WO2012113269A1 - 提高乙二醇产品质量的方法 - Google Patents

提高乙二醇产品质量的方法 Download PDF

Info

Publication number
WO2012113269A1
WO2012113269A1 PCT/CN2012/000240 CN2012000240W WO2012113269A1 WO 2012113269 A1 WO2012113269 A1 WO 2012113269A1 CN 2012000240 W CN2012000240 W CN 2012000240W WO 2012113269 A1 WO2012113269 A1 WO 2012113269A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene glycol
catalyst
solid oxide
bed reactor
packed bed
Prior art date
Application number
PCT/CN2012/000240
Other languages
English (en)
French (fr)
Inventor
刘俊涛
张育红
王万民
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2013143311/04A priority Critical patent/RU2565589C2/ru
Priority to AU2012220220A priority patent/AU2012220220B2/en
Priority to US14/000,878 priority patent/US9051236B2/en
Publication of WO2012113269A1 publication Critical patent/WO2012113269A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • C07C29/90Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound using hydrogen only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for improving the quality of ethylene glycol products, and more particularly to a process for improving the quality of oxalates, preferably hydrogenated oxalate or hydrogenated oxalate.
  • Ethylene glycol (EG) is an important organic chemical raw material used in the production of polyester fiber, antifreeze, unsaturated polyester resin, lubricant, plasticizer, nonionic surfactant and explosives. It can be used in industries such as paints, photographic developers, brake fluids and inks. It is used as a solvent and medium for ammonium perborate. It is used in the production of special solvent glycol ethers. It is widely used. One of the most important uses is for The basic raw material for the manufacture of polyester (PET) polyester fibers, which is commonly referred to as fiber grade ethylene glycol products.
  • PET polyester
  • ethylene glycol production at home and abroad mainly adopts an oil route, which is a direct hydration or pressurized water legal process.
  • the process is to prepare a mixed aqueous solution of ethylene oxide and water at a ratio of 1:20 to 22 (molar ratio).
  • the important factor affecting the ultraviolet light transmittance at 220 nm of the ethylene glycol product is different from the petroleum route.
  • the aldehyde-containing by-products are less.
  • Other non-aldehyde-based carbonyl compounds may be important factors influencing the UV light transmittance at 220 nm of ethylene glycol products.
  • an ion exchange resin is generally used as a catalyst to purify and purify ethylene glycol.
  • U.S. Patent No. 6,242,655 describes a strong acid cation exchange resin as a catalyst.
  • the aldehyde content of the ethylene glycol product can be determined by 20 ppm is reduced to below 5 ppm.
  • the drawback of the prior method is that the aldehyde content of the ethylene glycol product can only be removed to at most about 2 ppm, and at this time, the ultraviolet light transmittance at 220 nm of the ethylene glycol product has not reached a very desirable value.
  • the technical problem to be solved by the present invention is to provide a new method for improving the quality of ethylene glycol products, thereby overcoming the problem of low ultraviolet transmittance of ethylene glycol products existing in the prior art.
  • the ethylene glycol product obtained by the method has the advantages of high ultraviolet transmittance and the like.
  • the technical scheme adopted by the present invention is as follows: A method for improving the quality of an ethylene glycol product, wherein the ethylene glycol raw material and hydrogen are at a temperature of about 20 to about 280 ° C and a pressure of about 0.1 to about 4.0 MPa. a reaction of about 0.2 to about 100.0 hours, a hydrogen to ethylene glycol molar ratio of about 0.01 to 40:1, through a rotating packed bed reactor containing a solid oxide catalyst, and reacting to obtain ethylene glycol;
  • the solid oxide catalyst is selected from at least one of a copper-based, nickel-based, and palladium-based catalyst, and the rotating packed bed reactor has a rotational speed of from about 300 to about 5000 rpm.
  • the temperature is from about 30 to about 260 ° C
  • the pressure is from about 0.3 to about 3.0 MPa
  • the space velocity is from about 1 to about 50.0 hours.
  • the molar ratio of hydrogen to ethylene glycol is from about 0.1 to 30: 1.
  • the rotating packed bed reactor has a rotational speed in the range of from about 500 to about 3000 rpm.
  • the ethylene glycol feedstock is derived from ethylene glycol produced by hydrogenation of oxalate.
  • Product The mass concentration of the ethylene glycol starting material is preferably greater than 99%.
  • the solid oxide catalyst has a strength ranging from about 60 to about 400 N/cm and a strength preferably ranging from about 100 to about 300 N/cm.
  • This strength can be obtained using an organic binder such as polyvinyl alcohol, hydroxypropylmethylcellulose, methylcellulose or hydroxypropylmethylcellulose.
