WO2014208251A1 - 音叉型圧電振動片、および音叉型圧電振動子 - Google Patents

音叉型圧電振動片、および音叉型圧電振動子 Download PDF

Info

Publication number
WO2014208251A1
WO2014208251A1 PCT/JP2014/063991 JP2014063991W WO2014208251A1 WO 2014208251 A1 WO2014208251 A1 WO 2014208251A1 JP 2014063991 W JP2014063991 W JP 2014063991W WO 2014208251 A1 WO2014208251 A1 WO 2014208251A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
vibrating
dimension
weight
fork type
Prior art date
Application number
PCT/JP2014/063991
Other languages
English (en)
French (fr)
Inventor
和靖 阪本
悟 石野
藤井 智
Original Assignee
株式会社大真空
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大真空 filed Critical 株式会社大真空
Priority to JP2015523930A priority Critical patent/JPWO2014208251A1/ja
Priority to CN201480015932.1A priority patent/CN105191124B/zh
Priority to US14/768,831 priority patent/US9548719B2/en
Publication of WO2014208251A1 publication Critical patent/WO2014208251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C1/00Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
    • A61C1/08Machine parts specially adapted for dentistry
    • A61C1/082Positioning or guiding, e.g. of drills
    • A61C1/084Positioning or guiding, e.g. of drills of implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0001In-situ dentures; Trial or temporary dentures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • A61C8/0062Catch or snap type connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0089Implanting tools or instruments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to a tuning-fork type piezoelectric vibrating piece used for electronic equipment and the like, and a tuning-fork type crystal resonator using the same.
  • Piezoelectric vibration devices represented by piezoelectric vibrators are widely used in mobile communication devices such as mobile phones.
  • One of the piezoelectric vibrating pieces used in the piezoelectric vibrator is a tuning fork type piezoelectric vibrating piece.
  • the tuning fork type piezoelectric vibrating piece is a tuning fork-shaped piezoelectric vibrating piece including a base and a pair of vibrating legs (hereinafter referred to as legs) extending in one direction from the base, and the tuning fork type piezoelectric vibrating piece is used.
  • Tuning fork type piezoelectric vibrators are widely used as clock sources for watches.
  • tuning fork-type piezoelectric vibrating reeds are required to be further miniaturized and the quality of characteristics is improved.
  • the tuning fork type piezoelectric vibrating piece is downsized, the width of the leg portion of the tuning fork type piezoelectric vibrating piece is reduced and the thickness is reduced in accordance with the downsizing.
  • the harmonics which can suppress the influence of the conventional resonator element, can vibrate even at a low drive level, and are easily affected by the adverse effects.
  • the ratio of the width of the groove to the leg is set to be smaller than that in the past in order to suppress an increase in CI due to downsizing of the vibrating piece.
  • the bank width formed between the end portion of the leg portion and the groove portion is formed thinner than the conventional one, and the thickness between the groove portions of both main surfaces is reduced, so the rigidity of the leg portion is reduced.
  • it is easy to generate harmonics That is, when such a tuning fork type piezoelectric vibrator is used, it is easy to cause problems such as oscillation at a higher harmonic frequency due to the constant and design of the oscillation circuit.
  • the tuning fork type piezoelectric vibrating piece described in Patent Document 1 discloses a configuration for improving electrical characteristics for reducing the influence of unnecessary harmonics.
  • a tuning fork-type piezoelectric vibrating piece having a base and a pair of legs protruding from the base and arranged in parallel has the following configuration.
  • each leg portion includes a vibrating portion having an excitation electrode and a weight portion formed at the tip of the vibrating portion and wider than the vibrating portion. Further, each leg is provided with a groove formed so as to extend beyond the connecting position of the vibrating part and the weight part to the inside of the weight part.
  • the tuning-fork type piezoelectric vibrating piece having the weight portion has a problem that the vibration of the weight portion becomes unstable because the rigidity changes abruptly at the connecting portion between the vibration portion and the weight portion.
  • the groove portion is formed at the connecting position between the vibrating portion and the weight portion, so that the sharp portion at the connecting portion between the vibrating portion and the weight portion is increased. The change in rigidity is alleviated to enable stable vibration.
  • a vibration node part serving as a bending point of harmonic oscillation is a weight. This is considered to be due to displacement to the part side.
  • the shape of the leg side end of the weight part is tapered, and its width increases abruptly, so the mechanical strength suddenly increases near the connecting part between the vibration part and the weight part, and the vibration node becomes It stays in the vicinity of the connecting part. For this reason, it cannot be said that the harmonic suppression effect due to the displacement of the vibration node portion is sufficient.
  • the tuning fork type piezoelectric vibrating piece electrode is formed using photolithography technology, the focus of exposure differs depending on the thickness difference between the inside of the groove and the outside of the groove at the leg of the tuning fork type piezoelectric vibrating piece. This is because it is difficult to uniformly expose the inside and outside resists. If the resist is removed by exposing the inside and outside of the groove at the same time, the external exposure becomes excessive, which may cause side electrode bending and electrode disconnection. Further, since the resist material is deposited thickly on the bottom portion of the groove, it is difficult to remove the resist by exposure. As a result, the electrode remains in the groove.
  • the electrode wiring in the weight part has also been made thinner and narrower due to the size reduction of the resonator element, and the electrode that does not contribute to the excitation electrode formed in the weight part with a slight positional deviation (leading electrode, for frequency adjustment) There is a high risk that the metal film, etc.) and the electrode remaining in the groove contributing to the excitation electrode will short-circuit at the groove extension.
  • the present invention has been made in view of the above points, and provides a tuning fork type piezoelectric vibrating piece and a tuning fork type piezoelectric vibrator that are excellent in impact resistance while being able to reduce the size and reduce the adverse effects of harmonics.
  • the purpose is to do.
  • the piezoelectric vibration element plate includes a base portion and a pair of leg portions projecting from one end surface of the base portion and juxtaposed, and the protrusion of the leg portion.
  • the pair of legs includes a groove portion formed along the longitudinal direction and a vibrating portion having an excitation electrode.
  • the excitation electrode of the vibrating portion includes an inner surface electrode formed on the inner surface of the groove portion, and a side electrode formed on the side surface of the leg portion facing the inner surface electrode in the width direction, and the connection portion is , Exponentially amplifying the width dimension from the vibrating part toward the weight part
  • the amplifying part has a length in the longitudinal direction longer than the dimension in the width direction, and the weight part has a width part whose width dimension is constant from the connecting position with the connection part. And having no excitation electrode.
  • tuning fork-type piezoelectric vibrating reeds reduce the length of the groove on the main surface of the leg to avoid harmonic oscillation, change the rigidity of the leg, etc.
  • the design is made to increase the CI of the harmonics by moving to the front side of the part.
  • the method of reducing the length of the groove on the main surface due to downsizing of the resonator element causes extreme deterioration of the CI value of the fundamental wave, so that the tip of the leg corresponding to downsizing and low frequency is applied.
  • the vibration portion having a narrow width and the width of the leg portion are reduced. Since the mechanical strength suddenly increases at the connection portion near the boundary portion of the thick weight portion, a harmonic node remains at the connection portion.
  • the harmonic node is located in a region where the electrodes of different polarities are arranged close to each other and an electric field is generated inside the piezoelectric vibration element plate to cause bending vibration (region where the excitation electrode is formed), harmonic oscillation is generated. It will be promoted.
  • the connecting portion includes an amplifying portion that exponentially amplifies the widthwise dimension from the vibrating portion toward the weight portion, and the amplifying portion has a longitudinal dimension in the widthwise direction.
  • the weight portion has a portion having a constant width in the width direction from the connection position with the connection portion, and does not form an excitation electrode.
  • the connection part is provided with many regions close to the dimension in the width direction of the vibration part, and is configured so that the weight increases rapidly as the weight part is approached. The position can be displaced from the vibrating portion where the excitation electrode is formed to the position on the weight portion side of the connection portion where the excitation electrode is not formed.
  • the CI value of unnecessary harmonics is increased compared to the CI value (series resonance resistance) of the fundamental wave necessary for exciting the tuning fork type piezoelectric vibrator, and the CI value is increased.
  • the ratio (hereinafter referred to as the CI ratio) can be increased and harmonic oscillation can be suppressed.
  • the piezoelectric vibration element plate includes a base portion and a pair of leg portions projecting from one end face of the base portion and juxtaposed.
  • the pair of legs are vibrations having grooves and excitation electrodes formed along the longitudinal direction.
  • a weight part that is integrally formed on the distal end side of the vibration part and has a part wider than the dimension in the width direction of the vibration part, and a connection part between the vibration part and the weight part.
  • the excitation electrode of the vibration part includes an inner surface electrode formed on the inner surface of the groove part, and a side electrode formed on the side surface of the leg part facing the inner surface electrode in the width direction, and the connection The portion that amplifies the dimension in the width direction from the vibrating portion toward the weight portion.
  • the shape of the main surface of the amplifying unit is a part of the circumference of a circle having a radius of curvature equal to or greater than the width direction dimension of the amplifying unit, or the circumference of an ellipse having a major axis in the longitudinal direction.
  • the weight part is formed in a part, and the weight part has a part having a constant width in the width direction from the connection position with the connection part, and the excitation electrode is not formed.
  • the length of the groove on the main surface is reduced to avoid harmonic oscillation, the rigidity of the leg is changed, etc., and the harmonic vibration node is moved to the front side of the leg without the groove on the main surface.
  • the design is taken to increase the CI of the harmonics.
  • the method of reducing the length of the main surface groove due to the size reduction of the resonator element leads to an extreme deterioration of the CI value of the fundamental wave, and the tip of the leg corresponding to downsizing and low frequency is widened.
  • the vibration portion having a narrow width and the thick width among the leg portions. Since the mechanical strength suddenly increases at the connection portion near the boundary portion of the weight portion, the harmonic node stays at the connection portion.
  • the harmonic node is located in a region where the electrodes of different polarities are arranged close to each other and an electric field is generated inside the piezoelectric vibration element plate to cause bending vibration (region where the excitation electrode is formed), harmonic oscillation is generated. It will be promoted.
  • the connecting portion has an amplifying portion that amplifies the dimension in the width direction from the vibrating portion toward the weight portion, and the shape of the main surface of the amplifying portion is set to the width of the amplifying portion. Formed by a part of the circumference of a circle having a radius of curvature equal to or greater than the dimension in the direction, or a part of the circumference of an ellipse having a major axis in the longitudinal direction, and the weight part has a width from a connection position with the connection part.
  • the direction dimension has a constant width portion, and no excitation electrode is formed.
  • connection part is provided with many regions close to the dimension in the width direction of the vibration part, and is configured so that the weight increases rapidly as the weight part is approached.
  • the position can be displaced from the vibrating portion where the excitation electrode is formed to the position on the weight portion side of the connection portion where the excitation electrode is not formed. By making such a displacement, it is possible to increase the CI ratio and suppress harmonic oscillation. As a result, harmonics are not localized.
  • the connecting part since the amplifying part is configured by a part of the circumference, the connecting part does not have a corner part (boundary part) whose width dimension increases, and a region where a stress is generated is a leg part. It doesn't exist on the side. For this reason, there is little risk of causing cracks and cracks in this region, and impact resistance is improved.
  • a third aspect of the invention provides a tuning fork type piezoelectric vibrating piece having a base and a pair of legs projecting from one end face of the base and juxtaposed. Are connected to the base and have an excitation electrode, a weight portion disposed on the distal end side of the leg portion and formed wider than the dimension in the width direction of the vibration portion, A connecting portion that connects the vibrating portion and the weight portion so as to amplify the dimension in the width direction from the vibrating portion toward the weight portion; and the connecting portion is connected to the weight portion from the vibrating portion.
  • An amplifying section for exponentially amplifying the dimension in the width direction, and the dimension in the width direction of the connecting section is amplified so as to satisfy the following conditions (a) to (c) simultaneously: It is said.
  • the amplifying part is formed with a smooth curve, and the width of the connecting part is monotonously increased from the vibrating part toward the weight part.
  • the increasing rate of the width dimension of the connecting portion increases as the distance from the boundary with the vibrating portion increases.
  • the increasing rate of the width dimension of the connecting portion is 0 at the boundary between the vibrating portion and the connecting portion.
  • connection part when the width dimension of the connection part satisfies the conditions (a) to (c), the connection part is provided with many regions close to the dimension in the width direction of the vibration part, and the weight The weight is rapidly increased as it approaches the portion, so that the position of the harmonic node is changed from the vibration portion where the excitation electrode is formed to the weight of the connection portion where the excitation electrode is not formed. It can be displaced to the position on the part side. By making such a displacement, it is possible to increase the CI ratio and suppress harmonic oscillation.
  • the connecting portion does not have a corner portion (boundary portion) whose width dimension increases, and a region where stress is generated does not exist on the side surface of the leg portion. For this reason, there is little risk of causing cracks and cracks in this region, and impact resistance is improved.
  • the length of the groove / the length of the leg may be set as 55% or more and 65% or less.
  • a groove portion is formed in the leg portion, and an excitation electrode includes an inner surface electrode formed on the inner surface of the groove portion and a side electrode formed on the side surface of the leg portion opposite to the inner surface electrode in the width direction.
  • the length of the groove portion / the length of the leg portion is improved.
  • the length is desired to be 60% or less, and in order to obtain a sufficient CI ratio, the length is further desired to be 55% or less.
  • the portion where the width shape of the connecting portion of the groove portion and the weight portion increases extremely is taken to the weight side, A region for displacing the vibration node can be secured, and the CI ratio can be improved without reducing the groove.
  • the length of the groove that has been reduced in the past can be changed from 55% to 65%, and the CI of the fundamental wave can be reduced.
  • the CI value of the harmonic is increased in a state where the CI value of the fundamental wave is not excessively deteriorated. This is an effective configuration for earning a CI ratio.
  • the length of the groove / the length of the leg is set to be smaller than 55%, the increase in the CI value of the fundamental wave becomes large and the desired characteristics cannot be satisfied. If the length of the groove part / the length of the leg part is set to be smaller than 65%, the groove part is extended to the leg region including the weight part, resulting in insufficient mechanical strength and poor impact resistance. .
  • connection portion has a second groove portion formed along a longitudinal direction, and is provided between the groove portion of the vibration portion and the second groove portion of the connection portion. May include a bridge portion in which the groove portion and the second groove portion are not formed, and an excitation electrode may be formed only in the groove portion.
  • the said connection part has the 2nd groove part formed along the longitudinal direction, and the groove part of the said vibration part and the 1st of the said connection part are included.
  • a bridge portion where the groove portion and the second groove portion are not formed is interposed between the two groove portions, and an excitation electrode is formed only in the groove portion. Since the bridge portion has higher rigidity than the groove portion and the second groove portion, the leg width of only the bridge portion region is apparently wide. Further, the rigidity of the amplifying part described above can also be lowered by the presence of the second groove part, and it becomes easy to displace the harmonic vibration node to the region of the second groove part.
  • the second groove portion can be physically disconnected from the excitation electrode due to the presence of the bridge portion, and even if the remaining portion of the electrode inside the groove portion described above does not contribute to excitation, Even if a harmonic vibration node is arranged in the groove, it does not play a role of assisting harmonic vibration. For this reason, in addition to the above-described displacement action of the harmonic node by the amplifying part, the displacement action of the harmonic node part due to the difference in rigidity between the bridge part and the second groove part is also effectively combined and is synergistic. To work.
  • the harmonic node can be moved further away from the vibrating portion where the excitation electrode is formed, and can be more reliably displaced to the region of the second groove portion of the connection portion where the excitation electrode is not formed.
  • the CI value of unnecessary harmonics is increased compared with the CI value of the fundamental wave necessary for exciting the tuning fork type piezoelectric vibrator, and the CI ratio is further increased.
  • the bridge portion where the groove portion and the second groove portion are not formed is interposed between the groove portion of the vibration portion and the second groove portion of the connection portion, the mechanical strength in this portion is improved. For this reason, there is little risk of causing cracks and cracks in this region, and impact resistance is improved.
  • the piezoelectric vibration element plate includes a base portion and a pair of leg portions projecting from one end face of the base portion and juxtaposed.
  • the pair of legs are formed by a first groove and an excitation electrode formed along the longitudinal direction.
  • a vibration part integrally formed on the distal end side of the vibration part and having a part wider than the dimension in the width direction of the vibration part, and a connection part between the vibration part and the weight part.
  • the excitation electrode formed only on the vibrating portion includes an inner surface electrode formed on the inner surface of the first groove portion and a side electrode formed on the side surface of the leg portion facing the inner surface electrode in the width direction.
  • a second groove portion formed along the longitudinal direction in the connection portion.
  • a bridge portion in which the first groove portion and the second groove portion are not formed is interposed between the first groove portion of the vibration portion and the second groove portion of the connection portion, and the bridge portion is disposed on the vibration portion. It is characterized by being located in.
  • the excitation electrode formed only on the vibrating portion includes an inner surface electrode formed on the inner surface of the first groove portion, and a side surface formed on the side surface of the leg portion facing the inner surface electrode in the width direction.
  • the connection portion has a second groove portion formed along a longitudinal direction, and the first groove portion of the vibration portion and the second groove portion of the connection portion are arranged between the first groove portion and the second groove portion of the connection portion.
  • a bridge portion in which the first groove portion and the second groove portion are not formed is interposed, and the bridge portion is positioned in the vibration portion. For this reason, the rigidity of the bridge portion is higher than that of the first groove portion and the second groove portion.
  • the harmonic node when a harmonic node exists in the vicinity of the bridge portion, the harmonic node is displaced to a portion having low rigidity due to the strengthening of the rigidity.
  • the bridge part can be arranged slightly closer to the base than the harmonic node, and the harmonic node can be placed on the bridge part. It can be displaced to the weight side from the position that existed when it was not formed.
  • the harmonic node can be further moved away from the vibrating portion where the excitation electrode is formed, and can be reliably displaced to the region of the second groove portion of the connection portion where the excitation electrode is not formed.
  • the CI value of unnecessary harmonics is increased compared with the CI value (series resonance resistance) of the fundamental wave necessary for exciting the tuning fork type piezoelectric vibrator, and the CI ratio is increased.
  • the harmonic oscillation can be suppressed. As a result, harmonics are not localized.
  • the connecting portion includes an amplifying portion that exponentially amplifies the dimension in the width direction from the vibrating portion toward the weight portion.
  • the dimension in the width direction may be amplified so as to satisfy the following conditions (a) to (c).
  • the amplifying part is formed with a smooth curve, and the width of the connecting part is monotonously increased from the vibrating part toward the weight part.
  • the increasing rate of the width dimension of the connecting portion increases as the distance from the boundary with the vibrating portion increases.
  • the increasing rate of the width dimension of the connecting portion is 0 at the boundary between the vibrating portion and the connecting portion.
  • the connecting portion does not have a corner portion (boundary portion) whose width dimension increases, and a region where stress is generated does not exist on the side surface of the leg portion. For this reason, there is little risk of causing cracks and cracks in this region, and impact resistance is improved.
  • the tuning fork type piezoelectric vibrating piece configured as described above is provided in a tuning fork type piezoelectric vibrator provided inside the casing of the tuning fork type piezoelectric vibrator and hermetically sealed.
  • the tuning fork type piezoelectric vibrating piece described above can be applied to the holding portion inside the housing and has the same effect as the tuning fork type piezoelectric vibrator.
  • a tuning-fork type piezoelectric vibrating piece and a tuning-fork type piezoelectric vibrator that can cope with downsizing, eliminate the adverse effects of harmonics, and have excellent impact resistance.
  • FIG. 1 is a schematic cross-sectional view of a tuning fork type crystal resonator showing a first embodiment of the present invention.
  • FIG. 3 is a plan view of one main surface side of the tuning-fork type crystal vibrating piece showing the first embodiment of the present invention. It is the top view to which a part of leg part of the tuning fork type crystal vibrating piece which shows Embodiment 1 of this invention was expanded. It is the top view to which a part of leg part of the tuning fork type crystal vibrating piece which shows other Embodiment 1 of this invention was expanded. It is a top view of the one main surface side of the tuning fork type crystal vibrating piece showing a modification of the first embodiment of the present invention.
  • FIG. 3 is a plan view of one main surface side of the tuning-fork type crystal vibrating piece showing the first embodiment of the present invention. It is the top view to which a part of leg part of the tuning fork type crystal vibrating piece which shows Embodiment 1 of this invention was expanded. It is a top view
  • FIG. 5 is a schematic cross-sectional view of a tuning fork type crystal resonator showing a second embodiment.
  • 6 is a plan view of one main surface side of a tuning-fork type crystal vibrating piece showing a second embodiment.
  • FIG. FIG. 5 is an enlarged plan view of a part of a leg portion of a tuning-fork type crystal vibrating piece showing a second embodiment.
  • FIG. 9 is an enlarged plan view of a part of a leg portion of another tuning-fork type crystal vibrating piece showing the second embodiment.
  • the tuning fork type crystal resonator 1 used in the present embodiment includes a base 3 and a lid (not shown) joined via a sealing member H to form a casing. Specifically, the tuning fork type crystal vibrating piece 2 is bonded to the base electrode pad 32 having an opening at the top via a first metal film M1 such as a plating bump. It is the structure joined with the lid through.
  • the nominal frequency of the tuning fork type crystal resonator is 32.768 kHz. The nominal frequency is an example and can be applied to other frequencies.
  • the base 3 is composed of an insulating container made of, for example, a ceramic material or a glass material.
  • the base 3 has a bank portion 30 around it, and has a concave shape in cross section with an upper opening.
  • a step 31 for mounting a tuning fork type crystal vibrating piece is formed inside the base 3 (storage portion).
  • a pair of electrode pads 32 and 32 (only one is shown) are formed on the upper surface of the stepped portion.
  • the pair of electrode pads 32 and 32 are electrically connected to two or more terminal electrodes 33 and 33 formed on the bottom surface (back surface) of the base via a wiring pattern (not shown) formed inside the base.
  • a metal film layer (constituting a part of the sealing member H) 34 is formed around the bank portion 30 of the base 3 in a circumferential shape.
  • the electrode pads 32 and 32, the terminal electrodes 33 and 33, and the metal film layer 34 are composed of, for example, three layers, and are laminated in the order of tungsten, nickel, and gold from the bottom. ing. Tungsten is integrally formed during ceramic firing by metallization technology, and the nickel and gold layers are formed by plating technology. Note that molybdenum may be used for the tungsten layer.
  • the lid (not shown) is made of, for example, a metal material, a ceramic material, or a glass material, and is formed into a single plate having a rectangular shape in plan view.
  • a sealing material (constituting a part of the sealing member H) is formed on the lower surface of the lid.
  • the lid is joined to the base 3 through a sealing material by a technique such as seam welding, beam welding, and heat-melt joining, so that the casing of the crystal unit 1 is configured by the lid and the base 3.
  • tuning fork type crystal vibrating piece 2 is not shown, a large number of tuning fork type crystal vibrating pieces (piezoelectric vibrating element plates) are collectively arranged in a matrix on a single crystal wafer made of a crystal Z plate made of anisotropic material. Is formed.
  • the external shape of the tuning-fork type crystal vibrating piece 2 is collectively formed by, for example, wet etching using a resist or a metal film as a mask by using a photolithography technique.
  • the tuning-fork type crystal vibrating piece (piezoelectric vibrating element plate) 2 includes a pair of first leg 21 and second leg 22 that are vibrating parts, and a leg between the legs 21 and 22. Part 253, joint part 23 to be joined to the outside (electrode pads 32, 32 of base 3 in this embodiment), and base part 25 provided by projecting these first leg part 21 and second leg part 22 and joint part 23. It is composed of The pair of first leg portions 21 and second leg portions 22 protrude from one end face 251 of the base portion 25 and are juxtaposed via a portion 253.
  • the edge part 253 here is provided in the intermediate position (central area
  • the projecting direction of the first leg 21 and the second leg 22 is the longitudinal direction (Y-axis direction in this embodiment), and the juxtaposition direction of the first leg 21 and the second leg 22 is the width direction (this embodiment). In the X-axis direction).
  • the following electrodes are integrally and simultaneously formed on the front and back main surfaces (one main surface 261 and the other main surface 262) of the tuning fork type crystal vibrating piece (piezoelectric vibration element plate) 2 according to the present embodiment. That is, a pair of first excitation electrode 291 and second excitation electrode 292 configured at different potentials, and these first excitation electrode 291 and second excitation electrode 292 are electrically connected to electrode pads 32 and 32.
  • the extraction electrodes 293 and 294 extracted from the first excitation electrode 291 and the second excitation electrode 292 and the connection electrodes 295 and 296 on which the metal film M1 is formed are integrally formed at the same time.
  • the extraction electrodes 293 and 294 referred to in this embodiment are electrode patterns extracted from the pair of first excitation electrode 291 and second excitation electrode 292.
  • the connection electrodes 295 and 296 indicate those formed at locations where the leading portions (leading end portions) of the extraction electrodes 293 and 294 are to be joined to the base 3.
  • the first excitation electrode 291 and the second excitation electrode 292, the extraction electrodes 293 and 294, and the connection electrodes 295 and 296 of the tuning fork type crystal vibrating piece 2 are formed on the first leg portion 21 and the second leg portion 22 by metal deposition.
  • the thin film is formed on the entire surface of the substrate by a technique such as vacuum vapor deposition or sputtering, and then formed into a desired shape by metal etching by photolithography.
  • the first excitation electrode 291, the second excitation electrode 292, and the extraction electrodes 293, 294 are formed in the order of chromium (Cr) and gold (Au).
  • the order of chromium (Cr) and silver (Ag) is provided.
  • the order may be chromium (Cr), gold (Au), chromium (Cr), chromium (Cr), silver (Ag), chromium (Cr).
  • the pair of first leg portion 21 and second leg portion 22 are formed along the longitudinal direction of a groove portion 27 and vibration portions 212 and 222 having excitation electrodes, which will be described later, and formed at the tips of the vibration portions 212 and 222.
  • the tip portion of the leg portion is a region having good sensitivity as a frequency adjustment region. By thus forming the weight portions 211 and 221 wide, the high sensitivity region can be widened, and the weight portions 211 and 221 are formed.
  • the (tip region) can be used more effectively when adjusting the frequency.
  • the tuning-fork type crystal vibrating piece 2 does not constitute such a wide weight portion. If the size is reduced, the width of the leg portion must be narrowed. In this case, it is disadvantageous for forming the groove and the excitation electrode, and the CI value is also poor. On the other hand, by forming a wide weight portion as in this embodiment, the width of the leg portion can be increased, the CI value characteristic can be improved, and it is useful for lowering the frequency. .
  • the first excitation electrode 291 is formed on both main surfaces (one main surface 261 and the other main surface 262) of the vibration portion 212 of the first leg portion 21 and both side surfaces 28 of the vibration portion 222 of the second leg portion 22. Yes.
  • the second excitation electrode 292 is formed on both main surfaces (one main surface 261 and the other main surface 262) of the vibrating portion 222 of the second leg portion 22 and both side surfaces 28 of the vibrating portion 212 of the first leg portion 21. Has been.
  • the vibrating portions 212 and 222 have bottomed groove portions 27 formed on one main surface 261 and the other main surface 262, respectively. A part of the pair of first excitation electrode 291 and second excitation electrode 292 is also formed inside the groove portion 27. For this reason, even if the tuning fork type crystal vibrating piece 2 is downsized, the vibration loss of the first leg portion 21 and the second leg portion 22 is suppressed, and the CI value (series resonance resistance value) can be kept low.
  • the groove part 27 it is desirable to set the length dimension L2 of the groove part 27 in a longitudinal direction as 55 to 65% of the length dimension L1 of the leg parts 21 and 22 of the same direction. In this embodiment, for example, 60% is set.
  • the excitation electrode in the present invention includes at least an inner surface electrode formed on the inner surface of the groove portion and a side electrode formed on the side surface of the leg portion opposite to the inner surface electrode in the width direction.
  • an electrode having a different polarity is disposed close to each other to generate an electric field effect inside the quartz crystal vibrating piece, and does not include a lead electrode for wiring or the like. That is, the excitation electrode in the vibration unit 212 includes the first excitation electrodes 291 and 291 (only one main surface 261 side is shown in FIG. 2) formed on both main surfaces of the first leg 21 and the first Inner surface electrodes 2911 and 2911 (only one main surface 261 side is shown in FIG.
  • Excitation electrodes in the vibration part 222 include second excitation electrodes 292 and 292 (only one main surface 261 side is shown in FIG. 2) formed on both main surfaces of the second leg part 22, and the second excitation electrode.
  • the inner surface electrodes 2921 and 2921 (only one main surface 261 side is shown in FIG.
  • a general peripheral electrode group composed of side electrodes 2912 and 2912 formed on both side surfaces of the second leg 22 so as to face each other is shown.
  • the weight portions 211 and 221 have curved portions at the corners, and have the same width regions 2111 and 2111, in which the width of the weight portion is constant from the terminal portion to the tip portion of the connection portions 213 and 223. ing.
  • only the extraction electrodes 293 and 294, which will be described later, are formed in at least the same width regions 211 and 211 of the weight portion, and no excitation electrode is formed in this region. In this way, by forming the corner portions of the weight portions 211 and 221 in a curved surface, it is possible to prevent contact with a bank portion or the like when receiving an external force. By forming the same width regions 2112, 211, it is possible to widen the high sensitivity region at the tip of the leg that is effective for frequency adjustment.
  • extraction electrodes 293 and 294 are provided on almost the entire side surfaces 28 of both main surfaces (one main surface 261 and the other main surface 262). Are formed respectively. Since the excitation electrodes are not formed in the weight portions 211 and 221, electrodes having different polarities are not arranged close to each other, and are easy to create and do not short-circuit.
  • connection parts 213 and 223 have amplification parts 2131 and 2231 that exponentially amplify dimensions in the width direction from the vibration parts 212 and 222 toward the weight parts 211 and 221, and the amplification parts 2131 and 2231 are in the longitudinal direction.
  • the dimension is longer than the dimension in the width direction. More specifically, as shown in FIG. 3, in the main surface shape of the tuning-fork type crystal vibrating piece 2, the wide dimensions of the weight parts 211 and 221 with respect to the width dimensions of the vibrating parts 212 and 222 (the widths of the amplifying parts 2131 and 2231).
  • the dimension is a part of a circular circumference having a radius of curvature equal to or greater than the added dimension of the increased width dimensions H1 and H2.
  • the width dimension H1 and H2 is added. It is formed of R1 constituted by a part of a circular circumference having a radius of curvature.
  • the amplifying units 2131 and 2231 are formed by R2 configured by a part of a quarter elliptical circumference having a major axis in the protruding direction of the leg portion. May be.
  • to exponentially amplify the dimension in the width direction of the connecting portions 213 and 223 can also be defined as satisfying the following conditions (a) to (c).
  • the amplifying part is formed with a smooth curve, and the width of the connecting part is monotonously increased from the vibrating part toward the weight part.
  • the increasing rate of the width dimension of the connecting portion increases as the distance from the boundary with the vibrating portion increases.
  • the amplifying units 2131 and 2231 that amplify the dimension in the width direction exponentially from the vibrating units 212 and 222 toward the weight units 211 and 221 are formed. As a result, the following effects are obtained.
  • the shape of the end part on the leg part side of the weight part is tapered.
  • the mechanical strength does not increase rapidly in the vicinity of the connecting portion between the vibrating portions 212 and 222 and the connecting portions 213 and 223.
  • the vibration node does not stay in the vicinity of the connecting portion, and the vibration node can be further displaced toward the weights 211 and 221 side.
  • the harmonic suppression effect can be further improved by displacing the vibration node to the weight side.
  • the mechanical strength does not increase abruptly in the vicinity of the connecting portion between the vibrating portions 212 and 222 and the connecting portions 213 and 223 as compared with the configuration of Patent Literature 1, and as in Patent Literature 1. Even if the groove portion is not formed at the connecting position between the vibrating portion and the weight portion, stable vibration can be obtained without the inertial force during vibration being concentrated on the connecting portion. For this reason, there is no decrease in mechanical strength due to the formation of the groove portion, and sufficient strength as a tuning fork type piezoelectric vibrating piece can be secured.
  • extraction electrodes 293 and 294 are provided on both main surfaces (one main surface 261 and the other main surface 262) and almost the entire side surfaces 28. Each is formed.
  • the electrode of a different polarity is not arrange
  • An adjustment metal film (frequency adjustment weight) M3 formed by adjusting the frequency of the tuning-fork type crystal vibrating piece 2 is formed by reducing the mass of the metal film by ion irradiation such as laser beam irradiation or ion milling. Has been.
  • the adjustment metal A film (frequency adjusting weight) M3 may be formed.
  • the adjustment electrode metal film (frequency adjustment weight) M3 is not limited to the one formed on both main surfaces (one main surface 261 and the other main surface 262) as in the present embodiment, and other portions are located in the opening of the base. You may form only in the main surface 262.
  • the adjustment metal film M3 is formed, for example, by forming a formation portion of the adjustment metal film in a desired shape on the extraction electrodes 293 and 294 in each region by a photolithography method, and forming the adjustment metal film on the formation portion of the adjustment metal film.
  • the film M3 is plated by a technique such as electrolytic plating. Thereafter, an annealing treatment may be performed. When these metal films are formed by plating, it is more practically desirable to form them simultaneously in the same process as the metal films M1 (M11, M12).
  • the base portion 25 has a symmetrical shape in plan view, and is formed wider than the vibrating portions 212 and 222 as shown in FIG.
  • the vicinity of the other end surface 252 of the base portion 25 is gradually tapered so as to become narrower from the one end surface 251 to the other end surface 252. For this reason, the leakage vibration generated by the vibration of the first leg portion 21 and the second leg portion 22 that are the vibration portions can be attenuated by the other end surface 252, and the transmission of the leakage vibration to the joint portion 23 can be suppressed. It is preferable for further reducing acoustic leakage (vibration leakage).
  • the configuration that gradually decreases in width is not limited to a tapered shape, and may be a stepped shape or a curved shape.
  • the joining portion 23 has the lead electrodes 293 and 294 electromechanically connected to external electrodes (external in the present invention, in this embodiment, the electrode pads 32 and 32 of the base 3). It is for joining. Specifically, the joint portion 23 is formed to project from an intermediate position (central region) in the width direction of the other end surface 252 facing the one end surface 251 of the base 25 from which the pair of first leg portions 21 and second leg portions 22 project. Has been. That is, the joint portion 23 is formed so as to protrude at a position facing the end portion 253 disposed between the pair of first leg portions 21 and second leg portions 22.
  • the joint portion 23 is connected to the short side portion 231 narrower than the other end surface 252 projecting in the direction perpendicular to the other end surface 252 of the base portion 25, and the short side portion 231.
  • the distal end portion of the portion 231 is formed of a long side portion 232 that is bent at a right angle in plan view and extends in the width direction of the base portion 25, and the distal end portion 233 of the joint portion 23 faces the width direction of the base portion 25. That is, the joining portion 23 is formed in an L shape in plan view, and a bent portion 234 that is a bent portion formed in an L shape in plan view corresponds to the tip portion of the short side portion 231.
  • the short side part 231 is formed in a narrower state than the other end face 252 of the base part 25, the effect of further suppressing vibration leakage is enhanced.
  • the main surface 261 of the joint portion 23 includes a first joint region 235 and a second joint region 236 that are joined to the outside, and the first joint region 235 is the center of the base portion 25 in the width direction.
  • a second joining region is formed in one region of the bent portion 234 of the joining portion 23 formed in an L shape in plan view on the extended line (intermediate position in the width direction of the short side portion 231 of the joining portion 23).
  • 236 is formed in a region of the distal end portion of the long side portion 232 corresponding to the distal end portion 233 of the joint portion 23 formed in an L shape in plan view.
  • connection electrode 296 leading end portion of the extraction electrode 294 drawn from an end portion (to one end portion) of the short side portion 231 through the extraction electrode 294 from a second excitation electrode 292 described later.
  • connection electrode 295 extraction electrode 293 extracted from the first excitation electrode 291 (described later) through the extraction electrode 293 through the end portion (to one end portion) of the long side portion 232. Is formed).
  • vibration leakage (acoustic leakage) can be more efficiently suppressed without increasing the length of the joint portion 23.
  • the first joining region 235 joined to the outside in the joining portion 23 is formed on an extension of the center line in the width direction of the base portion 25, the narrow tapered portion near the other end surface 252 of the base portion 25. Therefore, it is possible to suppress acoustic leakage and cancel out even slight acoustic leakage in the width direction.
  • the bending portion 234 in which acoustic leakage is more efficiently suppressed can be electrically and mechanically joined as one pole.
  • the second bonding region 236 bonded to the outside in the bonding portion 23 can be electrically and mechanically bonded as the other different polarity at the tip portion 233 which is not affected by the influence of acoustic leak, stress or external force.
  • metal films M1 are formed as plating bumps having a rougher surface roughness and a smaller plane area than the connection electrodes 295 and 296.
  • the metal film M1 (M11, M12) is formed in a circular shape in plan view with a thickness of, for example, about 5 to 20 ⁇ m, a diameter of about 50 ⁇ m, and a plane area of about 1962.5 ⁇ m 2. After ultrasonic bonding (after FCB), at least the metal film M1 (M11, M12) expands in the surface direction and is crushed, and has a thickness of about half.
  • the thickness of the metal film M1 (M11, M12) is smaller than 5 ⁇ m, the gap between the connection electrodes 295, 296 of the tuning fork type crystal vibrating piece 2 and the electrode pads 32, 32 of the base 3 is reduced, and the tuning fork type crystal resonator It tends to adversely affect the electrical characteristics. If the thickness of the metal film M1 (M11, M12) is greater than 20 ⁇ m, the tuning fork-type crystal vibrating piece 2 is likely to be affected by the inclination and displacement, and the bonding strength is likely to vary.
  • the planar shape of the metal film M1 (M11, M12) as the plating bump is a circular shape such as a circle or an ellipse, or a polygonal shape including a rectangle or a square, depending on the planar view shape of the connection electrode or the like. Things can be configured freely.
  • the metal film formation part (connection electrodes 295, 296) (not shown) is formed in the first joint region 235 and the second joint region 236 of the joint 23.
  • a mask having a window portion with a small plane area) is formed into a desired shape (a circular window portion in this embodiment) by photolithography, and the metal film M1 (M11, M12) is electrolyzed in the formation portion of the metal film.
  • Plating is performed by a technique such as plating. Thereafter, an annealing treatment may be performed.
  • the tuning fork type crystal vibrating piece 2 configured as described above measures the frequency of each tuning fork type crystal vibrating piece 2 in the state of the wafer, and then adjusts the metal film for adjustment of each tuning fork type crystal vibrating piece 2.
  • the frequency is roughly adjusted by decreasing M3 by beam irradiation or increasing it by partial vapor deposition.
  • the individual tuning-fork type crystal vibrating piece 2 which has been subjected to coarse frequency adjustment and taken out from the wafer has a metal film M1 (M11, M12) and a base formed on the upper surfaces of the connection electrodes 295, 296 on the one main surface 261 side.
  • the three electrode pads 32 and 32 are ultrasonically bonded by the FCB method and mounted on the base 3.
  • the tuning fork type quartz vibrating piece 2 mounted on the base 3 is finely adjusted by reducing the frequency of the frequency and then reducing the adjustment metal film M3 of the tuning fork type quartz vibrating piece 2 by beam irradiation or ion etching. The final frequency adjustment is performed.
  • a lid (not shown) is joined to the base 3 on which the tuning-fork type crystal vibrating piece 2 having been subjected to the final frequency adjustment is mounted via a sealing member H by a technique such as heating and melting, and the tuning-fork type crystal.
  • the resonator element 2 is hermetically sealed inside a housing constituted by a base 3 and a lid (not shown). Examples of the above-described hermetic sealing methods include seam welding, beam welding, and atmosphere heating.
  • connection portions 213 and 223 have the bottomed second groove portion 271 formed along the longitudinal direction.
  • a bridge portion 272 is interposed between the bottomed groove portion 27 of the vibration portions 212 and 222 and the second groove portion 271 of the connection portions 213 and 223.
  • the bridge portion 272 is a remaining region that is not etched with respect to the tuning-fork type crystal vibrating piece (piezoelectric vibrating element plate), and the regions other than the groove portion 27 and the second groove portion 271 in each of the leg portions 21 and 22. It is comprised with the same thickness.
  • the extraction electrodes 293 and 294 are provided on almost the entire side surfaces 28 of both main surfaces (one main surface 261 and the other main surface 262). Are formed, and lead electrodes 293 and 294 are also formed inside the second groove.
  • the second groove portion 271 is formed only in a partial region of the connection portions 213 and 223, but the regions of the weight portions 211 and 221, the vibration portions 212 and 222 according to the characteristics. Or may extend to both the weight part and the vibration part.
  • the structure which does not form an extraction electrode may be sufficient as the upper surface of a 2nd groove part, and the structure by which not only an extraction electrode but the metal film M3 for adjustment was formed in the upper part may be sufficient.
  • the structure which combined at least 2 or more of these structures may be sufficient.
  • an excitation electrode for generating an electric field effect inside the crystal vibrating piece is not formed in the second groove portion by arranging electrodes of different polarities in proximity.
  • a tuning fork type piezoelectric vibrating piece and a tuning fork type piezoelectric vibrator having excellent impact resistance performance while eliminating the adverse effects of harmonics, corresponding to downsizing of the tuning fork type crystal vibrating piece 2 are provided. Can do.
  • connection parts 213 and 223 have amplification parts 2131 and 2231 that amplify the width dimension exponentially from the vibration parts 212 and 222 toward the weight parts 211 and 221, and the amplification parts 2131 and 2231 are in the longitudinal direction. Are formed so as to be longer than the dimension in the width direction, and the weight portions 211 and 221 have the same width region with a constant width from the terminal portions of the connection portions 213 and 223 toward the tip portions of the weight portions 211 and 221. 211 and 2112, and only the extraction electrodes 293 and 294 are formed.
  • the weights 211 and 221 are closer to each other, the weight is rapidly increased, so that the position of the node portion of the unnecessary harmonic other than the fundamental wave is changed to the vibration part 212 on which the excitation electrode is formed.
  • 222 can be displaced toward the weights 211, 221 where no excitation electrode is formed.
  • the CI value of unnecessary harmonics is increased compared to the CI value (series resonance resistance) of the fundamental wave necessary for exciting the tuning fork type piezoelectric vibrator, and the CI value is increased.
  • the ratio (hereinafter referred to as the CI ratio) can be increased and harmonic oscillation can be suppressed.
  • the groove portion 27 since the groove portion 27 is not formed in the connection portions 213 and 223 that are the starting points of the generation of stress, there is little risk of causing cracks or cracks in this region, and the impact resistance performance is not deteriorated. Moreover, the groove part 27 sets the CI dimension of the fundamental wave by setting the length dimension L2 of the groove part 27 in the longitudinal direction to 55% to 65% of the length dimension L1 of the leg parts 21 and 22 in the same direction. This is an effective configuration for increasing the CI value of the harmonics and earning these CI ratios in a state where it does not deteriorate too much.
  • connection portions 213 and 223 are configured by a part of a circular circumference, the connection portions 213 and 223 do not have corner portions (boundary portions) whose width dimensions increase, and the starting point of stress generation. Since there is no region on the side surface of the leg, there is little risk of cracking or cracking in this region, and impact resistance is improved.
  • the said modification has the 2nd groove part 271 with a bottom formed in the connection parts 213 and 223 along the longitudinal direction in which an excitation electrode is not formed, and the groove part 27 and the 2nd groove part are A bridge portion 272 is interposed therebetween.
  • action which moves the node part of a harmonic to the area
  • FIG. 6 is a schematic cross-sectional view of a tuning fork type crystal resonator according to the second embodiment.
  • FIG. 7 is a plan view of one main surface side of the tuning-fork type crystal vibrating piece according to the second embodiment.
  • FIG. 8 is an enlarged plan view of a part of a leg portion of the tuning-fork type crystal vibrating piece according to the second embodiment.
  • FIG. 9 is an enlarged plan view of a part of a leg portion of another tuning-fork type crystal vibrating piece according to the second embodiment.
  • connection parts 213 and 223 have amplification parts 2131 and 2231 that amplify the dimension in the width direction exponentially from the vibration parts 212 and 222 toward the weight parts 211 and 221.
  • 2131 and 2231 are formed such that the dimension in the longitudinal direction is longer than the dimension in the width direction.
  • the shape is not limited to such a shape of the connection portion, but a simple R shape, taper shape, It may be stepped (a longitudinal dimension and a width dimension). That is, the amplifying parts 2131, 2231 may be formed of R1 constituted by a part of the circumference as shown in FIGS. 7 and 8, and the major axis is extended in the protruding direction of the leg part as shown in FIG. You may form by R2 comprised by a part of ellipse which has.
  • a bottomed second groove part 271 is formed along the longitudinal direction at the tip of the first groove part 27 with the bridge part 272 interposed therebetween.
  • the second groove portion 271 extends from the tip of the vibrating portions 212 and 222 toward the weight portions 211 and 221, and only the extraction electrodes 293 and 294 are formed inside the second groove portion 271, respectively. Not formed.
  • the bridge portion 272 is positioned on the vibration portions 212 and 222, and the second groove portion 271 is formed along the protruding direction of the leg portion from the tip of the vibration portions 212 and 222 to the connection portions 213 and 223.
  • the bridge portion 272 is a remaining region that is not etched with respect to the tuning-fork type crystal vibrating piece (piezoelectric vibration element plate), and a region other than the first groove portion 27 and the second groove portion 271 in each of the leg portions 21 and 22. Consists of the same thickness.
  • the connection portion 213 of the first leg portion 21 and the connection portion 223 of the second leg portion 22 have an extraction electrode 293 on almost the entire side surfaces 28 of both main surfaces (one main surface 261 and the other main surface 262). , 294, respectively, and lead electrodes 293, 294 are also formed inside the second groove.
  • the second groove portion is formed only in a part of the connection portions 213 and 223, but may be formed to extend to the regions of the weight portions 211 and 221 depending on the characteristics. .
  • the structure which does not form an extraction electrode may be sufficient as the upper surface of a 2nd groove part, and the structure by which the metal film M3 for adjustment mentioned later was formed not only on the extraction electrode but on the upper part may be sufficient.
  • the structure which combined at least 2 or more of these structures may be sufficient.
  • an excitation electrode for generating an electric field effect inside the crystal vibrating piece is not formed in the second groove portion by arranging electrodes of different polarities in proximity.
  • the vibrating portions 212 and 222 are formed with the bottomed second groove portion 271 along the longitudinal direction at the tip of the first groove portion 27 with the bridge portion 272 interposed therebetween.
  • the second groove portion 271 extends from the distal ends of the vibration portions 212 and 222 toward the weight portions 211 and 221 and forms only the extraction electrodes 293 and 294. For this reason, the region where the mass is small (the region where the rigidity is low) is formed at the tip of the vibrating parts 212 and 222, and the position of the node portion of the unnecessary harmonic other than the fundamental wave is changed to the CI value of the harmonic.
  • the CI value of unnecessary harmonics is increased compared to the CI value (series resonance resistance) of the fundamental wave necessary for exciting the tuning fork type piezoelectric vibrator, and the CI value thereof is increased.
  • the ratio (hereinafter referred to as the CI ratio) can be increased and harmonic oscillation can be suppressed.
  • the bridge portion 272 is interposed between the first groove portion 27 and the second groove portion 271, a bridge portion 272 is formed at the tips of the vibration portions 212 and 222, and the mechanical portion in this portion is Since the strength is improved, there is little risk of causing cracks or cracks in this region, and impact resistance is improved. Further, by forming a region having a strong bending stress between the first groove portion 27 and the second groove portion 271, the position of the node portion of the harmonic once displaced is made difficult to return to the region where the excitation electrode is formed. As a result, the CI ratio can be earned in a more stable state.
  • the present invention can be applied to a piezoelectric vibration device such as a tuning fork type crystal resonator.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 音叉型圧電振動片2において、圧電振動素板が外部との接合領域を有する基部25と、当該基部の一端面から突出した一対の脚部21,22とから構成し、前記一対の脚部は、励振電極を有する振動部212,222と、当該振動部の先端に形成され幅広の錘部211,221と、前記振動部と錘部との接続部213,223とを有しており、前記接続部は、前記振動部から前記錘部に向って、その幅方向の寸法を指数関数的に増幅する増幅部を有し、前記増幅部は長手方向の寸法が幅方向の寸法よりも長く形成されており、前記錘部は、前記接続部との連結位置から幅方向の寸法が一定幅部分を有し、励振電極を形成しない。

Description

音叉型圧電振動片、および音叉型圧電振動子
 本発明は、電子機器等に用いられる音叉型圧電振動片、およびそれを用いた音叉型水晶振動子に関する。
 圧電振動子に代表される圧電振動デバイスは、携帯電話など移動体通信機等に広く用いられている。前記圧電振動子に用いられる圧電振動片の一つとして音叉型圧電振動片がある。音叉型圧電振動片は、基部と、当該基部から一方向に伸びる一対の振動脚(以下、脚部と称する)とからなる音叉形状の圧電振動片であり、当該音叉型圧電振動片を使用した音叉型圧電振動子は、時計のクロック源として広く使用されている。
 また、近年、通信機器の高性能化や小型化に伴い、音叉型圧電振動片も更なる小型化と特性面の高品質化が求められている。特に、音叉型圧電振動片が小型化されると、その小型化に応じて音叉型圧電振動片の脚部の幅が小さくなり、厚みも薄くなる。その結果、従来の振動片では影響を抑えることができていた高調波が低ドライブレベルでも振動可能となり、その悪影響を受けやすくなる。例えば、脚部の主面に溝部が形成された音叉型圧電振動片では、振動片の小型化に伴うCIの増加を抑制するために、従来と比較して脚部に対する溝部の幅の比率を増し、その深さを増すこととなる。その結果、脚部の端部と溝部との間に形成された土手幅が従来と比較して細く形成され、両主面の溝部間の厚みが減ずることとなるため、脚部の剛性が低下し、高調波発振しやすくなっている。つまり、この様な音叉型圧電振動子を用いた場合、発振回路の定数や設計により、高調波の周波数で発振してしまうなどの不具合が生じやすくなっているのが現状である。
 例えば、特許文献1に記載の音叉型圧電振動片では、不要な高調波の影響を軽減するための電気的特性を改善するための構成が開示されている。特許文献1では、基部と、当該基部から突出して並設される一対の脚部とを有する音叉型圧電振動片において、以下の構成を有している。
 特許文献1における音叉型圧電振動片において、各脚部は、励振電極を有する振動部と、当該振動部の先端に形成され、かつ振動部よりも幅広な錘部とからなる。さらに、各脚部には、振動部と錘部との連結位置を越えて、錘部の内部まで延長して形成された溝部が形成されている。このように、特許文献1に開示された音叉型圧電振動片では、振動部の先端に幅広の錘部が形成されることで、振動部を短くしても高調波の発生を抑制し、振動周波数の安定性を得ることができるようにされている。
 但し、上記錘部を有する音叉型圧電振動片では、振動部と錘部との連結部で剛性が急激に変化するため、錘部の振動を不安定にするといった課題がある。この課題に対し、特許文献1に開示された音叉型圧電振動片では、振動部と錘部との連結位置に上記溝部を形成することで、振動部と錘部との連結部での急激な剛性変化を緩和し、安定した振動を可能としている。
特開2011-166324号公報
 特許文献1において、振動部の先端に幅広の錘部が形成することで高調波の発生が抑制できるのは、高調波発振の屈曲点となる振動節部分(以下、振動節と称する)が錘部側へ変位させられるためと考えられる。しかし、錘部の脚部側端部の形状がテーパ状であり、急激にその幅を増すことから、振動部と錘部との連結部付近で機械的強度が急激に増加し、振動節がその連結部付近に移動するに留まる。このため、振動節部分の変位による高調波抑制の効果は十分とは言えない。
 また、機械的強度が連結部にて急激に増加すると、連結部より脚部の先側での重量が急激に変化することから、振動時の慣性力が当該連結部に集中することとなる。特許文献1では、当該連結部に溝部を設けていることで、溝部が無い場合と比較して機械的強度が落ちる結果となり、音叉型圧電振動片としての機械的な強度も不足しやすく、耐衝撃性能が劣るものである。
 また、一つの溝部の中で電極を形成する場合、完全な無電極域を形成することが難しい。これは、音叉型圧電振動片の電極をフォトリソグラフィの技術を用いて形成した場合、音叉型圧電振動片の脚部における溝部内部と溝部外部との厚み差によって、露光の焦点が異なるため、溝部の内部と外部のレジストを均等に露光することが難しいためである。仮に溝部の内部と外部とを同時に露光してレジストを除去する場合、外部の露光が過剰となり、側面電極の抉れや電極の断線を引き起こす可能性がある。また、レジスト材が溝部の底部分に厚く堆積するために、露光によりこのレジストを除去することが難しくなる。結果として溝部に電極が残ってしまうことに起因する。更に、振動片の小型化により錘部内での電極配線も細線化・狭小化されており、僅かな位置ずれにて、錘部に形成される励振電極に寄与しない電極(引き回し電極、周波数調整用の金属膜等)と、励振電極として寄与している溝部内に残った電極とが溝延長部分において短絡する危険性が高かった。
 本発明は、かかる点に鑑みてなされたものであり、小型化に対応し、高調波の悪影響を抑制するとともに、耐衝撃性能に優れた音叉型圧電振動片、および音叉型圧電振動子を提供することを目的とする。
 上記目的を達成するために、請求項1の発明は、圧電振動素板が、基部と、当該基部の一端面から突出して並接された一対の脚部とを有し、前記脚部の突出方向を長手方向とし、前記脚部の並接方向を幅方向として構成した音叉型圧電振動片において、前記一対の脚部は、長手方向に沿って形成された溝部と励振電極を有する振動部と、当該振動部の先端側に一体形成され、かつ前記振動部の幅方向の寸法よりも幅広の部分を有する錘部と、前記振動部と前記錘部との接続部とを有しており、前記振動部の励振電極は、前記溝部の内面に形成した内面電極と、当該内面電極に幅方向に対向して前記脚部の側面に形成した側面電極とを含んで構成され、前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を指数関数的に増幅する増幅部を有し、前記増幅部は長手方向の寸法が幅方向の寸法よりも長く形成されており、前記錘部は、前記接続部との連結位置から幅方向の寸法が一定幅部分を有し、励振電極を形成しないことを特徴とする。
 通常、音叉型圧電振動片では高調波発振を避けるために脚部の主面の溝部の長さを減じる、脚部の剛性を変化させる等、高調波の振動節を主面の溝部の無い脚部の先側へ推移させて高調波のCIを増加させる設計を採る。しかし、振動片の小型化により、主面の溝部の長さを減ずる方法では基本波のCI値の極端な悪化を招くことになり、小型化・低周波化に対応させた脚部の先端に幅広の錘部を具備してなる振動片では、高調波のCI値増加のために高調波の節部分を錘部側へ移動させようとしても、脚部のうち、幅の細い振動部と幅の太い錘部の境界部付近となる接続部にて、急激に機械的強度が増すことから、当該接続部に高調波の節部分が留まることとなる。そして、異極の電極が近接配置されて圧電振動素板内部で電界を生じ屈曲振動を生じさせる領域(励振電極が形成された領域)に、前記高調波の節部分が位置すると高調波発振を促進させることになる。
 本発明によれば、前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を指数関数的に増幅する増幅部を有し、前記増幅部は長手方向の寸法が幅方向の寸法よりも長く形成されており、前記錘部は、前記接続部との連結位置から幅方向の寸法が一定幅部分を有し、励振電極を形成しない。このため、前記接続部では前記振動部の幅方向の寸法に近い領域が多く設けられ、かつ錘部に近づくに従って重量が急激に増大するように構成されることで、前記高調波の節部分の位置を、励振電極が形成された振動部から励振電極の形成されていない前記接続部のうち錘部側の位置へと変位させることができる。この様な変位がなされることで、音叉型圧電振動子を励振させるのに必要な基本波のCI値(直列共振抵抗)に比べて、不要な高調波のCI値を増大させ、そのCI値の比率(以下、CI比と称する)を稼ぎ、高調波発振を抑制することができる。
 また、前記溝部は、応力の発生の起点となる前記接続部に形成していないため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を低下させることがない。
 また、上記目的を達成するために、請求項2の発明は、圧電振動素板が、基部と、当該基部の一端面から突出して並接された一対の脚部とを有し、前記脚部の突出方向を長手方向とし、前記脚部の並接方向を幅方向として構成した音叉型圧電振動片において、前記一対の脚部は、長手方向に沿って形成された溝部と励振電極を有する振動部と、当該振動部の先端側に一体形成され、かつ前記振動部の幅方向の寸法よりも幅広の部分を有する錘部と、前記振動部と前記錘部との接続部とを有しており、前記振動部の励振電極は、前記溝部の内面に形成した内面電極と、当該内面電極に幅方向に対向して前記脚部の側面に形成した側面電極とを含んで構成され、前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を増幅する増幅部を有し、前記増幅部の主面における形状を、前記増幅部の幅方向の寸法以上の曲率半径からなる円の円周の一部、もしくは、長手方向に長径を有する楕円の円周の一部で形成し、前記錘部は、前記接続部との連結位置から幅方向の寸法が一定幅部分を有し、励振電極を形成しないことを特徴とする。
 通常、音叉型圧電振動片では高調波発振を避けるために主面溝部の長さを減じる、脚部の剛性を変化させる等、高調波の振動節を主面溝の無い脚部の先側へ推移させて高調波のCIを増加させる設計を採る。しかし、振動片の小型化により、主面溝の長さを減ずる方法では基本波のCI値の極端な悪化を招くことになり、小型化・低周波化に対応させた脚部の先端に幅広の錘部を具備してなる振動片では、高調波のCI値増加のために高調波の節部分を錘側へ移動させようとしても、脚部のうち、幅の細い振動部と幅の太い錘部の境界部付近となる接続部にて、急激に機械的強度が増すことから、当該接続部に高調波の節部分が留まることとなる。そして、異極の電極が近接配置されて圧電振動素板内部で電界を生じ屈曲振動を生じさせる領域(励振電極が形成された領域)に、前記高調波の節部分が位置すると高調波発振を促進させることになる。
 本発明によれば、前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を増幅する増幅部を有し、前記増幅部の主面における形状を、前記増幅部の幅方向の寸法以上の曲率半径からなる円の円周の一部、もしくは、長手方向に長径を有する楕円の円周の一部で形成し、前記錘部は、前記接続部との連結位置から幅方向の寸法が一定幅部分を有し、励振電極を形成しない。このため、前記接続部では前記振動部の幅方向の寸法に近い領域が多く設けられ、かつ錘部に近づくに従って重量が急激に増大するように構成されることで、前記高調波の節部分の位置を、励振電極が形成された振動部から励振電極の形成されていない前記接続部のうち錘部側の位置へと変位させることができる。この様な変位がなされることで、CI比を稼ぎ、高調波発振を抑制することができる。結果として、高調波が定在化することがなくなる。
 また、前記増幅部が円周の一部により構成されることで、前記接続部には幅寸法の増大する角部(境界部分)が存在せず、応力の発生の起点になる領域が脚部の側面には存在しない。このため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を向上させる。
 また、前記溝部は、応力の発生の起点となる前記接続部に形成していないため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を低下させることがない。
 また、上記目的を達成するために、請求項3の発明は、基部と、当該基部の一端面から突出して並接された一対の脚部とを有する音叉型圧電振動片において、前記各脚部は、前記基部に接続され、励振電極を有している振動部と、前記脚部の先端側に配置され、前記振動部の幅方向の寸法よりも幅広に形成されている錘部と、前記振動部と前記錘部とを、前記振動部から前記錘部に向かってその幅方向の寸法を増幅するように接続する接続部とからなり、前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を指数関数的に増幅する増幅部を有し、前記接続部の幅方向の寸法は以下の(a)~(c)の条件を同時に満たすように増幅することを特徴としている。
(a) 増幅部は滑らかな曲線にて形成され、接続部の幅寸法を振動部から錘部に向かって単調に増加させる。
(b) 接続部の幅寸法の増加率は、振動部との境界から遠ざかるほど大きくなる。
(c) 接続部の幅寸法の増加率は、振動部と接続部との境界において0となる。
 本発明によれば、前記接続部の幅寸法が(a)~(c)の条件前を満たすことにより、前記接続部では前記振動部の幅方向の寸法に近い領域が多く設けられ、かつ錘部に近づくに従って重量が急激に増大するように構成されることで、前記高調波の節部分の位置を、励振電極が形成された振動部から励振電極の形成されていない前記接続部のうち錘部側の位置へと変位させることができる。この様な変位がなされることで、CI比を稼ぎ、高調波発振を抑制することができる。
 また、前記接続部には幅寸法の増大する角部(境界部分)が存在せず、応力の発生の起点になる領域が脚部の側面には存在しない。このため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を向上させる。
 また、請求項4に記載されているように、前記溝部の長さ/前記脚部の長さを55%以上65%以下として設定してもよい。
 脚部に溝部を形成するとともに、前記溝部の内面に形成した内面電極と、当該内面電極と異極で幅方向に対向して前記脚部の側面に形成した側面電極とを含んで励振電極を構成することで、圧電振動素板内部での電界効率を向上させ、小型化された音叉型圧電振動片であってもCI値を改善することができる。この溝部は、長い方が電界効率を増し、基本波のCIを大きく減ずることが可能となるが、高調波の振動節が励振に寄与する溝部内に位置することとなり、高調波のCIが低下することになる。従来の錘部を形成した振動片では、錘部により振動節の変位を溝部よりも錘部側へ変位させることが難しく、CI比を改善するために、前記溝部の長さ/前記脚部の長さを60%以下とすることが望まれ、十分なCI比とするためには、さらにその長さを55%以下とすることが望まれていた。この時、より小型化された音叉型圧電振動片では、この溝部の長さを減ずると基本波のCIが極端に悪化し、必要とする特性を得ることができない。
 本発明の請求項4の構成によると、上述の作用効果に加え、溝部と錘部の接続部の幅形状が極端に増加する部位を錘側へ採る構成となっていることから、高調波の振動節を変位させる領域を確保することが可能となり、溝部を減じなくともCI比を改善することが可能となる。その結果、従来では減じていた前記溝の長さを55%から65%とすることができ、基本波のCIを低下させることができる。また、前記溝部の長さ/前記脚部の長さを55%以上65%以下として設定することで、基本波のCI値を悪化させすぎない状態で、高調波のCI値を増大させこれらのCI比を稼ぐのに有効な構成となる。前記溝部の長さ/前記脚部の長さを55%より小さく設定すると、基本波のCI値の増加が大きくなり、所望とする特性を満たすことができない。前記溝部の長さ/前記脚部の長さを65%より小さく設定すると、錘部を含む脚部領域にまで溝部が延長され、機械的な強度不足を招きやすく耐衝撃性能が劣るものとなる。
 また、請求項5に記載されているように、前記接続部には、長手方向に沿って形成された第2溝部を有し、前記振動部の溝部と前記接続部の第2溝部との間には、前記溝部と第2溝部が形成されないブリッジ部が介在してなり、前記溝部のみに励振電極を形成してもよい。
 本発明の請求項5の構成によると、上述の作用効果に加え、前記接続部には、長手方向に沿って形成された第2溝部を有し、前記振動部の溝部と前記接続部の第2溝部との間には、前記溝部と第2溝部が形成されないブリッジ部が介在してなり、前記溝部のみに励振電極を形成している。前記ブリッジ部では前記溝部と第2溝部の領域に比べて剛性が高くなるため、前記ブリッジ部の領域のみの脚部幅を見かけ上幅広に構成するのと同じようになる。また、上述の増幅部の剛性についても第2溝部の存在により低下させることができ、高調波の振動節を第2溝部の領域に変位させることが容易となる。更には、第2溝部はブリッジ部の存在により励振電極とは物理的に断線させることが可能となり、上述した溝部内部への電極の残部が存在しても励振に寄与することがなく、第2溝部に高調波の振動節を配しても高調波の振動を補助する役割を果たさない。このため、上述の増幅部による高調波の節部分の変位作用に加えて、前記ブリッジ部と第2溝部との剛性の違いによる高調波の節部分の変位作用も有効的に組み合わせられ、相乗的に機能する。つまり、高調波の節部分を励振電極が形成された振動部からさらに遠ざけて、励振電極の形成されていない接続部の第2溝部の領域へとより確実に変位させることができる。この様な変位がなされることで、音叉型圧電振動子を励振させるのに必要な基本波のCI値に比べて、不要な高調波のCI値を増大させ、そのCI比を稼ぎ、より一層の高調波発振を抑制することができる。
 また、前記振動部の溝部と前記接続部の第2溝部との間には、前記溝部と第2溝部が形成されないブリッジ部が介在しているので、この部分における機械的な強度が向上する。このため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を向上させる。
 また、上記目的を達成するために、請求項6の発明は、圧電振動素板が、基部と、当該基部の一端面から突出して並接された一対の脚部とを有し、前記脚部の突出方向を長手方向とし、前記脚部の並接方向を幅方向として構成した音叉型圧電振動片において、前記一対の脚部は、長手方向に沿って形成された第1溝部と励振電極とを有する振動部と、当該振動部の先端側に一体形成され、かつ前記振動部の幅方向の寸法よりも幅広の部分を有する錘部と、前記振動部と前記錘部との接続部とを有しており、前記振動部のみに形成される励振電極は、前記第1溝部の内面に形成した内面電極と、当該内面電極に幅方向に対向して前記脚部の側面に形成した側面電極とを含んで構成され、前記接続部には、長手方向に沿って形成された第2溝部を有し、前記振動部の第1溝部と前記接続部の第2溝部の間には、前記第1溝部と第2溝部とが形成されないブリッジ部が介在してなり、前記ブリッジ部を前記振動部に位置させたことを特徴としている。
 本発明によれば、前記振動部のみに形成される励振電極は、前記第1溝部の内面に形成した内面電極と、当該内面電極に幅方向に対向して前記脚部の側面に形成した側面電極とを含んで構成され、前記接続部には、長手方向に沿って形成された第2溝部を有し、前記振動部の第1溝部と前記接続部の第2溝部の間には、前記第1溝部と第2溝部とが形成されないブリッジ部が介在してなり、前記ブリッジ部を前記振動部に位置させている。このため、前記ブリッジ部では前記第1溝部と第2溝部の領域に比べて剛性が高くなる。また、高調波の節部分が前記ブリッジ部近傍に存在していた場合、この剛性の強化によって高調波の節部分が剛性の弱い部位へ変位することとなる。この現象を利用し、前記ブリッジ部を前記振動部に移動させることで、前記ブリッジ部を高調波の節部分よりもやや基部よりに配置することができ、高調波の節部分を前記ブリッジ部を形成しない場合に存在した位置よりも錘側へ変位させることができる。つまり、高調波の節部分を励振電極が形成された振動部からさらに遠ざけて、励振電極の形成されていない接続部の第2溝部の領域へと確実に変位させることができる。この様な変位がなされることで、音叉型圧電振動子を励振させるのに必要な基本波のCI値(直列共振抵抗)に比べて、不要な高調波のCI値を増大させ、そのCI比を稼ぎ、高調波発振を抑制することができる。結果として、高調波が定在化することがなくなる。
 また、請求項7に記載されているように、前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を指数関数的に増幅する増幅部を有し、前記接続部の幅方向の寸法は以下の(a)~(c)の条件を同時に満たすように増幅してもよい。
(a) 増幅部は滑らかな曲線にて形成され、接続部の幅寸法を振動部から錘部に向かって単調に増加させる。
(b) 接続部の幅寸法の増加率は、振動部との境界から遠ざかるほど大きくなる。
(c) 接続部の幅寸法の増加率は、振動部と接続部との境界において0となる。
 本発明の請求項7の構成によると、上述の作用効果に加え、前記接続部では前記振動部の幅方向の寸法に近い領域が多く設けられ、かつ錘部に近づくに従って重量が急激に増大するように構成されることで、前記高調波の節部分の位置を、励振電極が形成された振動部から励振電極の形成されていない前記接続部のうち錘部側の位置へと変位させることができる。この様な変位がなされることで、CI比を稼ぎ、高調波発振を抑制することができる。
 また、前記接続部には幅寸法の増大する角部(境界部分)が存在せず、応力の発生の起点になる領域が脚部の側面には存在しない。このため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を向上させる。
 また、請求項8に記載されているように、上述のように構成された音叉型圧電振動片が、当該音叉型圧電振動子の筺体内部に設けられ気密封止された音叉型圧電振動子にも適用でき、上述の音叉型圧電振動片が筐体内部で保持部に接合された音叉型圧電振動子として同様の作用効果を有する。
 以上のように、本発明によれば、小型化に対応し、高調波の悪影響をなくすとともに、耐衝撃性能に優れた音叉型圧電振動片、および音叉型圧電振動子を提供することができる。
本発明の実施の形態1を示す音叉型水晶振動子の模式的な断面図である。 本発明の実施の形態1を示す音叉型水晶振動片の一主面側の平面図である。 本発明の実施の形態1を示す音叉型水晶振動片の脚部の一部を拡大した平面図である。 本発明の他の実施の形態1を示す音叉型水晶振動片の脚部の一部を拡大した平面図である。 本発明の実施の形態1の変形例を示す音叉型水晶振動片の一主面側の平面図である。 本実施の形態2を示す音叉型水晶振動子の模式的な断面図である。 本実施の形態2を示す音叉型水晶振動片の一主面側の平面図である。 本実施の形態2を示す音叉型水晶振動片の脚部の一部を拡大した平面図である。 本実施の形態2を示す他の音叉型水晶振動片の脚部の一部を拡大した平面図である。
 〔実施の形態1〕
 以下、音叉型水晶振動子を例に挙げて図面とともに説明する。本実施形態で使用される音叉型水晶振動子1は、ベース3と図示しない蓋とが封止部材Hを介して接合されて筐体が構成される。具体的には、上部が開口したベースの電極パッド32上に音叉型水晶振動片2がメッキバンプなどの第1金属膜M1を介して接合され、前記ベースの開口部に対して封止部材Hを介して蓋で接合した構成となっている。ここで、本実施形態では音叉型水晶振動子の公称周波数は32.768kHzとなっている。なお、前記公称周波数は一例であり、他の周波数にも適用可能である。
 ベース3は、例えばセラミック材料やガラス材料などからなる絶縁体の容器体で構成されている。ベース3は、周囲に堤部30を有し、かつ上部が開口した断面視凹形状で、当該ベース3の内部(収納部)には音叉型水晶振動片を搭載するための段差部31が形成されている。そして前記段差部の上面には、一対の電極パッド32,32(一方のみ図示)が形成されている。一対の電極パッド32,32は、ベース内部に形成された図示しない配線パターンを介してベース底面(裏面)に形成されている2つ以上の端子電極33,33と電気的に接続されている。
 ベース3の堤部30の周囲には金属膜層(封止部材Hの一部を構成)34が周状に形成されている。例えばベース3がセラミック材料の場合には、前記電極パッド32,32や端子電極33,33、金属膜層34は例えば3層から構成されており、下からタングステン、ニッケル、金の順で積層されている。タングステンはメタライズ技術により、セラミック焼成時に一体的に形成され、ニッケル、金の各層はメッキ技術により形成される。なお、前記タングステンの層にモリブデンを使用してもよい。
 図示しない蓋は、例えば金属材料やセラミック材料、ガラス材料などからなり、平面視矩形状の一枚板に成形されている。この蓋の下面には封止材(封止部材Hの一部を構成)が形成されている。この蓋はシーム溶接やビーム溶接、加熱溶融接合などの手法により封止材を介してベース3に接合されて、蓋とベース3とによる水晶振動子1の筐体が構成される。
 音叉型水晶振動片2は、図示していないが、異方性材料の水晶Z板からなる1枚の水晶ウェハに、多数個の音叉型水晶振動片(圧電振動素板)がマトリックス状に一括形成されている。前記音叉型水晶振動片2の外形は、フォトリソグラフィ技術を用いて、レジストまたは金属膜をマスクとして例えばウェットエッチングによって一括的に成形されている。
 音叉型水晶振動片(圧電振動素板)2は、図2に示すように、振動部である一対の第1脚部21および第2脚部22と、当該脚部21,22の間の又部253と、外部(本実施例ではベース3の電極パッド32,32)と接合する接合部23と、これら第1脚部21および第2脚部22と接合部23を突出して設けた基部25とから構成された外形からなる。一対の第1脚部21および第2脚部22は、基部25の一端面251から突出して又部253を介して並設されている。なお、ここでいう又部253は、一端面251の幅方向の中間位置(中央領域)に設けられている。なお、第1脚部21と第2脚部22の突出方向を長手方向(本形態ではY軸方向)とし、第1脚部21と第2脚部22の並接方向を幅方向(本形態ではX軸方向)として構成している。
 本実施例にかかる音叉型水晶振動片(圧電振動素板)2の表裏両主面(一主面261と他主面262)には、次の電極が一体的に同時形成されている。つまり、異電位で構成された一対の第1励振電極291および第2励振電極292と、これら第1励振電極291および第2励振電極292を電極パッド32,32に電気的に接続させるためにこれら第1励振電極291および第2励振電極292から引き出された引出電極293,294と、その先端部に金属膜M1が形成される接続電極295,296とが一体的に同時形成されている。なお、本実施例でいう引出電極293,294は、これら一対の第1励振電極291および第2励振電極292から引き出された電極パターンのことをいう。接続電極295,296は、引出電極293,294の先端部分(導出端部)のうちベース3との接合部位となる箇所に形成されたものを示している。
 上記した音叉型水晶振動片2の第1励振電極291および第2励振電極292や引出電極293,294、接続電極295,296は、金属蒸着によって各第1脚部21および第2脚部22上にクロム(Cr)層が形成され、このクロム層上に金(Au)層が形成されて構成される薄膜である。この薄膜は、真空蒸着法やスパッタリング法などの手法により基板全面に形成された後、フォトリソグラフィ法によりメタルエッチングして所望の形状に形成されることで、一体的に同時形成される。なお、第1励振電極291,第2励振電極292および引出電極293,294がクロム(Cr),金(Au)の順に形成されているが、例えば、クロム(Cr),銀(Ag)の順や,クロム(Cr),金(Au),クロム(Cr)の順や,クロム(Cr),銀(Ag),クロム(Cr)の順などであってもよい。
 一対の第1脚部21および第2脚部22は、長手方向に沿って形成された後述する溝部27と励振電極を有する振動部212,222と、振動部212,222の先端に形成され振動部に比べて幅方向に幅広に成形された錘部211,221と、振動部212,222と錘部211,221との接続部213,223とを有している。脚部の先端部分は周波数の調整領域として感度が良好な領域であり、このように錘部211,221を幅広に成形することで、高感度領域を広くすることができ、錘部211,221(先端領域)を周波数の調整の際により有効に利用することができる。また、一般的に、脚部の先端部分を幅広にすることで重みを増大させて、低周波化することができるが、この様な幅広の錘部を構成することなく音叉型水晶振動片2を小型化すると、脚部の幅を細く構成せざるを得ない。この場合、前記溝部や励振電極を形成するのに不利で、CI値も悪いものとなる。これに対して、本形態のように幅広の錘部を構成することで、脚部の幅も広く構成することができ、CI値特性も向上させることができ、低周波数化にも有用である。
 第1励振電極291は、第1脚部21の振動部212の両主面(一主面261と他主面262)と、第2脚部22の振動部222の両側面28に形成されている。同様に、第2励振電極292は、第2脚部22の振動部222の両主面(一主面261と他主面262)と第1脚部21の振動部212の両側面28に形成されている。
 振動部212,222は、その一主面261と他主面262に、有底の溝部27がそれぞれ形成されている。また、一対の第1励振電極291および第2励振電極292の一部は、溝部27の内部にも形成されている。このため、音叉型水晶振動片2を小型化しても第1脚部21および第2脚部22の振動損失が抑制され、CI値(直列共振抵抗値)を低く抑えることができる。なお、溝部27は、長手方向における溝部27の長さ寸法L2を、同方向の脚部21,22の長さ寸法L1の55%以上65%以下として設定することが望ましい。本形態では例えば60%で設定している。
 なお、本発明における励振電極とは、前記溝部の内面に形成した内面電極と、当該内面電極と異極で幅方向に対向して脚部の側面に形成した側面電極とを少なくとも含んで構成され、前記振動部のうち異極の電極が近接配置されることで水晶振動片の内部で電界効果を生じさせるものを示しており、配線用の引出電極等は含まない。すなわち、振動部212における励振電極は、第1脚部21の両主面上に形成された第1の励振電極291,291(図2では一主面261側のみ図示)と、当該第1の励振電極と同極で同一主面の溝部27,27の内面に形成された内面電極2911,2911(図2では一主面261側のみ図示)と、当該内面電極2911,2911と異極で幅方向に対向して第1脚部21の両側面に形成された側面電極2922,2922とで構成された周囲の電極群全般を示している。振動部222における励振電極は、第2脚部22の両主面上に形成された第2の励振電極292,292(図2では一主面261側のみ図示)と、当該第2の励振電極と同極で同一主面の溝部27,27の内面に形成された内面電極2921,2921(図2では一主面261側のみ図示)と、当該内面電極2921,2921と異極で幅方向に対向して第2脚部22の両側面に形成された側面電極2912,2912とで構成された周囲の電極群全般を示している。
 錘部211,221は、その隅部が曲面形成されており、接続部213,223の終端部分から先端部分に向かって、錘部の幅寸法が一定となる同一幅領域2111,2211を有している。また錘部のうち少なくともこの同一幅領域2111,2211には、後述する引出電極293,294のみを形成しており、この領域では励振電極を形成していない。このように、錘部211,221の隅部を曲面形成することで、外力を受けた時などに堤部などに接触するのを防止することができる。同一幅領域2111,2211を形成することで、周波数調整に有効な脚部先端の高感度領域を広くすることができる。
 第1脚部21の錘部211と第2脚部22の錘部221には、両主面(一主面261と他主面262)との両側面28のほぼ全面に引出電極293,294がそれぞれ形成されている。この錘部211,221では、励振電極を形成していないので、異極の電極が近接配置されることがなく、作成が容易で短絡することがない。
 接続部213,223は、振動部212,222から錘部211,221に向かって、幅方向の寸法を指数関数的に増幅する増幅部2131,2231を有し、増幅部2131,2231は長手方向の寸法が幅方向の寸法よりも長くなるように形成されている。より具体的には、図3に示すように、音叉型水晶振動片2の主面形状において、振動部212,222の幅寸法に対する錘部211,221の幅広寸法(増幅部2131,2231の幅寸法)である増大幅寸法H1とH2の加算寸法以上の曲率半径からなる円形の円周の一部で構成しており、本形態では、例えば、幅寸法H1とH2を加えたものの8倍の曲率半径からなる円形の円周の一部で構成したR1で形成している。なお、円形のR1に限らず、図4に示すように、脚部の突出方向に長径を有する1/4楕円の円形の円周の一部で構成したR2で、増幅部2131,2231を形成してもよい。
 尚、本発明において、接続部213,223の幅方向の寸法を指数関数的に増幅するとは、以下の(a)~(c)の条件を同時に満たすものとして定義することもできる。
(a) 増幅部は滑らかな曲線にて形成され、接続部の幅寸法を振動部から錘部に向かって単調に増加させる。
(b) 接続部の幅寸法の増加率は、振動部との境界から遠ざかるほど大きくなる。(長手方向(Y軸方向)において振動部から錘部に向かう方向を正、幅方向(X軸方向)において幅を増大させる方向を正とする場合、増幅部の接線の傾き(dX/dY)は、振動部から錘部に向かって単調に増加する。)
(c) 接続部の幅寸法の増加率は、振動部と接続部との境界において0となる。(振動部と接続部との境界における接線の傾きは0である。)
 このように、本実施形態に係る音叉型水晶振動片2では、振動部212,222から錘部211,221に向かって、幅方向の寸法を指数関数的に増幅する増幅部2131,2231が形成されることにより、以下の効果を奏する。
 効果の第1点として、増幅部2131,2231が幅方向の寸法を指数関数的に増幅するものであるため、錘部の脚部側端部の形状がテーパ状である特許文献1の構成に比べ、振動部212,222と接続部213,223との連結部付近で機械的強度が急激に増加することが無い。このため、振動節がその連結部付近に留まることがなく、当該振動節をより錘部211,221側に変位させることができる。脚部の長さが同じ音叉型水晶振動片で比べた場合、振動節をより錘部側に変位させることで、高調波抑制の効果をより向上させることができる。
 効果の第2点として、特許文献1の構成に比べ、振動部212,222と接続部213,223との連結部付近で機械的強度が急激に増加することが無いため、特許文献1のように振動部と錘部との連結位置に溝部を形成しなくても、振動時の慣性力が当該連結部に集中することなく、安定した振動が得られる。このため、上記溝部を形成することによる機械的強度の低下がなく、音叉型圧電振動片としての十分な強度が確保できる。
 効果の第3点として、特許文献1の構成に比べ、振動部と錘部との連結位置に溝部を形成しなくても安定した振動が得られるため、上記溝部を形成することによる製造上の問題も回避できる。すなわち、特許文献1のように、一つの溝部の中で(励振)電極形成領域と電極無形成領域とを形成する場合、本来電極電極無形成領域とすべき箇所での除去しきれずに残った電極が励振電極と短絡するといった問題がある。本実施形態に係る音叉型水晶振動片2では、振動部と錘部との連結位置に溝部を形成しないことで上記問題を回避できる。
 第1脚部21の接続部213と第2脚部22の接続部223には、両主面(一主面261と他主面262)と両側面28のほぼ全面に引出電極293,294がそれぞれ形成されている。この接続部213,223では、励振電極を形成していないので、異極の電極が近接配置されることがなく、作成が容易で短絡することがない。
 また、少なくとも第1脚部21の錘部211の同一幅領域2111と、第2脚部22の錘部221の同一幅領域2211との一主面261側の引出電極293,294の上面には、レーザービームなどのビーム照射やイオンミーリングなどのイオンエッチングによって金属膜の質量削減を行うことで音叉型水晶振動片2の周波数を調整してなる調整用金属膜(周波数調整用錘)M3が形成されている。なお、本形態に限らず、第1脚部21の錘部211の同一幅領域2111と、第2脚部22の錘部221の同一幅領域2211だけでなく、第1脚部21の錘部211の全領域と接続部213の一部、および第2脚部22の錘部221の全領域と接続部213の一部とし、同領域の引出電極に対して若干小さな面積で、調整用金属膜(周波数調整用錘)M3を形成してもよい。また調整電極用金属膜(周波数調整用錘)M3は、本形態のように両主面(一主面261と他主面262)に形成したものに限らず、ベースの開口部に位置する他主面262のみに形成してもよい。
 上記調整用金属膜M3は、例えば、各領域の引出電極293,294に調整用金属膜の形成部をフォトリソグラフィ法により所望の形状に形成して、当該調整金属膜の形成部に調整用金属膜M3を電解メッキ法などの手法によりメッキ形成する。その後、アニール処理を行ってもよい。これらの金属膜をメッキ形成する際には、上記した金属膜M1(M11,M12)と同じ工程で同時に形成すると実用上より望ましい。
 基部25は、平面視左右対称形状とされ、図2に示すように、振動部212,222より幅広に形成されている。また、基部25の他端面252付近が、一端面251から他端面252にかけて幅狭になるように漸次テーパ状に形成されている。このため振動部である第1脚部21および第2脚部22の振動により発生した漏れ振動を他端面252により減衰させることができ、接合部23へ漏れ振動が伝わるのを抑制することができ、音響リーク(振動漏れ)をさらに低減するのに好ましい。なお漸次幅狭になる構成としてはテーパ状に限らず段差状や、曲面状としてもよい。
 接合部23は、図2、図3に示すように、引出電極293,294を外部電極(本発明でいう外部であり、本実施例ではベース3の電極パッド32,32)と電気機械的に接合するためのものである。具体的に、接合部23は、一対の第1脚部21および第2脚部22が突出した基部25の一端面251と対向する他端面252の幅方向の中間位置(中央領域)から突出形成されている。すなわち、一対の第1脚部21と第2脚部22との間に配された又部253と正対向する位置に、接合部23が突出形成されている。
 特に本形態では接合部23を、基部25の他端面252に対して平面視垂直方向に突出した他端面252よりも幅狭な短辺部231と、短辺部231の先端部と連なり短辺部231の先端部において平面視直角に折曲されて基部25の幅方向に延出する長辺部232とから構成され、接合部23の先端部233は基部25の幅方向に向いている。すなわち、接合部23は、平面視L字状に成形され、平面視L字状に成形された折曲箇所である折曲部234が短辺部231の先端部に対応する。このように基部25の他端面252よりも短辺部231が幅狭な状態で形成されているので、振動漏れのさらなる抑制の効果が高まる。
 また接合部23の一主面261には、外部と接合する第1の接合領域235と第2の接合領域236とを有しており、第1の接合領域235は基部25の幅方向の中心線の延長線上(接合部23の短辺部231の幅方向における中間位置)で平面視L字状に成形された接合部23の折曲部234の一領域に形成され、第2の接合領域236が平面視L字状に成形された接合部23の先端部233にあたる長辺部232の先端部の一領域に形成されている。そして第1の接合領域235には、後述する第2励振電極292から引出電極294を介して短辺部231の端部(一端部へ)引き出された接続電極296(引出電極294の導出端部)が形成され、第2の接合領域236には、後述する第1励振電極291から引出電極293を介して長辺部232の端部(一端部へ)引き出された接続電極295(引出電極293の導出端部)が形成されている。
 このように構成することで、接合部23の長さを拡大することなく振動漏れ(音響リーク)をより効率的に抑えることが可能となる。特に、接合部23における外部と接合する第1の接合領域235は、基部25の幅方向の中心線の延長線上で構成されているので、基部25の他端面252付近の幅狭の前記テーパ部分により、音響リークを抑制し、幅方向のわずかな音響リークをも相殺することができる。そして、音響リークをより効率的に押さえられた折曲部234で一方の極として電気的機械的に接合することができる。接合部23における外部と接合する第2の接合領域236は、音響リークの影響や応力や外力の影響を受けない先端部233で他方の異極として電気的機械的に接合することができる。
 またこれら接続電極295,296の上面には、接続電極295,296より表面粗さが粗く平面積が小さなメッキバンプとしての金属膜M1(M11,M12)が形成されている。金属膜M1(M11,M12)は、その厚みが例えば5~20μm程度、直径が50μm程度で平面積が約1962.5μm2の平面視円形状で形成されている。なお、超音波接合後(FCB後)には少なくとも金属膜M1(M11,M12)は面方向に拡がって潰れた状態となり、約半分程度の厚みになる。金属膜M1(M11,M12)の厚みが5μmより小さいと、音叉型水晶振動片2の接続電極295,296とベース3の電極パッド32,32との隙間が小さくなり、音叉型水晶振動子の電気的特性に悪影響を生じやすくなる。金属膜M1(M11,M12)の厚みが20μmより大きいと、音叉型水晶振動片2の傾きや位置ずれの影響が生じやすくなり、接合強度としてもばらつきが生じやすくなる。なお、メッキバンプとしての金属膜M1(M11,M12)の平面視形状は、接続電極などの平面視形状に応じて円形や楕円形などの円形状のものや、長方形や正方形を含む多角形状のものなど自由に構成することができる。
 接合部23への金属膜M1(M11,M12)の形成に関しては、接合部23の第1の接合領域235と第2の接合領域236に図示しない金属膜の形成部(接続電極295,296より平面積の小さい窓部を有するマスク)をフォトリソグラフィ法により所望の形状(本形態では円形状の窓部)に形成して、当該金属膜の形成部に金属膜M1(M11,M12)を電解メッキ法などの手法によりメッキ形成する。その後、アニール処理を行ってもよい。
 以上のように構成された音叉型水晶振動片2は、上記ウェハの状態の際に各々の音叉型水晶振動片2の周波数を計測した後、各々の音叉型水晶振動片2の調整用金属膜M3をビーム照射などで減少させたり、パーシャル蒸着により増加させたりすることで、周波数の粗調整をしている。
 周波数粗調整が施されウェハから取り出された個片の音叉型水晶振動片2は、その一主面261側の接続電極295,296の上面に形成された金属膜M1(M11,M12)とベース3の電極パッド32,32とがFCB法により超音波接合され、ベース3に搭載される。
 ベース3に搭載された音叉型水晶振動片2は、周波数を再計測した後、音叉型水晶振動片2の調整用金属膜M3をビーム照射やイオンエッチングなどで減少させることで、周波数の微調整する最終の周波数調整を行っている。
 その後、最終の周波数調整が行われた音叉型水晶振動片2が搭載されたベース3に対して、図示しない蓋を加熱溶融接合などの手法により封止部材Hを介して接合し、音叉型水晶振動片2をベース3と図示しない蓋とで構成された筐体の内部に気密封止する。なお上述の気密封止の手法として、シーム溶接、ビーム溶接、雰囲気加熱などの手法をあげることができる。
 次に、本発明の変形例について、上記実施形態との相違点のみを中心に図5とともに説明する。本発明の変形例では、接続部213,223に、長手方向に沿って形成された有底の第2溝部271を有している。振動部212,222の有底の溝部27と接続部213,223の第2溝部271との間には、ブリッジ部272が介在している。本形態では、このブリッジ部272を音叉型水晶振動片(圧電振動素板)に対してエッチングがされていない残部領域としており、各脚部21,22における溝部27や第2溝部271以外の領域と同じ厚みで構成している。第1脚部21の接続部213と第2脚部22の接続部223には、両主面(一主面261と他主面262)との両側面28のほぼ全面に引出電極293,294がそれぞれ形成されており、前記第2溝部の内部にも引出電極293,294がそれぞれ形成されている。
 なお、図5の変形例では、第2溝部271は、接続部213,223の一部の領域にのみ形成しているが、特性に応じて錘部211,221の領域、振動部212,222の領域、あるいは錘部と振動部の両方の領域にまで延長して形成してもよい。また、第2溝部の上面には、引出電極を形成しない構成であってもよく、引出電極のみだけでなく、その上部に調整用金属膜M3が形成された構成であってもよい。またこれら構成の少なくとも2つ以上を組み合わせた構成であってもよい。但し、前記第2溝部には、異極の電極が近接配置されることで水晶振動片の内部で電界効果を生じさせるための励振電極は形成しない。
 以上のような構成により、音叉型水晶振動片2の小型化に対応し、高調波の悪影響をなくすとともに、耐衝撃性能に優れた音叉型圧電振動片、および音叉型圧電振動子を提供することができる。
 接続部213,223は、振動部212,222から錘部211,221に向って、幅方向の寸法を指数関数的に増幅する増幅部2131,2231を有し、増幅部2131,2231は長手方向の寸法が幅方向の寸法よりも長くなるように形成されており、錘部211,221は接続部213,223の終端部分から錘部211,221の先端部分に向って一定幅の同一幅領域2111,2211を有し、引出電極293,294のみを形成している。このため、錘部211,221に近づくに従って重量が急激に増大するように構成されることで、基本波以外の不要となる高調波の節部分の位置を、励振電極が形成された振動部212,222から励振電極の形成されていない錘部211,221側へ変位させることができる。この様な変位がなされることで、音叉型圧電振動子を励振させるのに必要な基本波のCI値(直列共振抵抗)に比べて、不要な高調波のCI値を増大させ、そのCI値の比率(以下、CI比と称する)を稼ぎ、高調波発振を抑制することができる。
 また、溝部27は、応力の発生の起点となる接続部213,223に形成されていないため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を低下させることがない。また、溝部27は、長手方向における溝部27の長さ寸法L2を、同方向の脚部21,22の長さ寸法L1の55%以上65%以下として設定することで、基本波のCI値を悪化させすぎない状態で、高調波のCI値を増大させこれらのCI比を稼ぐのに有効な構成となる。また、接続部213,223が円形の円周の一部により構成されることで、接続部213,223には幅寸法の増大する角部(境界部分)が存在せず、応力の発生の起点になる領域が脚部の側面には存在しないため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を向上させる。
 また、上記変形例の構成では、接続部213,223に、励振電極が形成されない長手方向に沿って形成された有底の第2溝部271を有しており、溝部27と第2溝部との間には、ブリッジ部272が介在している。このため、高調波のCI値が低くなる振動部212、222の領域から、より高調波のCI値が高くなる第2溝部の領域へ高調波の節部分を移動させる作用を有することとなる。結果として、音叉型圧電振動子を励振させるのに必要な基本波のCI値に比べて、不要な高調波のCI値を増大させ、そのCI比を稼ぐことができるので、より安定した状態で高調波発振を抑制することができる。
 〔実施の形態2〕
 次に、実施の形態2に係る音叉型水晶振動子を図面とともに説明する。本実施形態で使用される音叉型水晶振動子1は、実施の形態1で説明したものとほぼ同じ構成を有しているため、共通する構成については同一の符号を用いて説明を省略し、異なる部分についてのみ説明を行う。
 図6は、本実施の形態2に係る音叉型水晶振動子の模式的な断面図である。図7は、本実施の形態2に係る音叉型水晶振動片の一主面側の平面図である。図8は、本実施の形態2に係る音叉型水晶振動片の脚部の一部を拡大した平面図である。図9は、本実施の形態2に係る他の音叉型水晶振動片の脚部の一部を拡大した平面図である。
 実施の形態1では、接続部213,223について、振動部212,222から錘部211,221に向かって、幅方向の寸法を指数関数的に増幅する増幅部2131,2231を有し、増幅部2131,2231は長手方向の寸法が幅方向の寸法よりも長くなるように形成されているが、本実施の形態2では、このような接続部の形状に限らず、単なるR形状やテーパ状や(長手方向の寸法と幅方向の寸法との)段差状でもよい。すなわち、増幅部2131,2231は、図7,8に示すように、円周の一部で構成されたR1で形成してもよく、図9に示すように、脚部の突出方向に長径を有する楕円の一部で構成したR2で形成しても良い。
 振動部212,222には、ブリッジ部272を間に介した状態で、第1溝部27の先端に有底の第2溝部271が長手方向に沿って形成されている。第2溝部271は、振動部212,222の先端から錘部211,221に向かって延出されており、第2溝部271の内部には引出電極293,294のみがそれぞれ形成され、励振電極が形成されていない。本形態では、ブリッジ部272を振動部212,222に位置させると共に、当該振動部212,222の先端から接続部213,223にかけて、脚部の突出方向に沿って第2溝部271を形成した。また、ブリッジ部272を音叉型水晶振動片(圧電振動素板)に対してエッチングがされていない残部領域としており、各脚部21,22における第1溝部27や第2溝部271以外の領域と同じ厚みで構成している。さらに、第1脚部21の接続部213と第2脚部22の接続部223には、両主面(一主面261と他主面262)との両側面28のほぼ全面に引出電極293,294がそれぞれ形成されており、前記第2溝部の内部にも引出電極293,294がそれぞれ形成されている。
 なお、本形態では、第2溝部は、接続部213,223の一部の領域にのみ形成しているが、特性に応じて錘部211,221の領域にまで延長して形成しても良い。また、第2溝部の上面には、引出電極を形成しない構成であってもよく、引出電極だけでなく、その上部に後述する調整用金属膜M3が形成された構成であってもよい。またこれら構成の少なくとも2つ以上を組み合わせた構成であってもよい。但し、前記第2溝部には、異極の電極が近接配置されることで水晶振動片の内部で電界効果を生じさせるための励振電極は形成しない。
 このように、振動部212,222には、ブリッジ部272を間に介した状態で、第1溝部27の先端に有底の第2溝部271が長手方向に沿って形成されている。第2溝部271は、振動部212,222の先端から錘部211,221に向かって延出されてなり、引出電極293,294のみを形成している。このため、振動部212,222の先端に質量が小さい領域(剛性が低い領域)が形成されることで、基本波以外の不要となる高調波の節部分の位置を、高調波のCI値が低くなる振動部212,222の領域から、より高調波のCI値が高くなる第2溝部271のある接続部213,223や錘部211,221の方へ変位させることができる。このような変位がなされることで、音叉型圧電振動子を励振させるのに必要な基本波のCI値(直列共振抵抗)に比べて、不要な高調波のCI値を増大させ、そのCI値の比率(以下、CI比と称する)を稼ぎ、高調波発振を抑制することができる。
 また、第1溝部27と第2溝部271との間には、ブリッジ部272が介在しているので、振動部212,222の先端には、ブリッジ部272が構成され、この部分における機械的な強度が向上するため、この領域でのクラックや割れを生じる危険性が少なく、耐衝撃性能を向上させる。また第1溝部27と第2溝部271の間に曲げ応力の強い領域を形成することで、一度変位した高調波の節部分の位置を励振電極が形成された領域に戻しにくく作用させる。結果として、より安定した状態でCI比を稼ぐことができる。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 本発明は、音叉型水晶振動子などの圧電振動デバイスに適用できる。
 1  音叉型水晶振動子
 2  音叉型水晶振動片
 3  ベース

Claims (8)

  1.  圧電振動素板が、基部と、当該基部の一端面から突出して並接された一対の脚部とを有し、前記脚部の突出方向を長手方向とし、前記脚部の並接方向を幅方向として構成した音叉型圧電振動片において、
     前記一対の脚部は、長手方向に沿って形成された溝部と励振電極を有する振動部と、
     当該振動部の先端側に一体形成され、かつ前記振動部の幅方向の寸法よりも幅広の部分を有する錘部と、
     前記振動部と前記錘部との接続部とを有しており、
     前記振動部の励振電極は、前記溝部の内面に形成した内面電極と、当該内面電極に幅方向に対向して前記脚部の側面に形成した側面電極とを含んで構成され、
     前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を指数関数的に増幅する増幅部を有し、前記増幅部は長手方向の寸法が幅方向の寸法よりも長く形成されており、
     前記錘部は、前記接続部との連結位置から幅方向の寸法が一定幅部分を有し、励振電極を形成しないことを特徴とする音叉型圧電振動片。
  2.  圧電振動素板が、基部と、当該基部の一端面から突出して並接された一対の脚部とを有し、前記脚部の突出方向を長手方向とし、前記脚部の並接方向を幅方向として構成した音叉型圧電振動片において、
     前記一対の脚部は、長手方向に沿って形成された溝部と励振電極を有する振動部と、
    当該振動部の先端側に一体形成され、かつ前記振動部の幅方向の寸法よりも幅広の部分を有する錘部と、
     前記振動部と前記錘部との接続部とを有しており、
     前記振動部の励振電極は、前記溝部の内面に形成した内面電極と、
    当該内面電極に幅方向に対向して前記脚部の側面に形成した側面電極とを含んで構成され、
     前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を増幅する増幅部を有し、
     前記増幅部の主面における形状を、前記増幅部の幅方向の寸法以上の曲率半径からなる円の円周の一部、もしくは、長手方向に長径を有する楕円の円周の一部で形成し、
     前記錘部は、前記接続部との連結位置から幅方向の寸法が一定幅部分を有し、
    励振電極を形成しないことを特徴とする音叉型圧電振動片。
  3.  基部と、当該基部の一端面から突出して並接された一対の脚部とを有する音叉型圧電振動片において、
     前記各脚部は、
     前記基部に接続され、励振電極を有している振動部と、
     前記脚部の先端側に配置され、前記振動部の幅方向の寸法よりも幅広に形成されている錘部と、
     前記振動部と前記錘部とを、前記振動部から前記錘部に向かってその幅方向の寸法を増幅するように接続する接続部とからなり、
     前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を指数関数的に増幅する増幅部を有し、前記接続部の幅方向の寸法は以下の(a)~(c)の条件を同時に満たすように増幅することを特徴とする音叉型圧電振動片。
    (a) 増幅部は滑らかな曲線にて形成され、接続部の幅寸法を振動部から錘部に向かって単調に増加させる。
    (b) 接続部の幅寸法の増加率は、振動部との境界から遠ざかるほど大きくなる。
    (c) 接続部の幅寸法の増加率は、振動部と接続部との境界において0となる。
  4.  請求項1乃至3の何れか一項に記載の音叉型圧電振動片において、
     前記溝部の長さ/前記脚部の長さを、55%以上65%以下として設定したことを特徴とする音叉型圧電振動片。
  5.  請求項1乃至4の何れか一項に記載の音叉型圧電振動片において、
     前記接続部には、長手方向に沿って形成された第2溝部を有し、
     前記振動部の溝部と前記接続部の第2溝部との間には、
     前記溝部と第2溝部が形成されないブリッジ部が介在してなり、前記溝部のみに励振電極を形成したことを特徴とする音叉型圧電振動片。
  6.  圧電振動素板が、基部と、当該基部の一端面から突出して並接された一対の脚部とを有し、前記脚部の突出方向を長手方向とし、前記脚部の並接方向を幅方向として構成した音叉型圧電振動片において、
     前記一対の脚部は、長手方向に沿って形成された第1溝部と励振電極とを有する振動部と、
     当該振動部の先端側に一体形成され、かつ前記振動部の幅方向の寸法よりも幅広の部分を有する錘部と、
     前記振動部と前記錘部との接続部とを有しており、
     前記振動部のみに形成される励振電極は、前記第1溝部の内面に形成した内面電極と、当該内面電極に幅方向に対向して前記脚部の側面に形成した側面電極とを含んで構成され、
     前記接続部には、長手方向に沿って形成された第2溝部を有し、
     前記振動部の第1溝部と前記接続部の第2溝部の間には、前記第1溝部と第2溝部とが形成されないブリッジ部が介在してなり、
     前記ブリッジ部を前記振動部に位置させたことを特徴とする音叉型圧電振動片。
  7.  請求項6に記載の音叉型圧電振動片において、
     前記接続部は、前記振動部から前記錘部に向かってその幅方向の寸法を指数関数的に増幅する増幅部を有し、前記接続部の幅方向の寸法は以下の(a)~(c)の条件を同時に満たすように増幅することを特徴とする音叉型圧電振動片。
    (a) 増幅部は滑らかな曲線にて形成され、接続部の幅寸法を振動部から錘部に向かって単調に増加させる。
    (b) 接続部の幅寸法の増加率は、振動部との境界から遠ざかるほど大きくなる。
    (c) 接続部の幅寸法の増加率は、振動部と接続部との境界において0となる。
  8.  音叉型圧電振動子において、
     請求項1乃至7の何れか一項に記載の音叉型圧電振動片が、当該音叉型圧電振動子の筺体内部に設けられ気密封止されたことを特徴とする音叉型圧電振動子。
PCT/JP2014/063991 2013-06-26 2014-05-27 音叉型圧電振動片、および音叉型圧電振動子 WO2014208251A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015523930A JPWO2014208251A1 (ja) 2013-06-26 2014-05-27 音叉型圧電振動片、および音叉型圧電振動子
CN201480015932.1A CN105191124B (zh) 2013-06-26 2014-05-27 音叉型压电振动片及音叉型压电振子
US14/768,831 US9548719B2 (en) 2013-06-26 2014-05-27 Tuning fork type piezoelectric vibration piece and tuning fork type piezoelectric vibrator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-134238 2013-06-26
JP2013134238 2013-06-26
JP2013137333 2013-06-28
JP2013-137333 2013-06-28

Publications (1)

Publication Number Publication Date
WO2014208251A1 true WO2014208251A1 (ja) 2014-12-31

Family

ID=52141603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063991 WO2014208251A1 (ja) 2013-06-26 2014-05-27 音叉型圧電振動片、および音叉型圧電振動子

Country Status (5)

Country Link
US (1) US9548719B2 (ja)
JP (1) JPWO2014208251A1 (ja)
CN (1) CN105191124B (ja)
TW (1) TWI618354B (ja)
WO (1) WO2014208251A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105322909A (zh) * 2014-06-06 2016-02-10 精工爱普生株式会社 电子器件封装用基板、电子器件封装、电子器件及制造方法
WO2017047207A1 (ja) * 2015-09-18 2017-03-23 株式会社村田製作所 共振子及び共振装置
WO2017221609A1 (ja) * 2016-06-23 2017-12-28 株式会社村田製作所 水晶振動片及び水晶振動子
KR102506428B1 (ko) * 2016-09-30 2023-03-06 삼성전자 주식회사 전자 장치 및 이의 노이즈 제어 방법
JP2019102826A (ja) * 2017-11-28 2019-06-24 京セラ株式会社 音叉型水晶振動素子及び圧電デバイス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005896A (ja) * 2003-06-10 2005-01-06 Seiko Epson Corp 圧電振動片、圧電振動片の製造方法および圧電振動子、圧電振動子を搭載した電子機器
JP2009027711A (ja) * 2007-07-19 2009-02-05 Eta Sa Manufacture Horlogere Suisse 最適な動作キャパシタンスを有するピエゾ電子共振器
JP2010246126A (ja) * 2010-04-28 2010-10-28 Seiko Epson Corp 圧電振動片および圧電デバイス
JP2011166325A (ja) * 2010-02-05 2011-08-25 Seiko Epson Corp 音叉型圧電振動片及び圧電デバイス
JP2011239133A (ja) * 2010-05-10 2011-11-24 Seiko Epson Corp 振動片、振動子及び発振器
JP2012010128A (ja) * 2010-06-25 2012-01-12 Seiko Epson Corp 圧電振動片及び圧電デバイス
JP2012028899A (ja) * 2010-07-21 2012-02-09 Seiko Epson Corp 振動片、振動子及び発振器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879963B2 (ja) * 2008-12-25 2012-02-22 日本電波工業株式会社 圧電振動片、圧電振動子及び圧電発振器
JP5789913B2 (ja) 2010-02-05 2015-10-07 セイコーエプソン株式会社 音叉型圧電振動片及び圧電デバイス
JP5085679B2 (ja) * 2010-03-15 2012-11-28 日本電波工業株式会社 圧電振動片および圧電デバイス
TW201242246A (en) * 2011-02-25 2012-10-16 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic apparatus
JP5839919B2 (ja) * 2011-09-28 2016-01-06 エスアイアイ・クリスタルテクノロジー株式会社 圧電振動片、圧電振動子、発振器、電子機器、および電波時計
JP6119134B2 (ja) * 2012-07-19 2017-04-26 セイコーエプソン株式会社 振動片、振動子、発振器および電子機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005896A (ja) * 2003-06-10 2005-01-06 Seiko Epson Corp 圧電振動片、圧電振動片の製造方法および圧電振動子、圧電振動子を搭載した電子機器
JP2009027711A (ja) * 2007-07-19 2009-02-05 Eta Sa Manufacture Horlogere Suisse 最適な動作キャパシタンスを有するピエゾ電子共振器
JP2011166325A (ja) * 2010-02-05 2011-08-25 Seiko Epson Corp 音叉型圧電振動片及び圧電デバイス
JP2010246126A (ja) * 2010-04-28 2010-10-28 Seiko Epson Corp 圧電振動片および圧電デバイス
JP2011239133A (ja) * 2010-05-10 2011-11-24 Seiko Epson Corp 振動片、振動子及び発振器
JP2012010128A (ja) * 2010-06-25 2012-01-12 Seiko Epson Corp 圧電振動片及び圧電デバイス
JP2012028899A (ja) * 2010-07-21 2012-02-09 Seiko Epson Corp 振動片、振動子及び発振器

Also Published As

Publication number Publication date
US9548719B2 (en) 2017-01-17
JPWO2014208251A1 (ja) 2017-02-23
TW201524119A (zh) 2015-06-16
CN105191124B (zh) 2018-01-19
US20160006413A1 (en) 2016-01-07
CN105191124A (zh) 2015-12-23
TWI618354B (zh) 2018-03-11

Similar Documents

Publication Publication Date Title
JP4506135B2 (ja) 圧電振動子
JP5880538B2 (ja) 圧電振動片、圧電振動子、圧電振動片の製造方法、および圧電振動子の製造方法
WO2014208251A1 (ja) 音叉型圧電振動片、および音叉型圧電振動子
WO2010035714A1 (ja) 音叉型圧電振動片、および音叉型圧電振動デバイス
JP5333668B2 (ja) 音叉型圧電振動片、および音叉型圧電振動子
JP5831353B2 (ja) 音叉型圧電振動片、および音叉型圧電振動子
JP5397336B2 (ja) 圧電振動片、および圧電振動子
JP2007243435A (ja) 圧電振動片、圧電振動片の周波数調整方法
JP2011193436A (ja) 音叉型水晶振動片、音叉型水晶振動子、および音叉型水晶振動片の製造方法
WO2018142790A1 (ja) 音叉型振動子及び音叉型振動子の製造方法
WO2014167933A1 (ja) 音叉型水晶振動片、及び水晶振動デバイス
JP2018006901A (ja) 水晶振動板、および水晶振動デバイス
JP6436175B2 (ja) 音叉型振動子
JP6123217B2 (ja) 圧電振動片
JP2010021613A (ja) 圧電振動デバイス
JP2012029024A (ja) 屈曲振動片、振動子、発振器、および電子機器
JP2013093797A (ja) 水晶振動デバイス
JP2020065223A (ja) 音叉型圧電振動片および当該音叉型圧電振動片を用いた音叉型圧電振動子
JP2013034217A (ja) 振動デバイスの周波数調整方法、並びに振動デバイス、および電子デバイス
JP2014127895A (ja) 音叉型圧電振動片、音叉型圧電振動子、および音叉型圧電振動片の製造方法
JP2018142998A (ja) 音叉型振動子の製造方法
JP2021068955A (ja) 音叉型圧電振動片および当該音叉型圧電振動片を用いた音叉型圧電振動子
JP2019153973A (ja) 音叉型圧電振動片
JP2006339701A (ja) 圧電振動子
JP2018037896A (ja) 音叉型圧電振動片および当該音叉型圧電振動片を用いた音叉型圧電振動子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015932.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768831

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015523930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818495

Country of ref document: EP

Kind code of ref document: A1