WO2012115239A1 - 圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法 - Google Patents

圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法 Download PDF

Info

Publication number
WO2012115239A1
WO2012115239A1 PCT/JP2012/054611 JP2012054611W WO2012115239A1 WO 2012115239 A1 WO2012115239 A1 WO 2012115239A1 JP 2012054611 W JP2012054611 W JP 2012054611W WO 2012115239 A1 WO2012115239 A1 WO 2012115239A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal film
vibrating piece
electrode
piezoelectric vibrating
electrodes
Prior art date
Application number
PCT/JP2012/054611
Other languages
English (en)
French (fr)
Inventor
賢周 森本
和靖 阪本
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to US13/881,262 priority Critical patent/US9130148B2/en
Priority to JP2013501146A priority patent/JP5880538B2/ja
Priority to CN201280003686.9A priority patent/CN103430450B/zh
Priority to KR1020137016349A priority patent/KR101837516B1/ko
Priority to EP12749185.0A priority patent/EP2624450B1/en
Publication of WO2012115239A1 publication Critical patent/WO2012115239A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/022Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the cantilever type

Definitions

  • the present invention relates to a piezoelectric vibrating piece used in an electronic device or the like, a piezoelectric vibrator using the same, and a manufacturing method thereof.
  • Piezoelectric vibration devices represented by piezoelectric vibrators are widely used in mobile communication devices such as mobile phones.
  • a crystal vibrating piece as one of the piezoelectric vibrating pieces used in the piezoelectric vibrator.
  • the quartz crystal resonator element is formed with excitation electrodes and lead electrodes for extending these excitation electrodes at the ends of the quartz crystal resonator element on the front and back main surfaces.
  • Such a crystal vibrating piece is a conductive bonding material in which a terminal electrode formed inside a box-shaped package having an open top and a joint (connection electrode) formed at an end of the extraction electrode of the crystal vibrating piece
  • the surface-mount type crystal resonator is configured by airtightly sealing the opening portion with a lid.
  • the crystal diaphragm and the package are electromechanically bonded to each other with a conductive bonding material such as a metal bump, and are formed on the crystal diaphragm in order to improve mutual bonding strength.
  • a conductive bonding material such as a metal bump
  • Patent Document 1 not only increases the number of manufacturing steps for forming electrodes, but also makes the electrode structure complicated. As a result, not only is the cost high, but the configuration is unsuitable for a miniaturized piezoelectric vibrator in which a simpler configuration is desirable.
  • a plating bump is used as a metal bump, the shape of the upper surface becomes flat. Therefore, when ultrasonic bonding is performed by the FCB method, only the peripheral portion of the upper surface of the plating bump is deformed and bonded, and the central region of the upper surface of the plating bump is not bonded. In some cases, the bonding effective area (efficiency) is lowered.
  • the piezoelectric vibrating piece may be joined to the inside of the package under stronger ultrasonic wave application conditions. In this case, strong external force acts on the piezoelectric vibrating piece. A new problem of increased damage arises.
  • the present invention has been made in view of the above points, and provides a piezoelectric vibrating piece, a piezoelectric vibrator, a method of manufacturing a piezoelectric vibrating piece, and a piezoelectric vibration capable of obtaining a bonded structure of a piezoelectric vibrating device that is more inexpensive and advantageous for downsizing. It aims at providing the manufacturing method of a child.
  • the piezoelectric vibrating piece according to the present invention is provided with at least a pair of excitation electrodes formed on the piezoelectric vibrating piece, and for electromechanically joining the pair of excitation electrodes to an external electrode.
  • At least a pair of extraction electrodes respectively formed from the pair of excitation electrodes is formed, and a tip portion of each of the pair of extraction electrodes has a connection electrode extracted near one end portion of one main surface of the piezoelectric vibrating piece.
  • a first metal film bonded to an external electrode is formed on the upper surface of each connection electrode, and the first metal film has two or more protrusions on the upper surface, and each connection electrode Further, the surface roughness is rough, the area is small, and the cross-sectional shape of the convex portion is formed in a curvature shape.
  • a bonded structure of a piezoelectric vibrating device (piezoelectric vibrating piece) that is more inexpensive and advantageous for downsizing. That is, according to the present invention, an external electrode (such as a terminal electrode) formed on a substrate (package) of an external member such as a piezoelectric vibrator on which the piezoelectric vibrating piece is mounted, and the connection electrode of the piezoelectric vibrating piece With respect to the bonding, the first metal film can be bonded without using a bonding material. As a result, when the connection electrode of the piezoelectric vibrating piece is bonded to a more miniaturized external electrode (terminal electrode or the like), there is no position displacement or protrusion.
  • the first metal film having a rougher surface area and a smaller area than the connection electrode is used, and a convex portion having a curved cross-sectional shape is provided on the upper surface of the first metal film. Therefore, the electromechanical joining is performed with the first metal film in a more stable state with respect to the external electrode.
  • ultrasonic bonding is performed with respect to the connection between the external electrode and the connection electrode of the piezoelectric vibrating piece, if the cross-sectional shape is the curved convex portion, it is easy to deform (easy to be crushed), and with a smaller applied pressure. It is surely deformed (collapsed) and the joint strength is increased. Therefore, even if the thickness varies between the pair of first metal films, the convex portion absorbs the variation, and the bonding strength between the pair of connection electrodes is also balanced and stable. It becomes possible.
  • the convex portion having a curved cross section is formed on the upper surface of the first metal film, the convex portion is formed when the connection electrode of the piezoelectric vibrating piece is joined to the external electrode. Can spread toward the region of the upper surface of the first metal film where the convex portion of the upper surface of the first metal film did not originally exist. For this reason, it becomes possible to raise the joint strength per unit area by joining with an external electrode for every some said convex part.
  • the joining between the external electrode and the connection electrode of the piezoelectric vibrating piece for example, when ultrasonic joining is performed, the plurality of small convex portions are easily deformed (easy to be crushed), and reliably with a smaller pressing force. It can be deformed (collapsed) and joined. As a result, damage to the piezoelectric vibrating piece itself can be eliminated. In addition, it is possible to simultaneously suppress the protrusion from being unnecessarily protruded from the upper end portion of the first metal film. Therefore, it is possible to reduce damage to the connection electrode, the first metal film, or the external electrode of the piezoelectric vibrating piece along with ultrasonic bonding. In addition, the wiring pattern as the external electrode can be narrowed or the pitch between the wiring patterns can be narrowed, so that the size can be reduced.
  • the said structure WHEREIN You may have two or more convex parts on the upper surface of the said 1st metal film along the upper surface edge part of the said 1st metal film except the center area
  • the convex portion originally exists from the upper end of the first metal film. It becomes possible to spread toward the central region on the upper surface of the first metal film that has not been present, and the bonding is performed so as to cover not only the end portion of the upper surface of the first metal film but also the central region. For this reason, it is possible not only to increase the bonding strength per unit area by bonding to the external electrode for each of the plurality of convex portions, but also to simultaneously increase the bonding strength of the central region on the upper surface of the first metal film. Become. That is, not only the upper end portion of the first metal film but also the central region can be increased in bonding strength, and the bonding strength of the first metal film as a whole to the external electrode can be dramatically increased.
  • the balance from the upper surface edge of the first metal film is achieved. Since it is possible to spread uniformly and uniformly in the central region of the first metal film, it is possible to perform bonding with respect to the external electrode more stably and at the same time with increased bonding strength.
  • a second metal film having a surface roughness rougher than the connection electrode, a smaller area than the first metal film, and a smaller thickness is formed between the first metal film and the connection electrode. Also good.
  • the convex portion having a curved cross-sectional shape is formed on the upper surface of the first metal film disposed above the second metal film due to the thickness difference of the second metal film. It can be easily configured.
  • the second metal film having a thickness smaller than that of the first metal film is bonded to the connection electrode having a surface roughness less than that of the first metal film, and the second metal film is bonded to the second metal film.
  • the bonding strength between the first metal film and the second metal film is also increased, and the entire metal film (the first metal film and the second metal film) becomes stable.
  • the first metal film can be stably formed regardless of the material of the connection electrode. In other words, by anchoring the second metal film having a smaller thickness at least partially between the first metal film and the connection electrode, an anchor effect is generated and the first metal film is directly connected to the connection electrode. Strength is improved and more stable than the case of joining to the substrate.
  • the bonding metal film (the first metal film in the present invention) and the connection electrode are bonded to each other.
  • the strength is weak
  • a piezoelectric vibrator according to the present invention is characterized in that the piezoelectric vibrating piece according to the present invention is bonded to a terminal electrode of a substrate which is an external electrode.
  • the present invention it is possible to obtain a bonded structure of a piezoelectric vibration device (piezoelectric vibrator) that is more inexpensive and advantageous for downsizing. That is, according to the present invention, since the vibration piece is provided, the above-described effects are obtained. Therefore, since the first metal film of the piezoelectric vibrating piece capable of obtaining the above-described effect is bonded to the terminal electrode of the substrate, the electromechanical connection between the connection electrode of the piezoelectric vibrating piece and the terminal electrode of the substrate is performed. Improving joint strength and stability can be realized at the same time. As a result, it is possible to provide a piezoelectric vibrator that is inexpensive and stable in electrical characteristics, and that is more reliable and advantageous for downsizing.
  • a method of manufacturing a piezoelectric vibrating piece according to the present invention includes at least a pair of excitation electrodes, and the pair of excitation electrodes for electromechanically joining the pair of excitation electrodes to an external electrode. At least a pair of extraction electrodes each extracted from an electrode is formed, and the extraction electrode is a method of manufacturing a piezoelectric vibrating piece having a connection electrode drawn in the vicinity of one end portion of one main surface of the piezoelectric vibrating piece, A first step of forming the excitation electrode and the extraction electrode on the piezoelectric vibrating piece by vapor deposition or sputtering; and two or more second metal films having an area smaller than that of the connection electrode on the upper surface of the connection electrode by plating.
  • the present invention it is possible to obtain a bonded structure of a piezoelectric vibrating device (piezoelectric vibrating piece) that is more inexpensive and advantageous for downsizing. That is, according to the present invention, it is possible to easily form the surface roughness of the first metal film and the second metal film with respect to the connection electrode.
  • the second metal film having a small thickness can stably form a plating film on the connection electrode. Even if the first metal film is thick, the first metal film is roughened.
  • the first metal film having a larger area and thickness than the second metal film the shape of the convex portion is easily curved.
  • the projections having a curved cross-sectional shape can be easily formed on the upper surface of the first metal film by the projections and depressions (thickness difference) on the connection electrode by using the second metal film.
  • it can be performed by batch processing without causing a mechanical stress load on the piezoelectric vibrating piece, and the process can be performed more inexpensively.
  • a piezoelectric vibrating piece can be manufactured, and the degree of freedom in designing the surface area, shape, and thickness is extremely high. Further, the piezoelectric vibrating piece configured by the manufacturing method according to the present invention can obtain the same effects as the above-described piezoelectric vibrating piece according to the present invention.
  • a method for manufacturing a piezoelectric vibrator according to the present invention is a method for manufacturing a piezoelectric vibrator in which a piezoelectric vibrating piece according to the present invention is joined to a terminal electrode of a substrate which is an external electrode.
  • the first metal film of the piezoelectric vibrating piece configured from the first step to the third step is ultrasonically bonded to the terminal electrode.
  • a bonded structure of a piezoelectric vibration device that is more inexpensive and advantageous for downsizing. That is, according to the present invention, in addition to the above-described operation and effect, it is possible to perform ultrasonic bonding in a stable state by the convex portion stably formed as described above, and the first electrode is connected to the external electrode. One metal film is heat diffusion bonded in a more stable state. In addition, stable electromechanical joining is performed. Further, when such a convex portion is used for ultrasonic bonding, it is easily deformed (easy to be crushed), and is reliably deformed (collapsed) with a smaller applied pressure, and the bonding strength is increased. As a result, it is possible to eliminate damage to peripheral members of the external electrode and the connection electrode.
  • the piezoelectric vibrating device piezoelectric vibrating piece which is more inexpensive and advantageous for downsizing.
  • a piezoelectric vibrator is obtained.
  • FIG. 1 is a schematic cross-sectional view of a tuning fork type crystal resonator showing an embodiment of the present invention.
  • FIG. 2 is a plan view of one main surface side of the tuning-fork type crystal vibrating piece showing the embodiment of the present invention.
  • 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 4 is a plan view showing a partially enlarged state according to a modification of the embodiment of the present invention.
  • FIG. 5 is a diagram showing another embodiment of the present invention.
  • FIG. 6 is a partially enlarged plan view of another embodiment corresponding to FIG.
  • FIG. 7 is a plan view of a partially enlarged state in another embodiment corresponding to FIG.
  • FIG. 8 is a plan view of a partially enlarged state in another embodiment corresponding to FIG.
  • a tuning fork type crystal resonator will be described as an example of the piezoelectric vibrating piece with reference to the drawings.
  • a base 3 and a lid (not shown) are joined via a sealing member H to form a casing.
  • the tuning-fork type crystal vibrating piece 2 is bonded to the electrode pad 32 of the base 3 whose upper part is opened via a first metal film M1 such as a plating bump, and the opening (opening) of the base 3 is sealed.
  • a plate-like lid is joined to the end face of the opening via the sealing member H.
  • the nominal frequency of the tuning fork type crystal resonator 1 is 32.768 kHz.
  • the nominal frequency is an example and can be applied to other frequencies.
  • the base 3 is an insulating container made of a ceramic material or a glass material.
  • the base 3 is made of a ceramic material and formed by firing.
  • the base 3 has a bank portion 30 around it, and has a concave shape in cross section with an upper opening.
  • a step 31 for mounting the tuning fork type crystal vibrating piece 2 is provided inside the base 3 (storage portion). Is formed.
  • a pair of electrode pads 32 (only one electrode pad 32 is shown in FIG. 1) is formed on the upper surface of the step portion 31.
  • the pair of electrode pads 32 are electrically connected to two or more terminal electrodes 33 formed on the bottom surface (back surface) of the base 3 through a wiring pattern (not shown) formed inside the base 3.
  • a metallized layer 34 (constituting a part of the sealing member H) is formed around the bank portion 30 of the base 3 in a circumferential shape.
  • the electrode pad 32, the terminal electrode 33, and the metallized layer 34 are composed of, for example, three layers, and are laminated in the order of tungsten, nickel, and gold from the bottom.
  • Tungsten is integrally formed during ceramic firing by metallization technology, and the nickel and gold layers are formed by plating technology. Note that molybdenum may be used for the tungsten layer.
  • the lid (not shown) is made of, for example, a metal material, a ceramic material, or a glass material, and is formed into a single plate having a rectangular shape in plan view.
  • a sealing material (constituting a part of the sealing member H) is formed on the lower surface of the lid.
  • the lid is joined to the base 3 through a sealing material by a technique such as seam welding, beam welding, and heat-melt joining, so that the casing of the crystal unit 1 is configured by the lid and the base 3.