  • the solid oxide catalyst obtained from the organic binder can be used at a lower temperature in the above method.
  • the solid oxide catalyst may have the following parameters:
  • the surface area is from about 10 to about 500 square meters per gram, the pore volume is from about 0.1 to about 1 milliliter per gram, and the average pore diameter is from about 2 to about 13 nanometers.
  • the solid oxide catalyst is, for example, a catalyst containing palladium oxide and/or copper oxide and/or nickel oxide.
  • the solid oxide catalyst may contain a conventional carrier and optionally a conventional adjuvant.
  • the support may for example be a silica, alumina and/or molecular sieve.
  • the solid oxide catalyst can be prepared by methods in the art.
  • the rotating packed bed reactor may be, for example, a HIGEE-001 type reactor (manufactured by SRIPT).
  • the purity of the diol has been 4 ⁇ , but the UV transmittance of the ethylene glycol products at 220nm, 275nm and 350nm still reaches a very good value (the standard of China National Standard Glycol Premium is ethylene glycol).
  • the UV transmittance of the products at 220nm, 275nm and 350nm is greater than 75, 95 and 98 respectively. The reason is that trace amounts of trace impurities in the ppm level have a significant effect on the UV transmittance of the product, and these ppm levels Trace impurities are generally difficult to remove by rectification.
  • the present inventors have found in the study that copper-based, nickel-based, and/or palladium-based catalysts have high selectivity for removal of trace impurities in ethylene glycol in the presence of hydrogen.
  • the reaction process is mainly controlled by diffusion, and the dispersion of hydrogen has a significant effect on the removal effect of impurities. Therefore, the present invention uses a rotary fill.
  • the bed can increase the mass transfer coefficient by the geometrical order of the rotating packed bed, greatly enhance the mass transfer process, and finally effectively remove the impurities affecting the ultraviolet transmittance of the product, and significantly improve the quality of the product.
  • the ultraviolet light transmittance of the obtained ethylene glycol product at 220 nm is greater than 75, the ultraviolet light transmittance at 275 nm is greater than 95, and the ultraviolet light transmittance at 350 nm is greater than 98, and a good technique is obtained. effect.
  • Nickel solid oxide (15% nickel oxide by weight of catalyst, alumina as carrier) is used as catalyst, catalyst strength is 100 N/cm, surface area is 200 m 2 /g, pore volume is 0.31 ml/g, average pore diameter 5 nanometers, using ethylene glycol products obtained by hydrogenation of dimethyl oxalate as raw materials, hydrogen and ethylene glycol raw materials (the purity of ethylene glycol raw materials is 99.8 %, and the ultraviolet transmittance of the raw materials is 2 at 220 nm.
  • the obtained ethylene glycol product has a UV light transmittance of 78 at 220 nm, an ultraviolet light transmittance of 95 at 275 nm, and an ultraviolet light transmittance of 100 at 350 nm.
  • ethylene is prepared by hydrogenation of dimethyl oxalate.
  • the alcohol product is the raw material, and the hydrogen and ethylene glycol raw materials (the purity of the ethylene glycol raw material is 99.8 %, the ultraviolet transmittance of the raw material is 2 at 220 nm, 91 at 275 nm, 95 at 350 nm), and the temperature is 90°.
  • the ethylene glycol product obtained after hydrogenation has an ultraviolet light transmittance of 77 at 220 nm, an ultraviolet light transmittance of 96 at 275 nm, and an ultraviolet light transmittance of 100 at 350 nm.
  • catalyst strength is 10 10 N/cm
  • surface area is 400 m 2 /g
  • pore volume is 0.6 ml / g
  • average pore diameter is 3 nm
  • ethylene glycol obtained by hydrogenation of dimethyl oxalate The product is a raw material, and the hydrogen and ethylene glycol raw materials (the purity of the ethylene glycol raw material is 99.9 %, the ultraviolet transmittance of the raw material is 0 at 220 nm, 90 at 275 nm, 95 at 350 nm), and the temperature is 40.
  • the rotating packed bed reactor was rotated at 1000 rpm.
  • the ethylene glycol product obtained after hydrogenation has an ultraviolet light transmittance of 79 at 220 nm, an ultraviolet light transmittance of 97 at 275 nm, and an ultraviolet light transmittance of 99 at 350 nm.
  • nickel solid oxide as a catalyst (30% nickel oxide by weight of catalyst, ZSM-5 molecular sieve as carrier), the catalyst strength is 210 N/cm, the surface area is 450 m 2 /g, and the pore volume is 0.6 ml/g.
  • the average pore diameter is 6 nm, and the ethylene glycol product obtained by hydrogenation of diethyl oxalate is used as a raw material, and the hydrogen and ethylene glycol raw materials (the purity of the ethylene glycol raw material is 99.8 %, and the ultraviolet transmittance of the raw material is 220 nm).
  • the catalyst is contacted and the effluent of ethylene glycol is obtained after the reaction; wherein the rotational speed of the rotating packed bed reactor is 2000 rpm.
