WO2012111062A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2012111062A1
WO2012111062A1 PCT/JP2011/052983 JP2011052983W WO2012111062A1 WO 2012111062 A1 WO2012111062 A1 WO 2012111062A1 JP 2011052983 W JP2011052983 W JP 2011052983W WO 2012111062 A1 WO2012111062 A1 WO 2012111062A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
engine
negative pressure
vehicle
pressure
Prior art date
Application number
PCT/JP2011/052983
Other languages
English (en)
French (fr)
Inventor
善朗 入江
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/052983 priority Critical patent/WO2012111062A1/ja
Publication of WO2012111062A1 publication Critical patent/WO2012111062A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/084State of vehicle accessories, e.g. air condition or power steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0807Brake booster state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a vehicle control device.
  • a brake device that generates a braking force by converting a driver's stepping force into hydraulic pressure and transmitting it to the braking means is often used.
  • a brake device is provided with a brake booster that increases the operating force of the driver transmitted to the hydraulic oil by using the negative pressure generated by intake during engine operation. Is increasing. If the engine is stopped during free-running operation in such a vehicle, the engine cannot generate negative pressure. Therefore, when the braking operation is repeated, the brake negative pressure, which is the negative pressure used in the brake booster, is increased. descend. For this reason, when the brake negative pressure stops during free running operation in such a vehicle, the engine is restarted.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a vehicle control device that can ensure braking performance when the engine is stopped while the vehicle is running.
  • the vehicle control device increases the operating force at the time of the braking operation of the driver by using the negative pressure generated by the power source.
  • the negative pressure is applied during inertial travel.
  • the hydraulic pressure of the hydraulic fluid is increased after the start determination time set in advance for determining whether the start is successful after performing the start control, This is preferably performed when the power source has not started.
  • the vehicle control device when performing inertial running, it is preferable to stop the power source and to disengage a clutch disposed between the power source and driving wheels.
  • the start control is performed when the negative pressure during the inertial traveling is lower than a predetermined determination value, and the hydraulic pressure is increased by not starting the power source during the start control.
  • the negative pressure having the same magnitude as the determination value is used to increase the operating force by at least as much as the hydraulic pressure when the operating force is increased.
  • the vehicle control device has an effect of ensuring the braking performance when the engine is stopped while the vehicle is running.
  • FIG. 1 is a schematic diagram of a vehicle including a vehicle control device according to an embodiment.
  • FIG. 2 is an explanatory diagram showing the relationship between the operating force on the brake pedal and the M / C pressure.
  • FIG. 3 is a flowchart showing an outline of a processing procedure of the vehicle control device.
  • FIG. 1 is a schematic diagram of a vehicle including a vehicle control device according to an embodiment.
  • the vehicle 1 including the vehicle control device 2 according to the present embodiment shown in FIG. 1 is provided with an engine 10 that is an internal combustion engine as a power source during traveling, and the engine 10 is stepped via a clutch 20.
  • the transmission 22 is connected.
  • the transmission 22 is connected to a final reduction gear 25 via a power transmission path, and the final reduction gear 25 is connected to driving wheels 26 via a drive shaft.
  • the engine 10 is a starter that is an internal combustion engine starting means that can start the engine 10 by inputting rotational torque to a crankshaft (not shown) of the engine 10 when the engine 10 is stopped.
  • the starter 12 is provided by an electric motor that is operated by electricity supplied from a battery (not shown) used as a power source of each electric device equipped in the vehicle 1, and a transmission mechanism that transmits power generated by the electric motor to the engine 10. It has been.
  • the starter 12 provided in this way operates the electric motor by electricity from the battery, and transmits the power generated by the electric motor from the transmission mechanism to the crankshaft of the engine 10 in a stopped state.
  • the engine 10 is started by rotating.
  • the engine 10 is provided with an engine speed sensor 11 which is a speed detection means for detecting the engine speed, and the speed of the engine 10 can be detected during operation.
  • the transmission 22 is provided with a vehicle speed sensor 23 which is a vehicle speed detecting means for detecting the vehicle speed by detecting the rotational speed of the output-side rotator such as the output shaft.
  • the vehicle 1 is provided with a brake device 30 that is a braking device capable of generating a braking force during traveling.
  • the brake device 30 includes a wheel cylinder 45 that is operated by the hydraulic pressure of the brake fluid that is hydraulic fluid, that is, hydraulic pressure, and a brake disc 47 that is provided in combination with the wheel cylinder 45.
  • the brake disc 47 is provided on each wheel including the drive wheel 26.
  • the brake disc 47 is provided so as to rotate integrally with the wheel when the wheel rotates.
  • a brake pad 46 that is a friction material is disposed between the wheel cylinder 45 and the brake disc 47, and the brake device 30 is decelerated by the friction force of the brake pad 46 by rotating the brake disc 47. Can generate braking force.
  • the brake device 30 provided in this way has a master cylinder 40 that converts an operating force when the driver 100 operates a brake pedal 53 that is operated during a braking operation into a brake fluid hydraulic pressure. Is connected to a hydraulic path 41 which is a transmission path for transmitting the hydraulic pressure generated in the brake fluid when the brake fluid flows inward.
  • a brake booster 32 is connected to the master cylinder 40 to increase the operating force applied to the brake pedal 53 by utilizing a negative pressure generated during operation of the engine 10 and transmit it to the master cylinder 40.
  • the brake booster 32 is connected to the intake passage 13 connected to the engine 10 via a negative pressure path 33.
  • the negative pressure path 33 is provided with a negative pressure sensor 34 that detects a brake negative pressure that is a negative pressure that can be used by the brake booster 32.
  • the negative pressure path 33 is provided with a negative pressure tank (not shown) that stores a negative pressure that can be used by the brake booster 32.
  • the brake booster 32 has a negative pressure in the negative pressure tank. Can be used as a brake negative pressure.
  • the negative pressure sensor 34 is provided in this negative pressure tank.
  • the brake booster 32 uses the negative pressure transmitted through the negative pressure path 33 in this way as the brake negative pressure, thereby increasing the operating force input to the brake pedal 53 and transmitting it to the master cylinder 40. By doing so, the increased operating force can be transmitted to the brake fluid side.
  • the brake device 30 includes a hydraulic control device 42 that can control the operation of the wheel cylinder 45 by controlling the hydraulic pressure applied when the wheel cylinder 45 is operated.
  • the hydraulic control device 42 is provided with a brake actuator 43 that is used for brake assist control or the like for ensuring braking force during emergency braking and that is operated by electricity supplied from a battery.
  • the brake actuator 43 is configured by combining an oil pump (not shown) and a solenoid valve (not shown). By arbitrarily operating these brake actuators 43, an arbitrary hydraulic pressure is generated and applied to the wheel cylinder 45. It is possible.
  • a brake pedal 53 which is an operator that is operated at the time of occurrence, and a clutch pedal 56 capable of switching between a connected state and a disconnected state of the clutch 20 are provided. Further, in the vicinity of the driver's seat, there is provided a shift lever 60 that can select any one of a plurality of shift stages of the transmission 22 and can select a neutral position that does not select any of the shift stages. ing.
  • the brake pedal 53 is illustrated in two places, an explanation part as an operator operated by the driver 100 and an explanation part as a part of the brake device 30. The pedal 53 shows the same thing.
  • the operation states of the pedals and the shift lever 60 provided as described above are provided so as to be detected by the driving operation detection means.
  • the operation state of the accelerator pedal 50 can be detected by the accelerator sensor 51
  • the operation state of the brake pedal 53 can be detected by the brake sensor 54
  • the operation state of the clutch pedal 56 can be detected by the clutch sensor 57. It can be detected.
  • the shift lever 60 is provided so that the shift sensor 61 can detect the operation state of the shift lever 60, that is, the selection state of the gear position and neutral position of the transmission 22 selected by the shift lever 60.
  • the engine and the apparatus such as the engine 10 provided as described above are connected to an ECU (Electronic Control Unit) 70 that is mounted on the vehicle 1 and controls each part of the vehicle 1.
  • sensors such as the engine speed sensor 11, the vehicle speed sensor 23, the negative pressure sensor 34, the accelerator sensor 51, the brake sensor 54, the clutch sensor 57, and the shift sensor 61 are also connected to the ECU 70.
  • the ECU 70 to which the devices and sensors are connected can exchange information and signals with these devices and the like, whereby each part of the vehicle 1 is detected by the sensors. Based on the above, the ECU 70 operates under the control.
  • the engine 10 has an intake air amount, a fuel injection amount by an injector (not shown), an ignition timing, an opening degree of an accelerator pedal 50 detected by an accelerator sensor 51, an engine speed detected by an engine speed sensor 11, It operates by being controlled according to the engine coolant temperature and the like.
  • the hardware configuration of the ECU 70 that can control each unit in this manner is a known configuration including a processing unit having a CPU (Central Processing Unit) and the like, a storage unit such as a RAM (Random Access Memory), and the like. Omitted.
  • a processing unit having a CPU (Central Processing Unit) and the like
  • a storage unit such as a RAM (Random Access Memory), and the like. Omitted.