  • the tuning fork type crystal vibrating piece 2 is formed from one crystal wafer made of a crystal Z plate made of an anisotropic material having crystal directions in the X-axis direction, the Y-axis direction, and the Z′-axis direction.
  • the outer shape of the tuning-fork type crystal vibrating piece 2 is collectively formed by, for example, wet etching using a resist or a metal film as a mask by using a photolithography technique.
  • the tuning-fork type crystal vibrating piece 2 is provided with two first leg portions 21 and second leg portions 22 which are vibration portions, and outside (the electrode pad 32 of the base 3 in this embodiment). It consists of the external part comprised from the junction part 23 to join, and the base 25 which protruded and provided these 1st leg part 21, the 2nd leg part 22, and the junction part 23.
  • the base 25 has a symmetrical shape in plan view and is formed wider than the vibrating parts (the first leg 21 and the second leg 22) as shown in FIG. Further, a step is gradually formed in the vicinity of the other end surface 252 of the base portion 25 so as to become narrower from the one end surface 251 to the other end surface 252. For this reason, the leakage vibration generated by the vibration of the first leg portion 21 and the second leg portion 22 that are the vibration portions can be attenuated by the other end surface 252, and the transmission of the leakage vibration to the joint portion 23 can be suppressed. It is preferable for further reducing acoustic leakage (vibration leakage).
  • the configuration in which the width gradually decreases in the vicinity of the other end surface 252 of the base portion 25 is not limited to the step shape, and may be a tapered shape or a curved surface shape.
  • the two first leg portions 21 and the second leg portions 22 protrude from one end face 251 of the base portion 25 and are arranged in parallel via a gap portion 253.
  • the gap part 253 here is provided in the center position (central area
  • the distal end portions 211 and 221 of the first leg portion 21 and the second leg portion 22 are other parts of the first leg portion 21 and the second leg portion 22 (the base portion 25 of the first leg portion 21 and the second leg portion 22). (Excluding the portion on the side) in a direction wider than the protruding direction (hereinafter referred to as a wide region of the leg), and each corner is curved.
  • the tip portions 211 and 221 can be used effectively, which is useful for reducing the size of the tuning-fork type crystal vibrating piece 2 and has a low frequency. It is also useful for conversion.
  • the corners of the tip portions 211 and 221 as curved surfaces, it is possible to prevent contact with a bank portion or the like when receiving an external force.
  • the first main surface 261 and the other main surface 262 of the two first leg portions 21 and the second leg portion 22 have a series resonance resistance value (CI value in the present embodiment) that deteriorates due to downsizing of the tuning-fork type crystal vibrating piece 2.
  • the groove portions 27 are respectively formed.
  • a part of the side surface 28 of the outer shape of the tuning-fork type crystal vibrating piece 2 is formed to be inclined with respect to the one main surface 261 and the other main surface 262. This is because the etching speed in the crystal direction of the substrate material (X and Y directions shown in FIG. 2) is different when the tuning fork type crystal vibrating piece 2 is formed by wet etching.
  • the joining portion 23 electromechanically joins the following extraction electrodes 293 and 294 to an external electrode (external in the present invention, which is the electrode pad 32 of the base 3 in the present embodiment).
  • an external electrode external in the present invention, which is the electrode pad 32 of the base 3 in the present embodiment.
  • the joint portion 23 protrudes from the center position (central region) in the width direction of the other end surface 252 facing the one end surface 251 of the base portion 25 from which the two first leg portions 21 and the second leg portions 22 protrude. Is formed. That is, the joint portion 23 is formed so as to protrude at a position that directly faces the gap portion 253 disposed between the two first leg portions 21 and the second leg portion 22.
  • the joint portion 23 is connected to the short side portion 231 narrower than the other end surface 252 that protrudes in the direction perpendicular to the other end surface 252 of the base portion 25, and the distal end portion of the short side portion 231.
  • a long side portion 232 that is bent at a right angle in plan view and extends in the width direction of the base portion 25, and the tip end portion 233 of the joint portion 23 faces the width direction of the base portion 25. That is, the joining portion 23 is formed in an L shape in plan view, and a bent portion 234 that is a bent portion formed in an L shape in plan view corresponds to the tip portion of the short side portion 231.
  • the short side part 231 is formed in a narrower state than the other end face 252 of the base part 25, the effect of further suppressing vibration leakage is enhanced.
  • the bent portion 234 of the short side portion 231 corresponding to the base end portion of the joint portion 23 is a joint region to be joined to the outside, and the tip portion of the long side portion 232 corresponding to the tip portion 233 of the joint portion 23 is In other words, it is a joining region that joins to the outside.
  • a short side portion 231 that is a base end portion of the joint portion 23 is an extraction electrode 294 (a connection electrode referred to in the present invention) drawn from an end portion (to one end portion) of the short side portion 231 from a second excitation electrode 292 described below. ) Is formed, and the extraction electrode 293 (the connection in the present invention) is drawn from the first excitation electrode 291 described below to the end (to one end) of the long side 232 on the long side 232 which is the tip of the joint. Electrode).
  • the tuning-fork type crystal vibrating piece 2 includes two first excitation electrodes 291 and 292 that are configured with different potentials, and the first excitation electrode 291 and the second excitation electrode 292 that are electrodes.
  • extraction electrodes 293 and 294 extracted from the first excitation electrode 291 and the second excitation electrode 292 and connection electrodes 295 and 296 are integrally formed at the same time.
  • a metal film (a first metal film M1 and a second metal film M2) to be described later is formed on each of the tip portions of the connection electrodes 295 and 296.
  • the two extraction electrodes 293 and 294 in the present embodiment refer to electrode patterns respectively extracted from the two first excitation electrodes 291 and the second excitation electrodes 292.
  • the connection electrodes 295 and 296 are formed at locations that become joint portions with the base 3 in the tip portions of the extraction electrodes 293 and 294.
  • the two first excitation electrodes 291 and part of the second excitation electrode 292 are formed inside the groove 27. For this reason, even if the tuning fork type crystal vibrating piece 2 is downsized, the vibration loss of the first leg portion 21 and the second leg portion 22 is suppressed, and the CI value can be suppressed low.
  • the first excitation electrode 291 is formed on both main surfaces (one main surface 261 and the other main surface 262) of the first leg portion 21 and both side surfaces 28 of the second leg portion 22.
  • the second excitation electrode 292 is formed on both main surfaces (one main surface 261 and the other main surface 262) of the second leg portion 22 and both side surfaces 28 of the first leg portion 21.
  • a single crystal wafer made of a crystal Z plate made of an anisotropic material having crystal directions in the X-axis direction, the Y-axis direction, and the Z′-axis direction is used, and a large number of tuning-fork type crystal vibrating pieces 2 are formed from the crystal wafer. Collectively form a matrix.
  • the outer shape of the tuning fork type crystal vibrating piece 2 is collectively formed by, for example, wet etching using a resist or a metal film as a mask by using a photolithography technique.
  • the first excitation electrode 291 and the second excitation electrode 292, the extraction electrodes 293 and 294, and the connection electrodes 295 and 296 are formed simultaneously with the shaping of the outer shape of the tuning-fork type crystal vibrating piece 2.
  • the first excitation electrode 291 and the second excitation electrode 292, the extraction electrodes 293 and 294, and the connection electrodes 295 and 296 are formed in order through the following first step, second step, and third step.
  • the first excitation electrode 291 and the second excitation electrode 292, the extraction electrodes 293 and 294, and the connection electrodes 295 and 296 of the tuning fork type crystal vibrating piece 2 are formed on the first leg portion 21 and the second leg portion 22 by metal deposition.
  • the thin film is formed on the entire surface of the substrate by a technique such as vacuum vapor deposition or sputtering, and then formed into a desired shape by metal etching by photolithography.
  • the first excitation electrode 291, the second excitation electrode 292, and the extraction electrodes 293, 294 are formed in the order of chromium (Cr) and gold (Au).
  • the order of chromium (Cr) and silver (Ag) is provided.
  • the order may be chromium (Cr), gold (Au), chromium (Cr), chromium (Cr), silver (Ag), chromium (Cr).
  • a plurality of films such as chromium (Cr), gold (Au), chromium (Cr), and gold (Au) may be laminated.
  • the underlying chromium (Cr) may be nickel (Ni), titanium (Ti), nichrome made of an alloy of chromium (Cr) and nickel (Ni), or the like.
  • the first main surface 261 and the other main surface 262 of the distal end portions 211 and 221 of the first leg portion 21 and the second leg portion 22 have a wide area of the first leg portion 21 and the second leg portion 22 described above.
  • Lead electrodes 293 and 294 are formed on almost the entire surface.
  • M1 (M11, M12) is formed.
  • the planar view shape of the first metal film M1 (M11, M12) is a circular shape.
  • the shape in plan view is a circle, and three convex portions T (T1, T2, T3) are formed, and more convex portions T1, T1 are formed along the upper end portion of the first metal film M1. T2 and T3 are formed.
  • the convex portions T1, T2, and T3 can be spread from the end portion of the upper surface of the first metal film M1 toward the central region M0 (M01, M02) of the first metal film M1 in a balanced manner, the diffusion bonding It is more stable and stronger at the same time with respect to the subsequent electrode pad 32 (only one electrode pad 32 is shown in FIG. 1).
  • This effect is enhanced if the number of the convex portions T is three or more, and the effect can be further enhanced if the number is increased to four or five.
  • the fabrication of the convex portion T is easy to manufacture, and about three or four are formed as the configuration of the convex portion T that can effectively improve the bonding strength in a state where the convex portions T do not interfere with each other.
  • FIG. 4 shows a plurality of convex portions T. Specifically, FIG. 4A shows a form in which two convex portions T are formed, FIG. 4B shows a form in which four convex portions T are formed.
  • the size of the convex portion T of the first metal film M11 and the size of the convex portion T of the first metal film M12 are all the same. It is not limited and one convex part T may be larger than the other convex part T. For example, the size of the convex portion T of the first metal film M11 may be larger than the size of the convex portion T of the first metal film M12.
  • the bonding in the first metal film (the first metal film M12 in the present embodiment) on the side close to the base 25 is greatly related to the bonding strength when the tuning fork type piezoelectric vibrating piece 2 is bonded to the base 3, and this portion.
  • the first metal film M11 is made of the same material as the first metal film M11 on the upper surface of the connection electrode 296 of the bent portion 234 of the main surface 235 of the joint portion 23, and has an area larger than that of the first metal film M11.
  • the second metal film M21 having a smaller area than the connection electrode 296 and thinner than the first metal film M11 is formed.
  • the second metal film M21 has a circular shape in plan view, and is a region where the first metal film M1 is formed, and has three convex portions T1, along the upper surface edge of the first metal film M1 except for the central region M01. It is formed with T2 and T3 interposed.
  • the first metal film M12 is made of the same material as the first metal film M12 on the upper surface of the connection electrode 295 at the tip end portion 233 of the one principal surface 235 of the joint 23, and has a smaller area than the first metal film M12.
  • a second metal film M22 having a smaller area and a smaller thickness than the first metal film M12 is formed.
  • the second metal film M22 has a circular shape in plan view, and is a region where the first metal film M1 is formed, and has three convex portions T1, along the upper surface edge of the first metal film M1 except for the central region M02. It is formed with T2 and T3 interposed.
  • the cross-sectional shape of the convex portion T is a circular arc shape having a curvature (hereinafter referred to as a curvature shape) as shown in FIG. 3 (in this embodiment, a semi-elliptical shape).
  • a curvature shape a curvature shape
  • the convex portion T is formed in a curved shape (arc shape)
  • at least the tip portion of the convex portion T may be a curved surface, but the entire convex portion T is a curved surface (a semicircular shape or a semi-elliptical shape). This is desirable in that the joint strength and stability can be further improved.
  • the convex portion T has a surface roughness between the first metal film M1 (M11, M12) and the connection electrodes 295, 296 that is rougher than that of the connection electrodes 295, 296, and the first metal film M1 (M11). , M12), and a second metal film M2 (M21, M22) having a smaller area and a smaller thickness than the first metal film M1 (M11, M12).
  • the present invention is not limited to the configuration in which the convex portion T having a curved cross section is formed by stacking two or more metal films (first metal film M1 and second metal film M2) as in the present embodiment.
  • the form shown in FIG. FIG. 5 includes FIG. 5A, FIG. 5B, FIG.
  • FIG. 5A is a schematic plan view of the tuning-fork type crystal vibrating piece 2.
  • FIG. 5B and 5C are schematic plan views of the quartz diaphragm 4 such as AT cut
  • FIG. 5D is a schematic cross-sectional view of the quartz diaphragm 4 such as AT cut.
  • four convex portions S ⁇ b> 3 are formed on the base material portion of the crystal diaphragm 4.
  • the second metal film M2 (M21, M22) is formed in a size (thickness) twice to 20 times the thickness of the first metal film M1 (M11, M12).
  • the second metal film M2 (M21, M22) is formed with a thickness of about 1 to 2 ⁇ m
  • the first metal film M1 (M11, M12) is formed with a thickness of about 4 to 20 ⁇ m.
  • FCB ultrasonic bonding
  • at least the first metal film M1 (M11, M12) expands in the surface direction and is crushed, and has a thickness of about half.
  • the thickness of the first metal film M1 (M11, M12) is smaller than 4 ⁇ m, the gap between the connection electrodes 295, 296 of the tuning-fork type quartz vibrating piece 2 and the electrode pad 32 of the base 3 becomes small, and the tuning-fork type crystal resonator 1 It tends to adversely affect the electrical characteristics of the. If the thickness of the first metal film M1 (M11, M12) is greater than 20 ⁇ m, the tuning fork-type crystal vibrating piece 2 is likely to be affected by the inclination and displacement, and the bonding strength is also likely to vary.
  • the planar shape of the first metal film M1 (M11, M12) as the plating bump and the planar shape of the second metal film M2 (M21, M22) as the intermediate plating bump are circular.
  • it can be freely configured such as another curvature shape such as an ellipse or a polygonal shape including a rectangle or a square.
  • a second (not shown) is formed in each region of the junction 23 (upper surfaces of the connection electrodes 295, 296).
  • a formation part (mask having a window part having a smaller area than the connection electrodes 295 and 296) of the metal film M2 (M21, M22) is formed into a desired shape (rectangular window part in this embodiment) by photolithography.
  • the second metal film M2 (M21, M22) is formed by plating on the formation portion of the second metal film M2 (M21, M22) by a technique such as electrolytic plating.
  • the first metal film M1 (M11, M12) (not shown) has a smaller area than the connection electrodes 295, 296.
  • a mask having a window having a larger area than that of the two metal films M2) is formed into a desired shape (a circular window in the present embodiment) by photolithography, and the first metal film M1 (M11, M12) is formed.
  • the first metal film M1 (M11, M12) is formed by plating on the formation portion by a technique such as electrolytic plating. Thereafter, an annealing treatment may be performed.
  • a beam such as a laser beam is formed on the upper surfaces of the extraction electrodes 293 and 294 formed in the wide region disposed on the one main surface 261 of the first leg portion 21 and the second leg portion 22.
  • An adjustment metal film (frequency adjustment weight) M3 formed by adjusting the frequency of the tuning-fork type crystal vibrating piece 2 by reducing the mass of the metal film by irradiation is formed integrally with the extraction electrodes 293 and 294 in a slightly small area.
  • the adjustment metal film M3 is formed by forming a formation portion (desired shape) of the adjustment metal film M3 on the extraction electrodes 293 and 294 formed in each wide region by a photolithography method.
  • the adjustment metal film M3 is formed by plating on the formation part of the film M3 by a technique such as electrolytic plating. Further, an annealing treatment may be performed after the plating is formed.
  • the metal film such as the adjustment metal film M3 is formed by plating, the same process as at least one of the first metal film M1 (M11, M12) or the second metal film M2 (M21, M22) is performed. It is more practically desirable to configure them simultaneously.
  • the first metal film M1 (M11, M12), the second metal film M2 (M21, M22), and the adjustment metal film M3 are made of the same material and are made of, for example, gold (Au).