  • the ethylene glycol product obtained after hydrogenation has a UV light transmittance of 78 at 220 nm, an ultraviolet light transmittance of 96 at 275 nm, and an ultraviolet light transmittance of 100 at 350 nm.
  • ⁇ Use copper solid oxide as catalyst (20% copper oxide as carrier weight, alumina is supported), catalyst strength is 80N/cm, surface area is 180 m 2 /g, pore volume is 0.4 cc / gram, average The pore size is 4 nm, and the ethylene glycol product obtained by hydrogenating diethyl oxalate is used as a raw material, and the hydrogen and ethylene glycol raw materials (the purity of the ethylene glycol raw material is 99.8 %, The UV transmittance of the material is 10 at 220 nm, 93 at 275 nm, 95 at 350 nm, and at a temperature of 180 ° C, a pressure of 0.5 MPa, and a space velocity of 15 hours.
  • the ratio of hydrogen to ethylene glycol is 20:1.
  • the effluent of ethylene glycol is obtained by contacting the catalyst by rotating a packed bed reactor under the conditions; wherein the rotational speed of the rotating packed bed reactor is 1000 rpm.
  • the ethylene glycol product obtained after hydrogenation has a UV light transmittance of 79 at 220 nm, an ultraviolet light transmittance of 97 at 275 nm, and an ultraviolet light transmittance of 100 at 350 nm.
  • catalyst strength is 130 N/cm
  • surface area is 250 m 2 /g
  • pore volume is 0.6 ml/g
  • ethylene glycol product obtained by hydrogenation of dimethyl oxalate as raw material hydrogen and ethylene glycol raw materials
  • ethylene glycol raw material purity is 99.8 %
  • the ultraviolet transmittance of the raw material is 0 at 220 nm, 90 at 275 nm, 95 at 350 nm, at a temperature of 240 ° C, a pressure of 2.0 MPa, a space velocity of 60 hours, a ratio of hydrogen to ethylene glycol of 30:1, through a rotating packed bed reactor, with the catalyst
  • the ethylene glycol effluent is obtained after the reaction; wherein the rotational temperature of the rotating packed bed reactor is 1,500 rpm.
  • the ethylene glycol product obtained after hydrogenation has an ultraviolet light transmittance of 80 at 220 nm, an ultraviolet light transmittance of 97 at 275 nm, and an ultraviolet transmittance of 100 at 350 nm.
  • catalyst strength is 160 N/cm
  • surface area is 80 m 2 /g
  • pore volume is 0.2 ml/g
  • ethylene glycol product obtained by hydrogenation of dinonyl oxalate as raw material hydrogen and ethylene glycol raw materials
  • ethylene glycol raw material purity is 99.8 %
  • the ultraviolet transmittance of the raw material is 0 at 220 nm, 90 at 275 nm, 95 at 350 nm, at a temperature of 80 ° C, a pressure of 1.0 MPa, a space velocity of 10 hours, a ratio of hydrogen to ethylene glycol of 10:1, through a rotating packed bed reactor
  • the catalyst was contacted, and an ethylene glycol effluent was obtained after the reaction; wherein the rotational speed of the rotating packed bed reactor was 3000 rpm.
  • the ethylene glycol product obtained after hydrogenation has an ultraviolet light transmittance of
  • Example 8 Palladium and nickel composite solid oxides were used as catalysts (0.12% palladium oxide, 8% nickel oxide, alumina supported), catalyst strength 120 N/cm, surface area 160 m/g, pore volume It is 0.38 ml / gram, the average pore diameter is 5 nm, and the ethylene glycol product obtained by hydrogenating dimethyl oxalate is used as raw material, and the hydrogen and ethylene glycol raw materials (the purity of the ethylene glycol raw material is 99.8 %, the ultraviolet ray of the raw material is transparent).
  • the light rate is 10 at 220 nm, 88 at 275 nm, 95 at 350 nm, at a temperature of 80 ° C, a pressure of 0.5 MPa, a space velocity of 15 hr - 1 , and a hydrogen to ethylene glycol ratio of 15:1.
  • the effluent of ethylene glycol is obtained by contacting the catalyst by rotating a packed bed reactor; wherein the rotational speed of the rotating packed bed reactor is 1000 rpm.
  • the ethylene glycol product obtained after hydrogenation has an ultraviolet light transmittance of 81 at 220 nm, a transmittance of 96 at 275 nm, and an ultraviolet transmittance of 100 at 350 nm.
  • the same catalyst, starting materials and reaction conditions as in Example 6 were used except that the reactor was packed in a fixed bed tubular reactor.
  • the ethylene glycol product obtained after hydrogenation has a UV light transmittance of 50 at 220 nm, a UV light transmittance of 92 at 275 nm, and an ultraviolet light transmittance of 99 at 350 nm.
  • the same catalyst, starting materials and reaction conditions as in Example 7 were used except that the reactor was packed in a fixed bed tubular reactor.
  • the ethylene glycol product obtained after hydrogenation has a UV light transmittance of 60 at 220 nm, an ultraviolet light transmittance of 93 at 275 nm, and an ultraviolet light transmittance of 99 at 350 nm. Therefore, it is apparent from the above embodiments that the present invention achieves the technical effects described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

提高乙二醇产品质量的方法 技术领域
本发明涉及一种提高乙二醇产品质量的方法, 特别是关于提高草 酸酯, 优选草酸二曱酯加氢或草酸二乙酯加氢制得的乙二醇产品质量 的方法。 背景技术
乙二醇 (EG)是一种重要的有机化工原料,主要用于生产聚酯纤维、 防冻剂、 不饱和聚酯树脂、 润滑剂、 增塑剂、 非离子表面活性剂以及 炸药等, 此外还可用于涂料、 照相显影液、 刹车液以及油墨等行业, 用作过硼酸铵的溶剂和介质,用于生产特种溶剂乙二醇醚等, 用途十分 广泛,其中一个非常重要的用途是作为用于制造聚酯纤维的聚酯(PET) 的基本原料, 这一般被称为纤维级乙二醇产品。
目前, 国内外大型乙二醇生产主要采用石油路线, 既直接水合法 或加压水合法工艺路线, 该工艺是将环氧乙烷和水按 1 : 20 ~ 22(摩尔 比)配成混合水溶液, 在固定床反应器中于 130 ~ 180°C , 1.0 ~ 2.5MPa 下反应 18 ~ 30分钟, 环氧乙烷全部转化为混合醇, 生成的乙二醇水溶 液含量大约在 10% (质量分数),然后经多效蒸发器脱水提浓和减压精馏 分离得到乙二醇, 但生产装置需设置多个蒸发器, 消耗大量的能量用 于脱水, 造成生产工艺流程长、 设备多和能耗高。
目前, 从世界范围来看, 石油资源日趋紧张, 且世界油价波动较 大, 而我国的资源格局可概括为少油, 少气, 多煤。 发展碳一化工不 但可以充分利用天然气和煤资源, 减少对石油进口的依赖、 而且能够 减轻环境压力, 是非常重要的研究领域。 以一氧化碳为原料制备草酸 酯, 然后将草酸酯加氢制备乙二醇是一条非常具有吸引力的煤化工路 线。 现在国内外对以一氧化碳为原料制备草酸酯的研究取得了良好的 效果, 工业生产已经成熟。 而将草酸酯加氢制备乙二醇, 仍有较多工 作需要深入研究, 尤其是草酸酯加氢过程中副产物较多, 微量的含不 饱和欢键的化合物的存在会影响乙二醇产品的质量。 衡量纤维级乙二 醇产品质量的一项重要指标是 220nm处的紫外光透光率, 因为它将影 响下游聚酯产品的光泽和色度。 对于石油路线生产的乙二醇通常认为 影响纤维级乙二醇产品 220nm处紫外光透光率的重要因素是产品中存 在的含醛基副产物。 而对于草酸酯加氢制得的乙二醇产品, 一般认为 影响乙二醇产品 220nm处紫外光透光率的重要因素是与石油路线有所 不同, 通常情况下含醛基副产物较少, 而其它非醛基的羰基化合物可 能是影响乙二醇产品 220nm处紫外光透光率的重要因素。
在现有技术中一般采用离子交换树脂作为催化剂来精制提纯乙二 醇, 如美国专利 6242655 介绍釆用一种强酸性阳离子交换树脂为催化 剂 . 经处理后能使乙二醇产品的醛基含量由 20ppm降低至 5ppm以下。 然而已有的方法的缺陷是乙二醇产品的醛基含量至多只能脱除至 2ppm 左右, 而此时乙二醇产品的 220nm处紫外光透光率仍未达到一个非常 理想的数值, 同时已有的方法仅适用于石油路线的乙二醇产品, 对于 煤基产品效果如何未见报道。 因此, 如何提高煤基乙二醇产品紫外透 光率, 进而保障产品的质量是一项十分重要的研究课题。 而目前鲜见 公开的文献报道。 发明内容
本发明所要解决的技术问题是提供一种新的提高乙二醇产品质量 的方法, 从而克服现有技术中存在的乙二醇产品紫外透光率低的问题。 该方法所得到的乙二醇产品具有紫外透光率高等优点。
为此, 本发明采用的技术方案如下: 一种提高乙二醇产品质量的 方法,其中将乙二醇原料和氢气,在温度约 20 ~约 280°C ,压力约 0.1 ~ 约 4.0MPa, 空速约 0.2 ~约 100.0小时 , 氢气与乙二醇的摩尔比为约 0.01 - 40: 1的条件下通过其中装有固体氧化物催化剂的旋转填料床反 应器, 反应后得到乙二醇; 其中所述固体氧化物催化剂选自铜系、 镍 系和钯系催化剂中的至少一种, 和所述旋转填料床反应器的转速为约 300 ~约 5000转 /分钟。
在一个实施方案中, 所述温度为约 30 ~约 260°C , 压力为约 0.3 ~ 约 3.0MPa, 空速为约 1 ~约 50.0小时 氢气与乙二醇的摩尔比为约 0.1 ~ 30: 1。
在另一个实施方案中,旋转填料床反应器的转速范围为约 500 ~约 3000转 /分钟。
在另一个实施方案中, 乙二醇原料来自草酸酯加氢制得的乙二醇 产品。 乙二醇原料的质量浓度优选大于 99 %。
在另一个实施方案中, 所述固体氧化物催化剂具有一定的强度, 强度为约 60 ~约 400N/cm, 强度优选范围为约 100 ~约 300N/cm。 该 强度可以使用有机粘结剂来获得, 所述有机粘结剂例如是: 聚乙烯醇、 羟丙基甲基纤维素、 甲基纤维素或羟丙基甲基纤维素。
与现有技术不同的是由该有机粘结剂获得固体氧化物催化剂可以 在上述方法中的较低温度使用。 所述固体氧化物催化剂可以具有如下 的参数:
表面积为约 10 ~约 500平方米 /克,孔体积为约 0.1 ~约 1毫升 /克, 平均孔径约 2 ~约 13纳米。
所述固体氧化物催化剂例如是含有氧化钯和 /或氧化铜和 /或氧化 镍的催化剂。
在另一个实施方案中, 所述固体氧化物催化剂可以含有常规载体 和任选地加入常规助剂。 所述载体例如可以是氧化硅、 氧化铝和 /或分 子筛。 所述固体氧化物催化剂可以通过本技术领域中的方法制备。
在另一个实施方案中, 所述旋转填料床反应器可以例如采用 HIGEE-001型反应器 ( SRIPT生产) 。
众所周知, 在草酸酯加氢制得的乙二醇反应过程中, 除了乙二醇 目标产物外, 还含有一定量的副产物, 如常量的乙醇, 丁二醇、 丙二 醇和其它微量的含有不饱和双键的化合物, 而通过常规分离或其它特 殊精馏的方法可以除去大部分的常量的化合物, 如乙醇和丙二醇等, 使得产品的纯度达到 99.8 %以上, 但是, 通常的情况是, 尽管乙二醇 的纯度已经 4艮高, 但乙二醇产品的 220nm、 275nm及 350nm处紫外光 透光率仍末达到一个非常理想的数值 (中国国家标准乙二醇优级品的 要求是乙二醇产品的 220nm、 275nm及 350nm处紫外光透光率分别大 于 75、 95和 98 ) , 究其原因在于, 微量的甚至 ppm级的微量杂质对 产品紫外光透光率影响显著, 而这些 ppm级的微量杂质一般情况下通 过精馏是较难除去的。
本发明者在研究中发现, 釆用铜系、 镍系和 /或钯系催化剂, 在氢 气存在下对乙二醇中微量杂质有较高的脱除选择性。 另外, 考虑到影 响产品紫外透光率的杂质含量较低, 反应过程主要受扩散控制, 氢气 分散的好坏对杂质的脱除效果影响显著, 因此, 本发明中采用旋转填 料床作为加氢反应器, 利用旋转填料床可几何数量级提高传质系数的 优点, 大大增强传质过程, 最终使得影响产品紫外透光率的杂质得到 有效脱除, 显著提高产品的质量。
采用本发明的技术方案, 得到的乙二醇产品其 220nm处紫外光透 光率大于 75 , 275nm处紫外光透光率大于 95 , 350nm处紫外光透光率 大于 98 , 取得了较好的技术效果。
下面通过实施例对本发明作进一步的阐述, 但本发明不仅限于这 些实施例。 具体实施方式
【实施例 1】
采用镍固体氧化物 (以催化剂重量百分比计, 氧化镍 15 % , 载体 为氧化铝) 为催化剂, 催化剂强度为 100N/cm, 表面积为 200平方米 / 克, 孔体积为 0.31毫升 /克, 平均孔径 5纳米, 以草酸二甲酯加氢制得 的乙二醇产品为原料, 将氢气和乙二醇原料(乙二醇原料纯度为 99.8 % , 该原料的紫外透光率在 220nm处为 2, 275nm处为 91 , 350nm处 为 95 ) , 在温度 60°C, 压力 l.OMPa, 空速 20小时 , 氢气与乙二醇 的比 (以下均指摩尔比) 为 3 : 1 的条件下通过旋转填料床反应器 、 SRIPT-HIGEE-001 ,以下相同") , 与所述催化剂接触, 反应后得到乙 二醇的流出物; 其中, 旋转填料床反应器的转速为 500转 /分钟。 加氢 后得到的乙二醇产品其 220nm处紫外光透光率为 78 , 275nm处紫外光 透光率为 95, 350nm处紫外光透光率为 100。
【实施例 2】
采用镍固体氧化物为催化剂(以催化剂重量百分比计, 氧化镍 30
% , 载体为氧化铝), 催化剂强度为 l,50N/cm, 表面积为 300 平方米 / 克, 孔体积为 0.4毫升 /克, 平均孔径 8纳米, 以草酸二甲酯加氢制得 的乙二醇产品为原料, 将氢气和乙二醇原料(乙二醇原料纯度为 99.8 %, 该原料的紫外透光率在 220nm处为 2 , 275nm处为 91 , 350nm处 为 95 ) , 在温度 90°C, 压力 3.0MPa, 空速 50小时 氢气与乙二醇 的比为 10: 1 的条件下通过旋转填料床反应器, 与所述催化剂接触, 反应后得到乙二醇的流出物; 其中, 旋转填料床反应器的转速为 800 转 /分钟。 加氢后得到的乙二醇产品其 220nm处紫外光透光率为 77, 275nm处紫外光透光率为 96, 350nm处紫外光透光率为 100。
【实施例 3】
采用镍固体氧化物为催化剂(以催化剂重量百分比计, 氧化镍 30
% , 载体为氧化硅), 催化剂强度为 1 10N/cm, 表面积为 400 平方米 / 克, 孔体积为 0.6毫升 /克, 平均孔径 3纳米, 以草酸二甲酯加氢制得 的乙二醇产品为原料, 将氢气和乙二醇原料(乙二醇原料纯度为 99.9 % , 该原料的紫外透光率在 220nm处为 0, 275nm处为 90, 350nm处 为 95 ) , 在温度 40。C, 压力 l .OMPa, 空速 10小时 , 氢气与乙二醇 的比为 2: 1的条件下通过旋转填料床反应器, 与所述催化剂接触, 反 应后得到乙二醇的流出物; 其中, 旋转填料床反应器的转速为 1000转 /分钟。加氢后得到的乙二醇产品其 220nm处紫外光透光率为 79 , 275nm 处紫外光透光率为 97, 350nm处紫外光透光率为 99。
【实施例 4】
采用镍固体氧化物为催化剂(以催化剂重量百分比计, 氧化镍 30 % , 载体为 ZSM-5分子筛), 催化剂强度为 210N/cm, 表面积为 450平 方米 /克, 孔体积为 0.6毫升 /克, 平均孔径 6纳米, 以草酸二乙酯加氢 制得的乙二醇产品为原料, 将氢气和乙二醇原料 (乙二醇原料纯度为 99.8 % ,该原料的紫外透光率在 220nm处为 10, 275nm处为 93, 350nm 处为 95 ) , 在温度 100°C , 压力 0.5MPa, 空速 2小时 氢气与乙二 醇的比为 5: 1的条件下通过旋转填料床反应器, 与所述催化剂接触, 反应后得到乙二醇的流出物; 其中, 旋转填料床反应器的转速为 2000 转 /分钟。 加氢后得到的乙二醇产品其 220nm处紫外光透光率为 78, 275nm处紫外光透光率为 96, 350nm处紫外光透光率为 100。
【实施例 5】
釆用铜固体氧化物为催化剂(以催化剂重量百分比计, 氧化铜 20 % , 载体为氧化铝), 催化剂强度为 80N/cm, 表面积为 180平方米 /克, 孔体积为 0.4毫升 /克, 平均孔径 4纳米, 以草酸二乙酯加氢制得的乙 二醇产品为原料, 将氢气和乙二醇原料(乙二醇原料纯度为 99.8 % , 该原料的紫外透光率在 220nm处为 10, 275nm处为 93, 350nm处为 95 ) , 在温度 180°C , 压力 0.5MPa, 空速 15小时 氢气与乙二醇的 比为 20: 1 的条件下通过旋转填料床反应器, 与所述催化剂接触, 反 应后得到乙二醇的流出物; 其中, 旋转填料床反应器的转速为 1000转 /分钟。加氢后得到的乙二醇产品其 220nm处紫外光透光率为 79, 275nm 处紫外光透光率为 97, 350nm处紫外光透光率为 100。
【实施例 6】
采用铜固体氧化物为催化剂(以催化剂重量百分比计, 氧化铜 10 %, 载体为氧化硅), 催化剂强度为 130N/cm, 表面积为 250 平方米 / 克, 孔体积为 0.6毫升 /克, 平均孔径 7纳米, 以草酸二甲酯加氢制得 的乙二醇产品为原料, 将氢气和乙二醇原料(乙二醇原料純度为 99.8 % , 该原料的紫外透光率在 220nm处为 0, 275nm处为 90, 350nm处 为 95 ) , 在温度 240°C, 压力 2.0MPa, 空速 60小时 氢气与乙二醇 的比为 30: 1 的条件下通过旋转填料床反应器, 与所述催化剂接触, 反应后得到乙二醇的流出物; 其中, 旋转填料床反应器的转速为 1500 转 /分钟。 加氢后得到的乙二醇产品其 220nm 处紫外光透光率为 80, 275nm处紫外光透光率为 97, 350nm处紫外光透光率为 100。 【实施例 7】
采用钯固体氧化物为催化剂(以催化剂重量百分比计, 氧化钯 0.15 %, 载体为氧化铝), 催化剂强度为 160N/cm, 表面积为 80平方米 /克, 孔体积为 0.2毫升 /克, 平均孔径 6纳米, 以草酸二曱酯加氢制得的乙 二醇产品为原料, 将氢气和乙二醇原料(乙二醇原料纯度为 99.8 % , 该原料的紫外透光率在 220nm处为 0,275nm处为 90, 350nm处为 95 ), 在温度 80°C , 压力 l.OMPa, 空速 10小时 氢气与乙二醇的比为 10: 1的条件下通过旋转填料床反应器, 与所述催化剂接触, 反应后得到乙 二醇的流出物; 其中, 旋转填料床反应器的转速为 3000转 /分钟。 加氢 后得到的乙二醇产品其 220nm处紫外光透光率为 76, 275nm处紫外光 透光率为 96, 350nm处紫外光透光率为 99。
【实施例 8 ] 采用钯和镍复合固体氧化物为催化剂(以催化剂重量百分比计, 氧 化钯 0.12 % , 氧化镍 8 % , 载体为氧化铝), 催化剂强度为 120N/cm, 表面积为 160平方米 /克, 孔体积为 0.38毫升 /克, 平均孔径 5纳米, 以 草酸二甲酯加氢制得的乙二醇产品为原料, 将氢气和乙二醇原料(乙 二醇原料纯度为 99.8 % ,该原料的紫外透光率在 220nm处为 10, 275nm 处为 88, 350nm处为 95 ) , 在温度 80°C, 压力 0.5MPa, 空速 15小时 -1 , 氢气与乙二醇的比为 15: 1的条件下通过旋转填料床反应器, 与所 述催化剂接触, 反应后得到乙二醇的流出物; 其中, 旋转填料床反应 器的转速为 1000转 /分钟。 加氢后得到的乙二醇产品, 其 220nm处紫 外光透光率为 81 , 275nm处紫外光透光率为 96, 350nm处紫外光透光 率为 100。
【对比例 1】
采用实施例 6相同的催化剂, 原料及反应条件, 只是反应器釆用 固定床管式反应器。 加氢后得到的乙二醇产品, 其 220nm处紫外光透 光率为 50 , 275nm处紫外光透光率为 92, 350nm处紫外光透光率为 99。
【对比例 2 ]
釆用实施例 7相同的催化剂, 原料及反应条件, 只是反应器釆用 固定床管式反应器。 加氢后得到的乙二醇产品, 其 220nm处紫外光透 光率为 60, 275nm处紫外光透光率为 93, 350nm处紫外光透光率为 99。 因此, 从以上实施例可以 ί艮明显看出, 本发明取得了所述的技术 效果。

Claims

权 利 要 求
1. 一种提高乙二醇产品质量的方法, 其中将乙二醇原料和氢气, 在温度约 20 ~约 280 °C,压力约 0.1 ~约 4.0MPa, 空速约 0.2 ~约 100.0 小时 , 氢气与乙二醇的摩尔比为约 0.01 ~40: 1的条件下通过其中装 有固体氧化物催化剂的旋转填料床反应器, 反应后得到乙二醇; 其中 所述固体氧化物催化剂选自铜系、 镍系和钯系催化剂中的至少一种, 和所述旋转填料床反应器的转速为约 300 ~约 5000转 /分钟。
2. 权利要求 1所述的方法, 其中所述温度为约 30~约 260°C, 压 力为约 0.3 ~约 3.0MPa, 空速为约 1 ~约 50.0小时 , 氢气与乙二醇的 摩尔比为约 0.1 ~30: 1。
3. 权利要求 1或 2所述的方法, 其中所述旋转填料床反应器的转 速范围为约 500 ~约 3000转 /分钟。
4. 权利要求 1 ~3 任一项所述的方法, 其中所述乙二醇原料来自 草酸酯加氢制得的乙二醇产品。
5. 权利要求 1 ~4 任一项所述的方法, 其中所述乙二醇原料的质 量浓度大于 99%。
6. 权利要求 1 ~5 任一项所述的方法, 其中所述固体氧化物催化 剂的强度为: 约 60 ~约 400N/cm。
7. 权利要求 1 ~6 任一项所述的方法, 其中所述固体氧化物催化 剂具有如下的参数:
表面积为约 10~约500平方米 /克,孔体积为约 0.1 ~约 1毫升 /克, 平均孔径约 2~约 13纳米。
8. 权利要求 1 ~7任一项所述的方法, 其中所述固体氧化物催化 剂是含有氧化钯和 /或氧化铜和 /或氧化镍的催化剂。
9. 权利要求 1 ~8 任一项所述的方法, 其中所述固体氧化物催化 剂可以含有常规载体和任选地加入常规助剂。
PCT/CN2012/000240 2011-02-25 2012-02-24 提高乙二醇产品质量的方法 WO2012113269A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2013143311/04A RU2565589C2 (ru) 2011-02-25 2012-02-24 Способ улучшения качества продуктов этиленгликоля
AU2012220220A AU2012220220B2 (en) 2011-02-25 2012-02-24 Method for improving quality of ethylene glycol product
US14/000,878 US9051236B2 (en) 2011-02-25 2012-02-24 Method for improving the quality of ethylene glycol products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110045250.3A CN102649687B (zh) 2011-02-25 2011-02-25 提高乙二醇产品质量的方法
CN201110045250.3 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012113269A1 true WO2012113269A1 (zh) 2012-08-30

Family

ID=46691817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000240 WO2012113269A1 (zh) 2011-02-25 2012-02-24 提高乙二醇产品质量的方法

Country Status (6)

Country Link
US (1) US9051236B2 (zh)
CN (1) CN102649687B (zh)
AU (1) AU2012220220B2 (zh)
MY (1) MY162961A (zh)
RU (1) RU2565589C2 (zh)
WO (1) WO2012113269A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721717A (zh) * 2013-12-26 2014-04-16 上海焦化有限公司 一种提高煤基乙二醇产品质量的催化剂及其制备方法
US10534308B2 (en) 2015-03-24 2020-01-14 Mitsubishi Chemical Corporation Transmission device for a photosensitive drum
CN112439434A (zh) * 2019-09-02 2021-03-05 中国石油化工股份有限公司 乙二醇加氢精制剂及其应用
CN112439412A (zh) * 2019-09-02 2021-03-05 中国石油化工股份有限公司 用于乙二醇加氢精制的精制剂及其制备方法
CN114478190A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种乙二醇的精制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045516B (zh) * 2013-03-13 2016-08-24 中国石油化工股份有限公司 提高乙二醇产品质量的方法
CN104109081B (zh) * 2013-04-16 2016-04-06 中国石油化工股份有限公司 提高合成气制乙二醇产品质量的方法
CN105622348B (zh) * 2014-11-28 2018-06-08 中国科学院大连化学物理研究所 一种沸点接近的多元醇混合物的分离方法
CN110961111B (zh) * 2019-12-19 2022-07-26 常州大学 一种用于乙二醇加氢精制的负载型催化剂及其制备方法
EP4301502A1 (en) * 2021-03-05 2024-01-10 Scientific Design Company, Inc. Cycle water treatment process for ethylene epoxidation
US20230032113A1 (en) * 2021-07-30 2023-02-02 Armand J. Noel Solvents, methods, and systems for isolating cannabinoids from plants extracts or from synthetic pathways

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058483A1 (en) * 1998-05-14 1999-11-18 Huntsman Petrochemical Corporation Improved glycol purification
CN101058526A (zh) * 2007-04-11 2007-10-24 江苏工业学院 一种提高乙二醇质量的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762817A (en) * 1986-11-03 1988-08-09 Union Carbide Corporation Aldehyde hydrogenation catalyst
RU2058285C1 (ru) * 1993-06-25 1996-04-20 Чебоксарское производственное объединение "Химпром" Способ получения алкан( c2-c3 )диолов
US6603048B1 (en) 1999-10-05 2003-08-05 E. I. Du Pont De Nemours And Company Process to separate 1,3-propanediol or glycerol, or a mixture thereof from a biological mixture
US6242655B1 (en) 2000-07-11 2001-06-05 Scientific Design Company, Inc. Glycol purification
US6770790B1 (en) * 2003-10-17 2004-08-03 Arco Chemical Technology, L.P. Purification of tertiary butyl alcohol
GB0421928D0 (en) * 2004-10-01 2004-11-03 Davy Process Techn Ltd Process
CN100417436C (zh) * 2005-07-14 2008-09-10 中国石油化工股份有限公司 一种催化选择加氢的方法
CN101928201B (zh) * 2009-06-26 2013-04-10 上海焦化有限公司 一种煤制乙二醇粗产品的提纯工艺

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058483A1 (en) * 1998-05-14 1999-11-18 Huntsman Petrochemical Corporation Improved glycol purification
CN101058526A (zh) * 2007-04-11 2007-10-24 江苏工业学院 一种提高乙二醇质量的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721717A (zh) * 2013-12-26 2014-04-16 上海焦化有限公司 一种提高煤基乙二醇产品质量的催化剂及其制备方法
CN103721717B (zh) * 2013-12-26 2019-06-25 上海华谊能源化工有限公司 一种提高煤基乙二醇产品质量的催化剂及其制备方法
US10534308B2 (en) 2015-03-24 2020-01-14 Mitsubishi Chemical Corporation Transmission device for a photosensitive drum
CN112439434A (zh) * 2019-09-02 2021-03-05 中国石油化工股份有限公司 乙二醇加氢精制剂及其应用
CN112439412A (zh) * 2019-09-02 2021-03-05 中国石油化工股份有限公司 用于乙二醇加氢精制的精制剂及其制备方法
CN112439434B (zh) * 2019-09-02 2023-08-29 中国石油化工股份有限公司 乙二醇加氢精制剂及其应用
CN114478190A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种乙二醇的精制方法
CN114478190B (zh) * 2020-10-27 2024-03-05 中国石油化工股份有限公司 一种乙二醇的精制方法

Also Published As

Publication number Publication date
MY162961A (en) 2017-07-31
CN102649687A (zh) 2012-08-29
US20130331618A1 (en) 2013-12-12
AU2012220220A1 (en) 2013-09-05
RU2013143311A (ru) 2015-04-10
CN102649687B (zh) 2014-11-26
AU2012220220B2 (en) 2016-08-18
US9051236B2 (en) 2015-06-09
RU2565589C2 (ru) 2015-10-20

Similar Documents

Publication Publication Date Title
WO2012113269A1 (zh) 提高乙二醇产品质量的方法
CN104725229B (zh) 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法
CN102001944A (zh) 草酸酯加氢催化合成乙醇酸酯的制备方法
CN104725230A (zh) 制备聚甲氧基二甲醚羰化物及甲氧基乙酸甲酯的方法
CN112958146B (zh) 一种mfi分子筛纳米片负载的锆基催化剂及其在制备丁二烯反应中的应用
CN104045516B (zh) 提高乙二醇产品质量的方法
CN103842325A (zh) 生产丙烯酸和丙烯酸酯的方法
KR101134659B1 (ko) 프로필렌 글리콜 모노메틸 에테르 아세테이트의 제조방법
CN102219641B (zh) 乙二醇精制的方法
AU2012220218A1 (en) Method for producing ethylene glycol through fluidized bed catalytic reaction of oxalate
CN102649692B (zh) 提高乙二醇质量的方法
CN101823928B (zh) 反应器耦合模拟移动床对氨基苯甲酸衍生物清洁生产工艺
CN116354795A (zh) 一种色谱纯异丙醇的纯化方法
CN101786955B (zh) 一种甲醇气相氧化羰基化一步法合成碳酸二甲酯工艺
CN101693646B (zh) 一种甘油氯化法制备二氯丙醇的方法
CN107778151B (zh) 一种仲丁醇脱氢制备甲乙酮的方法
WO2013060173A1 (zh) 一种镍基微孔材料及其制备和应用
CN115044050B (zh) 一种优先吸附烷烃的金属有机骨架-有机分子链共价修饰材料及其制备方法
CN105777542A (zh) 一种柠檬酸三乙酯纯化的方法
CN103657735B (zh) 醋酸烯丙酯工业装置失活催化剂的再生方法
CN1413974A (zh) 一种在组合床中催化合成二甲醚的方法
CN103083941A (zh) 一种用于增加低碳醇水体系中醇浓度的方法
CN101716521A (zh) 用于马来酸二甲酯合成的无机固体催化剂制备方法
CN101768143B (zh) 一种利用混合碳四生产六氢苯酐的方法
CN103772113A (zh) 一种甲基叔丁基醚裂解制聚合级异丁烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000878

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012220220

Country of ref document: AU

Date of ref document: 20120224

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013143311

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12750122

Country of ref document: EP

Kind code of ref document: A1