  • the processing unit of the ECU 70 provided in this way is based on detection results of sensors that detect the state of the operating means of the vehicle 1, such as the accelerator sensor 51, the brake sensor 54, the clutch sensor 57, and the shift sensor 61.
  • the driving operation acquisition unit 72 that acquires the state of the driving operation of the driver 100 of the vehicle 1, the traveling control unit 74 that performs traveling control of the vehicle 1 such as control of the engine 10, and the driving of the driver 100 acquired by the driving operation acquisition unit 72.
  • An eco-run determination unit 76 that determines whether or not a condition for performing an eco-run is satisfied based on an operation, and sensors that detect the state of each unit during traveling of the vehicle 1, such as the engine speed sensor 11 and the negative pressure sensor 34 Based on the detection result in, the driving state acquisition unit 78 that acquires the driving state of the vehicle 1, and the driving state of the vehicle 1 acquired by the driving state acquisition unit 78 A traveling state judging section 80 for judging the traveling state by comparing the constant determination value, the has.
  • the vehicle control device 2 is configured as described above, and the operation thereof will be described below.
  • the accelerator opening which is the operation amount of the accelerator pedal 50 operated by the driver 100
  • the detection result is acquired by the driving operation acquisition unit 72 of the ECU 70.
  • the accelerator opening acquired by the driving operation acquisition unit 72 is transmitted to the travel control unit 74 of the ECU 70.
  • the traveling control unit 74 controls the engine 10 based on the accelerator opening acquired by the driving operation acquiring unit 72 and the traveling state of the vehicle 1 acquired by other sensors, thereby obtaining the power required by the driver 100 from the engine. 10 is generated. At that time, the traveling control unit 74 controls the operation while detecting the operation state of the engine 10 based on the detection result of the engine speed sensor 11 and the like. The power generated by the engine 10 is transmitted to the drive wheels 26 via the transmission 22 and the final reduction gear 25, thereby generating drive force at the drive wheels 26.
  • the gear stage of the transmission 22 is switched so that the gear ratio of the transmission 22 becomes a gear ratio suitable for the vehicle speed.
  • the driver 100 operates the shift lever 60 to switch the gear stage. And by selecting an arbitrary gear position.
  • the driver 100 depresses the clutch pedal 56 to disengage the clutch 20 and cut off the torque transmission between the engine 10 and the transmission 22. This is done by operating the shift lever 60.
  • the clutch pedal 56 is returned to change the speed ratio with respect to the rotational speed of the engine 10 before and after the speed change, and the power generated in the engine 10 is transmitted to the drive wheels 26.
  • the vehicle 1 travels by generating the driving force required by the driver 100 when the driver 100 performs these driving operations.
  • the vehicle 1 when the vehicle 1 travels, not only the driving force is generated but also the braking force is generated to adjust the vehicle speed. However, when the vehicle 1 generates the braking force, the driver operates the brake pedal 53. . Specifically, when an operation force is input by applying a pedaling force to the brake pedal 53 and the braking force is generated by the brake device 30 by this operation force, the operation force is input to the brake pedal 53. First, the input operation force is increased by the brake booster 32 to generate a braking force.
  • the brake booster 32 is connected to the intake passage 13 by a negative pressure path 33, and the brake booster 32 uses the operating force when the brake pedal 53 is operated as the intake passage when the engine 10 is operated.
  • the pressure is increased by utilizing the negative pressure generated in 13. That is, the brake booster 32 is a brake that is stored in a negative pressure tank provided in the negative pressure path 33 among the negative pressure generated in the intake passage 13 and is a negative pressure that can be used by the brake booster 32. Increase operating force using negative pressure.
  • the operating force increased by the brake booster 32 is transmitted to the master cylinder 40, thereby being converted into the brake fluid hydraulic pressure by the master cylinder 40, and via the hydraulic control device 42 and the hydraulic path 41. It is transmitted to the wheel cylinder 45.
  • the wheel cylinder 45 is operated by this hydraulic pressure, and the rotation speed of the brake disc 47 is reduced by pressing the brake pad 46 against the brake disc 47.
  • the rotational speed of the wheel also decreases, so that a braking force is generated between the road surface and the wheel, and the brake device 30 generates a braking force corresponding to the operating force increased by the brake booster 32.
  • the vehicle 1 disconnects the torque transmission path between the engine 10 and the drive wheels 26 and further stops the operation of the engine 10.
  • a so-called eco-run is performed in which the vehicle 1 is driven by inertia using inertial energy.
  • This eco-run can be determined by the eco-run determination unit 76 of the ECU 70 to determine the driving operation of the driver 100 acquired by the driving operation acquisition unit 72 of the ECU 70, and the driver 100 can determine that there is no intention to accelerate the vehicle 1.
  • the operation state of the engine 10 is also performed when a predetermined condition is satisfied.
  • the eco-run determination unit 76 determines to perform eco-run. That is, the fact that the driver 100 has operated the shift lever 60 to the neutral position determines that the driver 100 has no intention of accelerating the vehicle 1 and determines to execute the eco-run.
  • the speed of the engine 10 detected by the engine speed sensor 11 by operating the shift lever 60 to the neutral position is set in advance as the speed used for the eco-run determination.
  • the eco-run determination unit 76 determines to perform the eco-run. That is, even when the driver 100 operates the shift lever 60 to the neutral position without stepping on the clutch pedal 56, the driver 100 expresses the intention to actively operate the shift lever 60 to the neutral position. Judge that there is no intention of accelerating the process, and determine whether to run the eco-run.
  • the eco-run determination is made if it is detected that the engine speed is equal to or lower than the predetermined speed without operating the shift lever 60 to the neutral position.
  • the unit 76 determines to perform the eco-run. That is, even if the driver 100 does not operate the shift lever 60 to the neutral position, the driver 100 intends to accelerate the vehicle 1 if the engine pedal continues to be depressed and the engine speed decreases to a predetermined speed. It is determined that there is no eco-run.
  • the eco-run determination unit 76 detects the disengaged state of the clutch 20 by the clutch sensor 57 and detects that the transmission 22 is in the neutral position by the shift sensor 61 or the transmission 22 by the shift sensor 61. Is in the neutral position, and when the rotational speed detected by the engine rotational speed sensor 11 is equal to or lower than a predetermined rotational speed set in advance, or the clutch sensor 57 detects the disengaged state of the clutch 20. In addition, when the rotation speed detected by the engine rotation speed sensor 11 is equal to or less than a predetermined rotation speed set in advance, it is determined that the eco-run is performed.
  • the travel control unit 74 stops the operation of the engine 10 by stopping the fuel injection control and the ignition control, and the inertial travel. Control.
  • the transmission 22 is in the neutral position or the clutch 20 is in a disengaged state, the torque transmission between the drive wheels 26 and the engine 10 is interrupted. .
  • the vehicle 1 does not generate resistance due to the rotation of the engine 10 that does not generate power. Therefore, the vehicle 1 continues coasting by kinetic energy based on the vehicle speed when the eco-run is started in a state where the traveling resistance is reduced.
  • the engine 10 When performing an eco-run, the engine 10 is stopped and the transmission of torque between the engine 10 and the drive wheels 26 is interrupted, so that not only acceleration but also engine braking cannot be used. ing.
  • any transmission speed is selected for the transmission 22 and the clutch 20 is also connected, so that the accelerator opening is reduced and the power generated by the engine 10 is reduced.
  • a part of the kinetic energy of the running vehicle 1 is used as energy for changing the engine speed to the speed corresponding to the vehicle speed. descend.
  • the brake negative pressure is a negative pressure that can be used by the brake booster 32 among the negative pressure generated in the intake passage 13 during operation of the engine 10. For this reason, when the engine 10 is stopped during the eco-run, no negative pressure is generated in the intake passage 13. Therefore, when the brake pedal 53 is operated during the eco-run, the brake negative pressure decreases according to the operation state. In this case, it becomes difficult for the brake booster 32 to increase the operating force using the brake negative pressure.
  • FIG. 2 is an explanatory diagram showing the relationship between the operating force on the brake pedal and the M / C pressure.
  • the relationship between the operating force for the brake pedal 53 and the M / C pressure will be described.
  • the operating force is increased by the brake booster 32 and transmitted to the master cylinder 40. Is done. Since the master cylinder 40 generates the M / C pressure by the force transmitted from the brake booster 32 in this way, the M / C pressure is operated as shown by a normal M / C pressure 110 in FIG. As power increases, it increases.
  • the brake booster 32 reduces the negative pressure used when increasing the operating force of the brake pedal 53, so the operating force of the brake pedal 53 is increased to increase the master pressure.
  • the increase in transmission to the cylinder 40 is reduced.
  • the M / C pressure relative to the operating force applied to the brake pedal 53 is lower than when the brake negative pressure is normal. That is, as shown by the negative pressure drop M / C pressure 112 in FIG. 2, when the brake negative pressure drops, the magnitude of the M / C pressure with respect to the operating force to the brake pedal 53 becomes small.
