WO2012117794A1 - リチウムイオンキャパシタ - Google Patents

リチウムイオンキャパシタ Download PDF

Info

Publication number
WO2012117794A1
WO2012117794A1 PCT/JP2012/052226 JP2012052226W WO2012117794A1 WO 2012117794 A1 WO2012117794 A1 WO 2012117794A1 JP 2012052226 W JP2012052226 W JP 2012052226W WO 2012117794 A1 WO2012117794 A1 WO 2012117794A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
negative electrode
material layer
Prior art date
Application number
PCT/JP2012/052226
Other languages
English (en)
French (fr)
Inventor
照明 手塚
俊仁 林
信雄 安東
渡辺 裕
真 田口
安田 直史
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011069993A external-priority patent/JP5650029B2/ja
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to US14/001,965 priority Critical patent/US9208958B2/en
Priority to KR1020137024117A priority patent/KR101862433B1/ko
Priority to CN201280010591XA priority patent/CN103403825A/zh
Priority to EP12752327.2A priority patent/EP2682966B1/en
Publication of WO2012117794A1 publication Critical patent/WO2012117794A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a lithium ion capacitor having a low internal resistance, a high energy density, and a high capacity retention rate.
  • lithium-ion capacitors have attracted attention as high-power and high-energy density storage devices.
  • the conventional lithium ion capacitor there is a problem of a trade-off relationship in which the internal resistance increases as the energy density is increased.
  • Patent Document 1 discloses a lithium ion capacitor in which the resistance is reduced by appropriately adjusting the ratio between the weight of the positive electrode active material and the weight of the negative electrode active material.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a lithium ion capacitor having a low internal resistance, a high energy density, and a high capacity retention rate.
  • the lithium ion capacitor of the present invention includes a positive electrode in which a cathode active material layer is formed on a roughened positive electrode current collector, A negative electrode in which a negative electrode active material layer containing graphite-based particles is formed on a negative electrode current collector; A lithium ion capacitor having an electrolyte containing a solution of a lithium salt with an aprotic organic solvent,
  • the total thickness of the positive electrode active material layer is 50 ⁇ m to 140 ⁇ m, and the mass ratio of the positive electrode active material layer to the sum of the masses of the positive electrode active material layer and the negative electrode active material layer is 0.4 to 0.5.
  • the positive electrode current collector is preferably roughened by etching, and more preferably roughened by electrolytic etching.
  • the positive electrode potential after the positive electrode and the negative electrode are short-circuited after doping the negative electrode and / or the positive electrode with lithium ions is 0.5 to 1.5V.
  • the graphite-based particles used for the negative electrode active material layer are selected from artificial graphite particles, natural graphite, or graphite-based composite particles obtained by coating graphite powder with a material derived from tar or pitch. At least one is preferred.
  • the aprotic organic solvent is a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate, and the volume ratio of ethylene carbonate to the total of ethyl methyl carbonate and dimethyl carbonate is 1: 3 to 1: It is preferable that the volume ratio of ethyl methyl carbonate to dimethyl carbonate is 1: 1 to 9: 1 in the aprotic organic solvent.
  • a lithium ion capacitor having a low internal resistance, a high energy density, and a high capacity retention rate.
  • the lithium ion capacitor of the present invention basically has an electrode unit in which the positive electrode and the negative electrode are alternately stacked or wound via a separator in the outer container.
  • a separator in the outer container a cylindrical type, a square type, a laminate type, or the like can be used as appropriate, and is not particularly limited.
  • “dope” means occlusion, adsorption or insertion, and broadly refers to a phenomenon in which at least one of lithium ions and anions enters the positive electrode active material, or a phenomenon in which lithium ions enter the negative electrode active material.
  • “De-doping” also means desorption and release, and refers to a phenomenon in which lithium ions or anions are desorbed from the positive electrode active material, or a phenomenon in which lithium ions are desorbed from the negative electrode active material.
  • a lithium ion supply source such as metallic lithium is disposed in the capacitor cell as a lithium electrode, and at least one of the negative electrode and the positive electrode and a lithium ion supply source A method of doping lithium ions by electrochemical contact is used.
  • the lithium ion capacitor according to the present invention it is possible to uniformly dope lithium ions into at least one of the negative electrode and the positive electrode also by locally disposing the lithium electrode in the cell and bringing it into electrochemical contact. Therefore, even when a large-capacity electrode unit is formed by laminating or further winding the positive electrode and the negative electrode, or when a lithium electrode is disposed on the outermost or outermost layer of the electrode unit, at least one of the negative electrode and the positive electrode The lithium ions can be doped smoothly and uniformly.
  • the lithium ion capacitor according to the present invention includes, for example, a positive electrode in which a positive electrode active material layer is formed on a positive electrode current collector, a first separator, a negative electrode in which a negative electrode active material layer is formed on a negative electrode current collector, and a second separator in this order.
  • the electrode unit is configured by winding or stacking and arranging at least one lithium ion supply source in an excess portion of the first separator so as not to contact the positive electrode, and short-circuiting the negative electrode current collector and the lithium ion supply source. .
  • the lithium electrode is doped by filling the electrolytic solution, and lithium ions can be doped into the negative electrode active material layer. This constitutes a lithium ion capacitor.
  • the positive electrode and the negative electrode are respectively provided with a positive electrode current collector and a negative electrode current collector that receive and distribute electricity.
  • a positive electrode current collector and a negative electrode current collector those having through-holes are preferably used.
  • the form and number of through holes in the positive electrode current collector and the negative electrode current collector are not particularly limited, and lithium ions and electrolysis supplied electrochemically from a lithium electrode arranged to face at least one of the positive electrode and the negative electrode It can set so that the lithium ion in a liquid can move between the front and back of an electrode, without interrupted
  • the positive electrode current collector As the positive electrode current collector, a roughened one is used. By roughening the surface of the resulting positive electrode current collector, irregularities are formed on the surface, or through holes are formed, and the contact area with the active material increases due to the irregularities or through holes. The resistance can be reduced.
  • the roughening treatment can be performed by etching treatment, ashing treatment, plasma treatment, or the like.
  • the positive electrode current collector is preferably one that has been roughened by etching, such as electrolytic etching. A surface-treated surface is particularly preferable. Further, the positive electrode current collector is particularly preferably one having irregularities.
  • the positive electrode current collector has a through hole formed by a through hole forming process other than the roughening process, for example, a through hole that penetrates the back surface by mechanical driving (for example, expanded metal or punching).
  • a through hole that penetrates the back surface by mechanical driving (for example, expanded metal or punching).
  • Metal for example, expanded metal or punching.
  • a CO 2 laser, a YAG laser, a UV laser, or the like can be used in which a through hole penetrating the back surface is formed.
  • the through-hole forming process may be performed before the roughening process or after the roughening process.
  • the unevenness and the through-hole formed in the positive electrode current collector are collectively referred to as “void”.
  • the porosity is defined as the existence ratio of through holes and irregularities formed in the positive electrode current collector by electrolytic etching or the like.
  • the “unevenness” refers to a non-through hole having an uneven shape formed in the positive electrode current collector.
  • the porosity (%) can be obtained by the following formula (1).
  • Formula (1): Porosity (%) [(Weight of untreated positive electrode current collector (g) ⁇ Weight of positive electrode current collector after electrolytic etching (g)) / Untreated positive electrode current collector Body weight (g)] x 100
  • the material of the positive electrode current collector aluminum, stainless steel or the like can be used, and aluminum is particularly preferable. Further, the thickness of the positive electrode current collector is not particularly limited, but it may usually be 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, particularly preferably 10 to 40 ⁇ m.
  • the roughening process and the through hole forming process described above can be applied to the method for forming the unevenness and the through hole of the positive electrode current collector.
  • the etching process is preferably used, and the electrolytic etching process is particularly used. preferable.
  • an acid such as hydrochloric acid can be used as the etching solvent.
  • Etching conditions include current waveform, liquid composition, temperature, and the like, but the shape of the through hole changes depending on these conditions, so it is necessary to appropriately optimize the target shape.
  • the diameter of the through hole of the positive electrode current collector is, for example, 1 to 500 ⁇ m, preferably 5 to 300 ⁇ m, and particularly preferably 10 to 300 ⁇ m.
  • the porosity (%) of the positive electrode current collector is preferably 5 to 60%, and more preferably 5 to 50%.
  • the porosity (%) of the through holes of the positive electrode current collector is preferably 20 to 50%, more preferably 20 to 40%.
  • the porosity (%) of the positive electrode current collector can be obtained by the following formula (2).
  • the following formula (2) is a value including the porosity determined by the above formula (1).
  • the absolute value of only the porosity (%) can be obtained from the difference between the values of the above formula (1) and the following formula (2).
  • Formula (2): Porosity (%) [1- (mass of positive electrode current collector / true specific gravity of positive electrode current collector) / (apparent volume of positive electrode current collector)] ⁇ 100
  • the positive electrode active material a material capable of reversibly doping and dedoping at least one kind of anion such as lithium ion and tetrafluoroborate is used, and examples thereof include activated carbon powder.
  • the specific surface area of the activated carbon is preferably 1900 m 2 / g to 2800 m 2 / g, and more preferably 1950 m 2 / g to 2600 m 2 / g.
  • the 50% volume cumulative diameter (D50) (average particle diameter) of the activated carbon is preferably 2 ⁇ m to 8 ⁇ m, particularly preferably 2 ⁇ m to 5 ⁇ m, from the viewpoint of the packing density of the activated carbon.
  • the energy density of the lithium ion capacitor can be further improved.
  • the value of the 50% volume cumulative diameter (D50) is obtained by, for example, the microtrack method.
  • the positive electrode active material layer is formed by attaching the positive electrode active material to the positive electrode current collector by coating, printing, injection, spraying, vapor deposition, pressure bonding, or the like.
  • the thickness of the positive electrode active material layer may be one surface having a thickness of 25 to 70 ⁇ m, preferably 25 to 60 ⁇ m, and more preferably 25 to 50 ⁇ m.
  • the negative electrode current collector stainless steel, copper, nickel, or the like can be used.
  • the thickness of the negative electrode current collector is not particularly limited, but it may usually be 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m, particularly preferably 10 to 30 ⁇ m.
  • the method for forming the through hole of the negative electrode current collector the method for forming the through hole of the positive electrode current collector, that is, the roughening treatment and the through hole forming method described above can be applied. Since the shape changes, it is necessary to appropriately optimize the target shape. Further, the diameter of the through hole of the negative electrode current collector is, for example, 0.5 to 50 ⁇ m, preferably 0.5 to 30 ⁇ m, and particularly preferably 0.5 to 20 ⁇ m.
  • graphite-based particles are used among materials that can be reversibly doped and dedoped with lithium ions. Specific examples include graphite-based composite particles in which the surface of artificial graphite or natural graphite is coated with a graphitized substance derived from tar or pitch.
  • graphite composite particles as the negative electrode active material.
  • graphite-based composite particles as the negative electrode active material, it is possible to suppress decomposition of a specific electrolytic solution (for example, propylene carbonate) described later.
  • a specific electrolytic solution for example, propylene carbonate
  • tar or pitch when the surface of graphite is coated with tar or pitch, a plurality of fine particles can be consolidated into a large lump as a single composite particle, so that the negative electrode active material is less likely to slide off the current collector and is held as an electrode. It becomes easy, and it can raise low resistance and durability.
  • Such graphite-based composite particles are obtained, for example, by the following method (1) or (2).
  • graphite-based composite particles (1) A method in which natural graphite or artificial graphite, a low crystalline carbon powder, and a binder are mixed, calcined at 800 ° C. or lower, pulverized, and refired at 900-1500 ° C.
  • graphite composite particles (2) The composite particles are referred to as “graphite composite particles (2)”.
  • the low crystalline carbon powder in the method (2) include mesophase pitch, raw coke, and calcine coke.
  • the binder include binder pitch and phenol resin. In such graphite-based composite particles, the presence or absence of coating with a graphitized substance derived from tar or pitch on the surface of the graphite particles can be confirmed by measurement of Raman spectrum, XRD or the like.
  • graphite-based composite particles having a 50% volume cumulative diameter (D50) in the range of 1.0 to 10 ⁇ m from the viewpoint of output improvement in terms of output improvement. More preferred are graphite-based composite particles having a% volume cumulative diameter (D50) in the range of 2 to 5 ⁇ m.
  • Graphite composite particles having a 50% volume cumulative diameter (D50) of less than 1.0 ⁇ m are difficult to produce, whereas graphite composite particles having a 50% volume cumulative diameter (D50) of more than 10 ⁇ m have an internal resistance of It becomes difficult to obtain a sufficiently small lithium ion capacitor.
  • the negative electrode active material preferably has a specific surface area of 0.1 to 200 m 2 / g, more preferably 0.5 to 50 m 2 / g.
  • the specific surface area of the negative electrode active material is less than 0.1 m 2 / g, the resistance of the obtained lithium ion capacitor is increased, while when the specific surface area of the negative electrode active material exceeds 200 m 2 / g, The irreversible capacity at the time of charge of the obtained lithium ion capacitor becomes high.
  • the 50% volume cumulative diameter (D50) of the graphite-based composite particles is a value determined by, for example, the microtrack method.
  • the negative electrode active material layer is formed by adhering the negative electrode active material to the negative electrode current collector by coating, printing, injection, spraying, vapor deposition, pressure bonding, or the like.
  • the preferred thickness of the negative electrode active material layer varies depending on the balance with the mass of the positive electrode active material layer, but the thickness on one side may be 10 to 80 ⁇ m, preferably 10 to 65 ⁇ m, and preferably 10 to 50 ⁇ m. It is more preferable that By making the layer thickness of the negative electrode active material layer in the above range, the necessary negative electrode capacity can be ensured, and the diffusion resistance of ions moving in the negative electrode active material layer can be reduced. The internal resistance can be lowered.
  • each electrode includes each active material powder (positive electrode active material or negative electrode active material), a binder, and, if necessary, a conductive material, a thickener such as carboxymethyl cellulose (CMC), It can be prepared by adding to water or an organic solvent, mixing, and applying the resulting slurry to a current collector, or by pasting the slurry into a sheet shape to the current collector.
  • CMC carboxymethyl cellulose
  • a rubber-based binder such as SBR
  • a fluorine-containing resin obtained by seed polymerization of polytetrafluoroethylene, polyvinylidene fluoride, or the like with an acrylic resin, an acrylic resin, or the like is used.
  • the conductive material include acetylene black, ketjen black, graphite, and metal powder.
  • the amount of each of the binder and the conductive material to be added varies depending on the electric conductivity of the active material used, the shape of the electrode to be produced, etc., but it is usually preferable that both are 2 to 20% by mass with respect to the active material. .
  • the mass ratio of the positive electrode active material layer to the sum of the masses of the positive electrode active material layer and the negative electrode active material layer (hereinafter referred to as “positive electrode ratio”) calculated by the following formula (4). ) Is in the range of 0.4 to 0.5.
  • Positive electrode ratio (positive electrode active material layer mass) / ((positive electrode active material layer mass) + (negative electrode active material layer mass))
  • the positive electrode ratio is less than 0.4, it is difficult to obtain a high energy density.
  • the capacity retention after the charge / discharge cycle test may decrease and the resistance increase rate may increase.
  • the positive electrode ratio exceeds 0.5, a high energy density is obtained, but the capacity per unit weight of the negative electrode increases, so the load on the negative electrode increases, and the capacity after the charge / discharge cycle test
  • the retention rate may decrease and the resistance increase rate may increase.
  • a material having an air permeability measured by a method according to JISP8117 in the range of 1 to 200 sec can be used.
  • a nonwoven fabric composed of cellulose, polyolefin, cellulose / rayon, or the like, or a microporous membrane may be used, and a nonwoven fabric composed of polyethylene, polypropylene, or cellulose / rayon is particularly preferable.
  • the thickness of the separator is, for example, 1 to 100 ⁇ m, and preferably 5 to 50 ⁇ m.
  • Electrode In the lithium ion capacitor of the present invention, a non-prototronic organic solvent electrolyte solution of lithium salt is used as the electrolytic solution.
  • aprotic organic solvent of electrolyte examples include ethylene carbonate (hereinafter also referred to as “EC”), propylene carbonate (hereinafter also referred to as “PC”), cyclic carbonates such as butylene carbonate, and dimethyl carbonate. (Hereinafter also referred to as “DMC”), chain carbonates such as ethyl methyl carbonate (hereinafter also referred to as “EMC”), diethyl carbonate (hereinafter also referred to as “DEC”), and methylpropyl carbonate.
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • DEC diethyl carbonate
  • a mixed solvent in which two or more of these are mixed may be used, and in particular, an electrolyte having a low viscosity, a high degree of dissociation, and a high ionic conductivity is obtained. It is preferable to use a mixture.
  • Specific examples of the mixed solvent include a mixed solvent of EC, PC, and DEC, a mixed solvent of EC and DEC, a mixed solvent of EC, EMC, and DMC.
  • the ratio of the cyclic carbonate and the chain carbonate in such a mixed solvent is preferably 1:99 to 80:20, more preferably 10:90 to 60:40 by mass.
  • the ratio of EC to the sum of EMC and DMC (hereinafter also referred to as “EMC / DMC”) is 1: 3 to 1: 1 by volume, and the volume ratio of EMC to DMC is 1: 1. Those that are ⁇ 9: 1 are preferred.
  • EMC / DMC the ratio of EMC to DMC in the aprotic organic solvent, if the ratio of EC is too small, the electric conductivity of the electrolytic solution is decreased, and the output characteristics are deteriorated.
  • the organic solvent constituting the electrolytic solution is an organic solvent other than cyclic carbonate and chain carbonate, for example, cyclic esters such as ⁇ -butyrolactone, cyclic sulfones such as sulfolane, cyclic ethers such as dioxolane, ethyl propionate, and the like. It may contain a chain ether such as a chain carboxylic acid ester or dimethoxyethane.
  • lithium salt of the electrolyte in the electrolytic solution examples include LiClO 4 , LiAsF 3 , LiBF 4 , LiPF 6 , Li (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2, etc.
  • LiPF 6 is preferably used because of its high ion conductivity and low resistance.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.1 mol / L or more, more preferably 0.5 to 1.5 mol / L, because low internal resistance can be obtained.
  • the positive electrode potential after short-circuiting the positive electrode and the negative electrode is 0.5 to 1.5 V after the lithium ion is doped to the negative electrode and / or the positive electrode.
  • the positive electrode potential after the positive electrode and the negative electrode are short-circuited refers to the positive electrode potential obtained by any of the following methods (X) or (Y).
  • the lithium ion capacitor structure according to the present invention in particular, a wound type in which a strip-like positive electrode and a negative electrode are wound through a separator, and a plate-like or sheet-like positive electrode and a negative electrode are each provided via a separator.
  • a wound type in which a strip-like positive electrode and a negative electrode are wound through a separator, and a plate-like or sheet-like positive electrode and a negative electrode are each provided via a separator.
  • Examples include a laminated type in which more than one layer is laminated, and a laminated type in which a unit having such a laminated structure is enclosed in an exterior film or a rectangular exterior can.
  • These capacitor structures are known from Japanese Patent Application Laid-Open No. 2004-266091 and the like, and can be configured similarly to those capacitors.
  • Example 1 Fabrication of positive electrode Conductive paint is applied to both sides of a current collector material made of an aluminum electrolytic etching foil having a pore diameter of 1 ⁇ m, a porosity of 11% by roughening treatment, and a thickness of 30 ⁇ m. Using a double-sided coating machine, the coating width is 60 mm, and the coating speed is 8 m / min. A conductive layer was formed on the front and back surfaces of the positive electrode current collector by drying under reduced pressure under time conditions.
  • a slurry containing a positive electrode active material made of activated carbon particles having a number average particle diameter D50 of 3 ⁇ m is applied to both sides of a vertical die system.
  • a coating speed of 8 m / min set the target value of the coating thickness (total thickness) on both sides to 50 ⁇ m, and apply both sides, then reduce the pressure at 200 ° C. for 24 hours.
  • a positive electrode active material layer as an electrode layer was formed on the conductive layer.
  • the material obtained by laminating the conductive layer and the electrode layer on a part of the positive electrode current collector precursor obtained in this manner was used as the portion where the conductive layer and the electrode layer were laminated (hereinafter referred to as “coating part” ”) Is 60 mm ⁇ 70 mm, and the portion where no layer is formed (hereinafter also referred to as“ uncoated portion ”for the positive electrode) is 60 mm ⁇ 15 mm.
  • coating part a positive electrode in which an electrode layer was formed on both surfaces of the positive electrode current collector was produced.
  • a vertical die-type double-side coating machine is prepared by using a negative electrode active material made of graphite composite particles (1) pitch-coated on the surface of graphite and a slurry containing an SBR binder (manufactured by JSR Corporation: TRD2001).
  • a negative electrode active material layer as an electrode layer was formed on the front and back surfaces of the negative electrode current collector.
  • the material in which the electrode layer is formed on a part of the negative electrode current collector thus obtained has a portion where the electrode layer is formed (hereinafter also referred to as “coating part” for the negative electrode) of 65 mm ⁇ .
  • the negative electrode current collector is cut into a size of 65 mm ⁇ 87 mm so that the portion where the electrode layer is not formed (hereinafter also referred to as “uncoated portion” for the negative electrode) is 65 mm ⁇ 15 mm.
  • a negative electrode having electrode layers formed on both sides was prepared.
  • each of the 11 negative electrodes of the electrode laminate unit, each of the uncoated portion and the lithium ion supply member having a width of 50 mm, a length of 50 mm, and a thickness of 0.2 mm, in which a sealant film is thermally fused in advance to the seal portion A copper negative electrode power tab was stacked and welded.
  • a polypropylene layer, an aluminum layer, and a nylon layer are laminated.
  • the dimensions are 90 mm (vertical width) ⁇ 117 mm (horizontal width) ⁇ 0.15 mm (thickness), and 70 mm (vertical width) in the central portion.
  • ⁇ 97 mm (horizontal width) of one exterior film, a polypropylene layer, an aluminum layer and a nylon layer are laminated, and the dimensions are 90 mm (vertical width) ⁇ 117 mm (horizontal width) ⁇ 0.15 mm ( The other exterior film of thickness) was produced.
  • the electrode lamination unit is arranged at a position serving as a housing part on the other exterior film so that each of the positive electrode terminal and the negative electrode terminal protrudes outward from the end of the other exterior film, and this electrode lamination One exterior film was overlaid on the unit, and three sides (including two sides from which the positive electrode terminal and the negative electrode terminal protrude) at the outer peripheral edge of one exterior film and the other exterior film were heat-sealed.
  • an electrolytic solution containing LiPF 6 having a concentration of 1.2 mol / L was prepared using a mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate (3: 1: 4 by volume) as an aprotic organic solvent.
  • cell S1 a test laminate exterior lithium ion capacitor (hereinafter referred to as “cell S1”) was produced.
  • the positive electrode potential after a short circuit was measured as follows. That is, after doping with lithium ions, the positive electrode terminal and the negative electrode terminal of the cell S1 were directly connected with a conductive wire and left for 12 hours or more, then the short circuit was released, and the positive electrode potential at 1.0 hour was measured. .
  • This measurement method is based on the method (X) described above. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S1.
  • Example 2 In the production of the negative electrode, the test laminate outer lithium-ion capacitor (as in Example 1) except that the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the negative electrode active material was changed from 45 ⁇ m to 30 ⁇ m.
  • cell S2 Hereinafter, “cell S2”) was prepared, and the positive electrode potential was measured after the short circuit.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S2.
  • Example 3 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 80 ⁇ m.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S3”) was prepared in the same manner as in Example 1 except that the target value of (total thickness) was changed from 45 ⁇ m to 60 ⁇ m. Was measured.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S3.
  • Example 4 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 80 ⁇ m.
  • a test laminate outer lithium-ion capacitor (hereinafter referred to as “cell S4”) was prepared in the same manner as in Example 1 except that the target value of (total thickness) was changed from 45 ⁇ m to 50 ⁇ m, and the positive electrode potential after short-circuiting Was measured.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S4.
  • Example 5 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 110 ⁇ m.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S5”) was prepared in the same manner as in Example 1 except that the target value of (total thickness) was changed from 45 ⁇ m to 85 ⁇ m. Was measured.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S5.
  • Example 6 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 110 ⁇ m. Except that the target value of (total thickness) was changed from 45 ⁇ m to 70 ⁇ m, a laminate-coated lithium ion capacitor for testing (hereinafter referred to as “cell S6”) was prepared in the same manner as in Example 1, and the positive electrode potential after the short circuit was measured. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S6.
  • cell S6 a laminate-coated lithium ion capacitor for testing
  • Example 7 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 140 ⁇ m. Except that the target value of (total thickness) was changed from 45 ⁇ m to 125 ⁇ m, a laminate-coated lithium ion capacitor for testing (hereinafter referred to as “cell S7”) was prepared in the same manner as in Example 1, and the positive electrode potential after short-circuiting Was measured. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S7.
  • cell S7 a laminate-coated lithium ion capacitor for testing
  • Example 8 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 140 ⁇ m.
  • a test laminate outer lithium-ion capacitor (hereinafter referred to as “cell S8”) was prepared in the same manner as in Example 1 except that the target value of (total thickness) was changed from 45 ⁇ m to 85 ⁇ m.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S8.
  • Example 9 In the production of the lithium ion capacitor element, the test was performed in the same manner as in Example 1 except that the amount of the lithium electrode was increased and the positive electrode potential after the short circuit was 0.40 (hereinafter referred to as “cell S9”). And the positive electrode potential was measured after a short circuit. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S9.
  • Example 10 In the production of the lithium ion capacitor element, the test was performed in the same manner as in Example 2 except that the amount of the lithium electrode was reduced and the positive electrode potential after short circuit was 1.65 (hereinafter referred to as “cell S10”). "). Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S10.
  • Example 11 Tested in the same manner as in Example 3 except that a mixed solvent in which ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1: 1 was used as the aprotic organic solvent of the electrolytic solution.
  • a laminated external lithium ion capacitor (hereinafter referred to as “cell S11”) was prepared, and the positive electrode potential was measured after a short circuit.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S11.
  • Example 12 S12
  • Example 3 with the exception that a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1.5: 0.5 was used as the aprotic organic solvent of the electrolytic solution.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S12”) was prepared, and the positive electrode potential was measured after a short circuit.
  • Table 1 shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S12.
  • Example 13 S13
  • Example 3 except that a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1.5: 1.5 was used as the aprotic organic solvent of the electrolytic solution.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S13”) was prepared, and the positive electrode potential was measured after a short circuit.
  • Table 1 shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S13.
  • Example 14 Example 3 except that a mixed solvent in which ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2.7: 0.3 was used as the aprotic organic solvent of the electrolytic solution. Similarly, a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S14”) was prepared, and the positive electrode potential was measured after a short circuit. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S14.
  • cell S14 a test laminate outer lithium ion capacitor
  • Example 15 Example 3 except that a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 0.5: 0.5 was used as the aprotic organic solvent of the electrolytic solution. Similarly, a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S15”) was prepared, and the positive electrode potential was measured after a short circuit. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S15.
  • cell S15 a test laminate outer lithium ion capacitor
  • Example 16 S16
  • Example 3 and Example 3 except that a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 0.9: 0.1 was used as the aprotic organic solvent of the electrolytic solution.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S16”) was prepared, and the positive electrode potential was measured after a short circuit.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S16.
  • Example 17 Tested in the same manner as in Example 3 except that a mixed solvent in which ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2: 2 was used as the aprotic organic solvent of the electrolytic solution.
  • a laminated external lithium ion capacitor (hereinafter referred to as “cell S17”) was prepared, and the positive electrode potential was measured after a short circuit.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S17.
  • Example 18 As Example 3 except that a mixed solvent in which ethylene carbonate, ethylmethyl carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 0.25: 0.25 was used as the aprotic organic solvent of the electrolytic solution. Similarly, a test laminate outer lithium ion capacitor (hereinafter referred to as “cell S18”) was prepared, and the positive electrode potential was measured after a short circuit. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S18.
  • cell S18 a test laminate outer lithium ion capacitor
  • Example 19 The laminate outer lithium ion for test was used in the same manner as in Example 3 except that a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 4 was used as the aprotic organic solvent of the electrolytic solution.
  • a capacitor (hereinafter referred to as “cell S19”) was prepared, and the positive electrode potential was measured after the short circuit.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S19.
  • Example 20 Test laminate outer packaging in the same manner as in Example 3 except that a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 0.5 was used as the aprotic organic solvent of the electrolytic solution.
  • a lithium ion capacitor (hereinafter referred to as “cell S20”) was prepared, and the positive electrode potential was measured after a short circuit.
  • Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S20.
  • Example 21 A laminate external lithium ion capacitor for testing was used in the same manner as in Example 3 except that a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used as the aprotic organic solvent of the electrolytic solution. (Hereinafter referred to as “cell S21”) was prepared, and the positive electrode potential was measured after the short circuit.
  • Table 1 shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S21.
  • Example 22 In the production of the negative electrode, a laminated laminate lithium ion capacitor for testing (hereinafter referred to as “cell S22”) was used in the same manner as in Example 11 except that graphite was used as the negative electrode active material instead of graphite composite particles (1). The positive electrode potential was measured after a short circuit. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S22.
  • Example 23 In the production of the positive electrode, a through hole having a through hole diameter of 300 ⁇ m is formed by applying a punching treatment with a diameter of 0.3 mm to an aluminum electrolytic etching foil having a porosity of 10% and a thickness of 30 ⁇ m as a current collector material.
  • a test laminate outer lithium-ion capacitor (hereinafter referred to as “cell S23”) was prepared in the same manner as in Example 3 except that the sample was used (porosity of 40%), and the positive electrode potential after short-circuiting was adjusted. It was measured. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S23.
  • Example 24 In the production of the positive electrode, a through hole having a through hole diameter of 300 ⁇ m is formed by applying a punching treatment with a diameter of 0.3 mm to an aluminum electrolytic etching foil having a porosity of 10% and a thickness of 30 ⁇ m as a current collector material.
  • a test laminate outer lithium-ion capacitor (hereinafter referred to as “cell S24”) was prepared in the same manner as in Example 11 except that the sample was used (porosity of 40%), and the positive electrode potential after short-circuiting was adjusted. It was measured. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S24.
  • Example 25 In the production of the positive electrode, an example was used except that, as the current collector material, an aluminum electrolytic etching foil having a porosity of 10% and a thickness of 30 ⁇ m and subjected to an expansion treatment (porosity of 40%) was used. In the same manner as in Example 3, a test laminate external lithium ion capacitor (hereinafter referred to as “cell S25”) was produced, and the positive electrode potential was measured after a short circuit. Table 1 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell S25.
  • cell S25 a test laminate external lithium ion capacitor
  • Example 2 In the production of the positive electrode, the target value of the combined thickness (total thickness) of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 195 ⁇ m.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as “cell C2”) was prepared in the same manner as in Example 1 except that the target value of (total thickness) was changed from 45 ⁇ m to 140 ⁇ m. Was measured.
  • Table 2 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell C2.
  • Example 3 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 80 ⁇ m.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as “cell C3”) was prepared in the same manner as in Example 1 except that the target value of (total thickness) was changed from 45 ⁇ m to 80 ⁇ m. Was measured.
  • Table 2 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell C3.
  • Example 4 In the production of the positive electrode, the target value of the coating thickness (total thickness) of both surfaces of the slurry containing the positive electrode active material was changed from 50 ⁇ m to 80 ⁇ m.
  • a test laminate outer lithium-ion capacitor (hereinafter referred to as “cell C4”) was prepared in the same manner as in Example 1 except that the target value of (total thickness) was changed from 45 ⁇ m to 40 ⁇ m, and the positive electrode potential after short-circuiting Was measured.
  • Table 2 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell C4.
  • Example 5 In the production of the positive electrode, the same procedure as in Example 1 was used, except that an aluminum expanded metal (having a porosity of 45%) having a thickness of 30 ⁇ m that was not roughened was used as the positive electrode current collector. Then, a test laminate external lithium ion capacitor (hereinafter referred to as “cell C5”) was prepared, and the positive electrode potential was measured after a short circuit. Table 2 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell C5.
  • cell C5 a test laminate external lithium ion capacitor
  • Example 6 In the production of the negative electrode, a laminate-coated lithium ion capacitor for testing (hereinafter referred to as “cell C6”) was used in the same manner as in Example 1 except that hard carbon was used instead of the graphite-based composite particles (1) as the negative electrode active material. The positive electrode potential was measured after a short circuit. Table 2 below shows the total thickness of the positive electrode active material layer, the total thickness of the negative electrode active material layer, the positive electrode ratio, and the positive electrode potential after short circuit of the obtained cell C6.
  • AC internal resistance measurement The AC internal resistance (RC) of 1 KHz in the environment of 25 ° C. ⁇ 5 ° C. of each of the produced cells S1 to S25 and cells C1 to C9 was measured using an “AC milliohm high tester 3560” manufactured by Hioki Electric Co., Ltd. It measured on 25 degreeC conditions. The results are shown in Tables 1 and 2.
  • the cells S1 to S8 satisfy all the preferable conditions of energy density, AC internal resistance (RC), capacity retention rate (%), and resistance increase rate (%).
  • a lithium ion capacitor was obtained.
  • the cells S11 to 16 had a lower AC internal resistance (RC) than the cell S3. This is because the volume ratio of EC to the sum of EMC and DMC was 1: 3 to 1: 1 and the volume ratio of EMC to DMC is 1: 1 to 9: 1.
  • RC AC internal resistance
  • the positive electrode current collector was obtained by subjecting the electrolytic etching foil to punching processing or expansion processing by post-processing. However, the positive electrode current collector was as good as the lithium ion capacitor using the electrolytic etching foil. Characteristics were obtained. On the other hand, as is clear from the results in Table 2, in cell C1, the total thickness of the positive electrode active material layer was below the range of 50 ⁇ m to 140 ⁇ m, so the energy density was small.
  • the AC internal resistance (RC) and the resistance increase rate were high, and the capacity maintenance rate was reduced.
  • a mixed solvent obtained by mixing EC, EMC, and DMC at a volume ratio of 1: 1: 1 was used as the electrolytic solution.
  • hard carbon was used as the negative electrode active material, the resistance increased. The rate was high, and the capacity maintenance rate decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 内部抵抗が低く、しかも、エネルギー密度が高く、容量維持率の高いリチウムイオンキャパシタを提供する。 本発明のリチウムイオンキャパシタは、粗面化処理された正極集電体に正極活物質層を形成した正極と、負極集電体に黒鉛系粒子を含む負極活物質層を形成した負極と、非プロトン性有機溶媒によるリチウム塩の溶液を含む電解液とを有するを備えたリチウムイオンキャパシタであって、前記正極活物質層の総厚が50μm~140μmであり、かつ正極活物質層と負極活物質層との質量の和に対する正極活物質層の質量比が0.4~0.5であることを特徴とする。

Description

リチウムイオンキャパシタ
 本発明は、内部抵抗が低く、エネルギー密度が高く、容量維持率の高いリチウムイオンキャパシタに関するものである。
 近年、高出力且つ高エネルギー密度な蓄電デバイスとして、リチウムイオンキャパシタが注目されている。しかしながら、従来のリチウムイオンキャパシタでは、高エネルギー密度化を図ると内部抵抗が高くなるトレードオフの関係が問題とされている。
 そこで、特許文献1には、正極活物質重量と負極活物質重量との比率を適宜調整することにより低抵抗化を図ったリチウムイオンキャパシタが開示されている。
 しかしながら、特許文献1に記載のリチウムイオンキャパシタにおいては、内部抵抗の低減化が充分になされていないため、高い出力特性および高エネルギー密度の両方を満足するものではない。
国際公開WO05/031773号パンフレット
 本発明は、以上のような事情に基づいてなされたものであって、その目的は、内部抵抗が低く、しかも、エネルギー密度が高く、容量維持率の高いリチウムイオンキャパシタを提供することにある。
 本発明のリチウムイオンキャパシタは、粗面化処理された正極集電体に正極活物質層を形成した正極と、
 負極集電体に黒鉛系粒子を含む負極活物質層を形成した負極と、
 非プロトン性有機溶媒によるリチウム塩の溶液を含む電解液と
を有するリチウムイオンキャパシタであって、
 前記正極活物質層の総厚が50μm~140μmであり、かつ正極活物質層と負極活物質層との質量の和に対する正極活物質層の質量比が0.4~0.5であることを特徴とする。
 本発明のリチウムイオンキャパシタにおいては、前記正極集電体は、エッチングによって粗面化処理されていることが好ましく、電解エッチングによって粗面化処理されていることがより好ましい。
 また、前記負極および/または前記正極に対してリチウムイオンをドーピングした後、前記正極と前記負極を短絡させた後の正極電位が0.5~1.5Vであることが好ましい。
 また、本発明のリチウムイオンキャパシタにおいては、前記負極活物質層に用いられる黒鉛系粒子は、人造黒鉛粒子、天然黒鉛または黒鉛粉末をタールもしくはピッチ由来の材料で被覆した黒鉛系複合粒子から選ばれる少なくとも1つであることが好ましい。
 また、非プロトン性有機溶媒が、エチレンカーボネートと、エチルメチルカーボネートと、ジメチルカーボネートとの混合溶媒よりなり、エチレンカーボネートと、エチルメチルカーボネートおよびジメチルカーボネートの合計との体積比が1:3~1:1であることが好ましく、前記非プロトン性有機溶媒において、エチルメチルカーボネートとジメチルカーボネートとの体積比が1:1~9:1であることがより好ましい。
 本発明によれば、内部抵抗が低く、エネルギー密度が高く、容量維持率の高いリチウムイオンキャパシタを提供することができる。
 以下、本発明のリチウムイオンキャパシタの実施の形態について詳細に説明する。
 本発明のリチウムイオンキャパシタは、基本的に、正極と負極とを、セパレータを介して交互に積層あるいは捲回させてなる電極ユニットを外装容器内に有するものである。外装容器は、円筒型、角型、ラミネート型等のものを適宜使用することができ、特に限定されるものではない。
 本明細書において、「ドープ」とは、吸蔵、吸着または挿入を意味し、広く、正極活物質にリチウムイオンおよびアニオンの少なくとも一方が入る現象、あるいはまた、負極活物質にリチウムイオンが入る現象をいう。また、「脱ドープ」とは、脱離、放出をも意味し、正極活物質からリチウムイオンもしくはアニオンが脱離する現象、または負極活物質からリチウムイオンが脱離する現象をいう。
 負極および正極の少なくとも一方にリチウムイオンを予めドープする方法としては、例えば、金属リチウム等のリチウムイオン供給源をリチウム極としてキャパシタセル内に配置し、負極および正極の少なくとも一方とリチウムイオン供給源との電気化学的接触によって、リチウムイオンをドープさせる方法が用いられる。
 本発明に係るリチウムイオンキャパシタでは、リチウム極をセル中に局所的に配置して電気化学的接触させることによっても、負極および正極の少なくとも一方にリチウムイオンを均一にドープすることができる。
 従って、正極および負極を積層または更に捲回してなる大容量の電極ユニットを構成する場合にも、電極ユニットの最外周または最外層にリチウム極を配置する場合にも、負極および正極の少なくとも一方に円滑にかつ均一にリチウムイオンをドープすることができる。
 本発明に係るリチウムイオンキャパシタは、例えば、正極集電体に正極活物質層を形成した正極、第1のセパレータ、負極集電体に負極活物質層を形成した負極、第2のセパレータの順に捲回または積層させ、正極と接触しないように第1のセパレータの余剰部に少なくとも1つのリチウムイオン供給源を配置し、負極集電体とリチウムイオン供給源を短絡させて、電極ユニットを構成する。角型、円筒型またはラミネート状の外装容器に電極ユニットを封入した後、電解液を充填させることで、リチウム極のドープが開始し、負極活物質層中にリチウムイオンをドープすることができる。これにより、リチウムイオンキャパシタを構成する。
 以下に、本発明に係るリチウムイオンキャパシタを構成する、各構成要件について説明する。
〔集電体〕
 正極および負極には、それぞれ電気を受配電する正極集電体および負極集電体が備えられている。このような正極集電体および負極集電体としては、貫通孔が形成されたものを用いることが好ましい。正極集電体および負極集電体における貫通孔の形態、数等は特に限定されず、正極および負極の少なくとも一方に対向して配置されたリチウム極から電気化学的に供給されるリチウムイオンおよび電解液中のリチウムイオンが各電極集電体に遮断されることなく、電極の表裏間を移動できるように設定することができる。
〔正極集電体〕
 正極集電体としては、粗面化処理されたものが用いられる。粗面化処理をすることによって、得られる正極集電体には、その表面に凹凸が形成され、或いは貫通孔が形成され、この凹凸または貫通孔によって活物質との接触面積が増えるため、接触抵抗を小さくすることが可能となる。この粗面化処理は、エッチング処理、アッシング処理またはプラズマ処理等によって行うことができるが、本発明において、正極集電体は、エッチングによって粗面化処理されたものであることが好ましく、電解エッチングによって粗面化処理されたものが特に好ましい。また、正極集電体は凹凸を有しているものが特に好ましい。
 正極集電体には、粗面化処理以外の貫通孔形成処理によって貫通孔が形成されたもの、例えば機械的な打ち込みによって裏表面を貫通する貫通孔が形成されたもの(例えばエキスパンドメタルやパンチングメタル)、COレーザー、YAGレーザーまたはUVレーザーなどによるレーザー加工によって裏表面を貫通する貫通孔が形成されたものを用いることができる。貫通孔形成処理は、粗面化処理の前に行ってもよく、粗面化処理の後に行ってもよい。
 本明細書中において、正極集電体に形成された凹凸および貫通孔を総称して「空隙」と称す。
 また、本明細書中において、電解エッチング処理等により正極集電体に形成された貫通孔および凹凸の存在率を空隙率とする。ここで、「凹凸」とは、正極集電体に形成された凹凸状になった未貫通孔を示す。
 また、空隙率(%)は下記式(1)により求めることができる。
 式(1):空隙率(%)=〔(未処理の正極集電体の重さ(g)-電解エッチング処理後の正極集電体の重さ(g))/未処理の正極集電体の重さ(g)〕×100
 正極集電体の材質としては、アルミニウム、ステンレス鋼等を用いることができ、特にアルミニウムが好ましい。また、正極集電体の厚みは特に限定されるものではないが、通常1~50μmであればよく、5~40μmが好ましく、10~40μmが特に好ましい。
 正極集電体の凹凸および貫通孔の形成方法は、上述した粗面化処理および貫通孔形成処理方法を適用することができるが、エッチング処理を用いることが好ましく、電解エッチング処理を用いることが特に好ましい。更に、エッチング溶媒としては、塩酸などの酸を使用することができる。また、エッチング処理の条件として、電流波形、液の組成、温度等が挙げられるが、これらの条件により貫通孔の形状が変わるので、目的とする形状になるよう適宜最適化が必要である。正極集電体の貫通孔の孔径は例えば1~500μmであり、5~300μmが好ましく、10~300μmが特に好ましい。
 また、正極集電体の空隙率(%)は、5~60%であることが好ましく、5~50%であることがより好ましい。
 また、正極集電体の貫通孔の気孔率(%)は、20~50%であることが好ましく、20~40%であることがより好ましい。ここで、正極集電体の気孔率(%)は下記式(2)により求めることができる。ただし、下記式(2)は、上記式(1)で求められる空隙率を含む値となる。気孔率(%)のみの絶対値は、上記式(1)と下記式(2)との値の差分により求めることができる。
 式(2):気孔率(%)=〔1-(正極集電体の質量/正極集電体の真比重)/(正極集電体の見かけ体積)〕×100
〔正極活物質〕 
 正極活物質としては、リチウムイオンおよびテトラフルオロボレート等の少なくとも1種のアニオンを可逆的にドープ・脱ドープ可能な物質が用いられ、例えば活性炭粉末が挙げられる。活性炭の比表面積は、1900m/g~2800m/gであることが好ましく、さらに、1950m/g~2600m/gであることが好ましい。また、活性炭の50%体積累積径(D50)(平均粒子径)は、活性炭の充填密度の観点から、2μm~8μmが好ましく、特に2μm~5μmが好ましい。活性炭の比表面積および50%体積累積径(D50)が前記範囲にあると、リチウムイオンキャパシタのエネルギー密度をさらに向上させることができる。ここで、50%体積累積径(D50)の値は、例えば、マイクロトラック法により求められる。
〔正極活物質層〕
 正極活物質層は、正極集電体に、正極活物質を塗布、印刷、射出、噴霧、蒸着または圧着等により付着させることによって形成される。この正極活物質層の層厚は、片面の厚みが25~70μmであればよく、25~60μmであることが好ましく、25~50μmであることがより好ましい。正極活物質層の層厚を上記範囲にすることにより、正極活物質層内を移動するイオンの拡散抵抗を小さくするとこができ、これにより、内部抵抗を下げることができる。
〔負極集電体〕
 負極集電体としては、ステンレス鋼、銅、ニッケル等を用いることができる。負極集電体の厚みは特に限定されるものではないが、通常1~50μmであればよく、5~40μmであることが好ましく、10~30μmであることが特に好ましい。
 負極集電体の貫通孔の形成方法は、正極集電体の貫通孔の形成方法、すなわち上述した粗面化処理および貫通孔形成処理方法を適用することができるが、形成方法によって貫通孔の形状が変わるので、目的とする形状になるよう適宜最適化が必要である。また、負極集電体の貫通孔の孔径は、例えば0.5~50μmであり、0.5~30μmであることが好ましく、0.5~20μmであることが特に好ましい。
 また、負極集電体の貫通孔の気孔率(%)は、20~60%であることが好ましく、20~50%であることがより好ましい。ここで、負極集電体の気孔率(%)は下記式(3)により求めることができる。
 式(3):気孔率(%)=〔1-(負極集電体の質量/負極集電体の真比重)/(負極集電体の見かけ体積)〕×100
〔負極活物質〕 
 負極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能である物質のうち、黒鉛系粒子が用いられる。具体的には、人造黒鉛、天然黒鉛の表面がタールもしくはピッチ由来の黒鉛化物質によって被覆されてなる黒鉛系複合粒子が挙げられる。
 本発明においては、負極活物質として、特に黒鉛系複合粒子を用いることが好ましい。負極活物質として黒鉛系複合粒子を用いることにより、後述する特定の電解液(例えばプロピレンカーボネート)の分解を抑制することができる。また、タールもしくはピッチによって黒鉛の表面を被覆する際に、複数の微粒子を一つの複合粒子として大きな塊に固めることができるため、負極活物質が集電体から滑落しにくくなり、電極として保持しやすくなり、低抵抗かつ耐久性を高めることができる。
 このような黒鉛系複合粒子は、例えば以下の(1)または(2)の方法によって得られるものである。
ものである。
(1)黒鉛(グラファイト)の表面をタールやピッチ等で被覆し、熱処理を行なうことによって表面のタールもしくはピッチ由来の黒鉛化物質を複合化する方法(以下、この方法で得られる黒鉛系複合粒子を「黒鉛系複合粒子(1)」と称す。)。
(2)天然黒鉛あるいは人造黒鉛と、低結晶炭素粉末と、バインダとを混合し、800℃以下で焼成した後粉砕し、900~1500℃で再焼成する方法(以下、この方法で得られる黒鉛系複合粒子を「黒鉛系複合粒子(2)」と称す。)。
 上記(2)の方法における低結晶炭素粉末としては、メソフェーズピッチ、生コークス、カルサインコークス等が挙げられる。バインダとしてはバインダピッチ、フェノール樹脂等が挙げられる。
 このような黒鉛系複合粒子において、黒鉛粒子表面におけるタールもしくはピッチ由来の黒鉛化物質による被覆の有無は、ラマンスペクトル、XRD等の測定により確認することができる。
 負極活物質としては、その粒度は、出力向上の点から50%体積累積径(D50)が1.0~10μmの範囲にある黒鉛系複合粒子を用いることが、出力向上の上で好ましく、50%体積累積径(D50)が2~5μmの範囲にある黒鉛系複合粒子がより好ましい。50%体積累積径(D50)が1.0μm未満の黒鉛系複合粒子は、その製造が困難であり、一方、50%体積累積径(D50)が10μmを超える黒鉛系複合粒子では、内部抵抗が充分に小さいリチウムイオンキャパシタを得ることが困難となる。また、負極活物質は、比表面積が0.1~200m/gのものであることが好ましく、より好ましくは0.5~50m/gのものである。負極活物質の比表面積が0.1m/g未満である場合には、得られるリチウムイオンキャパシタの抵抗が高くなり、一方、負極活物質の比表面積が200m/gを超える場合には、得られるリチウムイオンキャパシタの充電時の不可逆容量が高くなる。
 以上において、黒鉛系複合粒子の50%体積累積径(D50)は、例えば、マイクロトラック法により求められる値である。
〔負極活物質層〕
 負極活物質層は、負極集電体に、負極活物質を塗布、印刷、射出、噴霧、蒸着または圧着等により付着させることによって形成される。この負極活物質層の層厚は、正極活物質層の質量とのバランスによって好ましい範囲は変わるが、片面の厚みが10~80μmであればよく、10~65μmであることが好ましく、10~50μmであることがより好ましい。負極活物質層の層厚を上記範囲にすることにより、必要な負極容量を確保することができ、かつ、負極活物質層内を移動するイオンの拡散抵抗を小さくするとこができ、これにより、内部抵抗を下げることができる。  
〔バインダ〕 
 上記のような正極活物質層を有する正極および負極活物質層を有する負極の作製は、通常用いられる既知の方法によって行うことができる。
 例えば、各電極(正極または負極)は、各活物質粉末(正極活物質または負極活物質)と、バインダと、必要に応じて、導電材、カルボキシメチルセルロース(CMC)等の増粘剤とを、水または有機溶媒に加えて混合し、得られるスラリーを集電体に塗布する方法、あるいは当該スラリーをシート状に成形したものを集電体に貼付することにより、作製することができる。
 上記の各電極の作製において、バインダとしては、例えば、SBR等のゴム系バインダ、ポリ四フッ化エチレン、ポリフッ化ビニリデン等をアクリル系樹脂でシード重合させた含フッ素系樹脂、アクリル系樹脂等を用いることができる。
 また、導電材としては、例えば、アセチレンブラック、ケッチェンブラック、グラファイト、金属粉末等が挙げられる。
 バインダおよび導電材の各々の添加量は、用いる活物質の電気伝導度、作製される電極形状等によっても異なるが、いずれも、通常、活物質に対して2~20質量%であることが好ましい。
 本発明のリチウムイオンキャパシタにおいては、下記式(4)で算出される、正極活物質層と負極活物質層との質量の和に対する正極活物質層の質量比(以下、「正極比率」という。)が、0.4~0.5の範囲とされる。
 式(4):正極比率=(正極活物質層質量)/((正極活物質層質量)+(負極活物質層質量))
 上記正極比率が0.4未満である場合には、高いエネルギー密度を得ることが困難となる。また、放電末期の正極電位が低くなるため、充放電サイクル試験後の容量保持率の低下、抵抗上昇率の増加が生じる場合がある。一方、上記正極比率が0.5を超える場合には、高いエネルギー密度が得られるものの、負極の単位重量あたりの容量が大きくなるため、負極への負荷が高くなり、充放電サイクル試験後の容量保持率の低下、抵抗上昇率の増加が生じる場合がある。
〔セパレータ〕
 本発明のリチウムイオンキャパシタにおけるセパレータとしては、JISP8117に準拠した方法により測定された透気度が1~200secの範囲内にある材料を用いることができ、具体的には、例えばポリエチレン、ポリプロピレン、ポリエステル、セルロース、ポリオレフィン、セルロース/レーヨンなどから構成される不織布や微多孔質膜等の中から適宜選択したものを用いることができ、特にポリエチレン、ポリプロピレンまたはセルロース/レーヨンよりなる不織布を用いることが好ましい。
 セパレータの厚みは、例えば1~100μmであり、5~50μmであることが好ましい。
〔電解液〕 
 本発明のリチウムイオンキャパシタにおいては、電解液として、リチウム塩の非プトロトン性有機溶媒電解質溶液が用いられる。
〔電解液の非プロトン性有機溶媒〕 
 電解液を構成する非プロトン性有機溶媒としては、例えば、エチレンカーボネート(以下、「EC」ともいう。)、プロピレンカーボネート(以下、「PC」ともいう。)、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート(以下、「DMC」ともいう。)、エチルメチルカーボネート(以下、「EMC」ともいう。)、ジエチルカーボネート(以下、「DEC」ともいう。)、メチルプロピルカーボネート等の鎖状カーボネートが挙げられる。これらのうちの2種以上を混合した混合溶媒を用いてもよく、特に、粘度が低く、解離度が高く、イオン伝導度が高い電解液が得られることから、環状カーボネートと鎖状カーボネートとの混合物を用いることが好ましい。
 混合溶媒の具体例としては、ECとPCとDECとの混合溶媒、ECとDECとの混合溶媒、ECとEMCとDMCとの混合溶媒等を挙げることができる。
 このような混合溶媒における環状カーボネートと鎖状カーボネートとの比率は、質量で1:99~80:20であることが好ましく、10:90~60:40であることがより好ましい。
 特に、ECと、EMCおよびDMC(以下、「EMC/DMC」ともいう。)の合計との割合が、体積比で1:3~1:1であり、EMCとDMCの体積比が1:1~9:1であるものが好ましい。
 非プロトン性有機溶媒におけるECとEMC/DMCとの体積比において、ECの割合が過小である場合には、電解液の電導度が小さくなり、出力特性が低下するために好ましくない。一方、ECの割合が過大である場合には、電解液の粘度が大きくなって低温特性、特に内部抵抗の温度依存性が悪化するために好ましくない。
 さらに、EMCとDMCの体積比において、EMCの割合が過小である場合には、低温での電解液の安定性が低下し、凍結し易くなるため好ましくなく、一方、EMCの割合が過小である場合には、同様に低温での電解液の安定性が低下し、凍結を起こし易く、内部抵抗の増大が起きる問題があるので、好ましくない。
 本発明において電解液を構成する有機溶媒は、環状カーボネートおよび鎖状カーボネート以外の有機溶媒、例えば、γ-ブチロラクトン等の環状エステル、スルホラン等の環状スルホン、ジオキソラン等の環状エーテル、プロピオン酸エチル等の鎖状カルボン酸エステル、ジメトキシエタン等の鎖状エーテル等を含有するものであってもよい。
 〔電解質〕
 電解液における電解質のリチウム塩としては、例えば、LiClO、LiAsF、LiBF、LiPF、Li(CSO、LiN(CFSO等が挙げられ、特に、イオン伝導性が高く、低抵抗であることから、LiPFが好適に用いられる。電解液におけるリチウム塩の濃度は、低い内部抵抗が得られることから、0.1mol/L以上であることが好ましく、0.5~1.5mol/Lであることがより好ましい。
 本発明に係るリチウムイオンキャパシタでは、負極および/または正極に対してリチウムイオンをドーピングした後において、正極と負極とを短絡させた後の正極電位が0.5~1.5Vであることが好ましい。なお、正極と負極とを短絡させた後の正極電位は、以下の(X)または(Y)のいずれかの方法で求められる正極電位をいう。
(X)リチウムイオンによるドーピングの後、キャパシタの正極端子と負極端子とを導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、0.5~1.5時間内に測定した正極電位
(Y)充放電試験機にて12時間以上かけて0Vまで定電流放電させた後に正極端子と負極端子とを導線で結合させた状態で12時間以上放置した後に短絡を解除し、0.5~1.5時間内に測定した正極電位
〔リチウムイオンキャパシタの構造〕
 本発明に係るリチウムイオンキャパシタ構造としては、特に、帯状の正極と負極とをセパレータを介して捲回させる捲回型のもの、板状またはシート状の正極と負極とをセパレータを介して各3層以上積層された積層型のもの、このように積層された構成のユニットを外装フィルム内または角型外装缶内に封入された積層型のもの等が挙げられる。
 これらのキャパシタ構造は、特開2004-266091号公報等により既知であり、それらのキャパシタと同様の構成とすることができる。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれらによって制限されるものではない。
〔実施例1:S1〕
(1)正極の作製
 孔径が1μm、粗面化処理による空隙率が11%、厚さが30μmのアルミニウム電解エッチング箔よりなる集電体材料の両面に、導電性塗料を、縦型ダイ方式の両面塗工機を用い、塗工幅が60mm、塗工速度が8m/minの塗工条件により、両面合わせた塗布厚みの目標値を10μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、正極集電体の表裏面に導電層を形成した。
 次いで、正極集電体の表裏面に形成された導電層上に、数平均粒径D50の値が3μmの活性炭粒子よりなる正極活物質を含有してなるスラリーを、縦型ダイ方式の両面塗工機を用い、塗工速度8m/minの塗工条件により、両面合わせた塗布厚み(総厚)の目標値を50μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、導電層上に電極層である正極活物質層を形成した。
 このようにして得られた、正極集電体前駆体の一部分に導電層および電極層が積層されてなる材料を、導電層および電極層が積層されてなる部分(以下、正極について「塗工部」ともいう。)が60mm×70mm、いずれの層も形成されてない部分(以下、正極について「未塗工部」ともいう。)が60mm×15mmとなるように、60mm×85mmの大きさに切断することにより、正極集電体の両面に電極層が形成されてなる正極を作製した。
(2)負極の作製
 貫通孔径28μm、気孔率55%、厚さが25μmの銅製エキスパンドメタル(日本金属工業株式会社製)からなる負極集電体の両面に、数平均粒径D50の値が2μmの黒鉛の表面をピッチコートした黒鉛系複合粒子(1)よりなる負極活物質と、SBRバインダ(JSR株式会社製:TRD2001)を含有してなるスラリーを、縦型ダイ方式の両面塗工機を用い、塗工幅が65mm、塗工速度が8m/minの塗工条件により、両面合わせた塗布厚み(総厚)の目標値を45μmに設定して両面塗工した後、200℃で24時間の条件で減圧乾燥させることにより、負極集電体の表裏面に電極層である負極活物質層を形成した。
 このようにして得られた、負極集電体の一部分に電極層が形成されてなる材料を、電極層が形成されてなる部分(以下、負極について「塗工部」ともいう。)が65mm×72mm、電極層が形成されてない部分(以下、負極について「未塗工部」ともいう。)が65mm×15mmになるように、65mm×87mmの大きさに切断することにより、負極集電体の両面に電極層が形成されてなる負極を作製した。
(3)セパレータの作製
 厚み35μm、透気度100secのセルロース/レーヨン複合材料からなるフィルムを67mm×90mmに切断してセパレータを作製した。
(4)リチウムイオンキャパシタ要素の作製
 先ず、正極10枚、負極11枚、セパレータ22枚を用意し、正極と負極とを、それぞれの塗工部は重なるが、それぞれの未塗工部は反対側になり重ならないよう、セパレータ、負極、セパレータ、正極の順で積重し、積重体の4辺をテープにより固定することにより、電極積層ユニットを作製した。
 次いで、厚みが100μmの箔状のリチウム極を切断し、厚さ25μmの銅製エキスパンドメタル(日本金属工業株式会社製)に圧着することにより、リチウムイオン供給部材を作製し、このリチウムイオン供給部材を電極積層ユニットの上側に負極と対向するよう配置した。
 そして、作製した電極積層ユニットの10枚の正極の各々の未塗工部に、予めシール部分にシーラントフィルムを熱融着した幅50mm、長さ50mm、厚さ0.2mmのアルミニウム製の正極用電源タブを重ねて溶接した。一方、電極積層ユニットの11枚の負極の各々の未塗工部およびリチウムイオン供給部材の各々に、予めシール部分にシーラントフィルムを熱融着した幅50mm、長さ50mm、厚さ0.2mmの銅製の負極用電源タブを重ねて溶接した。
(5)リチウムイオンキャパシタの作製
 ポリプロピレン層、アルミニウム層およびナイロン層が積層されてなり、寸法が90mm(縦幅)×117mm(横幅)×0.15mm(厚み)で、中央部分に70mm(縦幅)×97mm(横幅)の絞り加工が施された一方の外装フィルム、並びにポリプロピレン層、アルミニウム層およびナイロン層が積層されてなり、寸法が90mm(縦幅)×117mm(横幅)×0.15mm(厚み)の他方の外装フィルムを作製した。
 次いで、他方の外装フィルム上における収容部となる位置に、電極積層ユニットを、その正極端子および負極端子の各々が、他方の外装フィルムの端部から外方に突出するよう配置し、この電極積層ユニットに一方の外装フィルムを重ね合わせ、一方の外装フィルムおよび他方の外装フィルムの外周縁部における3辺(正極端子および負極端子が突出する2辺を含む)を熱融着した。
 一方、非プロトン性有機溶媒として、エチレンカーボネート、プロピレンカーボネートおよびジエチルカーボネート(体積比で3:1:4)の混合溶媒を用い、濃度1.2mol/LのLiPFを含む電解液を調製した。
 次いで、一方の外装フィルムおよび他方の外装フィルムの間に、上記電解液を注入した後、一方の外装フィルムおよび他方の外装フィルムの外周縁部における残りの一辺を熱融着した。
 以上のようにして、試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS1」とする。)を作製した。このセルS1について、以下のようにして短絡後正極電位を測定した。すなわち、リチウムイオンによるドーピングの後、セルS1の正極端子と負極端子とを導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、1.0時間の時の正極電位を測定した。本測定方法は前述した(X)の方法に基づくものである。 得られたセルS1の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例2:S2〕
 負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから30μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS2」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS2の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例3:S3〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから80μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから60μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS3」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS3の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例4:S4〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから80μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから50μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS4」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS4の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例5:S5〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから110μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから85μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS5」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS5の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例6:S6〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから110μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから70μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS6」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS6の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例7:S7〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから140μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから125μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS7」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS7の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例8:S8〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから140μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから85μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS8」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS8の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例9:S9〕
 リチウムイオンキャパシタ要素の作製において、リチウム極の量を増量し、短絡後正極電位を0.40としたこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS9」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS9の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例10:S10〕
 リチウムイオンキャパシタ要素の作製において、リチウム極の量を減量し、短絡後正極電位を1.65としたこと以外は、実施例2と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS10」とする。)を作製した。
 得られたセルS10の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例11:S11〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:1:1の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS11」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS11の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例12:S12〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:1.5:0.5の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS12」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS12の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例13:S13〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:1.5:1.5の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS13」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS13の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例14:S14〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:2.7:0.3の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS14」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS14の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例15:S15〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:0.5:0.5の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS15」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS15の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例16:S16〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:0.9:0.1の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS16」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS16の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例17:S17〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:2:2の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS17」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS17の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例18:S18〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:0.25:0.25の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS18」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS18の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例19:S19〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネートおよびエチルメチルカーボネートを体積比で1:4の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS19」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS19の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例20:S20〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネートおよびエチルメチルカーボネートを体積比で1:0.5の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS20」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS20の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例21:S21〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネートおよびジエチルカーボネートを体積比で1:1の割合で混合した混合溶媒を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS21」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS21の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例22:S22〕
 負極の作製において、負極活物質として、黒鉛系複合粒子(1)の代わりに黒鉛を用いたこと以外は、実施例11と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS22」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS22の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例23:S23〕
 正極の作製において、集電体材料として、空隙率が10%、厚さが30μmのアルミニウム電解エッチング箔に、口径が0.3mmのパンチング処理を施すことによって貫通孔径が300μmの貫通孔が形成されたもの(気孔率が40%)を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS23」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS23の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例24:S24〕
 正極の作製において、集電体材料として、空隙率が10%、厚さが30μmのアルミニウム電解エッチング箔に、口径が0.3mmのパンチング処理を施すことによって貫通孔径が300μmの貫通孔が形成されたもの(気孔率が40%)を用いたこと以外は、実施例11と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS24」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS24の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔実施例25:S25〕
 正極の作製において、集電体材料として、空隙率が10%、厚さが30μmのアルミニウム電解エッチング箔に、エキスパンド処理を施したもの(気孔率が40%)を用いたこと以外は、実施例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルS25」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルS25の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表1に示す。
〔比較例1:C1〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから40μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから30μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC1」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC1の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例2:C2〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから195μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから140μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC2」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC2の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例3:C3〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから80μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから80μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC3」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC3の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例4:C4〕
 正極の作製において、正極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を50μmから80μmに変更し、負極の作製において、負極活物質を含むスラリーの両面合わせた塗布厚み(総厚)の目標値を45μmから40μmに変更したこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC4」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC4の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例5:C5〕
 正極の作製において、正極集電体として、粗面化処理されていない厚さが30μmのアルミニウム製のエキスパンドメタル(気孔率が45%のもの)を用いたこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC5」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC5の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例6:C6〕
 負極の作製において、負極活物質として、黒鉛系複合粒子(1)の代わりにハードカーボンとしたこと以外は、実施例1と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC6」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC6の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例7:C7〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:1:1の割合で混合してなる混合溶媒を用いたこと以外は、比較例3と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC7」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC7の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例8:C8〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:1:1の割合で混合してなる混合溶媒を用いたこと以外は、比較例2と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC8」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC8の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〔比較例9:C9〕
 電解液の非プロトン性有機溶媒として、エチレンカーボネート、エチルメチルカーボネートおよびジメチルカーボネートを体積比で1:1:1の割合で混合してなる混合溶媒を用いたこと以外は、比較例6と同様にして試験用ラミネート外装リチウムイオンキャパシタ(以下、「セルC9」とする。)を作製し、短絡後正極電位を測定した。
 得られたセルC9の正極活物質層の総厚、負極活物質層の総厚、正極比率および短絡後正極電位を下記表2に示す。
〈リチウムイオンキャパシタの評価〉
 上記のセルS1~S25およびセルC1~C9の各々について、以下のようにして、エネルギー密度測定、交流内部抵抗測定および充放電サイクル試験を行い、特性の評価を行った。
〔エネルギー密度測定〕
 作製したセルS1~S25およびセルC1~C9の各々を10Aの電流値で電圧が3.8Vとなるまで充電した後、同電圧で30分保持し、その後、10Aの電流値で電圧が2.2Vとなるまで放電した際の容量を測定した。この容量をキャパシタの有するエネルギーとし、キャパシタの体積で除してエネルギー密度(Wh/L)を求めた。結果を表1および表2に示す。
〔交流内部抵抗測定〕
 作製したセルS1~S25およびセルC1~C9の各々の25℃±5℃の環境下における1KHzの交流内部抵抗(RC)を、日置電機社製「ACミリオームハイテスタ3560」を用い、測定温度が25℃の条件で測定した。結果を表1および表2に示す。
〔充放電サイクル試験〕
 作製したセルS1~S25およびセルC1~C9の各々について、25℃において100Cの電流密度で10万回充放電サイクルを行った後、1サイクル目と比較した容量保持率(%)および抵抗上昇率(%)を測定した。結果を表1および表2に示す。
 また、以下に、容量保持率および抵抗上昇率の定義を示す。
〔容量保持率の定義〕
 1サイクル目のリチウムイオンキャパシタの容量を測定した際の値を100%としたとき、10万サイクル目のリチウムイオンキャパシタの容量の保持率を測定した。
〔抵抗上昇率の定義〕
 1サイクル目のリチウムイオンキャパシタの交流内部抵抗(RC)を測定した際の値を100%としたとき、10万サイクル目のリチウムイオンキャパシタの交流内部抵抗(RC)の上昇率を測定した。
〔総合判定〕
 上記の試験の結果に基づいて、以下の評価基準により、総合判定を行った。結果を表1および表2に示す。
(評価基準)
 下記の(a)~(d)の全ての条件が外れていない場合を◎、いずれか一つの要件が外れた場合を○、二つの要件が外れた場合を×とした。
 (a)エネルギー密度の値が、10Wh/L~20Wh/Lの範囲にあること。
 (b)交流内部抵抗(RC)の値が、0.1ΩF~0.9ΩFの範囲にあること。
 (c)充放電サイクルの値が、95%~100%の範囲にあること。
 (d)抵抗上昇率(%)が、100%~110%の範囲にあること。

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 表1の結果から明らかなように、セルS1~S8においては、エネルギー密度、交流内部抵抗(RC)、容量保持率(%)および抵抗上昇率(%)の好ましい条件を全て満たしており、良好なリチウムイオンキャパシタが得られた。
 また、セルS9およびセルS10においては、容量保持率が低かったもののリチウムイオンキャパシタとしての性能に大きな影響は無かった。
 また、セルS11~16においては、セルS3と比較して交流内部抵抗(RC)が低い結果となったが、これはECと、EMCおよびDMCの合計との体積比が1:3~1:1であり、また、EMCとDMCとの体積比が1:1~9:1であるためと考えられる。
 また、セルS17 ~21においては、セルS1~S8と同様に、良好なリチウムイオンキャパシタが得られた。
 また、セルS22においては、負極活物質として黒鉛を使用していることから、若干抵抗上昇率が高いものの、リチウムイオンキャパシタとしての性能に大きな影響は無かった。
 また、セルS23~S25においては、正極集電体として、電解エッチング箔に後加工によるパンチング処理またはエキスパンド処理を施したものを使用したが、電解エッチング箔を使用したリチウムイオンキャパシタと同様の良好な特性が得られた。
 これに対し、表2の結果から明らかなように、セルC1においては、正極活物質層の総厚が50μm~140μmの範囲を下回ったため、エネルギー密度が小さくなった。
 また、セルC2においては、正極活物質層の総厚が50μm~140μmの範囲を上回ったため、交流内部抵抗(RC)および抵抗上昇率が高く、容量維持率が低下した。
 また、セルC3においては、正極比率が0.4~0.5の範囲を下回ったため、抵抗上昇率が高く、容量保持率が低下した。
 また、セルC4においては、正極比率が0.4~0.5の範囲を上回ったため、抵抗上昇率が高く、容量保持率が低下した。
 また、セルC5においては、正極集電体として粗面化処理されていないエキスパンドメタルを用いたため、交流内部抵抗(RC)および抵抗上昇率が高かった。
 また、セルC6においては、負極活物質としてハードカーボンを使用したため、交流内部抵抗(RC)が高く、容量維持率が低下した。
 また、セルC7においては、電解液としてEC、EMCおよびDMCを体積比で1:1:1の割合で混合してなる混合溶媒を使用したが、正極比率が0.4~0.5の範囲を下回ったため、抵抗上昇率が高く、容量保持率が低下した。
 また、セルC8においては、電解液としてEC、EMCおよびDMCを体積比で1:1:1の割合で混合してなる混合溶媒を使用したが、正極活物質層の総厚が50μm~140μmの範囲を上回ったため、交流内部抵抗(RC)および抵抗上昇率が高く、容量維持率が低下した。
 また、セルC9においては、電解液としてEC、EMCおよびDMCを体積比で1:1:1の割合で混合してなる混合溶媒を使用したが、負極活物質としてハードカーボンを使用したため、抵抗上昇率が高く、容量維持率が低下した。

Claims (7)

  1.  粗面化処理された正極集電体に正極活物質層を形成した正極と、
     負極集電体に黒鉛系粒子を含む負極活物質層を形成した負極と、
     非プロトン性有機溶媒によるリチウム塩の溶液を含む電解液と
    を有するリチウムイオンキャパシタであって、
     前記正極活物質層の総厚が50μm~140μmであり、かつ正極活物質層と負極活物質層との質量の和に対する正極活物質層の質量比が0.4~0.5であることを特徴とするリチウムイオンキャパシタ。
  2.  前記正極集電体は、エッチングによって粗面化処理されていることを特徴とする請求項1に記載のリチウムイオンキャパシタ。
  3.  前記正極集電体は、電解エッチングによって粗面化処理されていることを特徴とする請求項1に記載のリチウムイオンキャパシタ。
  4.  前記負極および/または前記正極に対してリチウムイオンをドーピングした後、前記正極と前記負極を短絡させた後の正極電位が0.5~1.5Vであることを特徴とする請求項1乃至請求項3のいずれか1項に記載のリチウムイオンキャパシタ。
  5.  前記負極活物質層に用いられる黒鉛系粒子は、人造黒鉛粒子、天然黒鉛または黒鉛粉末をタールもしくはピッチ由来の材料で被覆した黒鉛系複合粒子から選ばれる少なくとも1つであることを特徴とする請求項1乃至請求項4のいずれか1項に記載のリチウムイオンキャパシタ。
  6.  前記非プロトン性有機溶媒が、エチレンカーボネートと、エチルメチルカーボネートと、ジメチルカーボネートとの混合溶媒よりなり、エチレンカーボネートと、エチルメチルカーボネートおよびジメチルカーボネートの合計との体積比が1:3~1:1であることを特徴とする請求項1乃至請求項5のいずれか1項に記載のリチウムイオンキャパシタ。  
  7.  前記非プロトン性有機溶媒において、エチルメチルカーボネートとジメチルカーボネートとの体積比が1:1~9:1であることを特徴とする請求項6に記載のリチウムイオンキャパシタ。
PCT/JP2012/052226 2011-02-28 2012-02-01 リチウムイオンキャパシタ WO2012117794A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/001,965 US9208958B2 (en) 2011-02-28 2012-02-01 Lithium ion capacitor
KR1020137024117A KR101862433B1 (ko) 2011-02-28 2012-02-01 리튬 이온 캐패시터
CN201280010591XA CN103403825A (zh) 2011-02-28 2012-02-01 锂离子电容器
EP12752327.2A EP2682966B1 (en) 2011-02-28 2012-02-01 Lithium-ion capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011041443 2011-02-28
JP2011-041443 2011-02-28
JP2011069993A JP5650029B2 (ja) 2011-03-28 2011-03-28 リチウムイオンキャパシタ
JP2011-069993 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012117794A1 true WO2012117794A1 (ja) 2012-09-07

Family

ID=46757735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052226 WO2012117794A1 (ja) 2011-02-28 2012-02-01 リチウムイオンキャパシタ

Country Status (5)

Country Link
US (1) US9208958B2 (ja)
EP (1) EP2682966B1 (ja)
KR (1) KR101862433B1 (ja)
CN (1) CN103403825A (ja)
WO (1) WO2012117794A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161328B2 (ja) 2012-05-18 2017-07-12 Jsr株式会社 電極活物質、電極及び蓄電デバイス
US9779885B2 (en) 2012-11-09 2017-10-03 Corning Incorporated Method of pre-doping a lithium ion capacitor
WO2015115531A1 (ja) * 2014-01-31 2015-08-06 富士フイルム株式会社 アルミニウム板の製造方法、アルミニウム板、蓄電デバイス用集電体および蓄電デバイス
US10269504B2 (en) 2014-07-10 2019-04-23 The United States Of America As Represented By The Secretary Of The Army Supercapacitor having holes formed in carbonaceous electrodes for increasing the frequency of operation
US9466435B2 (en) * 2014-07-10 2016-10-11 The United States Of America As Represented By The Secretary Of The Army Supercapacitor
US9875644B2 (en) * 2014-09-09 2018-01-23 Tyco Fire & Security Gmbh Master slave wireless fire alarm and mass notification system
KR101817418B1 (ko) 2015-03-23 2018-01-11 주식회사 엘지화학 음극 활물질 및 이의 제조방법
WO2016153255A1 (ko) * 2015-03-23 2016-09-29 주식회사 엘지화학 음극 활물질 및 이의 제조방법
JP6743513B2 (ja) 2016-06-22 2020-08-19 日本ケミコン株式会社 ハイブリッドキャパシタ及びその製造方法
CN110767464B (zh) * 2018-07-25 2022-07-08 东莞东阳光科研发有限公司 含有MOFs材料的超级电容器及其制备方法
CN115842096A (zh) * 2022-07-19 2023-03-24 宁德时代新能源科技股份有限公司 预锂化极片及其制备方法、二次电池和用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266091A (ja) 2003-02-28 2004-09-24 Kanebo Ltd フィルム型蓄電装置
JP2005093779A (ja) * 2003-09-18 2005-04-07 Osaka Gas Co Ltd 電気二重層キャパシタ
WO2005031773A1 (ja) 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha 有機電解質キャパシタ
JP2008034304A (ja) * 2006-07-31 2008-02-14 Hitachi Chem Co Ltd エネルギー貯蔵デバイス
JP2009176786A (ja) * 2008-01-22 2009-08-06 Hitachi Chem Co Ltd ハイブリッドキャパシタ
JP2010135649A (ja) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイス用正極活物質及びそれを用いたリチウムイオン蓄電デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643035B2 (ja) * 1991-06-17 1997-08-20 シャープ株式会社 非水系二次電池用炭素負極およびその製造方法
JP4187347B2 (ja) * 1998-04-02 2008-11-26 三星エスディアイ株式会社 リチウムイオン電池用負極活物質の製造方法
JP2002298849A (ja) 2001-04-02 2002-10-11 Asahi Glass Co Ltd 二次電源
JP4813152B2 (ja) * 2005-11-14 2011-11-09 富士重工業株式会社 リチウムイオンキャパシタ
KR101076513B1 (ko) 2007-03-28 2011-10-24 오츠카 가가쿠 가부시키가이샤 전기 이중층 캐패시터용 전해액
JP2010238680A (ja) 2009-03-13 2010-10-21 Jm Energy Corp 蓄電デバイス用電極およびその製造方法並びにリチウムイオンキャパシタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266091A (ja) 2003-02-28 2004-09-24 Kanebo Ltd フィルム型蓄電装置
JP2005093779A (ja) * 2003-09-18 2005-04-07 Osaka Gas Co Ltd 電気二重層キャパシタ
WO2005031773A1 (ja) 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha 有機電解質キャパシタ
JP2008034304A (ja) * 2006-07-31 2008-02-14 Hitachi Chem Co Ltd エネルギー貯蔵デバイス
JP2009176786A (ja) * 2008-01-22 2009-08-06 Hitachi Chem Co Ltd ハイブリッドキャパシタ
JP2010135649A (ja) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd リチウムイオン蓄電デバイス用正極活物質及びそれを用いたリチウムイオン蓄電デバイス

Also Published As

Publication number Publication date
KR101862433B1 (ko) 2018-05-29
US9208958B2 (en) 2015-12-08
EP2682966A1 (en) 2014-01-08
US20140002960A1 (en) 2014-01-02
EP2682966A4 (en) 2018-04-11
CN103403825A (zh) 2013-11-20
EP2682966B1 (en) 2020-05-13
KR20140016899A (ko) 2014-02-10

Similar Documents

Publication Publication Date Title
JP4857073B2 (ja) リチウムイオンキャパシタ
WO2012117794A1 (ja) リチウムイオンキャパシタ
JP6161328B2 (ja) 電極活物質、電極及び蓄電デバイス
KR20090102670A (ko) 음극용 탄소 재료, 축전 디바이스, 및 축전 디바이스 탑재품
KR20140025617A (ko) 축전 디바이스
WO2012063545A1 (ja) リチウムイオンキャパシタ
JP2014027196A (ja) 蓄電デバイス
JP2008252013A (ja) リチウムイオンキャパシタ
JP2012004491A (ja) 蓄電デバイス
JP2015005553A (ja) 蓄電デバイス
KR101863399B1 (ko) 축전 디바이스
JP5921897B2 (ja) リチウムイオンキャパシタ
JP2010287641A (ja) 蓄電デバイス
JP2012038900A (ja) リチウムイオンキャパシタ
JP6487841B2 (ja) 蓄電デバイス
JP6254360B2 (ja) 蓄電デバイス
Yuan et al. Electrochemical performance of lithium ion capacitors with different types of negative electrodes
TW201409801A (zh) 非水電解質二次電池、二次電池模組及非水電解質二次電池之使用方法
JP5650029B2 (ja) リチウムイオンキャパシタ
JP2014212304A (ja) 蓄電デバイスおよび蓄電モジュールの作製方法
JP2015023001A (ja) 蓄電デバイス用多孔質集電体、電極および蓄電デバイス
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor
JP2014204069A (ja) 蓄電デバイス用電極およびリチウムイオンキャパシタ
JP2012235041A (ja) 正極電極およびリチウムイオンキャパシタ
JP2012114201A (ja) 蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14001965

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137024117

Country of ref document: KR

Kind code of ref document: A