A1 (en) | 2022-03-18 | 2023-09-21 | Bristol-Myers Squibb Company | Methods of isolating polypeptides |
| WO2023196987A1 (en) | 2022-04-07 | 2023-10-12 | Bristol-Myers Squibb Company | Methods of treating tumor |
| WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
| WO2023213763A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Poxvirus encoding a binding agent comprising an anti- pd-l1 sdab |
| WO2023213764A1 (en) | 2022-05-02 | 2023-11-09 | Transgene | Fusion polypeptide comprising an anti-pd-l1 sdab and a member of the tnfsf |
| WO2023235847A1 (en) | 2022-06-02 | 2023-12-07 | Bristol-Myers Squibb Company | Antibody compositions and methods of use thereof |
| WO2024003353A1 (en) | 2022-07-01 | 2024-01-04 | Transgene | Fusion protein comprising a surfactant-protein-d and a member of the tnfsf |
| WO2024040175A1 (en) | 2022-08-18 | 2024-02-22 | Pulmatrix Operating Company, Inc. | Methods for treating cancer using inhaled angiogenesis inhibitor |
| WO2024137776A1 (en) | 2022-12-21 | 2024-06-27 | Bristol-Myers Squibb Company | Combination therapy for lung cancer |
| WO2024196952A1 (en) | 2023-03-20 | 2024-09-26 | Bristol-Myers Squibb Company | Tumor subtype assessment for cancer therapy |
| WO2025038763A1 (en) | 2023-08-15 | 2025-02-20 | Bristol-Myers Squibb Company | Ceramic hydroxyapatite chromatography flow through method |
| WO2025145207A1 (en) | 2023-12-29 | 2025-07-03 | Bristol-Myers Squibb Company | Combination therapy of kras inhibitor and treg-depleting agent |
| WO2025184211A1 (en) | 2024-02-27 | 2025-09-04 | Bristol-Myers Squibb Company | Anti-ceacam5 antibody drug conjugates |
| WO2025184208A1 (en) | 2024-02-27 | 2025-09-04 | Bristol-Myers Squibb Company | Anti-ceacam5 antibodies and uses thereof |
| WO2025202222A1 (en) | 2024-03-25 | 2025-10-02 | Institut National de la Santé et de la Recherche Médicale | Therapeutic use of sting and tlrs agonists to induce p16 expression in immune cells |
| WO2025245489A1 (en) | 2024-05-24 | 2025-11-27 | Bristol-Myers Squibb Company | Treatment of tumors in subjects having fgl-1 positive samples |
Also Published As
| Publication number | Publication date |
|---|---|
| US20150290318A1 (en) | 2015-10-15 |
| US20180055926A1 (en) | 2018-03-01 |
| US9107887B2 (en) | 2015-08-18 |
| KR20140038382A (ko) | 2014-03-28 |
| US20150290309A1 (en) | 2015-10-15 |
| CA2828940C (en) | 2024-04-16 |
| US9808524B2 (en) | 2017-11-07 |
| JP2014510728A (ja) | 2014-05-01 |
| US11071781B2 (en) | 2021-07-27 |
| EP2710137A4 (en) | 2014-12-31 |
| MX2013010340A (es) | 2013-11-01 |
| US10471144B2 (en) | 2019-11-12 |
| US20200138942A1 (en) | 2020-05-07 |
| EP2710137A1 (en) | 2014-03-26 |
| CN103476943A (zh) | 2013-12-25 |
| JP6322413B2 (ja) | 2018-05-09 |
| US20150290165A1 (en) | 2015-10-15 |
| ES2699965T3 (es) | 2019-02-13 |
| CA2828940A1 (en) | 2012-09-13 |
| JP2018109036A (ja) | 2018-07-12 |
| US9839688B2 (en) | 2017-12-12 |
| MX360254B (es) | 2018-10-26 |
| US20120263677A1 (en) | 2012-10-18 |
| US20220008534A1 (en) | 2022-01-13 |
| EP2710137B1 (en) | 2018-09-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11071781B2 (en) | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer | |
| JP6426706B2 (ja) | がん処置で使用するためのgla単剤療法 | |
| WO2013043569A1 (en) | Synergistic anti-tumor efficacy using alloantigen combination immunotherapy | |
| JP6796623B2 (ja) | 転移を減少させるまたは阻止するための組成物および方法 | |
| WO2018071837A1 (en) | Radiofrequency field hyperthermia and solid tumor immunomodulation | |
| US12303724B2 (en) | Non-adult human dosing of anti-CD30 antibody-drug conjugates for treatment of hematological or lymphoid cancer | |
| Qin et al. | CD19-targeted HSP90 inhibitor nanoparticle combined with TKIs reduces tumor burden and enhances T-cell immunity in murine B-cell malignancies | |
| Zhao et al. | Polymersome-enabled brain Codelivery of STAT3 siRNA and CpG oligonucleotide boosts chemo-immunotherapy of malignant glioma | |
| CN119185520A (zh) | 一种仿生自噬小体的肿瘤纳米疫苗及其制备方法与应用 | |
| Li et al. | Nanodelivery of arsenic trioxide induces macrophage-governed cGAS-STING signaling to remodel immune microenvironment in hepatocellular carcinoma | |
| TW202322855A (zh) | 人類表皮生長因子第二型受體疫苗組成物以及套組 | |
| US20230181633A1 (en) | Methods of treating cancer using a combination of tumor membrane vesicles and metformin | |
| HK1192589A (en) | Combination of local and systemic immunomodulative therapies for enhanced treatment of cancer | |
| US9289463B2 (en) | Octreotide-modified nanomedicine for cancer treatment or cancer palliative care | |
| Davis et al. | 265 POSTER Recombinant human Interleukin-21 (rIL-21), a new cytokine for immunotherapy: results of two phase 1 studies in patients with metastatic melanoma (MM) or renal cell carcinoma (RCC) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12755115 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2828940 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/010340 Country of ref document: MX |
|
| ENP | Entry into the national phase |
Ref document number: 2013557888 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012755115 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20137026664 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/004556 Country of ref document: MX |