  • the tuning fork type crystal vibrating piece 2 configured as described above measures the frequency of each tuning fork type crystal vibrating piece 2 in the state of the wafer, and then adjusts the metal film for adjustment of each tuning fork type crystal vibrating piece 2.
  • the frequency is roughly adjusted by decreasing M3 by beam irradiation or increasing it by partial vapor deposition.
  • the individual tuning fork type crystal vibrating piece 2 subjected to coarse frequency adjustment and then taken out from the wafer is a first metal film M1 (M11, M11, M2) formed on the upper surfaces of the connection electrodes 295 and 296 on the one main surface 261 side. M12) and the electrode pad 32 of the base 3 are ultrasonically bonded by the FCB method and mounted on the base 3.
  • ashing is performed on the mounting portion of the base 3 to activate the bonding interface between the tuning fork type crystal vibrating piece 2 and the base 3 (first metal film M1 and the like). To do.
  • the ashing process may be performed in a wafer state.
  • the tuning-fork type crystal vibrating piece 2 is joined to the base 3 by pressurizing a part (convex portion T) of the first metal film M1 in a state where the joining portion is activated.
  • the tuning fork type crystal vibrating piece 2 is arranged so that the main surface of the tuning fork type crystal vibrating piece 2 faces in the same direction or the main surface of the tuning fork type crystal vibrating piece 2 is inclined with respect to the bottom surface inside the casing of the base 3. In this way, by joining by pressurization in which the convex portion T is crushed, it is possible to suppress the material constituting the first metal M1 from being excessively diffused by the joining.
  • Such an effect is related to the fact that the metal film such as the first metal film M is formed by plating, and the projection T is joined so as to be crushed, so that the metal film such as the first metal film M is joined.
  • film peeling at the time of impact such as when the crystal resonator 1 is dropped can be suppressed.
  • stable crushing can be obtained even with a metal film formed by plating.
  • the metal film M3 for adjustment of the tuning-fork type crystal vibrating piece 2 is reduced by beam irradiation or ion milling based on the measurement result.
  • the final frequency adjustment for finely adjusting the frequency is performed.
  • a lid (not shown) is joined to the base 3 on which the tuning-fork type crystal vibrating piece 2 having been subjected to the final frequency adjustment is mounted via a sealing member H by a technique such as heating and melting, and the tuning-fork type crystal.
  • the resonator element 2 is hermetically sealed inside a housing constituted by a base 3 and a lid (not shown). Examples of the above-described hermetic sealing methods include seam welding, beam welding, and atmosphere heating.
  • the tuning fork type crystal resonator 1 provided with the tuning fork type crystal vibrating piece 2 according to the present embodiment with the above configuration, the first metal film M1 (M11, M12) as a plating bump on the bonding material.
  • the tuning fork type crystal vibrating piece 2 can be stably electromechanically bonded to the base 3 by the first metal film M1 (M11, M12).
  • the tuning fork type crystal vibrating piece 2 is plated before the tuning fork type crystal vibrating piece 2 is mounted on the outside (base 3).
  • the first metal film M1 (M11, M12) as a bump can be formed.
  • the first metal film M1 (M11, M12) as the plating bump is always formed at a desired formation position, for example, the mounting position on the outside (base 3) of the tuning fork type crystal vibrating piece 2 is desired.
  • the tuning-fork type crystal vibrating piece 2 Even if it is displaced from the position, it is possible to prevent the tuning-fork type crystal vibrating piece 2 from being mounted on the outside (base 3) in a state where the bumps are displaced, and the tuning-fork type crystal vibration to the stable base 3 can be prevented.
  • the piece 2 can be mounted.
  • the first metal film M1 (M11, M12) having a rougher surface and a smaller area than the connection electrodes 295, 296 is used, the first metal film M1 (M11, M12) with respect to the electrode pad 32 is used.
  • the heat diffusion bonding is performed in a more stable state, and the electromechanical bonding is stabilized.
  • a convex portion T (T1, T2, T3) having a curved cross-sectional shape is easily formed on the upper surface of the first metal film M1 (M11, M12) due to the thickness difference of the second metal film M2 (M21, M22). Can do.
  • the convex portions T (T1, T2, T3) Due to the convex portions T (T1, T2, T3) having the curvature, the convex portions T (T1, T2, T3) are easily deformed (easy to be crushed) when ultrasonic bonding is performed, and can be reliably performed with a smaller pressure. Deformation (crushing) increases the bonding strength. Furthermore, damage to the tuning fork type crystal vibrating piece 2 itself can be eliminated. Further, even if the thickness varies between the first metal film M11 and the first metal film M12, the projection T (T1, T2, T3) absorbs the variation, and the connection electrode 295 and the connection electrode 296 The bonding strength between the two can also be balanced and stable.
  • the convex portion T (T1, T2, T3) having a cross-sectional curvature has the first metal film M1 (M11) except for the central region M0 (M01, M02) on the upper surface of the first metal film M1 (M11, M12). , M12) are formed in two or more along the upper surface end portion, so that the convex portions T (T1, T2, T3) deformed when the tuning-fork type quartz vibrating piece 2 is ultrasonically bonded to the base 3 are the first ones.
  • the piezoelectric vibrating piece is the tuning fork type crystal vibrating piece 2
  • the connection electrodes 295 and 296 of the tuning fork type crystal vibrating piece 2 and the electrode pad 32 of the base 3 are joined electrically
  • the first By increasing the bonding strength of the central region M0 (M01, M02) as well as the upper surface end of the metal film M1 (M11, M12), the occurrence of vibration leakage (acoustic leakage) is drastically reduced, and the tuning fork type crystal The electrical characteristics of the vibrator 1 are not deteriorated.
  • the tuning fork type crystal can be obtained along with the ultrasonic bonding. It is possible to make it difficult to damage the connection electrodes 295, 296, the first metal film M1 (M11, M12), or the electrode pad 32 (only a part is shown) of the resonator element 2.
  • the second metal film M2 (M21) is thinner than the first metal film M1 (M11, M12).
  • M22) are joined, and the first metal film M1 (M11, M12) is joined to the second metal film M2 (M21, M22), whereby the first metal film M1 (M11, M12) and the second metal film M2 (M21, M22) are joined.
  • the bonding strength of the two metal films M2 (M21, M22) is also increased, and the entire metal film becomes stable.
  • the first metal film M1 (M11, M12) and the second metal film M2 (M21, M22) are made of the same material, so that both the bonding strength and the stability of the plating formation are better.
  • the anchor effect is generated by interposing at least partially the second metal film M2 (M21, M22) having a smaller thickness between the first metal film M1 (M11, M12) and the connection electrodes 295, 296. Therefore, the strength is improved and the first metal film M1 (M11, M12) is more stable and more stable than the case where the first metal film M1 (M11, M12) is directly bonded to the connection electrodes 295, 296.
  • the bonding strength between the first metal film M1 (M11, M12) and the connection electrodes 295, 296 is weak, an impact such as dropping may occur when ultrasonic bonding is performed or after the connection electrodes 295, 296 are bonded.
  • mechanical stress may be generated between the first metal film M1 (M11, M12) and the connection electrodes 295, 296, cracks may occur, and defects such as disconnection may occur.
  • such a problem does not occur in the present embodiment.
  • the first metal film M1 (M11, M12) and the second metal film M2 (M21, M22) are formed on the short side portion 231 that is the base end portion of the joint portion 23, which is a joint region, by photolithography. Therefore, the positioning accuracy when the first metal film M1 (M11, M12) and the second metal film M2 (M21, M22) are formed on the tuning fork type crystal vibrating piece 2 is improved, and the tuning fork type crystal vibrating piece 2 is joined. Even when the portion 23 is small, the first metal film M1 (M11, M12) can be formed as a bonding member at an appropriate position of the tuning-fork type crystal vibrating piece 2.
  • the formation of at least one of the first metal film M1 (M11, M12) or the second metal film M2 (M21, M22) is collectively performed with the formation of other metal materials of the tuning-fork type crystal vibrating piece 2. It can be carried out.
  • the adjustment metal film M3 and the first metal film M1 (M11, M12) or the second metal film M3 (described later) formed at the tips of the first leg portion 21 and the second leg portion 22 are used.
  • the surface roughness of the first metal film M1 (M11, M12) and the second metal film M2 (M21, M22) with respect to the connection electrodes 295, 296 is increased.
  • the thickness can be easily formed roughly.
  • the second metal film M2 (M21, M22) having a small thickness can stably form a plating film on the upper part of the connection electrodes 295, 296 having a less surface roughness, and the first metal film having a large thickness.
  • the bonding strength between (M11, M12) and the connection electrodes 295, 296 is also increased and stabilized. Furthermore, by using a multipoint anchor in which a plurality of such second metal films M2 (M21, M22) are interposed, the joint strength is further increased. Further, a convex portion T (T1, T2, T3) having a curved cross-sectional shape is easily formed on the upper surface of the first metal film M1 (M11, M12) due to the thickness difference of the second metal film M2 (M21, M22). Can do.
  • first metal film M1 M11, M12
  • second metal film M2 M21, M22
  • batch processing is performed without causing a mechanical stress load on the tuning-fork type crystal vibrating piece 2.
  • the first metal film M1 (M11, M12) of the tuning fork type crystal vibrating piece 2 capable of obtaining the above-described effects can be ultrasonically bonded to the electrode pad 32 of the base 3, the connection electrode of the tuning fork type crystal vibrating piece 2 can be obtained.
  • the electromechanical joint strength between 295 and 296 and the electrode pad 32 of the base 3 can be more stably and simultaneously increased. As a result, it is possible to provide a tuning-fork type crystal resonator 1 that is inexpensive and has stable electrical characteristics and is advantageous for downsizing with higher reliability.
  • the piezoelectric vibrating piece is the tuning fork type crystal vibrating piece 2
  • the electromechanical joint strength between the connection electrodes 295 and 296 of the tuning fork type crystal vibrating piece 2 and the electrode pad 32 of the base 3 becomes unstable, Oscillation leakage (acoustic leakage) occurs and the electrical characteristics of the tuning fork type crystal resonator 1 are deteriorated, or an external force is applied to the tuning fork type crystal vibrating piece 2 to reduce the oscillation frequency of the tuning fork type crystal resonator 1.
  • a deviation may occur, according to the present invention, such a problem can be greatly reduced.
  • a groove is not formed on the main surface of each leg, a wide region is not formed at the tip of each leg, and a straight shape is eliminated.
  • the tuning-fork type crystal vibrating piece 2 is used.
  • the tuning fork type crystal vibrating piece 2 configured in this manner is often used for a tuning fork type crystal vibrating piece having a relatively larger size.
  • the tuning fork type crystal vibrating piece 2 is simpler and less expensive than the tuning fork type crystal vibrating piece 2 described above. can do.
  • the present invention can also be applied to the tuning-fork type crystal vibrating piece 2 having such a simple configuration. In the embodiment shown in FIG.
  • the first metal film M1 having a rougher surface roughness and a smaller area than the connection electrodes 295 and 296 on the main surface of the base portion is provided.
  • the planar view shape of the first metal film M1 is circular. Therefore, on the upper surface of the first metal film M1, for example, four convex portions T having a circular shape in plan view and a curved cross section are formed.
  • a tuning fork type piezoelectric vibrating piece that is bent and vibrated but also a thickness-slip vibration system such as an AT cut, a piezoelectric vibrating piece of another vibration mode, a flat plate shape, an inverted mesa shape, or the like. It can also be applied to a piezoelectric vibrating piece of the shape
  • a rectangular flat plate-shaped quartz diaphragm 4 formed by thickness-shear vibration such as AT cut is used.
  • the first metal film M1 having a rougher surface roughness and a smaller area than the connection electrodes 495 and 496 formed at the end of the main surface of the quartz crystal vibration plate 4 is provided.
  • the first metal film M1 has a circular shape in plan view. Therefore, on the upper surface of the first metal film M1, for example, four convex portions T having a circular shape in plan view and a curved cross section are formed.
  • a rectangular plate-shaped crystal diaphragm 4 made of AT cut or the like is used for a narrow bridge portion K1.
  • the first metal having a rougher surface and a smaller area than the connection electrodes 495 and 496 formed at the joint K2 at the tip of the bridge portion K1 of the quartz crystal plate 4. It has a membrane M1.
  • the first metal film M1 has a circular shape in plan view. Therefore, on the upper surface of the first metal film M1, for example, four convex portions T having a circular shape in plan view and a curved cross section are formed. Further, in the configuration of FIG.
  • a rectangular plate-shaped crystal diaphragm 4 made of AT cut or the like is used for a so-called inverted mesa structure in which a thin vibration region S1 and a thick holding region S2 are partially formed. ing.
  • a first surface having a rougher surface roughness and a smaller area than the connection electrodes 495, 496 (496 not shown) formed in the holding region S2 of the crystal diaphragm 4 is provided.
  • a metal film M1 is provided. Therefore, a convex portion T having a curved cross-sectional shape is formed on the upper surface of the first metal film M1.
  • convex parts S3 and S3 are formed by etching or the like on the base material body of the crystal diaphragm in a part of the holding region S2 of the crystal diaphragm 4, and the first metal film M1 is formed above the convex part.
  • a configuration corresponding to higher frequencies can be obtained by configuring the vibration region S1 to be thinner.
  • the mechanical strength of the connection region S4 between the thin vibration region S1 and the thick holding region S2 is likely to decrease, but the first metal film M1 provided with the convex portion T of the present embodiment.
  • the bonding can be reliably performed with a smaller pressing force, so that damage to the connection region S4 can be eliminated. That is, it is possible to eliminate cracks and breaks in the connection region S3.
  • the planar view shape is circular and the first metal film M ⁇ b> 1 (M ⁇ b> 11, M ⁇ b> 12) having the convex portion T is formed.
  • the first metal film M1 having an elliptical shape in plan view in which the X-axis direction is the long side direction and the Z′-axis direction is the short side direction as shown in FIG. 6 or as shown in FIG. It may be a first metal film M1 having a rectangular shape in plan view composed of a long side along the X-axis direction and a short side along the Z′-axis direction. In the first metal film M1 shown in FIGS.
  • the number of convex portions T shown in FIGS. 6 and 7 can be arbitrarily set, and the number of convex portions T arranged in the X-axis direction is larger than the number of convex portions T arranged in the Z′-axis direction. If there are many, the effect by the shape of the 1st metal film M1 shown in FIG.
  • the first metal film M1 has an elliptical shape in plan view and a rectangular shape in plan view in which the X-axis direction is the long side direction and the Z′-axis direction is the short side direction. Therefore, even if the tuning fork type crystal vibrating piece 2 is ultrasonically bonded to the base 3 and the vibration in the Z′-axis direction of the tuning fork type crystal vibrating piece 2 is generated, the first metal acts as a plating bump.
  • the tuning fork type crystal vibrating piece 2 is ultrasonically bonded, the ultrasonic vibration is received by the ridgeline in the long side direction (X-axis direction) of the first metal film M1 (M11, M12) acting as a plating bump. And excessive crushing in the thickness direction (Y direction) of the first metal film can be suppressed.
  • the planar view shape is circular and the first metal film M ⁇ b> 1 (M ⁇ b> 11, M ⁇ b> 12) having the convex portion T is formed.
  • the first metal film M1 having an elliptical shape in plan view in which the X-axis direction is the long side direction and the Z′-axis direction is the short side direction as shown in FIG. 8 is not limited thereto.
  • the length of the short side (in the central part in the long side direction) in the central region is short, and the recess 5 is formed in the central region.
  • one convex portion T is arranged in each of the regions at both end portions in the long side direction.
  • the X-axis direction is the long side direction and the Z′-axis direction is the short side direction, as in the embodiment shown in FIGS. Since it has an elliptical shape in plan view and a rectangular shape in plan view, after the tuning fork type crystal vibrating piece 2 is ultrasonically bonded to the base 3, even when vibration of the tuning fork type crystal vibrating piece 2 in the Z′-axis direction is generated, the vibration is generated.
  • the first metal film M1 (M11, M12) acting as a plating bump, and the base 3 and the tuning-fork type crystal vibrating piece 2 with the plating bump interposed therebetween.
  • the damage at the joint can be dispersed.
  • the first metal film M1 shown in FIG. 8 has a depression 5 that draws a gentle curve, and the depression 5 can be roughly regarded as an area in which short line regions are continuous.
  • the edge portion of the hollow portion 5 (the outer shape of the hollow portion 5) is formed as the edge of the first metal film M1 (M11, M12) that acts as a plating bump.
  • the present invention can be applied to a piezoelectric vibration device such as a crystal resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