  • the engine 10 when the engine 10 is restarted and the start fails due to a failure of the starter 12, etc., the engine 10 cannot generate negative pressure. In this case, it becomes difficult to obtain the braking force required by the driver 100 by operating the brake pedal 53. For this reason, in the vehicle control device 2 according to the present embodiment, in the case where the start control of the engine 10 is performed by reducing the brake negative pressure during the eco-run, when the start fails, the hydraulic control device 42 is provided.
  • the brake actuator 43 is used to assist the M / C pressure.
  • the brake actuator 43 boosts the M / C pressure to the same extent as the boost of the M / C pressure boosted by increasing the operating force of the driver 100 by the brake booster 32 using the brake negative pressure. That is, by operating an oil pump or a solenoid valve included in the brake actuator 43, the hydraulic pressure of the brake fluid in the hydraulic control device 42 and the hydraulic path 41 is increased, and the M / C pressure is increased.
  • the brake actuator 43 is also provided as a booster that can boost the hydraulic pressure of the brake fluid.
  • the brake actuator 43 is used to increase the M / C pressure in this way, and the operating force to the brake pedal 53 is used as a normal brake negative pressure.
  • the M / C pressure can be increased to the same extent as the increase in the M / C pressure when increasing.
  • the braking force for the braking operation when the engine 10 is not started during the starting control of the engine 10 due to the decrease in the brake negative pressure during inertial traveling is approximately the same as the braking force for the braking operation during the operation of the engine 10. Make it big.
  • the start control of the engine 10 is performed when the brake negative pressure during inertial running is lower than a predetermined determination value, and when the M / C pressure is increased by the engine 10 not starting during the start control, It is preferable to increase at least as much as the increase in the M / C pressure when the operating force is increased by the brake booster 32 using the brake negative pressure having the same magnitude as this determination value.
  • FIG. 3 is a flowchart showing an outline of the processing procedure of the vehicle control device.
  • a control method of the vehicle control device 2 according to the present embodiment that is, an outline of a processing procedure of the vehicle control device 2 will be described.
  • the following processing is a processing procedure during the eco-run, and is called and executed every predetermined period when controlling each part of the vehicle 1 during the eco-run.
  • the brake negative pressure is acquired (step ST101).
  • the acquisition of the brake negative pressure is performed by acquiring the detection result of the negative pressure of the negative pressure path 33 detected by the negative pressure sensor 34 by the traveling state acquisition unit 78 included in the ECU 70.
  • step ST102 whether or not brake negative pressure ⁇ brake negative pressure threshold is satisfied is determined by the traveling state determination unit 80 (step ST102).
  • the brake negative pressure threshold used for this determination is set in advance as a predetermined determination value when determining whether to restart the engine 10 during the eco-run based on the brake negative pressure, and is stored in the storage unit of the ECU 70. ing.
  • the traveling state determination unit 80 compares the brake negative pressure threshold stored in the storage unit in this way with the brake negative pressure acquired by the traveling state acquisition unit 78, so that brake negative pressure ⁇ brake negative pressure threshold. It is determined whether or not there is.
  • step ST102 If it is determined by this determination that the brake negative pressure is less than the brake negative pressure threshold (step ST102, Yes determination), the engine 10 is requested to start (step ST103). Specifically, the travel control unit 74 of the ECU 70 makes a drive request for the starter 12 while controlling the fuel injection amount from the injector.
  • step ST104 it is determined whether or not the start determination time has elapsed after the starter 12 is turned on. This determination is performed by the traveling state determination unit 80.
  • the start determination time used for this determination is set in advance as a time during which it is possible to appropriately determine whether or not the start has been successful when the engine 10 is restarted, and is stored in the storage unit of the ECU 70. .
  • the traveling state determination unit 80 determines whether or not the time after the traveling control unit 74 makes a drive request for the starter 12 has passed the start determination time stored in the storage unit. If it is determined by this determination that the start determination time has not elapsed after the starter 12 is turned on (No determination in step ST104), this determination is repeated until it is determined that the start determination time has elapsed.
  • step ST105 If it is determined by the traveling state determination unit 80 that the start determination time has elapsed after the starter 12 is turned on (Yes in step ST104), then whether or not engine speed ⁇ engine speed threshold value is satisfied. Is determined (step ST105). This determination is performed by the traveling state determination unit 80.
  • the engine speed threshold value used for this determination is a determination in the case where the engine 10 is requested to start and when the starter 12 is driven, whether or not the engine 10 has been successfully restarted is determined based on the engine speed. It is preset as a value and stored in the storage unit of the ECU 70.
  • the current engine speed can be acquired by the traveling state acquisition unit 78 from the detection result of the engine speed sensor 11.
  • the traveling state determination unit 80 compares the engine rotational speed acquired by the traveling state acquisition unit 78 in this manner with the engine rotational speed threshold stored in the storage unit, so that engine rotational speed ⁇ engine rotational speed threshold. It is determined whether or not there is.
  • the required amount of assistance is then assisted by the brake actuator 43 (step ST106).
  • the required assistance amount 114 that is assisted by the brake actuator 43 is the difference between the normal M / C pressure 110 and the negative M / C pressure 112 (see FIG. 2). 114 is different for each brake negative pressure.
  • a required assistance amount 114 for each brake negative pressure is stored in advance. Based on the required assistance amount 114 stored in the storage unit and the brake negative pressure acquired by the traveling state acquisition unit 78, the brake required to generate the required assistance amount 114 corresponding to the current brake negative pressure The travel control unit 74 derives the control amount of the actuator 43.
  • an assist braking force is generated (step ST107). That is, the brake actuator 43 is controlled by the control amount of the brake actuator 43 derived by the travel control unit 74. Specifically, an oil pump constituting the brake actuator 43 is operated, and opening / closing of the electromagnetic valve is controlled. As a result, the hydraulic pressure in the hydraulic path 41 is increased, and the assist braking force is generated. That is, in this case, the M / C pressure is increased by operating the brake actuator 43. When the M / C pressure is increased in this way, the operating force applied to the brake pedal 53 is as large as the brake negative pressure threshold. It is preferable to increase the pressure at least as much as the increase in the M / C pressure when the brake booster 32 increases the brake negative pressure.
  • the normal braking force can be generated (step ST108). That is, even when the operating force of the driver 100 with respect to the brake pedal 53 cannot be increased by the brake booster 32, the driver 100 is operated during the braking operation by operating the brake actuator 43 so that the required assisting amount 114 can be generated.
  • the assisting braking force is added to the braking force by the operation force.
  • Step ST108 when it is determined that the brake negative pressure acquired by the traveling state acquisition unit 78 is equal to or higher than the brake negative pressure threshold (No determination in step ST102), or the engine speed after the engine start request is made is the engine speed.
  • the speed is greater than or equal to the rotation speed threshold value (No determination in step ST105)
  • the operation force to the brake pedal 53 can be increased by the brake negative pressure, so that the normal braking force can be generated. (Step ST108).
  • the vehicle control device 2 When the brake negative pressure is reduced during the eco-run in which the engine 10 is stopped and the vehicle 1 is coasted by stopping the engine 10, the vehicle control device 2 performs start control of the engine 10 and operates the engine 10. Increase brake negative pressure. Thereby, even when the brake negative pressure is reduced while the engine 10 is stopped and the eco-run traveling is performed, the braking force with respect to the operation force to the brake pedal 53 can be secured. Further, when the engine 10 is not started during the start control of the engine 10, the brake actuator 43 is operated to increase the M / C pressure by the brake actuator 43.
  • the brake actuator 43 can assist the M / C pressure, so that the braking force with respect to the operation force to the brake pedal 53 can be ensured. As a result, it is possible to ensure braking performance when the engine 10 is stopped while the vehicle 1 is traveling.
  • the increase of the M / C pressure by the brake actuator 43 determines whether or not the engine 10 has been successfully started for a start determination time after the start control of the engine 10 and after the start determination time has elapsed.
  • the pressure is increased.
  • the brake negative pressure decreases, it is possible to secure the braking force by waiting for the start of the engine 10 as much as possible and increasing the brake negative pressure with the negative pressure generated in the engine 10.
  • the operating time can be shortened.
  • the desired braking force can be more reliably generated without a sense of incongruity.
  • the braking performance when the engine 10 is stopped while the vehicle 1 is traveling can be more reliably ensured while suppressing power consumption.
  • the engine 10 When the vehicle 1 is coasting, the engine 10 is stopped and the clutch 20 disposed between the engine 10 and the drive wheels 26 is disengaged, so that the travel resistance during coasting Can be reduced as much as possible. Thereby, when performing inertial driving for the purpose of improving fuel efficiency, the fuel efficiency can be improved more reliably.
  • the engine 10 is stopped and the clutch 20 is disengaged in this way. Therefore, the braking force by the brake device 30 is important during deceleration, but by ensuring the braking performance when the engine 10 is stopped. , Can carry out coasting more positively. As a result, coasting can be performed more positively and safely, and fuel consumption can be further improved.
  • the operating force for the brake pedal 53 is set to the brake negative pressure having the same magnitude as the brake negative pressure threshold. Is used to increase the pressure by the brake booster 32 at least as much as the increase in the M / C pressure. As a result, at least when the brake negative pressure is reduced, an M / C pressure that can be determined that the braking performance can be obtained without starting the engine 10 can be secured. As a result, the braking performance when the engine 10 is stopped while the vehicle 1 is traveling can be ensured more reliably.
  • the determination is made based on the engine speed after the start determination time has elapsed after the starter 12 is requested to be driven. May be appropriately set according to the usage mode of the vehicle 1. That is, as the start determination time is set shorter, the assist control by the brake actuator 43 becomes easier to enter, and as the start determination time is set longer, the assist control by the brake actuator 43 becomes difficult to enter. For this reason, it is preferable to appropriately set the start determination time based on the traveling state and usage of the vehicle 1, the braking performance of the brake device 30, and the like.
  • an elapsed time after the shift lever 60 is in the neutral position, or after the clutch 20 is in a disengaged state may be set. In this case, the elapsed time may be changed according to the traveling state of the vehicle 1 or may be arbitrarily changed by the driver 100.
  • the determination to stop the engine 10 is comprehensively determined from the vehicle speed, the disconnection time of the clutch 20, the neutral position holding time of the shift lever 60, the steering angle of the steering, or the determination conditions are appropriately set. You may judge.
  • the transmission 22 has a plurality of gear stages having different gear ratios, and the driver 100 is a manual transmission in which an arbitrary gear stage is manually selected.
  • the transmission 22 may be an automatic transmission.
  • a stepped automatic transmission that switches the gear ratio by using planetary gears and a clutch, or a continuously variable transmission that can switch the gear ratio steplessly by using a belt and a pulley, etc. May be.
  • the transmission 22 is an automatic transmission
  • torque transmission can be cut off by disengaging the clutch. Therefore, an eco-run can be performed.
  • the driving range can be arbitrarily switched by the driver 100, and the driving range is transmitted while the vehicle 1 is traveling, and the power generated by the engine 10 is not transmitted to the drive wheels 26.
  • the driver 100 can determine that there is no intention to accelerate the vehicle 1.
  • the transmission 22 is an automatic transmission such as a continuously variable transmission
  • the vehicle shifts to an eco-run and the brake negative pressure during the eco-run is increased.
  • the engine 10 is started or the brake actuator 43 is operated to ensure the braking performance when the engine 10 is stopped during vehicle travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 ドライバ100の制動操作時の操作力を、エンジン10で発生する負圧を利用して増大させてブレーキ装置30のブレーキフルード側に伝達するブレーキ倍力装置32を備える車両1の走行中に、エンジン10を停止して車両1を惰性で走行させる惰性走行の制御を行う車両制御装置2において、エンジン10を停止して惰性走行を行う場合の制動性能を確保するために、惰性走行時にブレーキ負圧が低下した場合には、エンジン10の始動制御を行ってブレーキ負圧を増大し、始動制御時にエンジン10が始動しなかった場合には、ブレーキアクチュエータ43でM/C圧を昇圧する。

Description

車両制御装置
 本発明は、車両制御装置に関する。
 近年の車両では、燃費の向上や排気ガスの排出量の低減等を目的として、車両の走行時に運転者による駆動力の要求がない場合には、エンジンを停止して車両を惰性で走行させる制御技術が開発されている。例えば、特許文献1に記載された車両の駆動ユニットの制御装置では、車両の走行状況、或いは駆動ユニットの運転状態に応じて、エンジンとトランスミッションとの間に設けられるクラッチが切られた状態での走行であるフリーランニング運転を行う場合に、エンジンを停止することが開示されている。これにより、燃料の消費量を低減することができ、また、有害物質の排出量を削減することができる。
特開2004-251279号公報
 ここで、車両で用いられるブレーキ装置では、運転者の踏力を油圧に変換して制動手段に伝達することにより制動力を発生させるブレーキ装置が多く用いられている。また、このようなブレーキ装置では、エンジンの運転時に吸気を行うことにより発生する負圧を利用して、作動油に伝達される運転者の操作力を増大させるブレーキ倍力装置を備えているものが多くなっている。このような車両でフリーランニング運転時にエンジンを停止した場合、エンジンで負圧を発生させることができなくなるため、制動操作を繰り返した場合、ブレーキ倍力装置で使用する負圧であるブレーキ負圧が低下する。このため、このような車両でフリーランニング運転中にブレーキ負圧が停止した場合には、エンジンの再始動を行う。
 しかし、エンジンの再始動時に、エンジンのスタータの故障等によって再始動ができない場合、ブレーキ負圧を確保することができなくなる。この場合、ブレーキ倍力装置によって運転者の踏力を増大させることが困難になるため、制動時におけるフィーリングが悪くなる場合があった。
 本発明は、上記に鑑みてなされたものであって、車両の走行中にエンジンを停止する場合における制動性能を確保することができる車両制御装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、この発明に係る車両制御装置は、ドライバの制動操作時の操作力を、動力源で発生する負圧を利用して増大させてブレーキ装置の作動液側に伝達するブレーキ倍力装置を備える車両の走行中に、前記動力源を停止して前記車両を惰性で走行させる惰性走行の制御を行う車両制御装置において、前記惰性走行時に前記負圧が低下した場合には、前記動力源の始動制御を行い、前記始動制御時に前記動力源が始動しなかった場合には、前記作動液の液圧を昇圧することを特徴とする。
 また、上記車両制御装置において、前記作動液の液圧の昇圧は、前記始動制御を行ってから、始動が成功したか否かを判定するために予め設定された始動判定時間が経過した後、前記動力源が始動しなかった場合に行われることが好ましい。
 また、上記車両制御装置において、前記惰性走行を行う場合には、前記動力源を停止し、且つ、前記動力源と駆動輪との間に配設されるクラッチを切断状態にすることが好ましい。
 また、上記車両制御装置において、前記始動制御は、前記惰性走行時の前記負圧が所定の判定値よりも低い場合に行い、前記始動制御時に前記動力源が始動しないことにより前記液圧を昇圧する場合には、前記判定値と同じ大きさの前記負圧を利用して前記操作力を増大する際における前記液圧の昇圧分と少なくとも同程度昇圧することが好ましい。
 本発明に係る車両制御装置は、車両の走行中にエンジンを停止する場合における制動性能を確保することができる、という効果を奏する。
図1は、実施形態に係る車両制御装置を備える車両の概略図である。 図2は、ブレーキペダルに対する操作力とM/C圧との関係を示す説明図である。 図3は、車両制御装置の処理手順の概略を示すフロー図である。
 以下に、本発明に係る車両制御装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。
 〔実施形態〕
 図1は、実施形態に係る車両制御装置を備える車両の概略図である。同図に示し、本実施形態に係る車両制御装置2を備える車両1は、走行時における動力源として内燃機関であるエンジン10が設けられており、エンジン10は、クラッチ20を介して有段式の変速機22に連結されている。また、変速機22は、動力伝達経路を介して最終減速機25に接続されており、最終減速機25は、ドライブシャフトを介して駆動輪26に連結されている。
 このうち、エンジン10には、エンジン10が停止している場合に、エンジン10のクランクシャフト(図示省略)に回転トルクを入力することによりエンジン10を始動することができる内燃機関始動手段であるスタータ12が備えられている。このスタータ12は、車両1に装備される各電気機器の電源として用いられるバッテリ(図示省略)から供給される電気によって作動する電動機、及び電動機で発生した動力をエンジン10に伝達する伝達機構によって設けられている。このように設けられるスタータ12は、バッテリからの電気によって電動機が作動し、この電動機で発生した動力を、停止している状態のエンジン10のクランクシャフトに対して伝達機構から伝達してクランクシャフトを回転させることにより、エンジン10を始動する。
 また、エンジン10には、エンジン回転数を検出する回転数検出手段であるエンジン回転数センサ11が設けられており、エンジン10の運転時における回転数の検出を行うことが可能になっている。また、変速機22には、出力軸等の出力側の回転体の回転速度を検出することを介して車速を検出する車速検出手段である車速センサ23が設けられている。
 また、車両1には、走行時に制動力を発生させることができる制動装置であるブレーキ装置30が設けられている。このブレーキ装置30は、作動液であるブレーキフルードの液圧、即ち油圧によって作動するホイールシリンダ45と、このホイールシリンダ45と組みになって設けられるブレーキディスク47とを有しており、ホイールシリンダ45とブレーキディスク47とは、駆動輪26を含む各車輪に設けられている。このうち、ブレーキディスク47は、車輪の回転時には車輪と一体となって回転可能に設けられている。また、ホイールシリンダ45とブレーキディスク47との間には、摩擦材であるブレーキパッド46が配設されており、回転するブレーキディスク47をブレーキパッド46の摩擦力によって減速させることにより、ブレーキ装置30は制動力を発生させることができる。
 このように設けられるブレーキ装置30は、制動操作時に操作するブレーキペダル53をドライバ100が操作する場合における操作力を、ブレーキフルードの油圧に変換するマスタシリンダ40を有しており、マスタシリンダ40には、内側にブレーキフルードが流れることにより、ブレーキフルードに発生した油圧を伝達する伝達経路である油圧経路41が接続されている。
 さらに、このマスタシリンダ40には、ブレーキペダル53に対する操作力を、エンジン10の運転時に発生する負圧を利用して増大させて、マスタシリンダ40に伝達するブレーキ倍力装置32が接続されている。このブレーキ倍力装置32は、エンジン10に接続される吸気通路13に、負圧経路33を介して接続されている。また、この負圧経路33には、当該ブレーキ倍力装置32で利用可能な負圧であるブレーキ負圧を検出する負圧センサ34が設けられている。詳しくは、負圧経路33には、ブレーキ倍力装置32で利用可能な負圧を蓄える負圧タンク(図示省略)が設けられており、ブレーキ倍力装置32は、負圧タンク内の負圧をブレーキ負圧として利用することが可能になっている。負圧センサ34は、この負圧タンクに設けられている。ブレーキ倍力装置32は、このように負圧経路33を介して伝達される負圧をブレーキ負圧として利用することによって、ブレーキペダル53に入力された操作力を増大させてマスタシリンダ40に伝達することにより、増大させた操作力をブレーキフルード側に伝達可能になっている。
 また、ブレーキ装置30は、ホイールシリンダ45を作動させる際に付与する油圧を制御することにより、ホイールシリンダ45の作動を制御することができる油圧制御装置42を有している。この油圧制御装置42には、緊急ブレーキ時の制動力を確保するブレーキアシスト制御等に用いられ、バッテリから供給される電気によって作動するブレーキアクチュエータ43が設けられている。このブレーキアクチュエータ43は、オイルポンプ(図示省略)や電磁弁(図示省略)を組み合わせることにより構成されており、これらを任意に作動させることにより、任意の油圧を発生させてホイールシリンダ45に付与することが可能になっている。
 また、車両1の運転席の近傍には、エンジン10で発生する動力を調節することができ、駆動力を調節する際に操作する操作子であるアクセルペダル50と、ブレーキ装置30で制動力を発生する際に操作する操作子であるブレーキペダル53と、クラッチ20の接続状態と切断状態との切替え操作が可能なクラッチペダル56と、が設けられている。さらに、この運転席の近傍には、変速機22が有する複数の変速段のうちのいずれかを選択可能で、また、いずれの変速段も選択しないニュートラル位置も選択可能なシフトレバー60が設けられている。なお、図1では、便宜上ブレーキペダル53は、ドライバ100が操作する操作子としての説明部分と、ブレーキ装置30の一部としての説明部分との2箇所に図示しているが、2箇所のブレーキペダル53は同一のものを示している。
 これらのように設けられるペダル類やシフトレバー60の操作状態は、それぞれ運転操作検出手段によって検出可能に設けられている。詳しくは、アクセルペダル50の操作状態はアクセルセンサ51によって検出可能になっており、ブレーキペダル53の操作状態はブレーキセンサ54によって検出可能になっており、クラッチペダル56の操作状態はクラッチセンサ57によって検出可能になっている。同様に、シフトレバー60は、シフトレバー60の操作状態、即ち、シフトレバー60で選択する変速機22の変速段やニュートラル位置の選択状態を、シフトセンサ61によって検出可能に設けられている。
 これらのように設けられるエンジン10等の機関や装置は、車両1に搭載されると共に車両1の各部を制御するECU(Electronic Control Unit)70に接続されている。同様に、エンジン回転数センサ11や車速センサ23、負圧センサ34、アクセルセンサ51、ブレーキセンサ54、クラッチセンサ57、シフトセンサ61等の各センサもECU70に接続されている。このように各装置やセンサ類が接続されるECU70は、これらの装置等との間で情報や信号のやり取りが可能になっており、これにより、車両1の各部は、センサ類での検出結果に基づいて、ECU70により制御されて作動する。例えば、エンジン10は、吸入空気量やインジェクタ(図示省略)による燃料噴射量、点火時期が、アクセルセンサ51で検出するアクセルペダル50の開度や、エンジン回転数センサ11で検出するエンジン回転数、エンジン冷却水温度等に応じて制御されることにより作動する。
 このように各部を制御可能なECU70のハード構成は、CPU(Central Processing Unit)等を有する処理部や、RAM(Random Access Memory)等の記憶部等を備えた公知の構成であるため、説明は省略する。
 また、このように設けられるECU70の処理部は、アクセルセンサ51、ブレーキセンサ54、クラッチセンサ57、シフトセンサ61等の、車両1の操作手段の状態を検出するセンサ類での検出結果に基づいて車両1のドライバ100の運転操作の状態を取得する運転操作取得部72と、エンジン10の制御など車両1の走行制御を行う走行制御部74と、運転操作取得部72で取得したドライバ100の運転操作に基づいてエコランを行う条件を満たしているか否かを判定するエコラン判定部76と、エンジン回転数センサ11や負圧センサ34等の、車両1の走行時の各部の状態を検出するセンサ類での検出結果に基づいて、車両1の走行状態を取得する走行状態取得部78と、走行状態取得部78で取得した車両1の走行状態と所定の判定値とを比較することにより走行状態の判定を行う走行状態判定部80と、を有している。
 この実施形態に係る車両制御装置2は、以上のごとき構成からなり、以下、その作用について説明する。車両1の走行時には、ドライバ100が操作をするアクセルペダル50の操作量であるアクセル開度をアクセルセンサ51で検出し、この検出結果を、ECU70が有する運転操作取得部72で取得する。運転操作取得部72で取得したアクセル開度は、ECU70が有する走行制御部74に伝達される。
 走行制御部74は、運転操作取得部72で取得したアクセル開度や、その他のセンサで取得した車両1の走行状態に基づいてエンジン10の制御を行うことにより、ドライバ100が要求する動力をエンジン10で発生させる。その際に、走行制御部74は、エンジン回転数センサ11での検出結果等に基づいてエンジン10の運転状態も検出しながら運転制御をする。エンジン10で発生した動力は、変速機22や最終減速機25を介して駆動輪26に伝達されることにより、駆動輪26で駆動力を発生する。
 また、車両1の走行時には、変速機22の変速比が車速に適した変速比になるように変速機22の変速段を切替えるが、この変速段の切り替えは、ドライバ100がシフトレバー60を操作し、任意の変速段を選択することにより行う。
 また、車両1の走行中に変速操作を行う場合には、ドライバ100がクラッチペダル56を踏み込むことによりクラッチ20を切断状態にし、エンジン10と変速機22との間のトルクの伝達を遮断した状態でシフトレバー60を操作することにより行う。変速操作が完了したらクラッチペダル56を戻すことにより、変速の前後でエンジン10の回転数に対する変速比が変化して、エンジン10で発生した動力が駆動輪26に伝達される。車両1は、これらの運転操作をドライバ100が行うことにより、ドライバ100が要求する駆動力を発生して走行する。
 また、車両1の走行時には、駆動力を発生させるのみでなく、制動力も発生させて車速を調節するが、車両1に制動力を発生させる場合には、運転者はブレーキペダル53を操作する。具体的には、ブレーキペダル53に対して踏力を付与することによって操作力を入力し、この操作力によってブレーキ装置30で制動力を発生させるが、ブレーキペダル53に対して操作力を入力した場合には、入力した操作力をブレーキ倍力装置32で増大させて制動力を発生させる。
 詳しくは、ブレーキ倍力装置32は、負圧経路33によって吸気通路13に接続されており、このブレーキ倍力装置32は、ブレーキペダル53の操作時における操作力を、エンジン10の運転時に吸気通路13内に発生する負圧を利用して増大させる。即ち、ブレーキ倍力装置32は、吸気通路13内に発生する負圧のうち、負圧経路33に設けられる負圧タンクに蓄えられると共に、ブレーキ倍力装置32で利用可能な負圧であるブレーキ負圧を利用して操作力を増大させる。
 このように、ブレーキ倍力装置32で増大させた操作力は、マスタシリンダ40に伝達されることにより、マスタシリンダ40でブレーキフルードの油圧に変換され、油圧制御装置42や油圧経路41を介してホイールシリンダ45に伝達される。ホイールシリンダ45は、この油圧によって作動し、ブレーキパッド46をブレーキディスク47に押し付けることにより、ブレーキディスク47の回転速度は低下する。これにより、車輪の回転速度も低下するため、路面と車輪との間に制動力が発生し、ブレーキ装置30は、ブレーキ倍力装置32で増大させた操作力に応じた制動力を発生させる。
 また、車両1は、ドライバ100が車両1を加速させる意思がないと判断できる場合には、エンジン10と駆動輪26との間のトルクの伝達経路を切り離し、さらにエンジン10の運転を停止させて慣性エネルギを用いて惰性で車両1を走行させる、いわゆるエコランを行う。このエコランは、ECU70が有する運転操作取得部72で取得するドライバ100の運転操作をECU70が有するエコラン判定部76で判定し、ドライバ100は車両1を加速させる意思がないと判断することができ、エンジン10の運転状態も所定の条件を満たしている場合に行う。
 具体的には、クラッチセンサ57とシフトセンサ61との検出結果より、ドライバ100がクラッチペダル56を踏み込み、クラッチ20を切断した後、シフトレバー60をニュートラル位置に操作し、クラッチ20を再び接続したことを検出したら、エコラン判定部76はエコランを行うと判定する。つまり、ドライバ100がシフトレバー60をニュートラル位置に操作したということは、ドライバ100は車両1を加速させる意思がないと判断をし、エコラン実行の判定をする。
 または、ドライバ100がクラッチ20を切断しない場合でも、シフトレバー60をニュートラル位置に操作し、エンジン回転数センサ11で検出するエンジン10の回転数が、エコランの判定に用いる回転数として予め設定されてECU70の記憶部に記憶されている所定の回転数以下になったことを検出したら、エコラン判定部76はエコランを行うと判定する。つまり、ドライバ100がクラッチペダル56を踏まずにシフトレバー60をニュートラル位置に操作した場合も、ドライバ100がシフトレバー60を積極的にニュートラル位置に操作する意思の表れであり、ドライバ100は車両1を加速させる意思がないと判断をし、エコラン実行の判定をする。
 または、ドライバ100がクラッチ20を切断したことを検出した場合には、シフトレバー60をニュートラル位置に操作しなくても、エンジン回転数が所定の回転数以下になったことを検出したら、エコラン判定部76はエコランを行うと判定する。つまり、ドライバ100がシフトレバー60をニュートラル位置に操作しなくても、クラッチペダル56を踏み続け、エンジン回転数が所定の回転数まで低下した場合には、ドライバ100は車両1を加速させる意思がないと判断をし、エコラン実行の判定をする。
 即ち、エコラン判定部76は、クラッチセンサ57によってクラッチ20の切断状態を検出し、且つ、シフトセンサ61によって変速機22がニュートラル位置であることを検出した場合、または、シフトセンサ61によって変速機22がニュートラル位置であることを検出し、且つ、エンジン回転数センサ11で検出した回転数が予め設定された所定回転数以下となった場合、または、クラッチセンサ57によってクラッチ20の切断状態を検出し、且つ、エンジン回転数センサ11で検出した回転数が予め設定された所定回転数以下となった場合に、エコランを行うと判定する。
 所定の条件を満たすことによりエコランを行うとエコラン判定部76で判定した場合には、走行制御部74は、燃料噴射制御や点火制御を停止することにより、エンジン10の運転を停止させ、惰性走行の制御を行う。この場合、変速機22がニュートラル位置になっている、または、クラッチ20が切断された状態になっているため、駆動輪26とエンジン10とは、トルクの伝達が遮断された状態になっている。これにより、車両1は、動力を発生しないエンジン10を回転させることによる抵抗が発生しないため、走行抵抗が低減した状態で、エコランを開始した際における車速に基づく運動エネルギによる惰性走行を続ける。
 エコランを行う場合には、エンジン10を停止すると共に、エンジン10と駆動輪26との間でトルクの伝達を遮断するため、加速を行うことができないだけでなく、エンジンブレーキを使うこともできなくなっている。つまり、車両1の通常の走行時は、変速機22はいずれかの変速段が選択され、クラッチ20も接続した状態になっているため、アクセル開度を小さくし、エンジン10で発生する動力が現在の車速を維持する動力よりも小さくなった場合には、走行中の車両1の運動エネルギの一部は、エンジン回転数を車速に応じた回転数にするためのエネルギとして使用され、車速が低下する。即ち、車速に対してアクセルペダル50の踏み込み量を小さくした場合には、車両1の運動エネルギがエンジン10の回転抵抗によって消費されることにより、車速が低下する、いわゆるエンジンブレーキが発生する。エンジン10と駆動輪26との間でトルクの伝達を行うことが可能な状態の場合には、このようにエンジンブレーキを用いて減速度を調節し、速度調節を行うことが可能になっている。
 これに対し、エコラン状態の場合には、エンジン10と駆動輪26との間でトルクの伝達が遮断されているため、エンジンブレーキを使用して速度調節を行うことが不可能になっている。このため、エコラン時に車両1の速度を調節する場合には、ドライバ100がブレーキペダル53を踏み込み、ブレーキ装置30で発生する制動力を調節することによって調節する。
 ここで、ブレーキペダル53を踏み込むことによって制動力を発生させる場合、ブレーキペダル53に対する操作力をブレーキ倍力装置32で増大させるが、ブレーキ倍力装置32で操作力を増大させる場合には、ブレーキ負圧を利用する。このブレーキ負圧は、エンジン10の運転時に吸気通路13で発生する負圧のうち、ブレーキ倍力装置32で利用可能な負圧になっている。このため、エコラン時にエンジン10を停止した場合、吸気通路13では負圧を発生しなくなるため、エコラン時にブレーキペダル53を操作した場合には、操作状態に応じてブレーキ負圧は低下する。この場合、ブレーキ倍力装置32でブレーキ負圧を利用して操作力を増大させるのが困難になる。つまり、ブレーキ負圧が低下した場合、ブレーキペダル53を操作した場合における操作力を増大させることが困難になり、マスタシリンダ40で発生させる油圧であるマスタシリンダ圧(M/C圧)は、ブレーキ負圧が正常時の場合と比較して、操作力に対する圧力が低くなる。
 図2は、ブレーキペダルに対する操作力とM/C圧との関係を示す説明図である。ブレーキペダル53に対する操作力とM/C圧との関係について説明すると、ブレーキペダル53に対して操作力が入力された場合、この操作力はブレーキ倍力装置32によって増大されてマスタシリンダ40に伝達される。マスタシリンダ40は、このようにブレーキ倍力装置32から伝達された力によってM/C圧を発生するため、M/C圧は、図2の正常時M/C圧110で示すように、操作力が大きくなるに従って大きくなる。
 これに対し、ブレーキ負圧が低下した場合、ブレーキ倍力装置32では、ブレーキペダル53の操作力を増大する際に利用する負圧が低下するため、ブレーキペダル53の操作力を増大してマスタシリンダ40に伝達する際における増大量が低下する。このため、この場合、マスタシリンダ40は、ブレーキ負圧が正常な場合よりもブレーキペダル53への操作力に対するM/C圧が低下する。即ち、図2の負圧低下時M/C圧112で示すように、ブレーキ負圧が低下した場合には、ブレーキペダル53への操作力に対するM/C圧の大きさが小さくなる。
 従って、ブレーキ負圧が低下した場合には、操作力に対する制動力が小さくなり易く、所望の制動力を発生させるためには、より大きな操作力でブレーキペダル53を操作する必要がある。このため、エコラン中にブレーキ負圧が低下した場合には、エンジン10を再始動する。これにより、エンジン10で負圧を発生させることができるため、制動操作時にブレーキ倍力装置32で利用することができるブレーキ負圧を確保することができ、ブレーキペダル53への操作力に対して、図2の正常時M/C圧110で示すようなM/C圧を得ることができる。
 しかし、エンジン10の再始動を行った場合に、スタータ12の故障等により始動が失敗した場合、エンジン10で負圧を発生させることができなくなる。この場合、ブレーキペダル53を操作することによってドライバ100が要求する制動力を得ることが困難になる。このため、本実施形態に係る車両制御装置2では、エコラン中にブレーキ負圧が低下することによりエンジン10の始動制御を行った場合において、始動が失敗した場合には、油圧制御装置42に設けられるブレーキアクチュエータ43で、M/C圧を助勢する。
 つまり、ブレーキ負圧を利用してブレーキ倍力装置32でドライバ100の操作力を増大することにより昇圧するM/C圧の昇圧分と同程度、ブレーキアクチュエータ43でM/C圧を昇圧する。即ち、ブレーキアクチュエータ43が有するオイルポンプや電磁弁を作動させることにより、油圧制御装置42内や油圧経路41内のブレーキフルードの油圧を昇圧し、M/C圧を昇圧する。ブレーキアクチュエータ43は、このようにブレーキフルードの油圧の昇圧が可能な昇圧装置としても設けられている。
 エンジン10の始動制御時にエンジン10が始動しなかった場合には、このようにブレーキアクチュエータ43でM/C圧を昇圧することにより、ブレーキペダル53への操作力を正常時のブレーキ負圧を利用して増大する際におけるM/C圧の上昇分と同程度、M/C圧を上昇させることができる。これにより、惰性走行時のブレーキ負圧の低下によるエンジン10の始動制御時にエンジン10が始動しなかった場合における制動操作に対する制動力を、エンジン10の運転時における制動操作に対する制動力と同程度の大きさにする。このため、エンジン10の始動制御は、惰性走行時のブレーキ負圧が所定の判定値よりも低い場合に行い、始動制御時にエンジン10が始動しないことによりM/C圧を昇圧する場合には、この判定値と同じ大きさのブレーキ負圧を利用してブレーキ倍力装置32で操作力を増大する際におけるM/C圧の昇圧分と、少なくとも同程度昇圧することが好ましい。
 図3は、車両制御装置の処理手順の概略を示すフロー図である。次に、本実施形態に係る車両制御装置2の制御方法、即ち、当該車両制御装置2の処理手順の概略について説明する。なお、以下の処理は、エコラン中における処理手順になっており、エコラン走行中に車両1の各部を制御する際に、所定の期間ごとに呼び出されて実行する。本実施形態に係る車両制御装置2のエコラン走行中における処理手順では、まず、ブレーキ負圧を取得する(ステップST101)。このブレーキ負圧の取得は、負圧センサ34で検出する負圧経路33の負圧の検出結果を、ECU70が有する走行状態取得部78で取得することにより行う。
 次に、ブレーキ負圧<ブレーキ負圧閾値であるか否かを、走行状態判定部80で判定する(ステップST102)。この判定に用いるブレーキ負圧閾値は、エコラン中にエンジン10を再始動するか否かの判定をブレーキ負圧に基づいて行う場合における所定の判定値として予め設定され、ECU70の記憶部に記憶されている。走行状態判定部80は、このように記憶部に記憶されているブレーキ負圧閾値と、走行状態取得部78で取得したブレーキ負圧とを比較することにより、ブレーキ負圧<ブレーキ負圧閾値であるか否かを判定する。
 この判定により、ブレーキ負圧はブレーキ負圧閾値未満であると判定された場合(ステップST102、Yes判定)には、エンジン10の始動要求を行う(ステップST103)。具体的には、ECU70が有する走行制御部74で、インジェクタからの燃料噴射量等の制御を行いつつ、スタータ12の駆動要求を行う。
 次に、スタータ12のON後、始動判定時間が経過したか否かを判定する(ステップST104)。この判定は、走行状態判定部80で行う。この判定に用いる始動判定時間は、エンジン10の再始動を行う際に、始動が成功したか否かの判定を適切に行うことができる時間として予め設定され、ECU70の記憶部に記憶されている。走行状態判定部80は、走行制御部74でスタータ12の駆動要求を行った後の時間が、記憶部に記憶されている始動判定時間を経過したか否かを判定する。この判定により、スタータ12のON後、始動判定時間を経過していないと判定された場合(ステップST104、No判定)には、始動判定時間を経過すると判定されるまで、この判定を繰り返す。
 走行状態判定部80により、スタータ12のON後、始動判定時間が経過したと判定された場合(ステップST104、Yes判定)には、次に、エンジン回転数<エンジン回転数閾値であるか否かを判定する(ステップST105)。この判定は、走行状態判定部80で行う。この判定に用いるエンジン回転数閾値は、エンジン10の始動要求を行い、スタータ12を駆動した際に、エンジン10の再始動に成功した否かの判定を、エンジン回転数に基づいて行う場合における判定値として予め設定され、ECU70の記憶部に記憶されている。また、現在のエンジン回転数は、エンジン回転数センサ11の検出結果より走行状態取得部78で取得可能になっている。走行状態判定部80は、このように走行状態取得部78で取得したエンジン回転数と、記憶部に記憶されているエンジン回転数閾値とを比較することにより、エンジン回転数<エンジン回転数閾値であるか否かを判定する。
 この判定により、エンジン回転数はエンジン回転数閾値未満であると判定された場合(ステップST105、Yes判定)には、次に、助勢必要量をブレーキアクチュエータ43で助勢する(ステップST106)。このように、ブレーキアクチュエータ43で助勢する助勢必要量114は、正常時M/C圧110と負圧低下時M/C圧112との差になっており(図2参照)、この助勢必要量114は、ブレーキ負圧ごとに異なっている。また、ECU70の記憶部には、ブレーキ負圧ごとの助勢必要量114が予め記憶されている。この記憶部に記憶されている助勢必要量114と、走行状態取得部78で取得したブレーキ負圧とに基づいて、現在のブレーキ負圧に応じた助勢必要量114を発生させるのに必要なブレーキアクチュエータ43の制御量を、走行制御部74で導出する。
 次に、助勢制動力を発生させる(ステップST107)。つまり、走行制御部74で導出したブレーキアクチュエータ43の制御量で、ブレーキアクチュエータ43を制御する。具体的には、ブレーキアクチュエータ43を構成するオイルポンプを作動させたり、電磁弁の開閉を制御したりする。これにより、油圧経路41の油圧を高め、助勢制動力を発生させる。つまりこの場合、ブレーキアクチュエータ43を作動させることによりM/C圧を昇圧させるが、このようにM/C圧を昇圧させる場合には、ブレーキペダル53に対する操作力を、ブレーキ負圧閾値と同じ大きさのブレーキ負圧を利用してブレーキ倍力装置32で増大する際におけるM/C圧の昇圧分と、少なくとも同程度昇圧させるのが好ましい。
 このように、助勢制動力を発生させることにより、通常制動力を発生可能な状態になる(ステップST108)。即ち、ブレーキペダル53に対するドライバ100の操作力をブレーキ倍力装置32によって増大できない状態でも、助勢必要量114を発生することができるようにブレーキアクチュエータ43を作動させることにより、制動操作時には、ドライバ100の操作力による制動力に助勢制動力が付加される。これにより、正常時のブレーキ負圧を利用してブレーキペダル53への操作力を増大させる場合と同等の制動力である通常制動力を発生させることが可能になる。
 これらに対し、走行状態取得部78で取得したブレーキ負圧はブレーキ負圧閾値以上である判定された場合(ステップST102、No判定)、または、エンジン始動要求を行った後のエンジン回転数はエンジン回転数閾値以上であると判定された場合(ステップST105、No判定)には、ブレーキペダル53への操作力をブレーキ負圧で増大させることができるため、通常制動力を発生可能な状態になる(ステップST108)。
 以上の車両制御装置2は、エンジン10を停止させて車両1を惰性で走行させるエコラン中に、ブレーキ負圧が低下した場合には、エンジン10の始動制御を行い、エンジン10を運転させることによりブレーキ負圧を増大させる。これにより、エンジン10を停止させてエコラン走行を行っている最中に、ブレーキ負圧が低下した場合でも、ブレーキペダル53への操作力に対する制動力を確保できる。さらに、このエンジン10の始動制御時に、エンジン10が始動しなかった場合には、ブレーキアクチュエータ43を作動させることにより、ブレーキアクチュエータ43でM/C圧を昇圧する。これにより、スタータ12の故障等によってエンジン10が再始動しない場合でも、ブレーキアクチュエータ43でM/C圧を助勢することができるため、ブレーキペダル53への操作力に対する制動力を確保できる。これらの結果、車両1の走行中にエンジン10を停止する場合における制動性能を確保することができる。
 また、ブレーキアクチュエータ43によるM/C圧の昇圧は、エンジン10の始動制御を行ってから始動判定時間の間、エンジン10の始動が成功したか否かを判定し、始動判定時間が経過した後、エンジン10が始動しなかった場合に昇圧が行われる。このため、ブレーキ負圧が低下した場合には、極力エンジン10の始動を待ち、エンジン10で発生する負圧でブレーキ負圧を増大させることにより制動力を確保することができるので、ブレーキアクチュエータ43の作動時間を短くすることができる。また、このように、極力エンジン10で発生する負圧でブレーキ負圧を増大させて制動力を発生させることにより、より確実に所望の制動力を、違和感なく発生させることができる。この結果、車両1の走行中にエンジン10を停止する場合における制動性能を、消費電力を抑えつつより確実に確保することができる。
 また、車両1の惰性走行を行う場合には、エンジン10を停止し、且つ、エンジン10と駆動輪26との間に配設されるクラッチ20を切断状態にするため、惰性走行時における走行抵抗を、極力低減することができる。これにより、燃費の向上を目的として惰性走行を行う場合に、より確実に燃費を向上させることができる。また、惰性走行時には、このようにエンジン10を停止し、クラッチ20を切断するため、減速時にはブレーキ装置30による制動力が重要になるが、エンジン10を停止する場合における制動性能を確保することにより、より積極的に惰性走行を行うことができる。この結果、より積極的に、且つ、安全に惰性走行を行うことができ、より燃費の向上を図ることができる。
 また、エコラン中のエンジン10の始動制御時に、エンジン10が始動しないことによりM/C圧を昇圧させる場合には、ブレーキペダル53に対する操作力を、ブレーキ負圧閾値と同じ大きさのブレーキ負圧を利用してブレーキ倍力装置32で増大する際におけるM/C圧の昇圧分と、少なくとも同程度昇圧させている。これにより、少なくとも、エンジン10を始動しなくても制動性能を得ることができると判断することのできるM/C圧を、ブレーキ負圧の低下時に確保できる。この結果、車両1の走行中にエンジン10を停止する場合における制動性能を、より確実に確保することができる。
 なお、上述した車両制御装置2では、エンジン10始動判定を行う際に、スタータ12の駆動要求後、始動判定時間を経過した後のエンジン回転数に基づいて判定しているが、この始動判定時間は、車両1の使用態様に応じて適宜設定してもよい。つまり、始動判定時間を短く設定するに従って、ブレーキアクチュエータ43による助勢制御は入り易くなり、始動判定時間を長く設定するに従って、ブレーキアクチュエータ43による助勢制御は入り難くなる。このため、始動判定時間は、車両1の走行状態や使用態様、ブレーキ装置30の制動性能等に基づいて適宜設定するのが好ましい。
 また、車両1の走行中にエンジン10を停止してエコランを行うための判定条件として、さらに、シフトレバー60がニュートラル位置になってからの経過時間、またはクラッチ20が切断状態になってからの経過時間を設定してもよい。この場合、経過時間は、車両1の走行状態などに応じて変更できるようにしてもよく、ドライバ100によって任意に変更できるようにしてもよい。または、エンジン10を停止するための判定は、車速、クラッチ20の切断時間、シフトレバー60のニュートラル位置保持時間、ステアリングの操舵角などから総合的に判断する、或いは、判断条件を適宜設定して判断してもよい。
 また、実施形態に係る車両制御装置2では、変速機22は、変速比が異なる変速段を複数有しており、ドライバ100が任意の変速段を手動で選択する手動変速機となっているが、変速機22は自動変速機であってもよい。例えば、遊星歯車とクラッチ等を用いることにより変速比を切替える有段式の自動変速機や、ベルトとプーリ等が用いられることにより、変速比を無段階に切替えることができる無段変速機であってもよい。
 このように、変速機22が自動変速機の場合でも、エンジン10と駆動輪26との間にクラッチが設けられている場合には、クラッチを切断することによりトルクの伝達を遮断することができるため、エコランを行うことができる。また、変速機22が自動変速機の場合でも、走行レンジをドライバ100が任意で切替えることができ、車両1の走行中に走行レンジを、エンジン10で発生した動力を駆動輪26に伝達しないレンジであるN(ニュートラル)レンジにすることにより、ドライバ100は車両1を加速させる意思がないと判断することができる。このため、変速機22が無段変速機等の自動変速機の場合でも、ドライバ100が車両1を加速させる意思がないと判断できる場合には、エコランに移行し、エコラン中のブレーキ負圧が低下した場合には、エンジン10を始動させたり、ブレーキアクチュエータ43を作動させたりすることにより、車両走行時にエンジン10を停止する場合における制動性能を確保することができる。
 1 車両
 2 車両制御装置
 10 エンジン
 11 エンジン回転数センサ
 12 スタータ
 13 吸気通路
 20 クラッチ
 22 変速機
 30 ブレーキ装置
 32 ブレーキ倍力装置
 33 負圧経路
 34 負圧センサ
 40 マスタシリンダ
 42 油圧制御装置
 43 ブレーキアクチュエータ
 50 アクセルペダル
 53 ブレーキペダル
 56 クラッチペダル
 60 シフトレバー
 70 ECU
 110 正常時M/C圧
 112 負圧低下時M/C圧
 114 助勢必要量

Claims (4)

  1.  ドライバの制動操作時の操作力を、動力源で発生する負圧を利用して増大させてブレーキ装置の作動液側に伝達するブレーキ倍力装置を備える車両の走行中に、前記動力源を停止して前記車両を惰性で走行させる惰性走行の制御を行う車両制御装置において、
     前記惰性走行時に前記負圧が低下した場合には、前記動力源の始動制御を行い、前記始動制御時に前記動力源が始動しなかった場合には、前記作動液の液圧を昇圧することを特徴とする車両制御装置。
  2.  前記作動液の液圧の昇圧は、前記始動制御を行ってから、始動が成功したか否かを判定するために予め設定された始動判定時間が経過した後、前記動力源が始動しなかった場合に行われることを特徴とする請求項1に記載の車両制御装置。
  3.  前記惰性走行を行う場合には、前記動力源を停止し、且つ、前記動力源と駆動輪との間に配設されるクラッチを切断状態にする請求項1または2に記載の車両制御装置。
  4.  前記始動制御は、前記惰性走行時の前記負圧が所定の判定値よりも低い場合に行い、
     前記始動制御時に前記動力源が始動しないことにより前記液圧を昇圧する場合には、前記判定値と同じ大きさの前記負圧を利用して前記操作力を増大する際における前記液圧の昇圧分と少なくとも同程度昇圧する請求項1~3のいずれか1項に記載の車両制御装置。
PCT/JP2011/052983 2011-02-14 2011-02-14 車両制御装置 WO2012111062A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052983 WO2012111062A1 (ja) 2011-02-14 2011-02-14 車両制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052983 WO2012111062A1 (ja) 2011-02-14 2011-02-14 車両制御装置

Publications (1)

Publication Number Publication Date
WO2012111062A1 true WO2012111062A1 (ja) 2012-08-23

Family

ID=46672028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052983 WO2012111062A1 (ja) 2011-02-14 2011-02-14 車両制御装置

Country Status (1)

Country Link
WO (1) WO2012111062A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068722A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
WO2014068725A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
JP2014083999A (ja) * 2012-10-24 2014-05-12 Toyota Motor Corp 車両の走行制御装置
JP2016172495A (ja) * 2015-03-17 2016-09-29 ジヤトコ株式会社 車両制御装置、及び車両の制御方法
JP2018040294A (ja) * 2016-09-07 2018-03-15 日産自動車株式会社 車両の制御方法及び車両の制御装置
CN110015299A (zh) * 2017-12-15 2019-07-16 Zf腓德烈斯哈芬股份公司 用于运行机动车的驱动系的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013768A (ja) * 2001-06-27 2003-01-15 Denso Corp エンジン自動停止再始動装置
JP2004270944A (ja) * 2003-03-06 2004-09-30 Luk Lamellen & Kupplungsbau Beteiligungs Kg クラッチの制御方法
JP2005226701A (ja) * 2004-02-12 2005-08-25 Nissan Diesel Motor Co Ltd 車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013768A (ja) * 2001-06-27 2003-01-15 Denso Corp エンジン自動停止再始動装置
JP2004270944A (ja) * 2003-03-06 2004-09-30 Luk Lamellen & Kupplungsbau Beteiligungs Kg クラッチの制御方法
JP2005226701A (ja) * 2004-02-12 2005-08-25 Nissan Diesel Motor Co Ltd 車両の制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083999A (ja) * 2012-10-24 2014-05-12 Toyota Motor Corp 車両の走行制御装置
WO2014068722A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
WO2014068725A1 (ja) * 2012-10-31 2014-05-08 トヨタ自動車株式会社 車両の走行制御装置
CN104755341A (zh) * 2012-10-31 2015-07-01 丰田自动车株式会社 车辆的行驶控制装置
CN104768819A (zh) * 2012-10-31 2015-07-08 丰田自动车株式会社 车辆的行驶控制装置
JPWO2014068725A1 (ja) * 2012-10-31 2016-09-08 トヨタ自動車株式会社 車両の走行制御装置
JP2016172495A (ja) * 2015-03-17 2016-09-29 ジヤトコ株式会社 車両制御装置、及び車両の制御方法
US10501083B2 (en) 2015-03-17 2019-12-10 Jatco Ltd Vehicle control device and vehicle control method
JP2018040294A (ja) * 2016-09-07 2018-03-15 日産自動車株式会社 車両の制御方法及び車両の制御装置
CN110015299A (zh) * 2017-12-15 2019-07-16 Zf腓德烈斯哈芬股份公司 用于运行机动车的驱动系的方法
CN110015299B (zh) * 2017-12-15 2023-11-17 Zf腓德烈斯哈芬股份公司 用于运行机动车的驱动系的方法

Similar Documents

Publication Publication Date Title
RU2643080C2 (ru) Способ управления натяжением приводного ремня двигателя, система натяжения приводного ремня двигателя и автомобиль, содержащий такую систему
JP5011835B2 (ja) 車両用制御装置
JP5353855B2 (ja) 車両用制御装置
JP5835500B2 (ja) ハイブリッド車両の制御装置
WO2011089818A1 (ja) 車両のための制御装置及び方法
US20150283993A1 (en) Hybrid vehicle mode-switching control device
US9562480B2 (en) Automatic engine-stop control device for vehicle
US9475498B2 (en) Control apparatus for vehicle
WO2012111062A1 (ja) 車両制御装置
JP6241424B2 (ja) 車両制御装置
JP2011179597A (ja) 車両駆動システムの制御装置
CN109073072B (zh) 具备无级变速器的车辆的控制装置及控制方法
JP2006153091A (ja) 車両の制御装置
JP2001003778A (ja) 車両のエンジンの自動停止・再始動制御装置
JP5682229B2 (ja) アイドリングストップ制御装置
JPH11351001A (ja) 車両のエンジン停止制御装置
JP6454884B2 (ja) 車両のエンジン自動停止制御装置
JP6741167B2 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP2006220114A (ja) エンジン制御装置、車両の制御装置及びその制御方法
JP2017089503A (ja) 車両制御装置
JP5095810B2 (ja) 車両の制御装置
JP2007270629A (ja) 車両制御方法
JP2006189113A (ja) 自動車およびその制御方法
JP6363940B2 (ja) 車両用制御装置
WO2019069344A1 (ja) 車両の制御方法及び車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP