WO2012115086A1 - ターボ機械 - Google Patents

ターボ機械 Download PDF

Info

Publication number
WO2012115086A1
WO2012115086A1 PCT/JP2012/054077 JP2012054077W WO2012115086A1 WO 2012115086 A1 WO2012115086 A1 WO 2012115086A1 JP 2012054077 W JP2012054077 W JP 2012054077W WO 2012115086 A1 WO2012115086 A1 WO 2012115086A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
shaft
fitting
opening
rotation axis
Prior art date
Application number
PCT/JP2012/054077
Other languages
English (en)
French (fr)
Inventor
望 浅野
山崎 秀作
敏礼 武富
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to KR1020137023459A priority Critical patent/KR101501761B1/ko
Priority to CN2012800094826A priority patent/CN103370544A/zh
Priority to EP12749591.9A priority patent/EP2679827B1/en
Publication of WO2012115086A1 publication Critical patent/WO2012115086A1/ja
Priority to US13/966,368 priority patent/US20130330193A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a turbomachine.
  • This application claims priority based on Japanese Patent Application No. 2011-34519 for which it applied to Japan on February 21, 2011, and uses the content here.
  • Turbomachines such as a turbo compressor and a supercharger include an impeller that is driven to rotate by transmitting rotational power from a shaft.
  • a turbo machine for example, as shown in Patent Literature 1 and Patent Literature 2, a male screw and a female screw are formed on the impeller and the shaft. The impeller and the shaft are fastened by screwing a male screw and a female screw.
  • Patent Document 1 and Patent Document 2 in the configuration in which the male screw and the female screw are formed on the impeller and the shaft, the impeller is rotated with respect to the shaft when the impeller and the shaft are fastened. Must be moved. That is, when the impeller is attached to the shaft, it is necessary to gradually bring it closer to the shaft while rotating the impeller. For this reason, the amount of movement of the impeller when the impeller is attached to the shaft is far greater than when the impeller is attached to the shaft without rotating. Therefore, in the methods of Patent Document 1 and Patent Document 2, the amount of work required for fastening the impeller and the shaft increases.
  • the present invention has been made in view of the above-described problems.
  • a turbomachine including an impeller to be fastened and a shaft
  • a complicated and large device is not required when fastening the impeller to the shaft, and fastening is performed.
  • the purpose is to reduce the amount of work at the time.
  • a first invention according to the present invention is a turbomachine including an impeller that is rotationally driven and a shaft that transmits rotational power to the impeller, wherein one end side is an impeller screwing region in which the impeller is screwed, The end side is a shaft screwing region that is screwed to the shaft, and the turning direction of the screw thread formed in the impeller screwing region is opposite to the turning direction of the screw screw formed in the shaft screwing region.
  • a configuration is employed in which the impeller and the shaft are fastened by the open / close screw.
  • the second invention according to the present invention employs a configuration in which, in the first invention, the opening / closing screw is formed of a material having higher thermal conductivity than the impeller.
  • the third invention according to the present invention employs a configuration in which, in the second invention, the open / close screw is formed of a steel material when the impeller is formed of a titanium alloy.
  • a configuration is provided in which rotation inhibiting means for inhibiting rotational movement of the impeller relative to the shaft is provided.
  • the rotation inhibiting means has a fitting hole provided at a position where the rotational axis direction of the impeller is a longitudinal direction and is out of the rotational axis of the impeller. And the structure that it is a pin member fitted in the fitting hole provided in the position remove
  • the sixth invention according to the present invention employs a configuration in which, in the fifth invention, a plurality of the pin members are arranged at equal intervals around the rotation axis of the impeller.
  • the rotation restraining means is configured such that the outer shape of the impeller viewed from the rotation axis direction deviates from the shape of the rotating body and the impeller or the shaft is A configuration including a fitting protrusion provided so as to protrude in the rotation axis direction, and a fitting hole provided on the impeller or the shaft where the fitting protrusion is not provided and into which the fitting protrusion is fitted.
  • the eighth invention according to the present invention employs a configuration in the seventh invention in which the fitting protrusion has a shape with the rotation axis as the center of gravity.
  • the ninth invention according to the present invention employs a configuration in any one of the first to eighth inventions, in which a lock bolt that comes into contact with the opening / closing screw from the rotation axis direction of the impeller is provided.
  • the turning direction of the thread formed in the impeller screwing region is based on a reaction force when the impeller is rotationally driven.
  • a configuration is adopted in which the fastening force between the open / close screw and the impeller is set in a direction in which the fastening force is increased.
  • a fitting hole or fitting in which a jig for rotating the opening / closing screw can be fitted to an end surface on the impeller side of the opening / closing screw.
  • a configuration is adopted in which a projection is provided and the impeller is provided with an exposure hole for exposing the fitting hole or the fitting projection.
  • the fitting hole or the fitting projection into which the jig for rotating the opening / closing screw can be fitted has a shape with the rotation shaft of the impeller as the center of gravity. The structure of having is adopted.
  • the impeller and the shaft are fastened by an open / close screw in which the turning direction of the screw thread formed on the impeller side and the turning direction of the screw thread formed on the shaft side are opposite to each other.
  • the impeller and the shaft can be linearly moved in the axial direction without rotating the impeller with respect to the shaft by rotating the opening / closing screw. That is, according to the present invention, the amount of movement of the impeller can be reduced compared to the case where the impeller and the shaft are fastened while the impeller is rotationally moved with respect to the shaft, and the amount of work at the time of fastening is reduced. be able to.
  • the impeller and the shaft in order to secure a frictional force between the shaft and the impeller, can be moved without rotating the impeller relative to the shaft even when the impeller is pushed into the shaft and elastically deformed. It can be linearly moved in the axial direction. That is, according to the present invention, the frictional resistance can be reduced as compared with the case where the impeller and the shaft are fastened while the impeller is rotationally moved with respect to the shaft, and the amount of work during fastening can be reduced. it can.
  • the impeller and the shaft can be fastened without applying a large tension to the opening / closing screw, a complicated and large device such as a hydraulic tensioner is not required separately.
  • turbomachine According to the present invention, an embodiment of a turbomachine according to the present invention will be described with reference to the drawings.
  • the scale of each member is appropriately changed in order to make each member a recognizable size.
  • a turbo compressor will be described as an example of the turbo machine of the present invention.
  • the turbo machine of the present invention is not limited to the turbo compressor, and an impeller such as a supercharger.
  • the present invention can be applied to all turbo machines including a shaft.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a turbo compressor S1 of the present embodiment.
  • the turbo compressor S1 is a device that compresses a gas such as air and discharges it as a compressed gas.
  • the turbo compressor S1 includes a compressor 1, a shaft 2, an opening / closing screw 3, and a drive unit 4. Yes.
  • the compressor 1 is a member for compressing gas when driven, and includes a compressor impeller 1a (corresponding to the impeller of the present invention) and a compressor housing 1b.
  • the compressor impeller 1a is a member for imparting kinetic energy to gas and accelerating it.
  • the compressor impeller 1a is a radial impeller that accelerates the gas sucked from the rotation axis L direction and discharges it in the radial direction.
  • the compressor impeller 1a includes a base portion 1c fastened to the shaft 2 and a plurality of blades 1d arranged on the surface of the base portion 1c at equal intervals in the rotation direction.
  • the base portion 1c is provided with a fitting hole 1e that is opened toward the drive unit 4 side and into which the fitting protrusion 2a included in the shaft 2 is fitted.
  • a housing space for the opening / closing screw 3 is provided in the base portion 1c so as to communicate with the fitting hole 1e.
  • a screw thread is formed on the inner wall surface of the housing space, and one end side of the opening / closing screw 3 is configured to be a female screw that can be screwed together.
  • the base portion 1c is provided with an exposure hole 1f that exposes one end surface of the opening / closing screw 3 from the tip of the compressor impeller 1a.
  • the exposure hole 1f has a diameter through which a jig 10 (see FIG.
  • the fitting hole 1 e and the exposure hole 1 f are disposed so as to be coaxial with the rotation axis L of the compressor impeller 1 a with the accommodation space of the opening / closing screw 3 interposed therebetween.
  • the compressor impeller 1a is formed of, for example, a titanium alloy, an aluminum alloy, or stainless steel, depending on the gas to be compressed.
  • the compressor housing 1b forms the outer shape of the compressor 1 and has a gas flow path therein, and houses the compressor impeller 1a therein. As shown in FIG. 1, the compressor housing 1b includes a suction opening 1g for sucking gas, a diffuser 1h for decelerating and compressing the gas accelerated by the compressor impeller 1a, and a scroll flow serving as a compressed gas flow path. A path 1i and a discharge opening (not shown) through which compressed gas is discharged are provided.
  • the shaft 2 is a member for transmitting the power generated by the drive unit 4 to the compressor impeller 1a as rotational power, and is connected to the drive unit 4.
  • One end of the shaft 2 is provided with a fitting projection 2a for fitting into a fitting hole 1e provided in the base portion 1c of the compressor impeller 1a, and the fitting projection 2a is fitted into the fitting hole 1e.
  • the compressor impeller 1a and the shaft 2 are positioned so as to be coaxial.
  • the fitting protrusion 2 a is provided with a female screw to which the other end of the opening / closing screw 3 can be screwed.
  • the shaft 2 is formed of, for example, a steel material (for example, a steel material containing chromium and molybdenum).
  • the open / close screw 3 is a member for fastening the compressor impeller 1 a and the shaft 2.
  • One end of the open / close screw 3 is an impeller screwing region 3 a that is screwed to the compressor impeller 1 a, and the other end is a shaft screwing region 3 b that is screwed to the shaft 2.
  • the turning direction of the thread formed in the impeller screwing region 3a is opposite to the turning direction of the screw formed in the shaft screwing region 3b. For this reason, when the opening / closing screw 3 is rotated in one direction, the compressor impeller 1a and the shaft 2 approach each other along the rotation axis L, and when the opening / closing screw 3 is reversed, the compressor impeller 1a and the shaft 2 move to the rotation axis L.
  • the turning direction of the thread formed in the impeller screwing region 3a is set to a direction in which the fastening force between the opening / closing screw 3 and the compressor impeller 1a is increased by a reaction force when the compressor impeller 1a is rotationally driven. .
  • a fitting hole 3c for fitting a jig 10 for rotating the opening / closing screw 3 is provided on one end surface of the opening / closing screw 3 (surface on the compressor impeller 1a side).
  • the shape of the fitting hole 3c is set to a shape (for example, a hexagon) having the rotation axis L as the center of gravity when viewed from the rotation axis L direction.
  • one end surface of the open / close screw 3 is exposed through the exposure hole 1f provided in the base portion 1c of the compressor impeller 1a as described above. For this reason, the fitting hole 3c formed in the one end surface of the opening-and-closing screw 3 is exposed from the end of the compressor impeller 1a through the exposure hole 1f.
  • the open / close screw 3 is preferably made of a material having a higher thermal conductivity than the compressor impeller 1a on condition that the rigidity necessary for fastening the compressor impeller 1a and the shaft 2 can be secured.
  • the compressor impeller 1a is formed of a titanium alloy
  • heat transfer from the compressor impeller 1a, which has been heated by gas compression, to the shaft 2 side can be promoted. Heat transfer to the lubricating oil cooled by a cooling mechanism (not shown) can be performed quickly.
  • the open / close screw 3 when the open / close screw 3 is formed of a steel material and the compressor impeller 1a is formed of a titanium alloy, the open / close screw 3 has a thermal expansion larger than that of the compressor impeller 1a. For this reason, there is a possibility that the compressor impeller 1a and the shaft 2 are separated from each other when the fastening portion is at a high temperature. Expansion can be reduced and it can control that compressor impeller 1a and shaft 2 leave. For this reason, it can suppress that the fastening force of the compressor impeller 1a and the opening-and-closing screw 3 loosens, for example.
  • the open / close screw 3 and the compressor impeller 1a are screwed together, and the open / close screw 3 and the shaft 2 are screwed together. For this reason, the contact area between the opening / closing screw 3 and the compressor impeller and the contact area between the opening / closing screw 3 and the shaft 2 is increased, the heat transfer area is increased, and the above-described heat transfer can be further promoted.
  • the drive unit 4 is a member for generating power for rotationally driving the compressor impeller 1a and transmitting it to the shaft 2, and includes, for example, a motor and gears.
  • the impeller screwing region 3a of the opening / closing screw 3 is slightly provided in the compressor impeller 1a.
  • the shaft screwing region 3b is slightly screwed to the female screw provided on the shaft 2.
  • the shaft screwing region 3b is first screwed into the female screw provided on the shaft 2 and the impeller screwing region 3a is screwed into the female screw provided on the compressor impeller 1a.
  • the jig 10 (hexagon wrench) is inserted into the exposure hole 1f provided in the base portion 1c of the compressor impeller 1a, and the tip of the jig 10 is inserted into the exposure hole 1f of the compressor impeller 1a. It fits in the fitting hole 3c exposed from one end.
  • the open / close screw 3 is rotated by rotating the jig 10.
  • the compressor impeller 1a moves linearly along the rotation axis L without rotating relative to the shaft 2.
  • the compressor impeller 1a and the shaft 2 are fastened by rotating the open / close screw 3 until the fitting protrusion 2a is fitted in the fitting hole 1e and the compressor impeller 1a and the shaft 2 are brought into close contact with each other.
  • the turbo compressor S1 of the present embodiment it is possible to reduce the amount of work at the time of fastening. Further, in the turbo compressor S1 of the present embodiment, the compressor impeller 1a and the shaft 2 can be fastened without applying a large tension to the opening / closing screw 3, so that a complicated and large device such as a hydraulic tensioner is separately provided. do not need. Therefore, according to the turbo compressor S1 of the present embodiment, it is possible to reduce the amount of work when the compressor impeller 1a is fastened to the shaft 2 without separately requiring a complicated and large device.
  • the turning direction of the thread formed in the impeller screwing region 3a is such that the opening / closing screw 3 and the compressor impeller 1a are driven by the reaction force when the compressor impeller 1a is driven to rotate. Is set in the direction of increasing the fastening force. For this reason, according to the turbo compressor S1 of the present embodiment, loosening of the fastening force between the compressor impeller 1a and the open / close screw 3 during operation can be suppressed.
  • a fitting hole 3c in which a jig 10 for rotating the opening / closing screw 3 can be fitted is provided on the end surface of the opening / closing screw 3 on the compressor impeller 1a side, and the fitting hole 3c is fitted into the compressor impeller 1a.
  • An exposure hole 1f that exposes the joint hole 3c is provided. For this reason, the open / close screw 3 can be easily rotated by inserting the jig 10 through the exposure hole 1f.
  • the compressor impeller 1a and the shaft 2 are fastened by the opening / closing screw 3, so that the shaft 2 is connected to the compressor impeller like a conventional turbo compressor in order to fix the compressor impeller 1a. There is no need to extend to the tip of la. As a result, the shaft 2 is shortened and the rigidity of the shaft 2 can be improved.
  • FIG. 3A and 3B are diagrams showing a schematic configuration of the turbo compressor S2 of the present embodiment
  • FIG. 3A is a cross-sectional view
  • FIG. 3B is an arrow view of the shaft 2 viewed from the direction of the rotation axis L.
  • the turbo compressor S2 of the present embodiment has a rotation direction of the rotation axis L and a rotation direction of the shaft 2 and a fitting hole provided at a position away from the rotation axis L of the compressor impeller 1a.
  • a pin member 5 is provided to be fitted into a fitting hole provided at a position off the axis L.
  • the pin member 5 is a member for suppressing the rotational movement of the compressor impeller 1a with respect to the shaft 2, and functions as the rotation suppressing means of the present invention.
  • a plurality of pin members 5 are arranged at equal intervals around the rotation axis L of the compressor impeller 1a.
  • the turbo compressor S2 of the present embodiment having such a configuration, when the compressor impeller 1a is attached to the shaft 2 by the pin member 5, the compressor impeller 1a can be prevented from rotating and stably. The compressor impeller 1a and the shaft 2 can be fastened. Further, according to the turbo compressor S2 of the present embodiment having such a configuration, the pin member 5 functions as a reinforcing material at the joint portion between the compressor impeller 1a and the shaft 2. For this reason, the intensity
  • the pin member 5 When the compressor impeller 1a and the shaft 2 are fastened, the pin member 5 is fitted to either the compressor impeller 1a or the shaft 2, and the compressor impeller 1a and the shaft 2 are rotated by the rotation of the opening / closing screw 3. Are brought close to each other and fitted to the other. For this reason, when the compressor impeller 1a and the shaft 2 are fastened, the pin member 5 cannot be arranged by a conventional fastening method in which the compressor impeller 1a is rotationally moved with respect to the shaft 2. That is, the turbo compressor S2 of the present embodiment cannot improve the strength of the joint portion between the compressor impeller 1a and the shaft 2, which cannot be realized by a turbo compressor using a conventional fastening method in which the compressor impeller 1a is rotationally moved with respect to the shaft 2. Is realized.
  • a plurality of pin members 5 are arranged at equal intervals around the rotation axis L of the compressor impeller 1a. For this reason, when the compressor impeller 1a is rotationally driven, the weight distribution around the rotation axis L can be kept uniform, and the compressor impeller 1a can be stably rotated.
  • FIG. 4A and 4B are diagrams showing a schematic configuration of the turbo compressor S3 of the present embodiment, FIG. 4A is a cross-sectional view, and FIG. 4B is a view as seen from the direction of the rotation axis L of the shaft 2.
  • the turbo compressor S3 of the present embodiment has a substantially triangular shape (a shape deviating from the shape of the rotating body) in which the shape seen from the direction of the rotation axis L of the compressor impeller 1a is rounded at the apex.
  • a fitting projection 7 having the rotation axis L as the center of gravity and a fitting hole 6 into which the fitting projection 7 is fitted are provided.
  • the fitting projection 7 and the fitting hole 6 function as the rotation inhibiting means of the present invention by inhibiting the rotational movement of the compressor impeller 1a relative to the shaft 2 by fitting.
  • the fitting protrusion 7 is provided on the shaft 2, and the fitting hole 6 is provided on the compressor impeller 1a.
  • a configuration in which the fitting protrusion 7 is provided in the compressor impeller 1a and the fitting hole 6 is provided in the shaft 2 may be employed.
  • the compressor impeller 1a is prevented from rotating when the compressor impeller 1a is attached to the shaft 2 by the fitting protrusion 7 and the fitting hole 6.
  • the compressor impeller 1a and the shaft 2 can be fastened stably.
  • the fitting projection 7 has a shape with the rotation axis L as the center of gravity. For this reason, when the compressor impeller 1a is rotationally driven, the weight distribution around the rotation axis L can be kept uniform, and the compressor impeller 1a can be stably rotated.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the turbo compressor S4 of the present embodiment.
  • the turbo compressor S4 of the present embodiment includes a lock bolt 8 that comes into contact with the opening / closing screw 3 from the direction of the rotation axis L of the compressor impeller 1a (left side in the drawing).
  • the turning direction of the thread formed in the impeller screwing region 3a of the open / close screw 3 and the thread provided in the lock bolt 8 is the same direction.
  • the lock bolt 8 is provided with a tool hole (for example, a hexagonal shape) that penetrates in the direction of the rotation axis L and is used when the lock bolt 8 is tightened or loosened.
  • the inscribed circle of the tool hole is set to be larger than the circumscribed circle of the jig 10 fitted in the fitting hole 3c of the opening / closing screw 3. For this reason, the jig 10 can be fitted into the opening / closing screw 3 through the lock bolt 8.
  • turbo compressor S4 of the present embodiment having such a configuration, even if the compressor impeller 1a tries to rotate and move in the direction in which the fastening force is loosened, the open / close screw 3 is rotated by the lock bolt 8 to the rotating shaft. Displacement in the L direction can be suppressed, and as a result, the compressor impeller 1a can be prevented from rotating in the direction in which the fastening force is loosened.
  • the pitch of the threads formed in the impeller screwing area 3a can be different from the pitch of the threads formed in the shaft screwing area 3b.
  • the amount of movement of the compressor impeller 1a and the amount of movement of the shaft 2 per unit rotation of the opening / closing screw 3 change.
  • the rotation amount of the open / close screw 3 with respect to the unit movement amount of the compressor impeller 1a and the shaft 2 is different.
  • the fitting protrusion 2a is provided in the shaft 2, and the fitting hole 1e is provided in the compressor impeller 1a.
  • FIG. 7 it is also possible to adopt a configuration in which a fitting protrusion is provided on the compressor impeller 1 a and a fitting hole is provided on the shaft 2.
  • the opening / closing screw 3 is arranged at a position where it is greatly inserted into the shaft 2. Therefore, the open / close screw 3 can be released from the root region of the maximum diameter portion where the load is great due to the highest stress applied to the compressor impeller 1a, and the load acting on the open / close screw 3 can be reduced.
  • the opening / closing screw 3 is removed from the maximum stress portion of the compressor impeller 1a, a higher axial force can be applied to the compressor impeller 1a, and the fastening force between the compressor impeller 1a and the shaft 2 can be increased.
  • an axial force that can alleviate the loosening of the fastening force due to thermal expansion may be applied to the open / close screw 3. good.
  • the present invention is not limited to this, and it is also possible to adopt a configuration in which the open / close screw 3 is provided with a fitting protrusion into which a jig can be fitted instead of the fitting hole 3a.
  • the one-shaft and the turbo compressor by which the one compressor impeller 1a was fastened at the end of the shaft were demonstrated.
  • the present invention is not limited to this, a turbo compressor in which a compressor impeller 1a is fastened to both ends of one shaft, a turbo compressor having a plurality of shafts and a compressor impeller provided on each shaft. It is also possible to apply to a turbo compressor provided with other equipment such as a cooler for cooling the compressed gas.
  • S1 to S4 turbo compressor (turbo machine), 1 ... compressor, 1a ... compressor impeller (impeller), 1b ... compressor housing, 1c ... base, 1d ... blade, 1e ... fitting hole 1f ... exposed hole, 1g ... suction opening, 1h ... diffuser, 1i ... scroll channel, 2 ... shaft, 2a ... fitting projection, 3 ... opening / closing screw, 3a ... impeller screwing area 3b: Shaft screwing region, 3c: fitting hole, 4 ... drive unit, 5 ... pin member (rotation inhibiting means), 6 ... fitting projection (rotation inhibiting means), 7 ... fitting Hole (rotation suppression means), 8 ... Lock bolt

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

締結されるインペラ(1a)とシャフト(2)とを備えるターボ機械(S1)において、インペラ(1a)側に形成されたネジ山の旋回方向とシャフト(2)側に形成されたネジ山の旋回方向とが反対方向とされた開閉ネジ(3)によって、インペラ(1a)とシャフト(2)とを締結する。その結果、複雑かつ大きな装置を必要とすることなくインペラ(1a)をシャフト(2)に対して締結することができ、かつ締結時の仕事量が削減される。

Description

ターボ機械
 本発明は、ターボ機械に関する。
 本願は、2011年2月21日に日本に出願された特願2011-34519号に基づき優先権を主張し、その内容をここに援用する。
 ターボ圧縮機や過給機等のターボ機械では、シャフトから回転動力が伝達されることで回転駆動されるインペラを備えている。
 このようなターボ機械では、例えば、特許文献1及び特許文献2に示すようにインペラとシャフトとに対して雄ネジと雌ネジとが形成されている。そして、インペラとシャフトは、雄ネジと雌ネジとが螺合されることによって締結されている。
実開平5-52356号公報 実開平5-57450号公報
 しかしながら、特許文献1及び特許文献2に示すようにインペラとシャフトとに対して雄ネジと雌ネジとが形成された構成では、インペラとシャフトとを締結する際に、インペラをシャフトに対して回転移動させる必要がある。
 つまり、インペラをシャフトに取り付ける際には、インペラを回転移動させながら徐々にシャフトに近づけていく必要がある。
 このため、インペラをシャフトに取り付ける際のインペラの移動量が、インペラを回転移動させずにシャフトに対して取り付ける場合よりも遥かに増大する。したがって、特許文献1及び特許文献2の方法では、インペラとシャフトとを締結する際に必要となる仕事量が増大してしまう。
 また、インペラとシャフトとが回転方向にずれることを防止するためには、インペラとシャフトとの間に十分な摩擦力が存在することが望ましい。このためには、インペラのシャフトへの取り付けの際に、インペラがシャフトの着座面に接触した後にさらにインペラをシャフト側に押込み、インペラを弾性変形させておくことが好ましい。
 ところが、インペラが着座面に接触した後は、インペラと着座面との間に摩擦力が働くために摩擦抵抗が増大し、インペラをシャフト側に押込むための仕事量が増大する。
 一方、テンションボルトを用いることによって、殆どインペラをシャフトに対して回転移動をさせることなく強固にインペラとシャフトとを締結することは一般的に行われている。
 しかしながら、テンションボルトを用いてインペラとシャフトとを締結する場合には、油圧テンショナ等の複雑かつ大きな装置を別途必要とする。
 本発明は、上述する問題点に鑑みてなされたもので、締結されるインペラとシャフトとを備えるターボ機械において、インペラをシャフトに対して締結する際に、複雑かつ大きな装置を不要とし、かつ締結時の仕事量を削減することを目的とする。
 本発明では、上記課題を解決するための手段として、以下の構成を採用する。
 本発明に係る第1の発明は、回転駆動されるインペラとインペラに回転動力を伝達するシャフトとを備えるターボ機械であって、一端側が上記インペラに螺合されるインペラ螺合領域とされ、他端側が上記シャフトに螺合されるシャフト螺合領域とされ、上記インペラ螺合領域に形成されるネジ山の旋回方向と上記シャフト螺合領域に形成されるネジ山の旋回方向が反対方向とされる開閉ネジを有し、この開閉ネジによって上記インペラと上記シャフトとが締結されているという構成を採用する。
 本発明に係る第2の発明は、上記第1の発明において、上記開閉ネジは、上記インペラよりも熱伝導率が高い材料によって形成されているという構成を採用する。
 本発明に係る第3の発明は、上記第2の発明において、上記インペラがチタン合金によって形成されている場合に、上記開閉ネジは、鉄鋼材料によって形成されているという構成を採用する。
 本発明に係る第4の発明は、上記第1~第3いずれかの発明において、上記シャフトに対する上記インペラの回転移動を抑止する回転抑止手段を備えるという構成を採用する。
 本発明に係る第5の発明は、上記第4の発明において、上記回転抑止手段が、上記インペラの回転軸方向を長手方向とし、上記インペラの回転軸から外れた位置に設けられた嵌合穴及び上記シャフトの回転軸から外れた位置に設けられた嵌合穴に嵌合されるピン部材であるという構成を採用する。
 本発明に係る第6の発明は、上記第5の発明において、上記ピン部材が、上記インペラの回転軸を中心として等間隔で複数配置されているという構成を採用する。
 本発明に係る第7の発明は、上記第4の発明において、上記回転抑止手段が、上記インペラの回転軸方向から見た外形形状が回転体形状から外れると共に上記インペラあるいは上記シャフトに対して上記回転軸方向に突出して設けられる嵌合突起と、上記嵌合突起が設けられない上記インペラあるいは上記シャフトに対して設けられると共に上記嵌合突起が嵌合される嵌合穴とを備えるという構成を採用する。
 本発明に係る第8の発明は、上記第7の発明において、上記嵌合突起が、上記回転軸を重心とする形状を有しているという構成を採用する。
 本発明に係る第9の発明は、上記第1~第8いずれかの発明において、上記開閉ネジに対して上記インペラの回転軸方向から当接するロックボルトを備えるという構成を採用する。
 本発明に係る第10の発明は、上記第1~第9いずれかの発明において、上記インペラ螺合領域に形成されるネジ山の旋回方向が、上記インペラが回転駆動される際の反力によって上記開閉ネジと上記インペラとの締結力が高まる方向に設定されているという構成を採用する。
 本発明に係る第11の発明は、上記第1~第10いずれかの発明において、上記開閉ネジの上記インペラ側の端面に上記開閉ネジを回転させる冶具を嵌合可能な嵌合穴あるいは嵌合突起が設けられ、上記インペラに上記嵌合穴あるいは嵌合突起を露出する露出孔が設けられているという構成を採用する。
 本発明に係る第12の発明は、上記第11の発明において、上記開閉ネジを回転させる冶具を嵌合可能な上記嵌合穴あるいは嵌合突起が、上記インペラの回転軸を重心とする形状を有しているという構成を採用する。
 本発明においては、インペラ側に形成されたネジ山の旋回方向とシャフト側に形成されたネジ山の旋回方向とが反対方向とされた開閉ネジによって、インペラとシャフトとが締結されている。
 このような本発明によれば、開閉ネジを回転させることによって、インペラをシャフトに対して回転移動させることなく、インペラとシャフトとを軸方向に直線移動させることができる。つまり、本発明によれば、インペラをシャフトに対して回転移動させながらインペラとシャフトとを締結する場合と比較してインペラの移動量を減少させることができ、締結の際の仕事量を削減することができる。
 さらに本発明によれば、シャフトとの間の摩擦力を確保するために、インペラをシャフト側に押込んで弾性変形させる際にもインペラをシャフトに対して回転移動させることなく、インペラとシャフトとを軸方向に直線移動させることができる。つまり、本発明によれば、インペラをシャフトに対して回転移動させながらインペラとシャフトとを締結する場合と比較して摩擦抵抗を減少させることができ、締結の際の仕事量を削減することができる。
 また、本発明においては、開閉ネジに対して大きなテンションを掛けることなくインペラとシャフトとを締結することができるため、油圧テンショナ等の複雑かつ大きな装置を別途必要としない。
 したがって、本発明によれば、締結されるインペラとシャフトとを備えるターボ機械において、複雑かつ大きな装置を別途必要とすることなくインペラをシャフトに対して締結する際の仕事量を削減することが可能となる。
本発明の第1実施形態におけるターボ圧縮機の概略構成を示す断面図である。 本発明の第1実施形態におけるターボ圧縮機が備えるコンプレッサインペラとシャフトとの締結作業を説明するための模式図である。 本発明の第2実施形態におけるターボ圧縮機の概略構成を示す断面図である。 図3Aのシャフトを回転軸方向から見た矢視図である。 本発明の第3実施形態におけるターボ圧縮機の概略構成を示す断面図である。 図4Aのシャフトを回転軸方向から見た矢視図である。 本発明の第4実施形態におけるターボ圧縮機の概略構成を示す断面図である。 本発明の第1実施形態におけるターボ圧縮機の変形例を示す断面図である。
 以下、図面を参照して、本発明に係るターボ機械の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
 また、以下の説明においては、本発明のターボ機械の一例としてターボ圧縮機を挙げて説明するが、本発明のターボ機械はターボ圧縮機に限定されるものではなく、過給機等のインペラとシャフトとを備えるターボ機械全般に適用することができる。
(第1実施形態)
 図1は、本実施形態のターボ圧縮機S1の概略構成を示す断面図である。
 ターボ圧縮機S1は、空気等のガスを圧縮して圧縮ガスとして吐出する装置であり、図1に示すように、コンプレッサ1と、シャフト2と、開閉ネジ3と、駆動ユニット4とを備えている。
 コンプレッサ1は、駆動されることによってガスを圧縮するための部材で、コンプレッサインペラ1a(本発明のインペラに相当)と、コンプレッサハウジング1bとを備えている。
 コンプレッサインペラ1aは、ガスに対して運動エネルギを付与して加速させるための部材で、回転軸L方向から吸い込んだガスを加速させて半径方向に吐出するラジアルインペラである。
 そして、図1に示すように、コンプレッサインペラ1aは、シャフト2に締結されるベース部1cと、ベース部1cの表面に回転方向に等間隔に配列される複数の翼1dとを備えている。
 また、ベース部1cには、駆動ユニット4側に向けて開口されると共に、シャフト2が備える嵌合突起2aが嵌合される嵌合穴1eが設けられている。
 また、ベース部1cの内部には、図1に示すように、開閉ネジ3の収容空間が嵌合穴1eに連通して設けられている。この収容空間の内壁面にはネジ山が形成されており、開閉ネジ3の一端側が螺合可能な雌ネジとなるように構成されている。
 さらに、ベース部1cには、コンプレッサインペラ1aの先端から開閉ネジ3の一端面を露出する露出孔1fが設けられている。なお、露出孔1fは、後述する開閉ネジ3を回転させる冶具10(図2参照)を挿通可能な径を有しており、コンプレッサインペラ1aの回転軸Lに沿って設けられている。
 なお、図1に示すように、嵌合穴1eと露出孔1fとは、開閉ネジ3の収容空間を挟んで、コンプレッサインペラ1aの回転軸Lと同軸をなすように配置されている。
 そして、コンプレッサインペラ1aは、圧縮するガスに応じて、例えば、チタン合金、アルミニウム合金、あるいはステンレス鋼によって形成される。
 コンプレッサハウジング1bは、コンプレッサ1の外形形状を形作ると共に内部にガスの流路を有し、その内部にコンプレッサインペラ1aを収容している。
 このコンプレッサハウジング1bには、図1に示すように、ガスを吸入する吸入開口1gと、コンプレッサインペラ1aによって加速されたガスを減速して圧縮するディフューザ1hと、圧縮ガスの流路となるスクロール流路1iと、圧縮ガスが吐出される不図示の吐出開口とが設けられている。
 シャフト2は、駆動ユニット4によって発生された動力を回転動力としてコンプレッサインペラ1aに伝達するための部材で、駆動ユニット4と接続されている。
 シャフト2の一端には、コンプレッサインペラ1aのベース部1cに設けられた嵌合穴1eに嵌合するための嵌合突起2aが設けられており、嵌合突起2aが嵌合穴1eに嵌合されることによってコンプレッサインペラ1aとシャフト2とが同軸をなすように位置決めされる。
 また、図1に示すように、嵌合突起2aには、開閉ネジ3の他端側が螺合可能な雌ネジが設けられている。
 そして、シャフト2は、例えば、鉄鋼材料(例えば、クロム及びモリブデンを含む鉄鋼材料)によって形成されている。
 開閉ネジ3は、コンプレッサインペラ1aとシャフト2とを締結するための部材である。この開閉ネジ3は、一端側がコンプレッサインペラ1aに螺合されるインペラ螺合領域3aとされ、他端側がシャフト2に螺合されるシャフト螺合領域3bとされている。
 そして、インペラ螺合領域3aに形成されるネジ山の旋回方向とシャフト螺合領域3bに形成されるネジ山の旋回方向が反対方向とされている。
 このため、開閉ネジ3を一方向に回転させると、コンプレッサインペラ1aとシャフト2とが回転軸Lに沿って近づき、開閉ネジ3を反転させると、コンプレッサインペラ1aとシャフト2とが回転軸Lに沿って離れる。
 なお、インペラ螺合領域3aに形成されるネジ山の旋回方向は、コンプレッサインペラ1aが回転駆動される際の反力によって開閉ネジ3とコンプレッサインペラ1aとの締結力が高まる方向に設定されている。
 また、開閉ネジ3の一端面(コンプレッサインペラ1a側の面)には、開閉ネジ3を回転させるための冶具10を嵌合するための嵌合穴3cが設けられている。この嵌合穴3cの形状は、回転軸L方向から見て、回転軸Lを重心とする形状(例えば六角形)に設定されている。このように、嵌合穴3cの形状が回転軸Lを重心とする形状となることによって、コンプレッサインペラ1aを回転した際に、回転軸Lを中心としたコンプレッサインペラ1aの重量分布を均等に保つことができ、コンプレッサインペラ1aを安定して回転させることができる。
 なお、開閉ネジ3の一端面は、上述のようにコンプレッサインペラ1aのベース部1cに設けられた露出孔1fによって露出されている。このため、開閉ネジ3の一端面に形成された嵌合穴3cは、露出孔1fを介してコンプレッサインペラ1aの一端から露出している。
 なお、開閉ネジ3は、コンプレッサインペラ1aとシャフト2との締結に必要な剛性を確保できることを条件として、コンプレッサインペラ1aよりも熱伝導率が高い材料によって形成されていることが好ましい。
 具体的には、例えばコンプレッサインペラ1aがチタン合金によって形成されている場合には、開閉ネジ3を鉄鋼材料で形成することが考えられる。
 このように、開閉ネジ3をコンプレッサインペラ1aよりも熱伝導率が高い材料によって形成することによって、ガスの圧縮によって高温化したコンプレッサインペラ1aからシャフト2側への伝熱を促進させることができ、不図示の冷却機構にて冷却される潤滑油への伝熱を素早く行うことができる。
 また、開閉ネジ3が鉄鋼材料で形成され、コンプレッサインペラ1aがチタン合金で形成されている場合には、開閉ネジ3がコンプレッサインペラ1aよりも熱膨張が大きくなる。このため、締結部が高温になるとコンプレッサインペラ1aとシャフト2が離れてしまう可能性があるが、上述のように開閉ネジ3による伝熱促進による冷却によって締結部の温度変化を小さくできると、熱膨張を低減でき、コンプレッサインペラ1aとシャフト2が離れることを抑止できる。このため、例えば、コンプレッサインペラ1aと開閉ネジ3との締結力が緩むことを抑止することができる。
 なお、本実施形態においては、開閉ネジ3とコンプレッサインペラ1aとが螺合され、開閉ネジ3とシャフト2とが螺合されている。このため、開閉ネジ3とコンプレッサインペラとの接触面及び開閉ネジ3とシャフト2との接触面積が広がり、伝熱面積が増大し、上述の伝熱をより促進させることができる。
 駆動ユニット4は、コンプレッサインペラ1aを回転駆動する動力を発生してシャフト2に伝達するための部材で、例えば、モータやギア等を含んで構成されている。
 このような構成を有する本実施形態のターボ圧縮機S1の組立て時において、コンプレッサインペラ1aとシャフトとを締結する際には、まず開閉ネジ3のインペラ螺合領域3aを僅かにコンプレッサインペラ1aに設けられた雌ネジに螺合させ、シャフト螺合領域3bを僅かにシャフト2に設けられた雌ネジに螺合させる。あるいは先にシャフト螺合領域3bを僅かにシャフト2に設けられた雌ネジに螺合させ、インペラ螺合領域3aを僅かにコンプレッサインペラ1aに設けられた雌ネジに螺合させる。
 続いて、図2に示すように、冶具10(六角レンチ)をコンプレッサインペラ1aのベース部1cに設けられた露出孔1fに挿入し、冶具10の先端を露出孔1fを介してコンプレッサインペラ1aの一端から露出した嵌合穴3cに嵌合させる。そして、冶具10を回転させることによって開閉ネジ3を回転させる。
 この結果、コンプレッサインペラ1aはシャフト2に対して回転移動することなく、回転軸Lに沿って直線移動する。そして、嵌合突起2aが嵌合穴1eに嵌合され、コンプレッサインペラ1aとシャフト2とが密着されるまで開閉ネジ3を回転させることによって、コンプレッサインペラ1aとシャフト2とが締結される。
 以上のような本実施形態のターボ圧縮機S1においては、コンプレッサインペラ1a側に形成されたネジ山の旋回方向とシャフト2側に形成されたネジ山の旋回方向とが反対方向とされた開閉ネジ3によって、コンプレッサインペラ1aとシャフト2とが締結されている。
 このため、開閉ネジ3を回転させることによって、コンプレッサインペラ1aをシャフト2に対して回転移動させることなく、コンプレッサインペラ1aとシャフト2とを回転軸L方向に直線移動させることができる。つまり、本実施形態のターボ圧縮機S1によれば、コンプレッサインペラ1aをシャフト2に対して回転移動させながらコンプレッサインペラ1aとシャフト2とを締結する場合と比較してコンプレッサインペラ1aの移動量を減少させることができ、締結の際の仕事量を削減することができる。
 また、本実施形態のターボ圧縮機S1においては、開閉ネジ3に対して大きなテンションを掛けることなくコンプレッサインペラ1aとシャフト2とを締結することができるため、油圧テンショナ等の複雑かつ大きな装置を別途必要としない。
 したがって、本実施形態のターボ圧縮機S1によれば、複雑かつ大きな装置を別途必要とすることなくコンプレッサインペラ1aをシャフト2に対して締結する際の仕事量を削減することが可能となる。
 また、本実施形態のターボ圧縮機S1においては、インペラ螺合領域3aに形成されるネジ山の旋回方向が、コンプレッサインペラ1aが回転駆動される際の反力によって開閉ネジ3とコンプレッサインペラ1aとの締結力が高まる方向に設定されている。
 このため、本実施形態のターボ圧縮機S1によれば、稼働中におけるコンプレッサインペラ1aと開閉ネジ3との締結力の緩みを抑止することができる。
 また、本実施形態のターボ圧縮機S1においては、開閉ネジ3のコンプレッサインペラ1a側の端面に開閉ネジ3を回転する冶具10を嵌合可能な嵌合穴3cが設けられ、コンプレッサインペラ1aに嵌合穴3cを露出する露出孔1fが設けられている。
 このため、露出孔1fを介して冶具10を挿し入れることによって、容易に開閉ネジ3を回転させることができる。
 また、本実施形態のターボ圧縮機S1においては、開閉ネジ3によってコンプレッサインペラ1aとシャフト2との締結するため、コンプレッサインペラ1aを固定するために従来のターボ圧縮機のようにシャフト2をコンプレッサインペラ1aの先端まで伸ばす必要がない。結果としてシャフト2が短くなりシャフト2の剛性を向上させることができる。
(第2実施形態)
 次に、本発明の第2実施形態について説明する。なお、本第2実施形態の説明において、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
 図3A及び図3Bは、本実施形態のターボ圧縮機S2の概略構成を示す図であり、図3Aが断面図であり、図3Bがシャフト2を回転軸L方向から見た矢視図である。
 これらの図に示すように、本実施形態のターボ圧縮機S2は、回転軸L方向を長手方向とし、コンプレッサインペラ1aの回転軸Lから外れた位置に設けられた嵌合穴及びシャフト2の回転軸Lから外れた位置に設けられた嵌合穴に嵌合されるピン部材5を備えている。
 ピン部材5は、シャフト2に対するコンプレッサインペラ1aの回転移動を抑止するための部材で、本発明の回転抑止手段として機能する。
 そして、本実施形態のターボ圧縮機S2においては、図3Bに示すように、ピン部材5は、コンプレッサインペラ1aの回転軸Lを中心として等間隔で複数配置されている。
 このような構成を有する本実施形態のターボ圧縮機S2によれば、ピン部材5によってコンプレッサインペラ1aをシャフト2に取り付ける際にコンプレッサインペラ1aが回転移動することを抑止することができ、安定してコンプレッサインペラ1aとシャフト2とを締結することができる。
 また、このような構成を有する本実施形態のターボ圧縮機S2によれば、ピン部材5がコンプレッサインペラ1aとシャフト2との接合箇所における補強材として機能する。このため、コンプレッサインペラ1aとシャフト2との接合箇所の強度を向上させることができる。
 なお、コンプレッサインペラ1aとシャフト2とを締結する際には、ピン部材5をコンプレッサインペラ1a及びシャフト2のいずれか一方に嵌合させておき、開閉ネジ3の回転によってコンプレッサインペラ1aとシャフト2とを近づけて他方に嵌合させる。
 このため、コンプレッサインペラ1aとシャフト2とを締結する際にコンプレッサインペラ1aをシャフト2に対して回転移動させる従来の締結方法ではピン部材5を配置することができない。
 つまり、本実施形態のターボ圧縮機S2は、コンプレッサインペラ1aをシャフト2に対して回転移動させる従来の締結方法を用いるターボ圧縮機では実現できない、コンプレッサインペラ1aとシャフト2との接合箇所の強度向上を実現している。
 また、本実施形態のターボ圧縮機S2においては、ピン部材5がコンプレッサインペラ1aの回転軸Lを中心として等間隔で複数配置されている。
 このため、コンプレッサインペラ1aを回転駆動した際に、回転軸Lを中心とした重量分布を均等に保つことができ、コンプレッサインペラ1aを安定して回転させることができる。
(第3実施形態)
 次に、本発明の第3実施形態について説明する。なお、本第3実施形態の説明においても、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
 図4A及び図4Bは、本実施形態のターボ圧縮機S3の概略構成を示す図であり、図4Aが断面図であり、図4Bがシャフト2を回転軸L方向から見た矢視図である。
 これらの図に示すように、本実施形態のターボ圧縮機S3は、コンプレッサインペラ1aの回転軸L方向から見た形状が頂点に丸みを帯びた略三角形形状(回転体形状から外れた形状)であると共に回転軸Lを重心とする嵌合突起7と、嵌合突起7が嵌合される嵌合穴6とを備えている。
 このような嵌合突起7と嵌合穴6とは、嵌合することによってシャフト2に対するコンプレッサインペラ1aの回転移動を抑止することにより、本発明の回転抑止手段として機能する。
 なお、本実施形態のターボ圧縮機S3においては、嵌合突起7がシャフト2に設けられ、嵌合穴6がコンプレッサインペラ1aに設けられている。
 ただし、反対に嵌合突起7をコンプレッサインペラ1aに設け、嵌合穴6をシャフト2に設ける構成を採用することもできる。
 このような構成を有する本実施形態のターボ圧縮機S3によれば、嵌合突起7及び嵌合穴6によってコンプレッサインペラ1aをシャフト2に取り付ける際にコンプレッサインペラ1aが回転移動することを抑止することができ、安定してコンプレッサインペラ1aとシャフト2とを締結することができる。
 また、本実施形態のターボ圧縮機S3においては、嵌合突起7が回転軸Lを重心とする形状を有している。
 このため、コンプレッサインペラ1aを回転駆動した際に、回転軸Lを中心とした重量分布を均等に保つことができ、コンプレッサインペラ1aを安定して回転させることができる。
(第4実施形態)
 次に、本発明の第4実施形態について説明する。なお、本第4実施形態の説明においても、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
 図5は、本実施形態のターボ圧縮機S4の概略構成を示す断面図である。
 この図に示すように、本実施形態のターボ圧縮機S4は、開閉ネジ3に対してコンプレッサインペラ1aの回転軸L方向(紙面左側)から当接するロックボルト8を備える。なお、開閉ネジ3のインペラ螺合領域3aに形成されたネジ山とロックボルト8が備えるネジ山の旋回方向は同一方向である。
 なお、ロックボルト8には、回転軸L方向に貫通すると共にロックボルト8を締めるあるいは緩める際に用いられる工具穴(例えば六角形)が設けられている。この工具穴の内接円は、開閉ネジ3の嵌合穴3cに嵌合する冶具10の外接円よりも大きく設定されている。このため、冶具10は、ロックボルト8を挿通して開閉ネジ3に嵌合することができる。
 このような構成を有する本実施形態のターボ圧縮機S4によれば、仮にコンプレッサインペラ1aが締結力の緩む方向に回転移動しようとした場合であっても、ロックボルト8によって開閉ネジ3が回転軸L方向に変位することを抑止し、結果としてコンプレッサインペラ1aが締結力の緩む方向に回転移動することを防止することができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上記実施形態において、インペラ螺合領域3aに形成されるネジ山のピッチとシャフト螺合領域3bに形成されるネジ山のピッチとを異ならせることも可能である。
 このような構成を採用することによって、開閉ネジ3の単位回転あたりにおけるコンプレッサインペラ1aの移動量とシャフト2の移動量とが変化する。換言すれば、コンプレッサインペラ1aとシャフト2との単位移動量に対する開閉ネジ3の回転量が異なっている。
 この結果、ターボ圧縮機が稼働している際に、コンプレッサインペラ1aとシャフト2とが回転軸L方向に移動しようとした際に開閉ネジ3が回転してしまうことを抑止できる。よって、コンプレッサインペラ1aと開閉ネジ3との締結力が緩むことを抑止することができる。
 また、例えば、上記実施形態においては、嵌合突起2aがシャフト2に設けられ、嵌合穴1eがコンプレッサインペラ1aに設けられている。
 ただし、図7に示すように、反対に嵌合突起をコンプレッサインペラ1aに設け、嵌合穴をシャフト2に設ける構成を採用することもできる。
 このような構成を採用することによって、図6に示すように、開閉ネジ3がシャフト2の内部に大きく入り込んだ位置に配置される。このため、コンプレッサインペラ1aにおいて最も高い応力がかかることで負荷が多大となる最大径部分の根元領域から開閉ネジ3を逃がすことができ、開閉ネジ3に作用する負荷を低減させることができる。
 かつ、開閉ネジ3がコンプレッサインペラ1aの最大応力部から外れることで、より高い軸力をコンプレッサインペラ1aに負荷することができ、コンプレッサインペラ1aとシャフト2との締結力を増すことができる。
 また、上記実施形態において、稼働中の熱膨張による締結力の緩みを抑止するために、開閉ネジ3に対して、熱膨張による締結力の緩みを緩和可能な軸力を付与しておいても良い。
 また、上記実施形態においては、図2に示すように、開閉ネジ3が、冶具10が嵌合される嵌合穴3aを備える構成を採用した。
 しかしながら、本発明はこれに限定されるものではなく、開閉ネジ3が嵌合穴3aに換えて、冶具が嵌合可能な嵌合突起を備える構成を採用することも可能である。
 また、上記実施形態においては、1つのシャフトと、シャフトの一端に1つのコンプレッサインペラ1aが締結されたターボ圧縮機について説明した。
 しかしながら、本発明はこれに限定されるものではなく、1つのシャフトの両端に各々コンプレッサインペラ1aが締結されたターボ圧縮機、複数のシャフトを備えると共に各シャフトにコンプレッサインペラが設けられたターボ圧縮機、また圧縮ガスを冷却するクーラ等の他の設備を備えるターボ圧縮機に適用することも可能である。
 本発明によれば、締結されるインペラとシャフトとを備えるターボ機械において、インペラをシャフトに対して締結する際に、複雑かつ大きな装置を不要とし、かつ締結時の仕事量を削減することが可能となる。
 S1~S4……ターボ圧縮機(ターボ機械)、1……コンプレッサ、1a……コンプレッサインペラ(インペラ)、1b……コンプレッサハウジング、1c……ベース部、1d……翼、1e……嵌合穴、1f……露出孔、1g……吸入開口、1h……ディフューザ、1i……スクロール流路、2……シャフト、2a……嵌合突起、3……開閉ネジ、3a……インペラ螺合領域、3b……シャフト螺合領域、3c……嵌合穴、4……駆動ユニット、5……ピン部材(回転抑止手段)、6……嵌合突起(回転抑止手段)、7……嵌合穴(回転抑止手段)、8……ロックボルト

Claims (14)

  1.  回転駆動されるインペラと、インペラに回転動力を伝達するシャフトとを備えるターボ機械であって、
     一端側が前記インペラに螺合されるインペラ螺合領域とされ、他端側が前記シャフトに螺合されるシャフト螺合領域とされ、前記インペラ螺合領域に形成されるネジ山の旋回方向と前記シャフト螺合領域に形成されるネジ山の旋回方向が反対方向とされる開閉ネジを有し、
     この開閉ネジによって前記インペラと前記シャフトとが締結されているターボ機械。
  2.  前記開閉ネジは、前記インペラよりも熱伝導率が高い材料によって形成されている請求項1に記載のターボ機械。
  3.  前記インペラがチタン合金によって形成されている場合に、前記開閉ネジは、鉄鋼材料によって形成されている請求項2に記載のターボ機械。
  4.  前記シャフトに対する前記インペラの回転移動を抑止する回転抑止手段を備える請求項1に記載のターボ機械。
  5.  前記回転抑止手段は、前記インペラの回転軸方向を長手方向とし、前記インペラの回転軸から外れた位置に設けられた嵌合穴及び前記シャフトの回転軸から外れた位置に設けられた嵌合穴に嵌合されるピン部材である請求項4に記載のターボ機械。
  6.  前記ピン部材は、前記インペラの回転軸を中心として等間隔で複数配置されている請求項5記載のターボ機械。
  7.  前記回転抑止手段は、
     前記インペラの回転軸方向から見た外形形状が回転体形状から外れると共に前記インペラあるいは前記シャフトに対して前記回転軸方向に突出して設けられる嵌合突起と、
     前記嵌合突起が設けられない前記インペラあるいは前記シャフトに対して設けられると共に前記嵌合突起が嵌合される嵌合穴と
     を備える請求項4に記載のターボ機械。
  8.  前記嵌合突起は、前記回転軸を重心とする形状を有している請求項7に記載のターボ機械。
  9.  前記開閉ネジに対して前記インペラの回転軸方向から当接するロックボルトを備える請求項1に記載のターボ機械。
  10.  前記インペラ螺合領域に形成されるネジ山の旋回方向は、前記インペラが回転駆動される際の反力によって前記開閉ネジと前記インペラとの締結力が高まる方向に設定されている請求項1~9のいずれかに記載のターボ機械。
  11.  前記開閉ネジの前記インペラ側の端面に前記開閉ネジを回転させる冶具を嵌合可能な嵌合穴あるいは嵌合突起が設けられ、前記インペラに前記嵌合穴あるいは嵌合突起を露出する露出孔が設けられている請求項1~9のいずれかに記載のターボ機械。
  12.  前記開閉ネジの前記インペラ側の端面に前記開閉ネジを回転させる冶具を嵌合可能な嵌合穴あるいは嵌合突起が設けられ、前記インペラに前記嵌合穴あるいは嵌合突起を露出する露出孔が設けられている請求項10に記載のターボ機械。
  13.  前記開閉ネジを回転させる冶具を嵌合可能な前記嵌合穴あるいは嵌合突起が、前記インペラの回転軸を重心とする形状を有している請求項11に記載のターボ機械。
  14.  前記開閉ネジを回転させる冶具を嵌合可能な前記嵌合穴あるいは嵌合突起が、前記インペラの回転軸を重心とする形状を有している請求項12に記載のターボ機械。
PCT/JP2012/054077 2011-02-21 2012-02-21 ターボ機械 WO2012115086A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137023459A KR101501761B1 (ko) 2011-02-21 2012-02-21 터보 기계
CN2012800094826A CN103370544A (zh) 2011-02-21 2012-02-21 涡轮机械
EP12749591.9A EP2679827B1 (en) 2011-02-21 2012-02-21 Turbo device
US13/966,368 US20130330193A1 (en) 2011-02-21 2013-08-14 Turbomachinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011034519A JP5589889B2 (ja) 2011-02-21 2011-02-21 ターボ機械
JP2011-034519 2011-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/966,368 Continuation US20130330193A1 (en) 2011-02-21 2013-08-14 Turbomachinery

Publications (1)

Publication Number Publication Date
WO2012115086A1 true WO2012115086A1 (ja) 2012-08-30

Family

ID=46720863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054077 WO2012115086A1 (ja) 2011-02-21 2012-02-21 ターボ機械

Country Status (6)

Country Link
US (1) US20130330193A1 (ja)
EP (1) EP2679827B1 (ja)
JP (1) JP5589889B2 (ja)
KR (1) KR101501761B1 (ja)
CN (1) CN103370544A (ja)
WO (1) WO2012115086A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083325A1 (en) * 2012-11-28 2014-06-05 Napier Turbochargers Limited Turbocharger impeller screwed onto shaft with arrangement for accommodating thermal dilatation
WO2015146765A1 (ja) * 2014-03-26 2015-10-01 株式会社Ihi インペラ締結構造及びターボ圧縮機
GB2532908A (en) * 2013-08-09 2016-06-01 Aeristech Ltd Attachment arrangement for turbo compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013015563A1 (de) * 2013-09-20 2015-03-26 Abb Turbo Systems Ag Abgasturbolader
CN104019057B (zh) * 2014-05-26 2016-08-24 河南众力空分设备有限公司 一种悬臂式叶轮与传动轴的传动连接装置
WO2016188524A1 (de) * 2015-05-27 2016-12-01 Schaeffler Technologies AG & Co. KG Läufer für einen abgasturbolader und abgasturbolader
JP2018114565A (ja) * 2017-01-16 2018-07-26 三菱マテリアル株式会社 切削工具
CN110770163B (zh) 2017-02-27 2021-08-31 第三极股份有限公司 用于移动生成一氧化氮的系统和方法
WO2019163371A1 (ja) * 2018-02-20 2019-08-29 パナソニックIpマネジメント株式会社 ボス、回転ファン、電動送風機、電気掃除機およびエアタオル
CN109372582A (zh) * 2018-12-16 2019-02-22 阜宁隆德机械制造有限责任公司 一种外置传动叶轮
WO2020183736A1 (ja) * 2019-03-14 2020-09-17 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサホイール装置および過給機
US11739763B2 (en) * 2021-11-11 2023-08-29 Progress Rail Locomotive Inc. Impeller attach mechanism

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711298U (ja) * 1980-06-25 1982-01-20
JPS6139498U (ja) * 1984-08-17 1986-03-12 株式会社クボタ ポンプ羽根車とポンプ軸との取付け構造
JPH0552356U (ja) 1991-12-17 1993-07-13 株式会社安川電機 ターボ機械のインペラ取付装置
JPH0557450U (ja) 1992-01-07 1993-07-30 株式会社安川電機 ターボ機械のインペラ取付装置
JPH08308434A (ja) * 1995-05-19 1996-11-26 Kanzaki Kokyukoki Mfg Co Ltd 漁網用結束機
JPH11148492A (ja) * 1997-09-19 1999-06-02 Asea Brown Boveri Ag 高速回転型のターボ機械に用いられる圧縮機羽根車固定装置
JP2003181755A (ja) * 2001-12-14 2003-07-02 Hitachi Plant Eng & Constr Co Ltd 配管磨き装置
JP2004218572A (ja) * 2003-01-16 2004-08-05 Tsurumi Mfg Co Ltd ポンプ用羽根車におけるボス部の固定機構
JP2008133745A (ja) * 2006-11-27 2008-06-12 Ihi Corp ターボ圧縮機のロータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2010525A (en) * 1934-02-26 1935-08-06 Ingersoll Rand Co Locking device for pump impellers
US2602683A (en) * 1945-03-03 1952-07-08 Sulzer Ag Rotor for turbomachines
US3813038A (en) * 1971-09-13 1974-05-28 H Pryor Railroad tie
JPS5588016U (ja) * 1978-12-12 1980-06-18
US6290467B1 (en) * 1999-12-03 2001-09-18 American Standard International Inc. Centrifugal impeller assembly
CN2508043Y (zh) * 2001-08-24 2002-08-28 石季尧 双向螺纹反向自锁自攻螺钉
US6986644B2 (en) * 2003-05-02 2006-01-17 Envirotech Pumpsystems, Inc. Hard material impeller and methods and apparatus for construction
US7052241B2 (en) * 2003-08-12 2006-05-30 Borgwarner Inc. Metal injection molded turbine rotor and metal shaft connection attachment thereto
CN2797725Y (zh) * 2005-05-11 2006-07-19 欣业企业股份有限公司 家俱用固定件
CN201148992Y (zh) * 2007-12-28 2008-11-12 上海东方泵业(集团)有限公司 叶轮的轴向调节结构
JP5880706B2 (ja) * 2012-06-11 2016-03-09 株式会社Ihi ターボ機械

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711298U (ja) * 1980-06-25 1982-01-20
JPS6139498U (ja) * 1984-08-17 1986-03-12 株式会社クボタ ポンプ羽根車とポンプ軸との取付け構造
JPH0552356U (ja) 1991-12-17 1993-07-13 株式会社安川電機 ターボ機械のインペラ取付装置
JPH0557450U (ja) 1992-01-07 1993-07-30 株式会社安川電機 ターボ機械のインペラ取付装置
JPH08308434A (ja) * 1995-05-19 1996-11-26 Kanzaki Kokyukoki Mfg Co Ltd 漁網用結束機
JPH11148492A (ja) * 1997-09-19 1999-06-02 Asea Brown Boveri Ag 高速回転型のターボ機械に用いられる圧縮機羽根車固定装置
JP2003181755A (ja) * 2001-12-14 2003-07-02 Hitachi Plant Eng & Constr Co Ltd 配管磨き装置
JP2004218572A (ja) * 2003-01-16 2004-08-05 Tsurumi Mfg Co Ltd ポンプ用羽根車におけるボス部の固定機構
JP2008133745A (ja) * 2006-11-27 2008-06-12 Ihi Corp ターボ圧縮機のロータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083325A1 (en) * 2012-11-28 2014-06-05 Napier Turbochargers Limited Turbocharger impeller screwed onto shaft with arrangement for accommodating thermal dilatation
CN104781560A (zh) * 2012-11-28 2015-07-15 纳皮尔涡轮增压器有限公司 布置为适应热膨胀的旋拧到轴上的涡轮增压器叶轮
EP2933499A1 (en) * 2012-11-28 2015-10-21 Napier Turbochargers Limited Turbocharger impeller screwed onto shaft with arrangement for accommodating thermal dilatation
JP2016500140A (ja) * 2012-11-28 2016-01-07 ネーピア・ターボチャージャーズ・リミテッド 熱膨張を適応する構成を有するシャフトにねじ込まれたターボチャージャー・インペラー
US10018205B2 (en) 2012-11-28 2018-07-10 Napier Turbochargers Limited Impeller shaft
GB2532908A (en) * 2013-08-09 2016-06-01 Aeristech Ltd Attachment arrangement for turbo compressor
US10451087B2 (en) 2013-08-09 2019-10-22 Aeristech Limited Attachment arrangement for turbo compressor
WO2015146765A1 (ja) * 2014-03-26 2015-10-01 株式会社Ihi インペラ締結構造及びターボ圧縮機

Also Published As

Publication number Publication date
EP2679827A4 (en) 2016-03-09
EP2679827A1 (en) 2014-01-01
EP2679827B1 (en) 2019-09-04
CN103370544A (zh) 2013-10-23
KR20130129276A (ko) 2013-11-27
US20130330193A1 (en) 2013-12-12
JP2012172576A (ja) 2012-09-10
JP5589889B2 (ja) 2014-09-17
KR101501761B1 (ko) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2012115086A1 (ja) ターボ機械
JP5880706B2 (ja) ターボ機械
US8215902B2 (en) Scalable high pressure compressor variable vane actuation arm
JP6475709B2 (ja) エピサイクリックギアボックス用の軽量ギア組立体
JP5010631B2 (ja) 可変容量型排気ターボ過給機
US10024361B2 (en) Bearing structure and turbocharger
US9695692B2 (en) Threaded shank, connection assembly and gas turbine engine for improved fatigue life of threads
US20160319832A1 (en) Impeller fastening structure and turbo compressor
DE102016002735A1 (de) Verdichteraufbau mit dynamischer Diffusorringsicherung
JP2011220146A (ja) ターボ圧縮機及びターボ冷凍機
JP2013044312A (ja) ターボ機械のロータ
KR102031963B1 (ko) 밸런싱 플러그 셋팅툴 및 이를 이용한 밸런싱 플러그 장착 방법
JP2009174358A (ja) 過給機
US8739561B2 (en) Turbo compressor, turbo refrigerator, and method of manufacturing turbo compressor
CN114198208B (zh) 空气涡轮起动器
KR20160139603A (ko) 회전 쿨링장치
GB2610628A (en) Castellated nut

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012749591

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023459

Country of ref document: KR

Kind code of ref document: A