圧電振動片(2)には、少なくとも一対の励振電極(291,292)が形成され、前記一対の励振電極(291,292)を外部電極(32)と電気機械的に接合させるために前記一対の励振電極(291,292)からそれぞれ引き出された少なくとも一対の引出電極(293,294)が形成されている。前記一対の引出電極(293,294)各々の先端部は、前記圧電振動片(2)の一主面(235)の一端部近傍に引き出された接続電極(295,296)を有する。前記各々の接続電極(295,296)の上面には、外部電極(32)に接合する第1金属膜(M1)が形成されている。前記第1金属膜(M1)では、その上面に2つ以上の凸部(T)を有し、前記各々の接続電極(295,296)より、表面粗さが粗く、面積が小さく、前記凸部(T)の断面形状は、曲率状に形成されている。

Description

圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法
 本発明は、電子機器などに用いられる圧電振動片、それを用いた圧電振動子、およびこれらの製造方法に関する。
 圧電振動子に代表される圧電振動デバイスは、携帯電話などの移動体通信機などに広く用いられている。圧電振動子に用いられる圧電振動片の一つとして水晶振動片がある。水晶振動片は、表裏主面に励振電極とこれらの励振電極を水晶振動片の端部に延出するための引出電極などが形成されている。このような水晶振動片は、上部が開口した箱状のパッケージ内部に形成された端子電極と、水晶振動片の引出電極の端部に形成された接合部(接続電極)とを導電性接合材を介して接合され、前記開口部分を蓋で気密封止することで表面実装型の水晶振動子が構成される。
 例えば特許文献1に示す水晶振動子では、水晶振動板とパッケージとを金属バンプなどの導電性接合材で電気機械的に接合しており、お互いの接合強度向上するために、水晶振動板に形成される励振電極と接続電極とで下地電極の材料と電極形成方法とを異ならせたものが開示されている。
特開2004-104719号公報
 しかしながら、特許文献1の構成では、電極形成のための製造工程が増えるだけでなく、電極構造も複雑なものとなる。結果としてコスト高となるだけでなく、より簡易な構成が望ましい小型化された圧電振動子には不向きな構成であった。また金属バンプとしてメッキバンブを用いた場合、その上面の形状が平たくなるため、FCB法により超音波接合するとメッキバンプの上面の周辺部分のみで変形して接合され、メッキバンブ上面の中央領域が接合されず、接合有効エリア(効率)が低くなることがあった。このような不具合を防止するために、より強い超音波付加条件によって圧電振動片をパッケージ内部に接合することがあるが、この場合、圧電振動片へ強いが外力が働くため、圧電振動片へのダメージが増すという新たな問題が生じる。
 本発明は、かかる点に鑑みてなされたものであり、より安価で小型化に有利な圧電振動デバイスの接合構造が得られる圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法を提供することを目的とするものである。
 上記の目的を達成するため、本発明にかかる圧電振動片は、前記圧電振動片には、少なくとも一対の励振電極が形成され、前記一対の励振電極を外部電極と電気機械的に接合させるために前記一対の励振電極からそれぞれ引き出された少なくとも一対の引出電極が形成され、前記一対の引出電極各々の先端部は、前記圧電振動片の一主面の一端部近傍に引き出された接続電極を有し、前記各々の接続電極の上面には、外部電極に接合する第1金属膜が形成され、前記第1金属膜では、その上面に2つ以上の凸部を有し、前記各々の接続電極より、表面粗さが粗く、面積が小さく、前記凸部の断面形状は、曲率状に形成されたことを特徴とする。
 本発明によれば、より安価で小型化に有利な圧電振動デバイス(圧電振動片)の接合構造が得られる。すなわち、本発明によれば、当該圧電振動片を搭載する圧電振動子などの外部部材の基板(パッケージ)に形成された外部電極(端子電極など)と、当該圧電振動片の前記接続電極との接合に関して、接合材を用いることなく前記第1金属膜により接合することが可能となる。その結果、より小型化された外部電極(端子電極など)に対する当該圧電振動片の前記接続電極の接合では、位置ずれやはみ出しが生じることがない。
 また、本発明によれば、前記接続電極より、表面粗さが粗く、面積が小さい前記第1金属膜を用い、前記第1金属膜の上面に断面形状が曲率状の凸部を有しているので、前記外部電極に対して前記第1金属膜がより安定した状態で電気的機械的な接合がされる。前記外部電極と当該圧電振動片の接続電極との接合に関して例えば超音波接合する場合、この断面形状が曲率状の前記凸部であれば、変形しやすく(つぶれやすく)なり、より小さな加圧力で確実に変形して(つぶれて)接合強度も高まる。そのため、仮に、前記一対の第1金属膜の間で厚みにばらつきが生じても、前記凸部でばらつきを吸収して、前記一対の接続電極の間の接合強度もバランスよく安定したものとすることが可能となる。
 しかも、この断面曲率状の前記凸部は、前記第1金属膜の上面に2つ以上に形成されているので、当該圧電振動片の接続電極を前記外部電極に接合する際に、前記凸部は前記第1金属膜の上面の前記凸部がもともと存在していなかった前記第1金属膜の上面の領域に向かって広がることが可能となる。このため、複数の前記凸部毎に外部電極と接合することで単位面積当たりの接合強度を高めることが可能となる。
 さらに、外部電極と当該圧電振動片の前記接続電極との接合に関して、例えば超音波接合する場合、複数の小さな前記凸部であれば変形しやすく(つぶれやすく)なり、より小さな加圧力で確実に変形して(つぶれて)接合することが可能となる。その結果、当該圧電振動片そのものに対するダメージをなくすことが可能となる。また、前記第1金属膜の上面端部から不要にはみ出して前記凸部が変形することも同時に抑制することが可能となる。そのため、超音波接合にともなって当該圧電振動片の前記接続電極や前記第1金属膜、あるいは前記外部電極に対してダメージを低減させることが可能となる。また、前記外部電極としての配線パターンを細くしたり、配線パターン間のピッチを狭くしたりすることが可能となり、小型化に対応可能となる。
 前記構成において、前記第1金属膜の上面に、前記第1金属膜の上面の中心領域を除いて前記第1金属膜の上面端部に沿って2つ以上の凸部を有してもよい。
 この場合、上述の作用効果に加えて、当該圧電振動片の接続電極を前記外部電極に接合する際に、前記凸部は前記第1金属膜の上面端部から前記凸部がもともと存在していなかった前記第1金属膜の上面の前記中心領域に向かって広がることが可能となり、前記第1金属膜の上面端部だけでなく前記中心領域を覆うように接合される。このため、複数の前記凸部毎に外部電極と接合することで単位面積当たりの接合強度を高めるだけでなく、前記第1金属膜の上面の前記中心領域の接合強度も同時に高めることが可能となる。つまり、前記第1金属膜の上面端部だけでなく前記中心領域の接合強度も高められ、外部電極に対する前記第1金属膜全体としての接合強度も飛躍的に高めることが可能となる。
 また、前記第1金属膜の上面端部に沿ってより多くの前記凸部(2つだけでなく、3つあるいはそれ以上)を形成することで、前記第1金属膜の上面端部からバランスよく均一に前記第1金属膜の前記中心領域に広がらせることが可能となるため、外部電極に対して、より安定し、接合強度も同時に高めた接合が可能となる。
 前記構成において、前記第1金属膜と前記接続電極の間には、前記接続電極より表面粗さが粗く、前記第1金属膜より面積が小さく、厚さが薄い第2金属膜が形成されてもよい。
 この場合、上述の作用効果に加えて、前記第2金属膜の厚み差によって前記第2金属膜の上方に配された前記第1金属膜の上面に、断面形状が曲率状の前記凸部を容易に構成することが可能となる。
 また、前記第1金属膜より表面粗さが粗くない前記接続電極に対して、前記第1金属膜より厚さが薄い前記第2金属膜が接合され、前記第2金属膜に対して前記第1金属膜が接合されることで、前記第1金属膜と前記第2金属膜との接合強度も高まり、金属膜全体(前記第1金属膜および前記第2金属膜)として安定したものとなる。また、予め前記第2金属膜を形成することで、前記接続電極の材質などによらずに前記第1金属膜を安定して形成することが可能となる。つまり、より厚さが薄い前記第2金属膜を前記第1金属膜と前記接続電極の間に少なくとも部分的に介在させることで、アンカー効果が生じて前記第1金属膜を直接、前記接続電極に接合するよりも強度が向上し、より安定したものとなる。
 特に、前記外部電極と当該圧電振動片の接続電極との接合に関して超音波接合を用いる場合、接合用の金属膜(本発明では前記第1金属膜)と前記接続電極との間でお互いの接合強度が弱いと、超音波接合する際に、あるいは前記接続電極との接合後に落下などの衝撃が加わった際に、接合用の金属膜(本発明では前記第1金属膜)と前記接続電極との間で機械的な応力が生じて、クラックが生じることがあり、その結果、断線するなどの不具合が生じることがある。これに対して、本発明ではこのような不具合が生じることもない。
 上記の目的を達成するため、本発明にかかる圧電振動子は、本発明にかかる圧電振動片が、外部電極である基板の端子電極に接合されたことを特徴とするものである。
 本発明によれば、より安価で小型化に有利な圧電振動デバイス(圧電振動子)の接合構造が得られる。すなわち、本発明によれば、前記振動片が設けられているので、上述の作用効果を有する。そのため、上述の作用効果が得られる前記圧電振動片の第1金属膜が前記基板の端子電極に接合されるため、前記圧電振動片の接続電極と前記基板の端子電極との電気的機械的な接合強度の向上と安定を同時に実現できる。結果として、安価で電気的な特性も安定した、より信頼性の高い小型化にも有利な圧電振動子を提供することが可能となる。
 上記の目的を達成するため、本発明にかかる圧電振動片の製造方法は、少なくとも一対の励振電極が形成され、前記一対の励振電極を外部電極と電気機械的に接合させるために前記一対の励振電極からそれぞれ引き出された少なくとも一対の引出電極が形成され、前記引出電極は前記圧電振動片の一主面の一端部近傍に引き出された接続電極を有する圧電振動片の製造方法であって、前記励振電極と前記引出電極とを蒸着法もしくはスパッタリング法により圧電振動片に形成する第1工程と、前記接続電極の上面に前記接続電極より面積が小さい2つ以上の第2金属膜をメッキ法により形成する第2工程と、前記第2金属膜の上面を含む前記接続電極の上面に、前記第2金属膜より面積が大きく、厚さが厚い第1金属膜を形成するとともに、前記第1金属膜の中心領域を除いて前記2つ以上の第2金属膜を配置するように前記第2金属膜の上面に前記第1金属膜をメッキ法により形成する第3工程からなることを特徴とする。
 本発明によれば、より安価で小型化に有利な圧電振動デバイス(圧電振動片)の接合構造が得られる。すなわち、本発明によれば、前記接続電極に対して前記第1金属膜と前記第2金属膜との表面粗さを容易に粗く形成することが可能となる。厚さが薄い前記第2金属膜は前記接続電極の上部に安定してメッキ膜を形成することが可能となり、厚さが厚い前記第1金属膜であっても前記第1金属膜を粗面の前記第2金属膜の上部に形成することで、膜境界でのメッキ膜の成長速度差の影響が及ぶのを抑えて安定したメッキ膜を成長させることが可能となる。また、前記第2金属膜より面積が大きく、かつ、厚さが厚い前記第1金属膜を形成することで、前記凸部の形状が曲率化しやすくなる。
 また、第3工程により、前記第1金属膜の上面に前記第1金属膜の上面の中心領域を除いて前記第1金属膜の上面端部に沿って2つ以上の前記凸部を形成するので、前記第2金属膜を用いることによる接続電極上における凹凸(厚み差)によって、前記第1金属膜の上面に断面形状が曲率状の前記凸部を容易に構成することが可能となる。また、前記第1金属膜と前記第2金属膜を形成する際に、前記圧電振動片に対して機械的な応力負荷を生じさせることなく、バッチ処理により行うことが可能となり、より安価に前記圧電振動片を作製することが可能となり、表面面積や形状、厚みの設計自由度が極めて高くなる。また、本発明にかかる製造方法により構成された前記圧電振動片は、上記の本発明にかかる圧電振動片と同様の作用効果が得られる。
 上記の目的を達成するため、本発明にかかる圧電振動子の製造方法は、本発明にかかる圧電振動片を外部電極である基板の端子電極に接合した圧電振動子の製造方法であって、前記第1工程から前記第3工程を経て構成された前記圧電振動片の前記第1金属膜を、前記端子電極に超音波接合したことを特徴とする。
 本発明によれば、より安価で小型化に有利な圧電振動デバイス(圧電振動子)の接合構造が得られる。すなわち、本発明によれば、上述の作用効果に加えて、上述のように安定して形成された前記凸部により安定した状態で超音波接合することができ、前記外部電極に対して前記第1金属膜がより安定した状態で熱拡散接合される。また、安定した電気的機械的な接合がされる。また、超音波接合する際にこのような前記凸部であれば変形しやすく(つぶれやすく)なり、より小さな加圧力で確実に変形し(つぶれ)接合強度も高まる。その結果、前記外部電極や前記接続電極を周辺の部材に対してのダメージをなくすことが可能となる。
 以上のように、本発明にかかる圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法によれば、より安価で小型化に有利な圧電振動デバイス(圧電振動片、圧電振動子)の接合構造が得られる。
図1は、本発明の実施の形態を示す音叉型水晶振動子の模式的な断面図である。 図2は、本発明の実施の形態を示す音叉型水晶振動片の一主面側の平面図である。 図3は、図2のA-A線における断面図である。 図4は、本発明の実施の形態の変形例における一部拡大した状態の平面図である。 図5は、本発明の他の実施の形態を示す図である。 図6は、図4に対応した他の実施の形態における一部拡大した状態の平面図である。 図7は、図4に対応した他の実施の形態における一部拡大した状態の平面図である。 図8は、図4に対応した他の実施の形態における一部拡大した状態の平面図である。
 以下、圧電振動片として音叉型水晶振動子を例に挙げて図面とともに説明する。本実施の形態で使用される音叉型水晶振動子1では、ベース3と図示しない蓋とが封止部材Hを介して接合されて筐体が構成される。具体的には、上部が開口したベース3の電極パッド32上に音叉型水晶振動片2がメッキバンプなどの第1金属膜M1を介して接合され、ベース3の開口部(開口)を封止するように、封止部材Hを介して開口の端面に板状の蓋を接合した構成となっている。ここで、本実施の形態では音叉型水晶振動子1の公称周波数は32.768kHzとなっている。なお、公称周波数は一例であり、他の周波数にも適用可能である。
 ベース3は、セラミック材料やガラス材料からなる絶縁容器体である。本実施の形態では例えば、ベース3は、セラミック材料からなり、焼成によって形成されている。ベース3は、周囲に堤部30を有し、かつ、上部が開口した断面視凹形状で、ベース3の内部(収納部)には音叉型水晶振動片2を搭載するための段差部31が形成されている。そして段差部31の上面には、一対の電極パッド32(図1では一方の電極パッド32のみ図示)が形成されている。一対の電極パッド32はベース3の内部に形成された図示しない配線パターンを介してベース3の底面(裏面)に形成されている2つ以上の端子電極33に電気的に接続されている。ベース3の堤部30の周囲にはメタライズ層34(封止部材Hの一部を構成)が周状に形成されている。電極パッド32や端子電極33、メタライズ層34は例えば3層から構成されており、下からタングステン、ニッケル、金の順で積層されている。タングステンはメタライズ技術により、セラミック焼成時に一体的に形成され、ニッケル、金の各層はメッキ技術により形成される。なお、タングステンの層にモリブデンを使用してもよい。
 図示しない蓋は、例えば金属材料やセラミック材料、ガラス材料などからなり、平面視矩形状の一枚板に成形されている。この蓋の下面には封止材(封止部材Hの一部を構成)が形成されている。この蓋はシーム溶接やビーム溶接、加熱溶融接合などの手法により封止材を介してベース3に接合されて、蓋とベース3とによる水晶振動子1の筐体が構成される。
 音叉型水晶振動片2は、図示していないが、X軸方向、Y軸方向、およびZ’軸方向の結晶方向を有する異方性材料の水晶Z板からなる1枚の水晶ウェハから成形される。音叉型水晶振動片2の外形は、フォトリソグラフィ技術を用いて、レジストまたは金属膜をマスクとして例えばウェットエッチングによって一括的に成形されている。
 音叉型水晶振動片2は、図2に示すように、振動部である2本の第1脚部21および第2脚部22と、外部(本実施の形態ではベース3の電極パッド32)に接合する接合部23と、これら第1脚部21および第2脚部22と接合部23とを突出して設けた基部25と、から構成された外形からなる。
 基部25は、平面視左右対称形状とされ、図2に示すように、振動部(第1脚部21,第2脚部22)より幅広に形成されている。また、基部25の他端面252付近が、一端面251から他端面252にかけて幅狭になるように漸次段差形成されている。このため振動部である第1脚部21および第2脚部22の振動により発生した漏れ振動を他端面252により減衰させることができ、接合部23へ漏れ振動が伝わるのを抑制することができ、音響リーク(振動漏れ)を更に低減するのに好ましい。なお、基部25の他端面252付近における漸次幅狭になる構成としては段差形状に限らずテーパ状や、曲面状としてもよい。
 2本の第1脚部21および第2脚部22は、図2に示すように、基部25の一端面251から突出して隙間部253を介して並設されている。なお、ここでいう隙間部253は、一端面251の幅方向の中央位置(中央領域)に設けられている。これら第1脚部21および第2脚部22の先端部211,221は、第1脚部21および第2脚部22の他の部位(第1脚部21および第2脚部22の基部25側の部位を除く)に比べて突出方向に対して直交する方向に幅広に成形され(以下、脚部の幅広領域と称する)、さらにそれぞれ隅部は曲面形成されている。このように先端部211,221を幅広に成形することで、先端部211,221(先端領域)を有効に利用することができ、音叉型水晶振動片2の小型化に有用であり、低周波数化にも有用である。また、それぞれ先端部211,221の隅部を曲面形成することで、外力を受けた時などに堤部などに接触するのを防止することができる。
 2つの第1脚部21および第2脚部22の一主面261と他主面262には、音叉型水晶振動片2の小型化により劣化する直列共振抵抗値(本実施の形態ではCI値、以下同様)を改善させるために、溝部27がそれぞれ形成されている。また、音叉型水晶振動片2の外形のうち側面28の一部は一主面261と他主面262とに対して傾斜して成形されている。これは、音叉型水晶振動片2を湿式でエッチング成形する際に基板材料の結晶方向(図2に示すX,Y方向)へのエッチングスピードが異なることに起因している。
 接合部23は、図2に示すように、下記する引出電極293,294を外部電極(本発明でいう外部であり、本実施の形態ではベース3の電極パッド32)と電気機械的に接合するためのものである。具体的に、接合部23は、2本の第1脚部21および第2脚部22が突出した基部25の一端面251と対向する他端面252の幅方向の中央位置(中央領域)から突出形成されている。すなわち、2本の第1脚部21と第2脚部22との間に配された隙間部253と正対向する位置に、接合部23が突出形成されている。
 接合部23は、基部25の他端面252に対して平面視垂直方向に突出した他端面252よりも幅狭な短辺部231と、短辺部231の先端部と連なり短辺部231の先端部において平面視直角に折曲されて基部25の幅方向に延出する長辺部232とから構成され、接合部23の先端部233は基部25の幅方向に向いている。すなわち、接合部23は、平面視L字状に成形され、平面視L字状に成形された折曲箇所である折曲部234が短辺部231の先端部に対応する。このように基部25の他端面252よりも短辺部231が幅狭な状態で形成されているので、振動漏れのさらなる抑制の効果が高まる。
 本実施の形態では、接合部23の基端部にあたる短辺部231の折曲部234が、外部と接合する接合領域とされ、接合部23の先端部233にあたる長辺部232の先端部が、外部と接合する接合領域とされる。そして、接合部23の基端部である短辺部231には下記する第2励振電極292から短辺部231の端部(一端部へ)引き出された引出電極294(本発明でいう接続電極)が形成され、接合部の先端部である長辺部232に、下記する第1励振電極291から長辺部232の端部(一端部へ)引き出された引出電極293(本発明でいう接続電極)が形成されている。
 本実施の形態にかかる音叉型水晶振動片2には、異電位で構成された2つの第1励振電極291および第2励振電極292と、これら第1励振電極291および第2励振電極292を電極パッド32に電気的に接続させるためにこれら第1励振電極291および第2励振電極292から引き出された引出電極293,294と、接続電極295,296とが一体的に同時形成されている。接続電極295,296の先端部各々には、後述する金属膜(第1金属膜M1,第2金属膜M2)が形成されている。なお、本実施の形態でいう2つの引出電極293,294は、2つの第1励振電極291および第2励振電極292からそれぞれ引き出された電極パターンのことをいう。接続電極295,296は、引出電極293,294の先端部分のうち、ベース3との接合部位となる箇所に形成されている。
 2つの第1励振電極291および第2励振電極292の一部は、溝部27の内部に形成されている。このため、音叉型水晶振動片2を小型化しても第1脚部21および第2脚部22の振動損失が抑制され、CI値を低く抑えることができる。
 第1励振電極291は、第1脚部21の両主面(一主面261と他主面262)と第2脚部22の両側面28に形成されている。同様に、第2励振電極292は、第2脚部22の両主面(一主面261と他主面262)と第1脚部21の両側面28に形成されている。
 次に、音叉型水晶振動片2の製造方法について説明する。
 X軸方向、Y軸方向、およびZ’軸方向の結晶方向を有する異方性材料の水晶Z板からなる1枚の水晶ウェハを用い、水晶ウエハから、多数個の音叉型水晶振動片2をマトリックス状に一括形成する。この時、音叉型水晶振動片2の外形は、フォトリソグラフィ技術を用いて、レジストまたは金属膜をマスクとして例えばウェットエッチングによって一括的に成形する。
 そして、音叉型水晶振動片2の外形の成形と同時に、第1励振電極291および第2励振電極292や引出電極293,294、接続電極295,296を形成する。本実施の形態では、第1励振電極291および第2励振電極292や引出電極293,294、接続電極295,296を、下記の第1工程,第2工程,第3工程を順に経て形成する。
 ―第1工程―
 上記した音叉型水晶振動片2の第1励振電極291および第2励振電極292や引出電極293,294、接続電極295,296は、金属蒸着によって各第1脚部21および第2脚部22上にクロム(Cr)層が形成され、このクロム層上に金(Au)層が形成されて構成される薄膜である。この薄膜は、真空蒸着法やスパッタリング法などの手法により基板全面に形成された後、フォトリソグラフィ法によりメタルエッチングして所望の形状に形成されることで、一体的に同時形成される。なお、第1励振電極291,第2励振電極292および引出電極293,294がクロム(Cr),金(Au)の順に形成されているが、例えば、クロム(Cr),銀(Ag)の順や,クロム(Cr),金(Au),クロム(Cr)の順や,クロム(Cr),銀(Ag),クロム(Cr)の順などであってもよい。またクロム(Cr),金(Au),クロム(Cr),金(Au)等の複数の膜が積層されたものであってもよい。下地のクロム(Cr)は、ニッケル(Ni),チタン(Ti),クロム(Cr)とニッケル(Ni)との合金からなるニクロムなどであってもよい。
 各第1脚部21および第2脚部22の先端部211,221の一主面261と他主面262には、上記した第1脚部21および第2脚部22の幅広領域に対してほぼ全面に引出電極293,294がそれぞれ形成されている。
 接合部23の一主面235に形成された引出電極293,294の上面におけるベース3との接合部位になる箇所には、接続電極295,296より表面粗さが粗く面積が小さい第1金属膜M1(M11,M12)が形成されている。第1金属膜M1(M11,M12)の平面視形状は、円形状となる。
 この第1金属膜M1(M11,M12)の上面に、第1金属膜M1の上面の中心領域M0(M01,M02)を除いて第1金属膜M1の上面端部に沿って2つ以上の凸部Tを有する。本実施の形態では例えば平面視形状が円で、3つの凸部T(T1,T2,T3)が形成しており、第1金属膜M1の上面端部に沿ってより多くの凸部T1,T2,T3が形成されている。そのため、第1金属膜M1の上面端部からバランスよく均一に第1金属膜M1の中心領域M0(M01,M02)に向けて凸部T1,T2,T3を広がらせることができるため、拡散接合後の電極パッド32(図1では一方の電極パッド32のみ図示)に対してもより安定し強度も同時に高めることができる。この効果は凸部Tが3つ以上あれば高まり、4つあるいは5つと数が増えればその効果もさらに高めることができる。ただし凸部Tを作製する際の製造の容易性が高く、凸部Tが相互に干渉しない状態で有効に接合強度を向上させることができる凸部Tの構成として、3つか4つ程度を形成するのが望ましい。なお、図4(図4(a),図4(b))に、複数の凸部Tを示し、具体的には、図4(a)に凸部Tを2つ形成した形態を示し、図4(b)に凸部Tを4つ形成した形態を示す。また、図2や図4に示す実施の形態では、第1金属膜M11の凸部Tの大きさと、第1金属膜M12の凸部Tの大きさとが全て同じになっているが、これに限定されるものではなく、一方の凸部Tが他方の凸部Tより大きくてもよい。例えば、第1金属膜M11の凸部Tの大きさが、第1金属膜M12の凸部Tの大きさより大きくなってもよい。この場合、音叉型圧電振動片2をベース3に接合する際の接合全体としての接合強度を高めることができる。つまり、基部25に近い側の第1金属膜(本実施の形態では第1金属膜M12)における接合が、音叉型圧電振動片2をベース3に接合する際の接合強度に大きく関わり、この部分の接合強度を高めることで、音叉型圧電振動片2をベース3に接合する際の接合全体としての接合強度を高めることができる。
 具体的には、第1金属膜M11は、接合部23の一主面235の折曲部234の接続電極296の上面に、第1金属膜M11と同材質で、第1金属膜M11より面積が小さく、接続電極296より面積が小さく、第1金属膜M11より厚さが薄い第2金属膜M21が形成されている。この第2金属膜M21は、平面視円形状からなり、第1金属膜M1の形成領域で、その中心領域M01を除いて第1金属膜M1の上面端部に沿って3つの凸部T1,T2,T3を介在した状態で形成されている。第1金属膜M12は、接合部23の一主面235の先端部233の接続電極295の上面に、第1金属膜M12と同材質で、第1金属膜M12より面積が小さく、接続電極295より面積が小さく、第1金属膜M12より厚さが薄い第2金属膜M22が形成されている。この第2金属膜M22は、平面視円形状からなり、第1金属膜M1の形成領域で、その中心領域M02を除いて第1金属膜M1の上面端部に沿って3つの凸部T1,T2,T3を介在した状態で形成されている。
 凸部Tの断面形状は、図3に示すように曲率を有した円弧形状(以下、曲率状という)からなる(本実施の形態では、半楕円形状)。この凸部Tを曲率状(円弧形状)に形成する場合、少なくとも凸部Tの先端部分が曲面になっていればよいが、凸部T全体が曲面(半円形状や半楕円形状)である方が接合強度と安定性がより高められる点で望ましい。なお、このような凸部Tは、第1金属膜M1(M11,M12)と接続電極295,296との間に、接続電極295,296より表面粗さが粗く、第1金属膜M1(M11,M12)と同材質で、第1金属膜M1(M11,M12)より面積が小さく、厚さが薄い第2金属膜M2(M21,M22)が形成されて構成される。なお、本実施の形態のように、二層以上の金属膜(第1金属膜M1および第2金属膜M2)を積層することで断面形状が曲率状の凸部Tを構成するものに限らず、例えば図5に示す形態であってもよい。図5は、図5(a),図5(b),図5(c),および図5(d)から構成され、図5(a)は、音叉型水晶振動片2の概略平面図を示し、図5(b),(c)は、ATカットなどの水晶振動板4の概略平面図を示し、図5(d)は、ATカットなどの水晶振動板4の概略断面図を示す。特に図5(d)に示すように、水晶振動板4の母材部分に4つの凸部S3(図では2つの凸部S3を示す)が形成されている。このように凸部S3が形成されることで、第1金属膜M1のみで断面形状が曲率状の凸部Tを構成することもできる。
 上記の図5に示す実施の形態によれば、第2金属膜M2(M21,M22)の厚み差によって第2金属膜M2(M21,M22)の上方に配された第1金属膜M1(M11,M12)の上面に、断面形状が曲率状の凸部T(T1,T2,T3)を容易に構成することができる。
 第2金属膜M2(M21,M22)は、第1金属膜M1(M11,M12)の厚みの2倍から20倍の大きさ(厚さ)で形成されている。例えば第2金属膜M2(M21,M22)はその厚みが1~2μm程度で形成されており、第1金属膜M1(M11,M12)はその厚みが4~20μm程度で形成されている。なお、超音波接合後(FCB後)には少なくとも第1金属膜M1(M11,M12)は面方向に拡がって潰れた状態となり、約半分程度の厚みになる。第1金属膜M1(M11,M12)の厚みが4μmより小さいと、音叉型水晶振動片2の接続電極295,296とベース3の電極パッド32との隙間が小さくなり、音叉型水晶振動子1の電気的特性に悪影響を生じやすくなる。第1金属膜M1(M11,M12)の厚みが20μmより大きいと、音叉型水晶振動片2の傾きや位置ずれの影響が生じやすくなり、接合強度としてもばらつきが生じやすくなる。なお、メッキバンプとしての第1金属膜M1(M11,M12)の平面視形状、および中間メッキバンプとしての第2金属膜M2(M21,M22)の平面視形状は、円形状のものを例にしているが、接続電極などの平面視形状に応じて、楕円形などの他の曲率形状のものや、長方形や正方形を含む多角形状のものなど自由に構成することができる。
 ―第2工程―
 接合部23への第1金属膜M1(M11,M12)および第2金属膜M2(M21,M22)の形成に関して、接合部23の各領域(接続電極295,296の上面)に図示しない第2金属膜M2(M21,M22)の形成部(接続電極295,296より面積の小さい窓部を有するマスク)をフォトリソグラフィ法により所望の形状(本実施の形態では矩形状の窓部)に形成して、第2金属膜M2(M21,M22)の形成部に、第2金属膜M2(M21,M22)を電解メッキ法などの手法によりメッキ形成する。
 ―第3工程―
 第2金属膜M2(M21,M22)の各領域(第2金属膜M2の上面)に図示しない第1金属膜M1(M11,M12)の形成部(接続電極295,296より面積の小さく、第2金属膜M2より面積の大きい窓部を有するマスク)をフォトリソグラフィ法により所望の形状(本実施の形態では円形状の窓部)に形成して、第1金属膜M1(M11,M12)の形成部に第1金属膜M1(M11,M12)を電解メッキ法などの手法によりメッキ形成する。その後、アニール処理を行ってもよい。
 また、第1脚部21および第2脚部22の一主面261に配された幅広領域に形成された引出電極293,294の上面には、図2に示すように、レーザービームなどのビーム照射によって金属膜の質量削減を行うことで音叉型水晶振動片2の周波数を調整してなる調整用金属膜(周波数調整用錘)M3が引出電極293,294に対して若干小さな面積で一体形成されている。調整用金属膜M3は、例えば、各幅広領域に形成された引出電極293,294に対して、調整用金属膜M3の形成部(所望の形状)をフォトリソグラフィ法により形成して、調整用金属膜M3の形成部に調整用金属膜M3を電解メッキ法などの手法によりメッキ形成する。また、このメッキ形成後、アニール処理を行ってもよい。これら調整用金属膜M3などの金属膜をメッキ形成する際には、上記した第1金属膜M1(M11,M12)あるいは第2金属膜M2(M21,M22)の少なくとも1つ以上と同じ工程で同時に構成すると実用上より望ましい。第1金属膜M1(M11,M12)、第2金属膜M2(M21,M22)、調整用金属膜M3は、同材質のもので構成されており例えば金(Au)からなる。
 以上のように構成された音叉型水晶振動片2は、上記ウェハの状態の際に各々の音叉型水晶振動片2の周波数を計測した後、各々の音叉型水晶振動片2の調整用金属膜M3をビーム照射などで減少させたり、パーシャル蒸着により増加させたりすることで、周波数の粗調整を行っている。
 周波数粗調整が施され、その後ウェハから取り出された個片の音叉型水晶振動片2は、その一主面261側の接続電極295,296の上面に形成された第1金属膜M1(M11,M12)とベース3の電極パッド32とがFCB法により超音波接合され、ベース3に搭載される。なお、音叉型水晶振動片2をベース3に搭載する際、ベース3の搭載部などに対してアッシングを行い音叉型水晶振動片2とベース3の接合界面(第1金属膜M1など)の活性化を行う。なお、アッシング処理についてはウェハの状態で実施してもよい。そして、接合箇所の活性化を行った状態で、第1金属膜M1の一部分(凸部T)が潰れる加圧によりベース3に音叉型水晶振動片2を接合する。この時、ベース3の筐体の内部の底面に対して、音叉型水晶振動片2の主面が同一方向に向く、もしくは、音叉型水晶振動片2の主面が傾くように配する。このように、凸部Tが潰れる加圧による接合とすることで、接合によって第1金属M1を構成する材料が過剰に拡散するのを抑制することができる。なお、このような効果は、第1金属膜Mなどの金属膜がメッキ形成されていることに関係しており、凸部Tが潰れるように接合するので、第1金属膜Mなどの金属膜に生じる過剰拡散やダメージを減らし、その結果、当該水晶振動子1を落下させた際などの衝撃時の膜剥がれを抑えることができる。また、この膜形成の製造方法によれば、メッキ形成された金属膜であっても安定した潰れを得ることができる。
 ベース3に搭載された音叉型水晶振動片2に対して周波数を再計測した後、測定結果に基づいて音叉型水晶振動片2の調整用金属膜M3をビーム照射やイオンミーリングなどで減少させることで、周波数の微調整を行う最終の周波数調整を行っている。
 その後、最終の周波数調整が行われた音叉型水晶振動片2が搭載されたベース3に対して、図示しない蓋を加熱溶融接合などの手法により封止部材Hを介して接合し、音叉型水晶振動片2をベース3と図示しない蓋とで構成された筐体の内部に気密封止する。なお、上述の気密封止の手法として、シーム溶接、ビーム溶接、雰囲気加熱などの手法をあげることができる。
 以上のような構成により、本実施の形態にかかる音叉型水晶振動片2が設けられた音叉型水晶振動子1によれば、接合材にメッキバンプとしての第1金属膜M1(M11,M12)を用いることで、より小型化された電極パッド32や接続電極295,296に対しても位置ずれやはみ出しが生じることがない。また、安定してベース3上に音叉型水晶振動片2を第1金属膜M1(M11,M12)により電気機械的に接合することができる。具体的には、メッキバンプとしての第1金属膜M1(M11,M12)を用いることで、音叉型水晶振動片2を外部(ベース3)に搭載する前に、音叉型水晶振動片2にメッキバンプとしての第1金属膜M1(M11,M12)を形成することができる。その結果、常に所望の形成位置にメッキバンプとしての第1金属膜M1(M11,M12)が形成されているので、例えば、音叉型水晶振動片2の外部(ベース3)への搭載位置が所望位置からずれた場合であっても、音叉型水晶振動片2が外部(ベース3)にバンプがずれた状態で搭載されることを防止することができ、安定したベース3への音叉型水晶振動片2の搭載を行うことができる。
 また、接続電極295,296より、表面粗さが粗く、面積が小さい第1金属膜M1(M11,M12)を用いているので、電極パッド32に対して第1金属膜M1(M11,M12)がより安定した状態で熱拡散接合され電気的機械的な接合が安定する。また第2金属膜M2(M21,M22)の厚み差によって第1金属膜M1(M11,M12)の上面に断面形状が曲率状の凸部T(T1,T2,T3)を容易に構成することができる。この曲率状の凸部T(T1,T2,T3)により、超音波接合する際にこの凸部T(T1,T2,T3)が変形しやすく(つぶれやすく)なり、より小さな加圧力で確実に変形して(つぶれて)接合強度も高まる。さらに、音叉型水晶振動片2そのものに対するダメージをなくすこともできる。また、第1金属膜M11と第1金属膜M12の間で厚みにばらつきが生じても、この凸部T(T1,T2,T3)でばらつきを吸収して、接続電極295と接続電極296との間の接合強度もバランスよく安定したものとすることができる。
 しかも、この断面曲率状の凸部T(T1,T2,T3)は、第1金属膜M1(M11,M12)の上面の中心領域M0(M01,M02)を除いて第1金属膜M1(M11,M12)の上面端部に沿って2つ以上に形成されているので、音叉型水晶振動片2をベース3に超音波接合する際に変形した凸部T(T1,T2,T3)は第1金属膜M1(M11,M12)の上面端部から凸部T(T1,T2,T3)のもともと存在していなかった第1金属膜M1(M11,M12)の上面の中心領域M0(M01,M02)に向かって広がることができ、変形後に第1金属膜M1(M11,M12)の上面端部だけでなく中心領域M0(M01,M02)を覆うように拡散接合されるため、第1金属膜M1(M11,M12)の上面の中心領域M0(M01,M02)の接合強度も高めることができる。つまり、第1金属膜M1(M11,M12)の上面端部だけでなく中心領域M0(M01,M02)の接合強度も高められ、電極パッド32に対する第1金属膜M1(M11,M12)全体としての接合強度も飛躍的に高めることができる。特に、圧電振動片が音叉型水晶振動片2である場合、音叉型水晶振動片2の接続電極295,296とベース3の電極パッド32との電気的機械的な接合される際に、第1金属膜M1(M11,M12)の上面端部だけでなく中心領域M0(M01,M02)の接合強度も高められることで、振動漏れ(音響リーク)の発生が飛躍的に低減され、音叉型水晶振動子1の電気的特性が劣化することがなくなる。
 また、第1金属膜M1(M11,M12)の上面端部から不要にはみ出して凸部T(T1,T2,T3)が変形することも同時に抑制できるため、超音波接合にともなって音叉型水晶振動片2の接続電極295,296や第1金属膜M1(M11,M12)、あるいは電極パッド32(一部のみ図示)に対してダメージを与え難くすることができる。
 また、第1金属膜M1(M11,M12)より表面粗さが粗くない接続電極295,296に対しては第1金属膜M1(M11,M12)より厚さが薄い第2金属膜M2(M21,M22)が接合され、第2金属膜M2(M21,M22)に対して第1金属膜M1(M11,M12)が接合されていることで、第1金属膜M1(M11,M12)と第2金属膜M2(M21,M22)の接合強度も高まり、金属膜全体として安定したものとなる。特に、本実施の形態では第1金属膜M1(M11,M12)と第2金属膜M2(M21,M22)を同材質にしているので、接合強度の面でもメッキ形成の安定性の面でもより望ましいものとなる。つまり、より厚さが薄い第2金属膜M2(M21,M22)を第1金属膜M1(M11,M12)と接続電極295,296の間に少なくとも部分的に介在させることで、アンカー効果が生じて第1金属膜M1(M11,M12)を直接接続電極295,296に接合するよりも強度が向上し、より安定したものとなる。特に第1金属膜M1(M11,M12)と接続電極295,296との間でお互いの接合強度が弱いと、超音波接合する際、あるいは接続電極295,296との接合後に落下などの衝撃が加わった際に、第1金属膜M1(M11,M12)と接続電極295,296との間で機械的な応力が生じて、クラックが生じることがあり、断線するなどの不具合が生じることがあるが、本実施の形態ではこのような不具合が生じることもない。
 また、接合領域とされた接合部23の基端部である短辺部231に、フォトリソグラフィ法により第1金属膜M1(M11,M12)および第2金属膜M2(M21,M22)が形成されるので、第1金属膜M1(M11,M12)および第2金属膜M2(M21,M22)を音叉型水晶振動片2に形成する際の位置決め精度を高めて、音叉型水晶振動片2の接合部23が小さくなった場合であっても、音叉型水晶振動片2の適切な位置へ接合部材として第1金属膜M1(M11,M12)を形成することができる。また、第1金属膜M1(M11,M12)、または第2金属膜M2(M21,M22)の少なくとも1つ以上の形成を、音叉型水晶振動片2の他の金属材料の形成と一括して行うことができる。特に、音叉型水晶振動片2であれば、第1脚部21および第2脚部22の先端に形成される後述する調整用金属膜M3と第1金属膜M1(M11,M12)あるいは第2金属膜M2(M21,M22)の少なくとも1つ以上と同時形成することで、不要な工程を増加させることがなくなり、タクトを向上させることができる。
 また、上述のような第1工程~第3工程を経ることで、接続電極295,296に対して第1金属膜M1(M11,M12)と第2金属膜M2(M21,M22)の表面粗さを容易に粗く形成することができる。厚さが薄い第2金属膜M2(M21,M22)はより表面粗さが粗くない接続電極295,296の上部に安定してメッキ膜を形成することができ、厚さが厚い第1金属膜M1(M11,M12)であっても粗面の第2金属膜M2(M21,M22)の上部に形成することで、膜境界でのメッキ膜の成長速度差の影響を小さくし安定してメッキ膜を成長させることができる。また第1金属膜M1(M11,M12)の上面に第1金属膜M1(M11,M12)の上面の中心領域M0(M01,M02)を除いて第1金属膜M1(M11,M12)の上面端部に沿って3つの凸部T(T1,T2,T3)を形成することができ、第2金属膜M2(M21,M22)がアンカーとして機能することで、最終的な第1金属膜M1(M11,M12)と接続電極295,296との接合強度も高まり安定したものとなる。さらにこのような第2金属膜M2(M21,M22)が複数介在する多点アンカーとすることでその接合強度はより一層高まるものである。また第2金属膜M2(M21,M22)の厚み差によって第1金属膜M1(M11,M12)の上面に断面形状が曲率状の凸部T(T1,T2,T3)を容易に構成することができる。また第1金属膜M1(M11,M12)と第2金属膜M2(M21,M22)を形成する際に、音叉型水晶振動片2に対して機械的な応力負荷を生じさせることなく、バッチ処理により行うことができより安価に作製することができ、表面積や形状、厚みの設計自由度が極めて高くなる。
 また、上述の作用効果が得られる音叉型水晶振動片2の第1金属膜M1(M11,M12)によってベース3の電極パッド32と超音波接合が行えるため、音叉型水晶振動片2の接続電極295,296とベース3の電極パッド32との電気的機械的な接合強度もより安定し同時に高めることができる。結果として、安価で電気的な特性も安定したより信頼性の高い小型化にも有利な音叉型水晶振動子1を提供することができる。特に、圧電振動片が音叉型水晶振動片2である場合、音叉型水晶振動片2の接続電極295,296とベース3の電極パッド32との電気的機械的な接合強度が不安定になると、振動漏れ(音響リーク)が発生して音叉型水晶振動子1の電気的特性が劣化したり、音叉型水晶振動片2に外力がかかったりすることで音叉型水晶振動子1としての発振周波数のズレなどが生じる場合があるが、本発明によれば、このような不具合を大きく減じることができる。
 次に、本発明の他の実施の形態について図5とともに説明する。図5(a)の平面図では、各脚部の主面には溝部が形成されておらず、各脚部の先端部には幅広領域が形成されておらず、接合部をなくしたストレート形状の音叉型水晶振動片2を使用している。このように構成された音叉型水晶振動片2は比較的よりサイズの大きな音叉型水晶振動片などで用いられることが多く、上述の音叉型水晶振動片2に対してより簡易で安価な構成とすることができる。本発明はこのように簡易な構成の音叉型水晶振動片2に対しても適用することができる。図5(a)に示す実施の形態では、基部の主面の接続電極295,296より、表面粗さが粗く、面積が小さい第1金属膜M1を有する。この第1金属膜M1の平面視形状が円形状となる。そのため、第1金属膜M1の上面には、例えば平面視形状が円形状となり、断面形状が曲率状の4つの凸部Tが形成されている。
 また、本実施の形態では、屈曲振動してなる音叉型圧電振動片に限らず、ATカットなどの厚みすべり振動系や他の振動モードの圧電振動片、あるいは平板形状や逆メサ形状などの他の形状の圧電振動片にも適用できる。図5(b)の平面図では、ATカットなどの厚みすべり振動してなる矩形平板形状の水晶振動板4を使用している。図5(b)に示す実施の形態では、水晶振動板4の主面端部に形成された接続電極495,496より、表面粗さが粗く、面積が小さい第1金属膜M1を有する。この第1金属膜M1の平面視形状は円形状となる。そのため、第1金属膜M1の上面には、例えば平面視形状が円形状となり、断面形状が曲率状の4つの凸部Tが形成されている。
 図5(c)の平面図では、ATカットなどからなる矩形平板形状の水晶振動板4に幅狭のブリッジ部K1を構成したものに使用している。図5(c)に示す実施の形態では、水晶振動板4のブリッジ部K1の先端部の接合部K2に形成された接続電極495,496より、表面粗さが粗く、面積が小さい第1金属膜M1を有する。この第1金属膜M1の平面視形状は円形状となる。そのため、第1金属膜M1の上面には例えば平面視形状が円で断面形状が曲率状の4つの凸部Tが形成されている。また、図5(c)の構成では幅狭のブリッジ部K1によって接合部K2から振動領域K3へ不要な応力などを伝えることが抑制された構成とすることができる。このような構成では、ブリッジ部K1の機械的な強度が低下しやすくなるが、本実施の形態の凸部Tを具備した第1金属膜M1を形成することで、例えば超音波接合する際により小さな加圧力で確実に接合することができるため、このブリッジ部K1に対するダメージをなくすことができる。つまり、ブリッジ部K1での割れや破断をなくすことができる。
 図5(d)の断面図では、ATカットなどからなる矩形平板形状の水晶振動板4に一部薄肉の振動領域S1と厚肉の保持領域S2を形成したいわゆる逆メサ構成のものに使用している。図5(d)に示す実施の形態では、水晶振動板4の保持領域S2に形成された接続電極495,496(496については図示せず)より、表面粗さが粗く、面積が小さい第1金属膜M1を有する。そのため、第1金属膜M1の上面には、断面形状が曲率状の凸部Tが形成されている。この実施の形態では水晶振動板4の保持領域S2の一部に水晶振動板の母材本体にエッチングなどにより凸部分S3、S3を形成しており、この凸部分の上部に第1金属膜M1を構成することで断面形状が曲率状の凸部Tを構成している点で上記実施の形態と異なっている。図5(d)の構成では、振動領域S1をより薄く構成することでより高周波に対応した構成とすることができる。このような構成では薄肉の振動領域S1と厚肉の保持領域S2との接続領域S4の機械的な強度が低下しやすくなるが、本実施の形態の凸部Tを具備した第1金属膜M1を形成することで、例えば超音波接合する際により小さな加圧力で確実に接合することができるため、この接続領域S4に対するダメージをなくすことができる。つまり接続領域S3での割れや破断をなくすことができる。
 また、上記の本実施の形態では、図2,4に示すように、平面視形状が円形状となり、凸部Tを有する第1金属膜M1(M11,M12)が形成されているが、これに限定されるものではなく、図6に示すようなX軸方向が長辺方向となりZ’軸方向が短辺方向となる平面視楕円形状の第1金属膜M1や、図7に示すようなX軸方向に沿った長辺とZ’軸方向に沿った短辺とからなる平面視長方形の第1金属膜M1であってもよい。これら図6,7に示す第1金属膜M1では、X軸方向に沿って4行、Z’軸方向に沿って2列の合計8つ(X軸方向×Y軸方向=4×2)の凸部Tを有する。なお、図6,7に示す凸部Tの数は任意に設定可能であり、X軸方向に配される凸部Tの数が、Z’軸方向に配される凸部Tの数よりも多ければ、図6,7に示す第1金属膜M1の形状による作用効果が著しく発生する。
 上記した図6,7に示す実施の形態によれば、第1金属膜M1が、X軸方向を長辺方向とし、Z’軸方向を短辺方向とする平面視楕円形状や平面視長方形からなるので、ベース3上に音叉型水晶振動片2を超音波接合した後に、音叉型水晶振動片2のZ’軸方向の振動が発生した時でも、その振動をメッキバンプとして作用する第1金属膜M1(M11,M12)の長辺方向(X軸方向)の稜線で受けることができ、当該メッキバンプを介在したベース3と音叉型水晶振動片2との接合部のダメージを分散させることができる。結果として、メッキバンプと接合された接続電極295,296の膜剥がれ等の発生も抑制することができ、接合の強度を高めることができる。また、音叉型水晶振動片2を超音波接合する際に、その超音波振動をメッキバンプとして作用する第1金属膜M1(M11,M12)の長辺方向(X軸方向)の稜線で受けることができ、第1金属膜の厚み方向(Y方向)への過剰な潰れを抑制することができる。
 また、上記の本実施の形態では、図2,4に示すように、平面視形状が円形状となり、凸部Tを有する第1金属膜M1(M11,M12)が形成されているが、これに限定されるものではなく、図8に示すようなX軸方向が長辺方向となりZ’軸方向が短辺方向となる平面視楕円形状である第1金属膜M1であってもよい。この図8に示す第1金属膜M1では、中心領域における(長辺方向の中央部分の)短辺の長さが短く、中心領域に窪み部5を有する。また、凸部Tは、長辺方向の両端部の領域にそれぞれ1つ配される。
 図8に示す窪み部5を有する第1金属膜M1によれば、図6,7に示す実施の形態と同様に、X軸方向を長辺方向とし、Z’軸方向を短辺方向とする平面視楕円形状や平面視長方形からなるので、ベース3上に音叉型水晶振動片2を超音波接合した後、音叉型水晶振動片2のZ’軸方向の振動が発生した時でも、その振動をメッキバンプとして作用する第1金属膜M1(M11,M12)の長辺方向(X軸方向)の稜線で受けることができ、当該メッキバンプを介在したベース3と音叉型水晶振動片2との接合部のダメージを分散させることができる。結果として、メッキバンプと接合された接続電極295,296の膜剥がれ等の発生も抑制することができ、接合の強度を高めることができる。また、図8に示す第1金属膜M1では、緩やかな曲線を描く窪み部5を有し、この窪み部5に関して短いライン領域が連続する領域と略視することができる。このため、音叉型水晶振動片2のZ’軸方向だけでなく、Z’軸からX軸方向へ傾斜した軸方向の振動が発生した時(例えば、Z’軸からX軸方向へ傾斜した軸方向を落下方向として落とした時など)でも、その振動をメッキバンプとして作用する第1金属膜M1(M11,M12)の端縁である窪み部5の端縁箇所(窪み部5の外形を成形するラインのいずれかのポイント)で受けることができ、当該メッキバンプを介在したベース3と音叉型水晶振動片2との接合部の厚み方向(Y軸方向)に生じるダメージを分散させることができる。その結果、ベース3への音叉型水晶振動片2の接合状態の安定を図ることができる。
  なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 また、この出願は、2011年2月25日に日本で出願された特願2011-039414号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 本発明は、水晶振動子などの圧電振動デバイスに適用できる。
1 音叉型水晶振動子
2 音叉型水晶振動片
21 第1脚部
211 先端部
22 第2脚部
221 先端部
23 接合部
231 短辺部
232 長辺部
233 先端部
234 折曲部
235 一主面
25 基部
251 一端面
252 他端面
253 隙間部
261 第1脚部および第2脚部の一主面
262 第1脚部および第2脚部の他主面
27 溝部
28 側面
291 第1励振電極
292 第2励振電極
293,294 引出電極
295,296 接続電極
3 ベース
30 堤部
31 段差部
32 電極パッド
33 端子電極
34 メタライズ層
4 水晶振動板
495,496 接続電極
5 窪み部
H 封止部材
K1 ブリッジ部
K2 接合部
M0(M01,M02) 中心領域
M1(M11,M12) 第1金属膜
M2(M21,M22) 第2金属膜
M3 調整用金属膜(周波数調整用錘)
S1 振動領域
S2 保持領域
S3 凸部
T(T1,T2,T3) 凸部

Claims (6)

  1.  圧電振動片であって、
     少なくとも一対の励振電極が形成され、前記一対の励振電極を外部電極と電気機械的に接合させるために前記一対の励振電極からそれぞれ引き出された少なくとも一対の引出電極が形成され、
     前記一対の引出電極各々の先端部は、前記圧電振動片の一主面の一端部近傍に引き出された接続電極を有し、
     前記各々の接続電極の上面には、外部電極に接合する第1金属膜が形成され、
     前記第1金属膜では、その上面に2つ以上の凸部を有し、前記各々の接続電極より、表面粗さが粗く、面積が小さく、
     前記凸部の断面形状は、曲率状に形成されたことを特徴とする圧電振動片。
  2.  請求項1に記載の圧電振動片において、
     前記第1金属膜の上面に、前記第1金属膜の上面の中心領域を除いて前記第1金属膜の上面端部に沿って2つ以上の凸部を有することを特徴とする圧電振動片。
  3.  請求項1または2に記載の圧電振動片において、
     前記第1金属膜と前記接続電極の間には、前記接続電極より表面粗さが粗く、前記第1金属膜より面積が小さく、厚さが薄い第2金属膜が形成されたことを特徴とする圧電振動片。
  4.  圧電振動子であって、
     請求項1乃至3のうちいずれか1つに記載の圧電振動片が、外部電極である基板の端子電極に接合されたことを特徴とする圧電振動子。
  5.  少なくとも一対の励振電極が形成され、前記一対の励振電極を外部電極と電気機械的に接合させるために前記一対の励振電極からそれぞれ引き出された少なくとも一対の引出電極が形成され、前記引出電極は前記圧電振動片の一主面の一端部近傍に引き出された接続電極を有する圧電振動片の製造方法であって、
     前記励振電極と前記引出電極とを蒸着法もしくはスパッタリング法により圧電振動片に形成する第1工程と、
     前記接続電極の上面に前記接続電極より面積が小さい2つ以上の第2金属膜をメッキ法により形成する第2工程と、
     前記第2金属膜の上面を含む前記接続電極の上面に、前記第2金属膜より面積が大きく、厚さが厚い第1金属膜を形成するとともに、前記第1金属膜の中心領域を除いて前記2つ以上の第2金属膜を配置するように前記第2金属膜の上面に前記第1金属膜をメッキ法により形成する第3工程からなることを特徴とする圧電振動片の製造方法。
  6.  請求項5に記載の圧電振動片を外部電極である基板の端子電極に接合した圧電振動子の製造方法であって、
     前記第1工程から前記第3工程を経て構成された前記圧電振動片の前記第1金属膜を、前記端子電極に超音波接合したことを特徴とする圧電振動子の製造方法。
PCT/JP2012/054611 2011-02-25 2012-02-24 圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法 WO2012115239A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/881,262 US9130148B2 (en) 2011-02-25 2012-02-24 Piezoelectric resonator plate, piezoelectric resonator, method for manufacturing piezoelectric resonator plate, and method for manufacturing piezoelectric resonator
JP2013501146A JP5880538B2 (ja) 2011-02-25 2012-02-24 圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法
CN201280003686.9A CN103430450B (zh) 2011-02-25 2012-02-24 压电振动片、压电振子、压电振动片的制造方法、及压电振子的制造方法
KR1020137016349A KR101837516B1 (ko) 2011-02-25 2012-02-24 압전 진동편, 압전 진동자, 압전 진동편의 제조 방법, 및 압전 진동자의 제조 방법
EP12749185.0A EP2624450B1 (en) 2011-02-25 2012-02-24 Piezoelectric vibrating reed, piezoelectric vibrator, method for manufacturing piezoelectric vibrating reed, and method for manufacturing piezoelectric vibrator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011039414 2011-02-25
JP2011-039414 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115239A1 true WO2012115239A1 (ja) 2012-08-30

Family

ID=46721011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054611 WO2012115239A1 (ja) 2011-02-25 2012-02-24 圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法

Country Status (7)

Country Link
US (1) US9130148B2 (ja)
EP (1) EP2624450B1 (ja)
JP (1) JP5880538B2 (ja)
KR (1) KR101837516B1 (ja)
CN (1) CN103430450B (ja)
TW (1) TWI527372B (ja)
WO (1) WO2012115239A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089105A (ja) * 2013-09-27 2015-05-07 株式会社大真空 圧電発振器
JP2015226300A (ja) * 2014-05-30 2015-12-14 株式会社大真空 圧電振動片および当該圧電振動片を用いた圧電デバイス

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333668B2 (ja) * 2011-02-07 2013-11-06 株式会社大真空 音叉型圧電振動片、および音叉型圧電振動子
JP5872314B2 (ja) * 2012-02-13 2016-03-01 エスアイアイ・クリスタルテクノロジー株式会社 圧電振動片、圧電振動子、発振器、電子機器、及び電波時計
JP2015002548A (ja) * 2013-06-18 2015-01-05 セイコーエプソン株式会社 振動素子、振動子、発振器、電子機器および移動体
JP6371518B2 (ja) * 2013-12-17 2018-08-08 太陽誘電株式会社 圧電薄膜共振器およびその製造方法、フィルタ並びにデュプレクサ
JP6287208B2 (ja) * 2013-12-27 2018-03-07 セイコーエプソン株式会社 振動子、発振器、電子機器、物理量センサーおよび移動体
KR20160012784A (ko) * 2014-07-25 2016-02-03 삼성전기주식회사 압전 진동편, 압전 진동자 및 압전 진동편 제조 방법
KR101963699B1 (ko) * 2015-02-26 2019-03-29 가부시키가이샤 다이신쿠 압전 진동 디바이스
KR102117476B1 (ko) * 2015-07-01 2020-06-01 삼성전기주식회사 수정 진동자 및 이를 포함하는 수정 진동자 패키지
US10110198B1 (en) 2015-12-17 2018-10-23 Hrl Laboratories, Llc Integrated quartz MEMS tuning fork resonator/oscillator
US11563413B2 (en) * 2016-12-22 2023-01-24 Daishinku Corporation Tuning fork-type vibrating reed, tuning fork-type vibrator and manufacturing method therefor
CN116192087B (zh) * 2023-02-21 2024-03-19 泰晶科技股份有限公司 一种音叉晶片及音叉晶体谐振器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338753A (ja) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd 圧電振動子
JP2001292048A (ja) * 2000-04-05 2001-10-19 Seiko Epson Corp 圧電振動片のマウント構造とマウント方法及び圧電デバイス
JP2004104719A (ja) 2002-09-12 2004-04-02 Toyo Commun Equip Co Ltd 圧電振動子の電極構造
JP2004363936A (ja) * 2003-06-04 2004-12-24 Tokyo Denpa Co Ltd 表面実装型水晶振動子とその製造方法
JP2007288644A (ja) * 2006-04-19 2007-11-01 Epson Toyocom Corp 圧電基板、圧電振動素子、表面実装型圧電振動子、圧電基板の製造方法、及び表面実装型圧電発振器
JP2008109538A (ja) * 2006-10-27 2008-05-08 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP2010081308A (ja) * 2008-09-26 2010-04-08 Seiko Epson Corp 電子部品の実装構造体、及び電子部品の製造方法
JP2010178092A (ja) * 2009-01-29 2010-08-12 Epson Toyocom Corp 圧電デバイス
JP2010178064A (ja) * 2009-01-29 2010-08-12 Daishinku Corp 音叉型圧電振動片、および音叉型圧電振動デバイス
JP2011205421A (ja) * 2010-03-25 2011-10-13 Seiko Epson Corp 電子部品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100204457B1 (ko) 1993-05-28 1999-06-15 모리시타 요이찌 압전진동자구체 및 그 제조방법
JP2004289650A (ja) 2003-03-24 2004-10-14 Seiko Epson Corp 圧電デバイスおよび圧電振動片の製造方法
JP3951058B2 (ja) * 2003-08-19 2007-08-01 セイコーエプソン株式会社 音叉型圧電振動片
JP5085240B2 (ja) 2007-09-03 2012-11-28 日本電波工業株式会社 水晶デバイス及び水晶デバイスの製造方法
JP2010187333A (ja) * 2009-02-13 2010-08-26 Seiko Instruments Inc 圧電振動子、圧電振動子の製造方法および発振器
JP2014146944A (ja) * 2013-01-29 2014-08-14 Nippon Dempa Kogyo Co Ltd 水晶振動子、振動子パッケージ及び発振器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338753A (ja) * 1993-05-28 1994-12-06 Matsushita Electric Ind Co Ltd 圧電振動子
JP2001292048A (ja) * 2000-04-05 2001-10-19 Seiko Epson Corp 圧電振動片のマウント構造とマウント方法及び圧電デバイス
JP2004104719A (ja) 2002-09-12 2004-04-02 Toyo Commun Equip Co Ltd 圧電振動子の電極構造
JP2004363936A (ja) * 2003-06-04 2004-12-24 Tokyo Denpa Co Ltd 表面実装型水晶振動子とその製造方法
JP2007288644A (ja) * 2006-04-19 2007-11-01 Epson Toyocom Corp 圧電基板、圧電振動素子、表面実装型圧電振動子、圧電基板の製造方法、及び表面実装型圧電発振器
JP2008109538A (ja) * 2006-10-27 2008-05-08 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP2010081308A (ja) * 2008-09-26 2010-04-08 Seiko Epson Corp 電子部品の実装構造体、及び電子部品の製造方法
JP2010178092A (ja) * 2009-01-29 2010-08-12 Epson Toyocom Corp 圧電デバイス
JP2010178064A (ja) * 2009-01-29 2010-08-12 Daishinku Corp 音叉型圧電振動片、および音叉型圧電振動デバイス
JP2011205421A (ja) * 2010-03-25 2011-10-13 Seiko Epson Corp 電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2624450A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089105A (ja) * 2013-09-27 2015-05-07 株式会社大真空 圧電発振器
JP2015226300A (ja) * 2014-05-30 2015-12-14 株式会社大真空 圧電振動片および当該圧電振動片を用いた圧電デバイス

Also Published As

Publication number Publication date
JPWO2012115239A1 (ja) 2014-07-07
TW201301757A (zh) 2013-01-01
CN103430450A (zh) 2013-12-04
TWI527372B (zh) 2016-03-21
JP5880538B2 (ja) 2016-03-09
EP2624450A1 (en) 2013-08-07
EP2624450B1 (en) 2015-02-11
US20130221808A1 (en) 2013-08-29
EP2624450A4 (en) 2013-12-11
KR101837516B1 (ko) 2018-03-12
CN103430450B (zh) 2016-03-02
US9130148B2 (en) 2015-09-08
KR20130141615A (ko) 2013-12-26

Similar Documents

Publication Publication Date Title
JP5880538B2 (ja) 圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法
JP4552916B2 (ja) 圧電振動デバイス
WO2010035714A1 (ja) 音叉型圧電振動片、および音叉型圧電振動デバイス
JP5146222B2 (ja) 圧電振動デバイス
JP5397336B2 (ja) 圧電振動片、および圧電振動子
JP5699809B2 (ja) 圧電振動片
JP5130952B2 (ja) 圧電振動デバイスおよび圧電振動デバイスの製造方法
JP4992420B2 (ja) 水晶振動子
WO2014208251A1 (ja) 音叉型圧電振動片、および音叉型圧電振動子
JP2011193436A (ja) 音叉型水晶振動片、音叉型水晶振動子、および音叉型水晶振動片の製造方法
JP2018006901A (ja) 水晶振動板、および水晶振動デバイス
JP2008166884A (ja) 圧電振動デバイスの製造方法、およびその製造方法による圧電振動デバイス
JP5239782B2 (ja) 圧電振動デバイス
JP6295835B2 (ja) 圧電振動片および当該圧電振動片を用いた圧電デバイス
JP6123217B2 (ja) 圧電振動片
JP5874490B2 (ja) 圧電振動片および当該圧電振動片を用いた圧電振動デバイス
WO2015115388A1 (ja) 圧電デバイス用パッケージ及び圧電デバイス
JP2016139860A (ja) 圧電振動片及び圧電振動子
JP7380067B2 (ja) 音叉型圧電振動片および当該音叉型圧電振動片を用いた音叉型圧電振動子
JP2013093797A (ja) 水晶振動デバイス
JP4784685B2 (ja) 圧電振動片
JP2018006902A (ja) 水晶フィルタ板、および水晶フィルタ
JP2012075053A (ja) パッケージおよび圧電振動子
JP2017108320A (ja) 圧電振動デバイス
JP2023079859A (ja) 水晶振動素子および水晶振動デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749185

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13881262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012749185

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013501146

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016349

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE