WO2019069344A1 - 車両の制御方法及び車両の制御装置 - Google Patents

車両の制御方法及び車両の制御装置 Download PDF

Info

Publication number
WO2019069344A1
WO2019069344A1 PCT/JP2017/035775 JP2017035775W WO2019069344A1 WO 2019069344 A1 WO2019069344 A1 WO 2019069344A1 JP 2017035775 W JP2017035775 W JP 2017035775W WO 2019069344 A1 WO2019069344 A1 WO 2019069344A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
satisfied
vehicle
motor
Prior art date
Application number
PCT/JP2017/035775
Other languages
English (en)
French (fr)
Inventor
智之 小池
健 金城
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/035775 priority Critical patent/WO2019069344A1/ja
Publication of WO2019069344A1 publication Critical patent/WO2019069344A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers

Definitions

  • the present invention relates to a control method of a vehicle and a control device of the vehicle.
  • Patent Document 1 discloses that when the accelerator is turned off and the second clutch capable of disconnecting the internal combustion engine from the drive wheels is released, the fuel supply to the internal combustion engine is stopped and the inertia running is performed. It is done.
  • Patent Document 1 even if the accelerator is turned off, fuel is supplied to the internal combustion engine until the second clutch is released. Therefore, when the second clutch is released, a large step is generated in the longitudinal acceleration (front and rear G) of the vehicle. Does not occur.
  • Patent Document 1 even if the accelerator is turned off, fuel is supplied to the internal combustion engine until the second clutch is released, so the fuel consumption is relatively deteriorated by the fuel consumed during that time. There's a problem.
  • the vehicle according to the present invention stops the fuel supply to the internal combustion engine and drives the internal combustion engine by a motor when a predetermined first operating condition is satisfied while the vehicle is traveling. Then, when a predetermined second operating condition is satisfied while the first operating condition is satisfied, the clutch disposed between the internal combustion engine and the drive wheel is released and the motor is stopped.
  • the present invention it is possible to improve the fuel consumption performance of the internal combustion engine while preventing a step in the longitudinal acceleration (front and back G) of the vehicle when the clutch is released.
  • FIG. 1 is an explanatory view schematically showing an outline of a control device for a vehicle according to the present invention.
  • a CVT (continuously variable transmission) 3 as a transmission is connected to an internal combustion engine 1 serving as a drive source of a vehicle via a torque converter 2 having a lockup mechanism.
  • the CVT 3 transmits power to the drive wheels 4 via a final reduction gear (not shown) as in a general automobile.
  • the forward clutch 5 is disposed between the torque converter 2 and the CVT 3.
  • the respective elements are arranged in series in the order of the internal combustion engine 1, the torque converter 2, the forward clutch 5, the CVT 3 and the drive wheels 4. There is.
  • the internal combustion engine 1 can drive a motor 7, a water pump 8, and an air conditioner compressor 9 via a belt 6.
  • the motor 7 is capable of providing a driving force to the internal combustion engine 1 and generating electric power.
  • the CVT 3 changes the width of the V groove to change the contact radius between the V belt 13 and the primary pulley 11 and the secondary pulley 12,
  • the gear ratio changes steplessly.
  • a hydraulic oil is supplied to the CVT 3 by a mechanical oil pump as a first oil pump (not shown) driven by the internal combustion engine 1 and an electric oil pump 14 as a second oil pump. That is, hydraulic pressure is supplied to the primary hydraulic cylinder 11 a and the secondary hydraulic cylinder 12 a from the mechanical oil pump or the electric oil pump 14.
  • the electric oil pump 14 is driven when the internal combustion engine 1 is automatically stopped at idle stop or the like during operation of the vehicle. That is, the electric oil pump 14 operates when the mechanical oil pump is stopped.
  • the supply of hydraulic fluid by the mechanical oil pump or the electric oil pump 14 is also performed to the torque converter 2 and the forward clutch 5. That is, the hydraulic oil supply source of the torque converter 2 and the forward clutch 5 is the mechanical oil pump or the electric oil pump 14.
  • the forward clutch 5 corresponds to a clutch disposed between the internal combustion engine 1 and the drive wheel 4 and is capable of disconnecting the internal combustion engine 1 and the CVT 3 when released.
  • Forward clutch 5 can transmit power between internal combustion engine 1 and drive wheel 4 in the engaged state, and can transmit power (torque) between internal combustion engine 1 and drive wheel 4 in the open state. It disappears. That is, when the forward clutch 5 is released, the internal combustion engine 1 and the drive wheel 4 are separated. Furthermore, when the forward clutch 5 is released, the internal combustion engine 1 and the CVT 3 are disconnected.
  • the internal combustion engine 1 is controlled by an ECU (engine control unit) 20.
  • the ECU 20 is a known digital computer provided with a CPU, a ROM, a RAM, and an input / output interface.
  • the ECU 20 determines the injection amount, injection timing, ignition timing of the internal combustion engine 1, intake air amount, etc. of the fuel injected from the fuel injection valve (not shown) of the internal combustion engine 1 based on detection signals of various sensors. Control the Further, the motor 7 and the starter motor 10 are optimally controlled by the ECU 20.
  • the CVT 3 is controlled by a TCU (transmission control unit) 30.
  • the TCU 30 is a known digital computer equipped with a CPU, a ROM, a RAM, and an input / output interface.
  • the ECU 20 and the TCU 30 are connected by a CAN communication line 31. Data can be exchanged between the ECU 20 and the TCU 30 via the CAN communication line 31.
  • Detection signals of the accelerator opening degree sensor 22, the brake switch 23, and the vehicle speed sensor 24 described above are input to the TCU 30 via the CAN communication line 31.
  • the TCU 30 includes a primary rotation number sensor 32 that detects the rotation number of the primary pulley 11 that is the input rotation number of the CVT 3 and a secondary pulley rotation number sensor 33 that detects the rotation number of the secondary pulley 12 that is the output rotation number of the CVT 3.
  • the detection signals of various sensors such as an oil pressure sensor 34 for detecting the oil pressure of the hydraulic oil supplied to the CVT 3 and an inhibitor switch 35 for detecting the position of the select lever for selecting the travel range are input.
  • the TCU 30 optimally controls the transmission ratio of the CVT 3 and the torque converter 2 and the forward clutch 5 based on the detection signals of the various sensors input.
  • the TCU 30 also controls the drive of the electric oil pump 14.
  • the vehicle of the present embodiment performs sailing stop control of releasing the forward clutch 5 and stopping the internal combustion engine 1 when a predetermined condition is satisfied during traveling.
  • FIG. 2 is a timing chart explaining the sailing stop control in the comparative example. That is, FIG. 2 is a timing chart explaining the control method of the vehicle in a comparative example.
  • the sailing stop control of a comparative example shall be implemented in the structure of the vehicle of the present Example mentioned above.
  • the accelerator pedal is not depressed from the depressed state (accelerator ON state) (the foot is separated from the accelerator pedal, that is, the accelerator OFF state).
  • the fuel supply to the internal combustion engine 1 is not immediately stopped. That is, in the comparative example shown in FIG. 2, even when the accelerator is turned off, the internal combustion engine is up to the timing of time t3 at which a predetermined condition for performing sailing stop control is satisfied and the sailing stop permission determination flag becomes "1". Fuel is supplied to 1. Therefore, in the first comparative example, the internal combustion engine 1 consumes fuel during the time from the accelerator OFF to the release of the forward clutch 5, and the fuel efficiency deteriorates.
  • a state in which the accelerator pedal is depressed while the vehicle is traveling is not depressed (a state in which the foot is away from the accelerator pedal, that is, the accelerator OFF state).
  • the fuel cut (F / C) for stopping the fuel supply to the internal combustion engine 1 is performed, and the motor 7 is started.
  • the motor 7 is driven to maintain the engine speed of the internal combustion engine 1 at a predetermined speed (for example, 1200 rpm) set in advance.
  • the predetermined second operating condition is satisfied while the first operating condition is satisfied, the forward clutch 5 is released, the internal combustion engine 1 and the CVT 3 are separated, and the motor 7 is stopped.
  • the ECU 20 and the TCU 30 according to this embodiment are linked with each other, and these two can be regarded as one CU (control unit) 40. Therefore, in the present embodiment, the CU 40 including the ECU 20 and the TCU 30 corresponds to a first control unit that stops the fuel supply to the internal combustion engine 1 and drives the internal combustion engine 1 by the motor 7 when the first operating condition is satisfied. Do. Further, in the present embodiment, the CU 40 corresponds to a second control unit that releases the forward clutch 5 and stops the motor 7 when the first operating condition is satisfied.
  • the first driving condition is, for example, that the brake pedal is not depressed, the vehicle speed is within a predetermined speed range (for example, 50 to 130 km / h), the inclination of the traveling path is less than a predetermined inclination angle, This is satisfied when the power consumption is equal to or less than the predetermined value and the SOC of the battery is equal to or more than the predetermined value.
  • a predetermined speed range for example, 50 to 130 km / h
  • the inclination of the traveling path is less than a predetermined inclination angle
  • the second operating condition is satisfied, for example, when the start of the electric oil pump 14 is confirmed and the CVT 3 is in a predetermined shift state corresponding to a state in which the accelerator pedal is not depressed.
  • the second operating condition is satisfied.
  • the coast line is a shift line that sets the input rotational speed to the CVT 3 in a state where the accelerator pedal is not depressed.
  • FIG. 3 is a timing chart explaining the sailing stop control of the present embodiment. That is, FIG. 3 is a timing chart for explaining the control method of the vehicle according to the present invention.
  • the accelerator pedal is depressed (accelerator on) from time t1 when the accelerator pedal is not depressed (accelerator off) and the first operating condition is satisfied, and the fuel cut flag (F / C Flag) is "1".
  • the fuel supply to the internal combustion engine 1 is stopped at this time t1.
  • the motor 7 is started so as not to cause a step in the longitudinal acceleration of the vehicle.
  • the broken line in FIG. 3 indicates the driving force generated in the motor 7.
  • the decrease in the driving force generated in the internal combustion engine 1 shown by the solid line in FIG. 3 is compensated, and the change in the longitudinal acceleration of the vehicle is suppressed.
  • the sailing stop permission flag becomes “1”, and the forward clutch 5 is released and the motor 7 is stopped.
  • the motor 7 is started when the fuel supply to the internal combustion engine 1 is stopped, so that a large step is not generated in the longitudinal acceleration (front and back G) of the vehicle at the timing of time t2 when the forward clutch 5 is released. be able to.
  • FIG. 4 is a flowchart showing the flow of control when implementing a sailing stop in the present embodiment. That is, FIG. 4 is a flowchart showing the flow of control of the control method of the vehicle according to the present invention. Note that this routine is repeatedly executed by the CU 40 every predetermined time (for example, every 10 ms).
  • step S1 it is determined whether or not the accelerator pedal is not depressed (accelerator OFF state). If the accelerator is off in step S1, the process proceeds to step S2. If the accelerator is not off in step S1, the process proceeds to step S12.
  • step S2 it is determined whether a predetermined first operating condition is established. If the first operating condition is satisfied in step S2, the process proceeds to step S3. If the first operating condition is not satisfied in step S2, the process proceeds to step S12. When the first operating condition is not satisfied in step S2, the process shifts to a normal fuel cut (F / C) sequence (not shown).
  • F / C normal fuel cut
  • a normal fuel cut sequence for example, fuel supply to the internal combustion engine 1 is performed when the engine speed of the internal combustion engine 1 is equal to or higher than a predetermined fuel cut speed and the accelerator opening (APO) becomes equal to or lower than a predetermined opening after warm-up. Stop.
  • a predetermined fuel cut recovery condition is satisfied during fuel cut in the normal fuel cut sequence, fuel supply to the internal combustion engine 1 is resumed.
  • the fuel cut recovery condition is, for example, when the accelerator opening (APO) becomes larger than a predetermined opening, or when the engine speed becomes equal to or less than a predetermined fuel cut recover speed without the accelerator pedal being depressed.
  • step S3 the fuel cut flag (F / C Flag) becomes "1".
  • step S4 it is determined whether the sailing stop standby flag is "0". If the sailing stop standby flag is "0" in step S4, the process proceeds to step S5. If the sailing stop standby flag is "1" in step S4, the process proceeds to step S9.
  • step S5 the sailing stop standby flag is set to "1".
  • step S6 the fuel supply to the internal combustion engine 1 is stopped.
  • step S7 the electric oil pump 14 is started.
  • step S8 the motor 7 is started. The motor 7 may be started in step S8 after a predetermined time has elapsed since the fuel cut flag has become "1".
  • step S9 it is determined whether a predetermined second operating condition is satisfied. If the second operating condition is satisfied in step S9, the process proceeds to step S10. If the second operating condition is not satisfied in step S9, the current routine is ended.
  • step S10 the sailing stop permission flag is set to "1".
  • step S11 the forward clutch 5 is released and the motor 7 is stopped.
  • step S12 the sailing stop standby flag is set to "0"
  • the sailing stop permission flag is set to "0”
  • the fuel cut flag is set to "0”.
  • the sailing stop permission flag is “0” when a predetermined sailing stop cancellation condition is satisfied, such as when the accelerator pedal is depressed (accelerator ON state).
  • the fuel consumption performance of the internal combustion engine 1 can be improved while preventing a difference in level in the longitudinal acceleration (front and rear G) of the vehicle.
  • the engine speed of the internal combustion engine 1 can be maintained with less energy than when performing the idle operation. That is, by driving the motor 7 to maintain the engine speed of the internal combustion engine 1, the fuel consumption is generally improved.
  • the transmission is a continuously variable transmission, but the present invention is also applicable to a vehicle having a stepped automatic transmission.
  • the clutch provided between the CVT 3 and the drive wheel 4 may be released, and the internal combustion engine 1 and the drive wheel 4 may be separated when the second operating condition is satisfied.
  • the present invention is also applicable when the vehicle stops coasting. That is, when the first operating condition is established, the coast stop may be established.
  • the sailing stop is to automatically stop the internal combustion engine 1 while the vehicle is traveling at a low to medium speed with the brake pedal not being depressed (the brake switch 23 is OFF).
  • the forward clutch 5 is released, and the lockup mechanism of the torque converter 2 is in a state of engaging the lockup clutch.
  • the coast stop is to automatically stop the internal combustion engine 1 during deceleration at a low vehicle speed with the brake pedal depressed (the brake switch 23 is in the ON state).
  • the forward clutch 5 is engaged, and the lockup mechanism of the torque converter 2 is in the state of releasing the lockup clutch.
  • the embodiment described above relates to a control method of a vehicle and a control device of the vehicle.

Abstract

車両の走行中にアクセルペダルが踏み込まれた状態(アクセルON状態)から踏み込まれていない状態(アクセルOFF状態)となり、さらに所定の第1運転条件が成立すると、内燃機関(1)への燃料供給を停止するとともに、モータ(7)を始動する。そして、第1運転条件の成立中に所定の第2運転条件が成立すると、フォワードクラッチ(5)を開放し、内燃機関(1)とCVT(3)とを切り離した状態にするとともに、モータ(7)を停止する。これによって、フォワードクラッチ(5)を開放した際に、車両の前後加速度に段差が生じないようにしつつ、内燃機関(1)の燃費性能を向上させることができる。

Description

車両の制御方法及び車両の制御装置
 本発明は、車両の制御方法及び車両の制御装置に関する。
 車両の運転中、アクセルがオフとなった状態(アクセルOFF状態)のときに、内燃機関を停止して惰性で走行することで燃費を向上させることが知られている。
 例えば、特許文献1には、アクセルがオフになるとともに、内燃機関を駆動輪から切り離すことが可能な第2クラッチが開放されと、内燃機関への燃料供給を停止して惰性走行することが開示されている。
 特許文献1においては、アクセルがオフとなっても第2クラッチが開放されるまで内燃機関に燃料が供給されるので、第2クラッチを開放した際に車両の前後加速度(前後G)に大きな段差が生じることはない。
 しかしながら、この特許文献1においては、アクセルがオフとなっても第2クラッチが開放されるまで燃料を内燃機関に供給しているので、その間に消費される燃料により燃費が相対的に悪化するという問題がある。
特開2017-26008号公報
 本発明の車両は、車両の走行中に所定の第1運転条件が成立すると、内燃機関への燃料供給を停止するとともに、モータにより上記内燃機関を駆動する。そして、上記第1運転条件の成立中に所定の第2運転条件が成立すると、上記内燃機関と駆動輪との間に配置されたクラッチを開放するとともに、上記モータを停止する。
 本発明によれば、クラッチを開放した際に、車両の前後加速度(前後G)に段差が生じないようにしつつ、内燃機関の燃費性能を向上させることができる。
発明に係る車両の制御装置の概略を模式的に示した説明図。 比較例における車両の制御方法を説明するタイミングチャート。 本発明に係る車両の制御方法を説明するタイミングチャート。 本発明に係る車両の制御方法の制御の流れを示すフローチャート。
 以下、本発明の一実施例を図面に基づいて詳細に説明する。
 図1は、本発明に係る車両の制御装置の概略を模式的に示した説明図である。 車両の駆動源となる内燃機関1には、ロックアップ機構を有するトルクコンバータ2を介して変速機としてのCVT(無段変速機)3が接続されている。CVT3は、一般の自動車と同様に、図示せぬ終減速装置を介し、駆動輪4に動力を伝達している。また、本実施例では、トルクコンバータ2とCVT3との間にフォワードクラッチ5が配置されている。
 つまり、内燃機関1による駆動力を駆動輪4に伝達する動力伝達経路には、内燃機関1、トルクコンバータ2、フォワードクラッチ5、CVT3、駆動輪4、の順番で各要素が直列に配置されている。
 内燃機関1は、ベルト6を介して、モータ7、ウォータポンプ8、エアコン用コンプレッサ9を駆動することが可能となっている。
 モータ7は、内燃機関1への駆動力の付与や発電が可能なものである。
 また、内燃機関1には、モータ7とは別に、内燃機関1の始動時に用いるスタータモータ10が取り付けられている。なお、モータ7を内燃機関1の始動に用いるようにすれば、スタータモータ10を省略することも可能である。
 CVT3は、プライマリプーリ11と、セカンダリプーリ12と、プライマリプーリ11及びセカンダリプーリ12のV溝に巻き掛けられたVベルト13と、を有している。プライマリプーリ11は、プライマリ油圧シリンダ11aを有している。セカンダリプーリ12は、セカンダリ油圧シリンダ12aを有している。プライマリプーリ11は、プライマリ油圧シリンダ11aに供給される油圧を調整すると、V溝の幅が変化する。セカンダリプーリ12は、セカンダリ油圧シリンダ12aに供給される油圧を調整すると、V溝の幅が変化する。
 CVT3は、プライマリ油圧シリンダ11aやセカンダリ油圧シリンダ12aに供給される油圧を制御することで、V溝の幅が変化してVベルト13とプライマリプーリ11、セカンダリプーリ12との接触半径が変化し、変速比が無段階に変化する。
 CVT3には、内燃機関1によって駆動する図示せぬ第1オイルポンプとしての機械式オイルポンプと、第2オイルポンプとしての電動オイルポンプ14と、によって作動油が供給される。すなわち、プライマリ油圧シリンダ11a及びセカンダリ油圧シリンダ12aには、機械式オイルポンプまたは電動オイルポンプ14から油圧が供給される。電動オイルポンプ14は、車両の運転中に、内燃機関1がアイドルストップ等で自動停止した際に駆動する。つまり、電動オイルポンプ14は、機械式オイルポンプが停止した際に作動する。
 なお、機械式オイルポンプまたは電動オイルポンプ14による作動油の供給は、トルクコンバータ2やフォワードクラッチ5に対しても行われる。つまり、トルクコンバータ2及びフォワードクラッチ5の作動油の供給源は、機械式オイルポンプまたは電動オイルポンプ14である。
 フォワードクラッチ5は、内燃機関1と駆動輪4との間に配置されたクラッチに相当するものであって、開放すると内燃機関1とCVT3とを切り離した状態にすることが可能なものである。フォワードクラッチ5は、締結状態のとき内燃機関1と駆動輪4との間で動力の伝達が可能となり、開放状態のとき内燃機関1と駆動輪4との間で動力(トルク)の伝達ができなくなる。つまり、フォワードクラッチ5を開放すると、内燃機関1と駆動輪4とが切り離された状態となる。さらに言えば、フォワードクラッチ5を開放すると、内燃機関1とCVT3とが切り離された状態となる。
 内燃機関1は、ECU(エンジンコントロールユニット)20によって制御されている。ECU20には、CPU、ROM、RAM及び入出力インターフェースを備えた周知のデジタルコンピュータである。
 ECU20には、内燃機関1のクランクシャフト(図示せず)のクランク角を検出するクランク角センサ21、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ22、ブレーキペダル(図示せず)の操作を検出するブレーキスイッチ23、車速を検出する車速センサ24、車両の前後方向の傾きを検知可能な加速度センサ25等の各種センサ類の検出信号が入力されている。クランク角センサ21は、内燃機関1の機関回転数を検出可能なものである。
 そして、ECU20は、各種センサ類の検出信号に基づいて、内燃機関1の燃料噴射弁(図示せず)から噴射される燃料の噴射量や噴射時期、内燃機関1の点火時期、吸入空気量等を最適に制御する。また、ECU20によって、モータ7及びスタータモータ10が最適に制御される。
 CVT3は、TCU(トランスミッションコントロールユニット)30によって制御されている。TCU30には、CPU、ROM、RAM及び入出力インターフェースを備えた周知のデジタルコンピュータである。
 ECU20とTCU30は、CAN通信線31で接続されている。ECU20、TCU30間では、CAN通信線31によりデータの授受が可能となっている。
 TCU30には、CAN通信線31を介して、上述したアクセル開度センサ22、ブレーキスイッチ23及び車速センサ24の検出信号が入力されている。
 さらに、TCU30には、CVT3の入力回転数であるプライマリプーリ11の回転数を検出するプライマリ回転数センサ32、CVT3の出力回転数であるセカンダリプーリ12の回転数を検出するセカンダリプーリ回転数センサ33、CVT3に供給される作動油の油圧を検出する油圧センサ34、走行レンジを選択するセレクトレバーの位置を検出するインヒビタスイッチ35等の各種センサ類の検出信号が入力されている。
 TCU30は、これら入力された各種センサ類の検出信号に基づいて、CVT3の変速比や、トルクコンバータ2及びフォワードクラッチ5を最適に制御する。また、TCU30は、電動オイルポンプ14の駆動を制御する。
 ここで、本実施例の車両は、走行中に、所定の条件が成立すると、フォワードクラッチ5を開放し、内燃機関1を停止するセーリングストップ制御を実施する。
 図2は、比較例におけるセーリングストップ制御を説明するタイミングチャートである。つまり、図2は、比較例における車両の制御方法を説明するタイミングチャートである。なお、比較例のセーリングストップ制御は、上述した本実施例の車両の構成において実施されるものとする。
 比較例では、時刻t1のタイミングで、アクセルペダルが踏み込まれた状態(アクセルON状態)から踏み込まれていない状態(アクセルペダルから足が離れた状態、つまりアクセルOFF状態)となっている。
 この時刻t1からフォワードクラッチ5を開放する時刻t3のタイミングまで内燃機関1への燃料供給を行えば、図2中に実線で示すように、フォワードクラッチ5を開放した際の車両の前後加速度(前後G)に大きな段差を生じないようにすることができる。
 しかしながら、図2に示す比較例では、アクセルペダルが踏み込まれていない状態となっても、直ちに内燃機関1への燃料供給が停止されない。つまり、図2に示す比較例では、アクセルOFFとなっても、セーリングストップ制御を実施するための所定の条件が成立してセーリングストップ許可判定フラグが「1」となる時刻t3のタイミングまで内燃機関1へ燃料が供給される。そのため、この第1の比較例では、アクセルOFFになってからフォワードクラッチ5を開放するまでのあいだ内燃機関1が燃料を消費し、燃費が悪化する。
 また、図2中に破線で示すように、フォワードクラッチ5が開放される前の時刻t2のタイミングで内燃機関1への燃料供給を中止すると、時刻t3のタイミングまで内燃機関1に燃料を供給する場合に比べて、相対的に燃費は向上する。
 しかしながら、この場合には、フォワードクラッチ5を開放した時刻t3のタイミングで駆動輪4の回転負荷が低減され、見かけ上駆動力が増加する。つまり、内燃機関1に燃料が供給されていない状態で内燃機関1を駆動輪4から切り離した状態とすると、このタイミングでエンジンブレーキが作用しなくなる。そのため、車両の前後加速度には、図2の時刻t3のタイミングで、図2中に破線で示すように、加速する方向に大きな段差が生じる虞がある。
 そこで、本実施例のセーリングストップ制御では、車両の走行中にアクセルペダルが踏み込まれた状態(アクセルON状態)から踏み込まれていない状態(アクセルペダルから足が離れた状態、つまりアクセルOFF状態)となり、さらに所定の第1運転条件が成立すると、内燃機関1への燃料供給を停止する燃料カット(F/C)を実施するとともに、モータ7を始動する。モータ7は、内燃機関1の機関回転数が予め設定された所定回転数(例えば、1200rpm)を維持するように駆動する。そして、第1運転条件の成立中に所定の第2運転条件が成立すると、フォワードクラッチ5を開放し、内燃機関1とCVT3とを切り離した状態にするとともに、モータ7を停止する。
 本実施例のECU20とTCU30は、相互に連携がとれたものであり、これら2つを1つのCU(コントロールユニット)40と見なすことが可能である。従って、本実施例では、ECU20とTCU30とを含むCU40が、第1運転条件が成立したときに内燃機関1への燃料供給停止とモータ7による内燃機関1の駆動を行う第1制御部に相当する。また、本実施例では、CU40が、第1運転条件が成立したときにフォワードクラッチ5の開放とモータ7の停止を行う第2制御部に相当する。
 第1運転条件は、例えば、ブレーキペダルが踏み込まれておらず、車速が所定の速度範囲内(例えば50~130km/h)であり、走行路の傾斜が所定の傾斜角度以下であり、車両の消費電力が所定値以下であり、バッテリのSOCが所定値以上である場合に成立する。
 第2運転条件は、例えば、電動オイルポンプ14の始動が確認されるとともに、CVT3がアクセルペダルの踏み込まれていない状態に対応した所定の変速状態のときに成立する。例えば、油圧センサ34で検出される油圧が予め設定された所定値以上となり、CVT3の変速比が所定のコースト線に従って設定される値になると、第2運転条件が成立する。コースト線とは、アクセルペダルの踏み込みがなくなった状態において、CVT3への入力回転速度を設定する変速線である。
 図3は、本実施例のセーリングストップ制御を説明するタイミングチャートである。つまり、図3は、本発明に係る車両の制御方法を説明するタイミングチャートである。
 本実施例では、時刻t1のタイミングで、アクセルペダルが踏み込まれた状態(アクセルON状態)から踏み込まれていない状態(アクセルOFF状態)となり、第1運転条件が成立して、燃料カットフラグ(F/C Flag)が「1」となっている。
 そこで、本実施例では、この時刻t1で内燃機関1への燃料供給を停止する。そして、本実施例では、車両の前後加速度に段差が生じないように、モータ7を始動する。図3中の破線は、モータ7に発生する駆動力を示している。本実施例では、モータ7を駆動することで、図3中に実線で示す内燃機関1に発生する駆動力の低下を補い、車両の前後加速度の変化を抑制している。
 そして、本実施例では、時刻t2のタイミングで第2運転条件が成立すると、セーリングストップ許可フラグが「1」となり、フォワードクラッチ5を開放するとともにモータ7を停止する。本実施例では、内燃機関1への燃料供給を停止するとモータ7を始動するので、フォワードクラッチ5を開放する時刻t2のタイミングで車両の前後加速度(前後G)に大きな段差を生じないようにすることができる。
 図4は、本実施例においてセーリングストップを実施する際の制御の流れを示すフローチャートである。つまり、図4は、本発明に係る車両の制御方法の制御の流れを示すフローチャートである。なお、本ルーチンは、CU40により所定時間毎(例えば、10ms毎)に繰り返し実行される。
 ステップS1では、アクセルペダルが踏み込まれていない状態(アクセルOFF状態)であるか否かを判定する。ステップS1において、アクセルOFFであればステップS2へ進む。ステップS1において、アクセルOFFでなければステップS12へ進む。
 ステップS2では、所定の第1運転条件が成立しているか否かを判定する。ステップS2において第1運転条件が成立していればステップS3へ進む。ステップS2において第1運転条件が成立していなければ、ステップS12へ進む。なお、ステップS2において第1運転条件が成立していない場合には、図示しない通常の燃料カット(F/C)シーケンスへ移行することになる。
 通常の燃料カットシーケンスでは、例えば、暖機完了後に内燃機関1の機関回転数が所定の燃料カット回転数以上でアクセル開度(APO)が所定開度以下になると内燃機関1への燃料供給を停止する。なお、通常の燃料カットシーケンスにより燃料カット中に、所定の燃料カットリカバー条件が成立すると、内燃機関1への燃料供給を再開する。燃料カットリカバー条件は、例えば、アクセル開度(APO)が所定開度よりも大きくなった場合や、アクセルペダルが踏み込まれることなく機関回転数が所定の燃料カットリカバー回転数以下となった場合に成立する。
 ステップS3では、燃料カットフラグ(F/C Flag)が「1」となる。
 ステップS4ではセーリングストップスタンバイフラグが「0」であるか否かを判定する。ステップS4においてセーリングストップスタンバイフラグが「0」であれば、ステップS5へ進む。ステップS4においてセーリングストップスタンバイフラグが「1」であれば、ステップS9へ進む。
 ステップS5では、セーリングストップスタンバイフラグを「1」とする。
 ステップS6では、内燃機関1への燃料供給を停止する。ステップS7では、電動オイルポンプ14を始動する。ステップS8では、モータ7を始動する。なお、ステップS8におけるモータ7の始動は、燃料カットフラグが「1」となってから所定時間経過してから実施してもよい。
 ステップS9では、所定の第2運転条件が成立しているか否かを判定する。ステップS9において第2運転条件が成立していればステップS10へ進む。ステップS9において第2運転条件が成立していなければ、今回のルーチンを終了する。
 ステップS10では、セーリングストップ許可フラグを「1」とする。
 ステップS11では、フォワードクラッチ5を開放するとともに、モータ7を停止する。
 ステップS12では、セーリングストップスタンバイフラグを「0」、セーリングストップ許可フラグを「0」、燃料カットフラグを「0」とする。
 なお、セーリングストップ許可フラグは、アクセルペダルが踏み込まれた状態(アクセルON状態)になる等、所定のセーリングストップ解除条件が成立すると「0」になる。
 以上説明してきたように、本実施例のセーリングストップ制御では、内燃機関1への燃料供給停止によるトルク低下分をモータ7を駆動することで補うことができる。そのため、アクセルペダルが踏み込まれていない状態(アクセルOFF状態)になった直後から、内燃機関に供給される燃料をカットする燃料カットが可能となる。
 これによって、フォワードクラッチ5を開放した際に、車両の前後加速度(前後G)に段差が生じないようにしつつ、内燃機関1の燃費性能を向上させることができる。
 回生した電力や、走行中に行う高効率の発電で充電した電力を用いてモータ7を駆動させることで、アイドル運転を行うよりも、内燃機関1の機関回転数を少ないエネルギーで維持できる。つまり、モータ7を駆動して内燃機関1の機関回転数を維持する方が、総じて燃費が向上することになる。
 なお、上述した実施例では、変速機が無段変速機であったが、本願発明は有段の自動変速機を有する車両にも適用可能である。
 また、フォワードクラッチ5に替えて、CVT3と駆動輪4の間に設けたクラッチを開放して、第2運転条件が成立した際に、内燃機関1と駆動輪4とを切り離した状態としてもよい。
 上述した実施例は車両がセーリングストップする際を例に説明したが、本発明は、車両がコーストストップする際にも適用可能である。すなわち、第1運転条件の成立時は、コーストストップ成立時であってもよい。
 ここで、セーリングストップとは、中高車速でブレーキペダルが踏まれていない(ブレーキスイッチ23がOFF)惰性走行中に、内燃機関1を自動停止することである。セーリングストップ時には、フォワードクラッチ5が開放され、トルクコンバータ2のロックアップ機構がロックアップクラッチを締結した状態となっている。
 コーストストップとは、低車速でブレーキペダルが踏み込まれた状態(ブレーキスイッチ23がON状態)の減速中に、内燃機関1を自動停止することである。コーストストップ時には、フォワードクラッチ5が締結され、トルクコンバータ2のロックアップ機構がロックアップクラッチを開放した状態となっている。
 また、上述した実施例は、車両の制御方法及び車両の制御装置に関するものである。

Claims (8)

  1.  車両の走行中に所定の第1運転条件が成立すると、車両の駆動輪の駆動源となる内燃機関への燃料供給を停止するとともに、上記内燃機関を駆動可能なモータにより上記内燃機関を駆動し、
     上記第1運転条件の成立中に所定の第2運転条件が成立すると、上記内燃機関と上記駆動輪との間に配置されたクラッチを開放するとともに、上記モータを停止する車両の制御方法。
  2.  上記内燃機関への燃料供給を停止するとともに、上記モータにより上記内燃機関を駆動するのは、アクセルペダルが踏み込まれた状態から踏み込まれていない状態となり、さらに上記第1運転条件が成立した場合である請求項1に記載の車両の制御方法。
  3.  上記第2運転条件が成立すると、上記クラッチを開放して上記クラッチと上記駆動輪との間に配置された変速機を上記内燃機関から切り離した状態にする請求項1または2に記載の車両の制御方法。
  4.  上記第1運転条件が成立する、上記変速機に作動油を供給する電動オイルポンプを始動する請求項3に記載の車両の制御方法。
  5.  上記変速機がアクセルペダルの踏み込まれていない状態に対応した所定の変速状態のときに、上記第2運転条件が成立する請求項3または4に記載の車両の制御方法。
  6.  ブレーキペダルが踏み込まれておらず、車速が予め設定された所定範囲内にあるときに、上記第1運転条件が成立する請求項1~5のいずれかに記載の車両の制御方法。
  7.  上記第1運転条件が成立すると、上記内燃機関の機関回転数が所定回転数を維持するように上記モータを駆動する請求項1~6のいずれかに記載の車両の制御方法。
  8.  車両の駆動輪の駆動源となる内燃機関と、
     上記内燃機関を駆動可能なモータと、
     上記内燃機関と上記駆動輪との間に配置されたクラッチと、
     車両の走行中に所定の第1運転条件が成立すると、上記内燃機関への燃料供給を停止するとともに、上記モータにより上記内燃機関を駆動する第1制御部と、
     上記第1運転条件の成立中に所定の第2運転条件が成立すると、上記クラッチを開放するとともに、上記モータを停止する第2制御部と、を有する車両の制御装置。
PCT/JP2017/035775 2017-10-02 2017-10-02 車両の制御方法及び車両の制御装置 WO2019069344A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035775 WO2019069344A1 (ja) 2017-10-02 2017-10-02 車両の制御方法及び車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035775 WO2019069344A1 (ja) 2017-10-02 2017-10-02 車両の制御方法及び車両の制御装置

Publications (1)

Publication Number Publication Date
WO2019069344A1 true WO2019069344A1 (ja) 2019-04-11

Family

ID=65994442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035775 WO2019069344A1 (ja) 2017-10-02 2017-10-02 車両の制御方法及び車両の制御装置

Country Status (1)

Country Link
WO (1) WO2019069344A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953090B1 (en) * 2023-06-07 2024-04-09 Arvinmeritor Technology, Llc Shift control device and a method of controlling an axle assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001262A (ja) * 2011-06-17 2013-01-07 Toyota Motor Corp 動力伝達制御装置
WO2013171841A1 (ja) * 2012-05-15 2013-11-21 トヨタ自動車 株式会社 ハイブリッド車両の制御装置
JP2015113913A (ja) * 2013-12-11 2015-06-22 ジヤトコ株式会社 無段変速機の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001262A (ja) * 2011-06-17 2013-01-07 Toyota Motor Corp 動力伝達制御装置
WO2013171841A1 (ja) * 2012-05-15 2013-11-21 トヨタ自動車 株式会社 ハイブリッド車両の制御装置
JP2015113913A (ja) * 2013-12-11 2015-06-22 ジヤトコ株式会社 無段変速機の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953090B1 (en) * 2023-06-07 2024-04-09 Arvinmeritor Technology, Llc Shift control device and a method of controlling an axle assembly

Similar Documents

Publication Publication Date Title
JP5870660B2 (ja) 車両のエンジン自動制御装置
US6335573B1 (en) Engine control apparatus
JP4281740B2 (ja) 車両およびその制御方法
US6709364B2 (en) Vehicular power-transmission control system
JP2007331533A (ja) 車両用制御装置
WO2019102540A1 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP2014097707A (ja) 車両の制御装置
JP2014134275A (ja) 車両の制御装置
JP3612939B2 (ja) 内燃機関と電動機の複合型車両駆動装置およびその制御方法
JP2010143308A (ja) 車両の駆動トルク制御装置
CN109073072B (zh) 具备无级变速器的车辆的控制装置及控制方法
WO2014013901A1 (ja) 車両の制御装置
JP2009184396A (ja) ハイブリッド車両の制御装置
EP3693237B1 (en) Internal combustion engine control method and internal combustion engine control device
JP6409363B2 (ja) ハイブリッド車両の制御装置
WO2019069344A1 (ja) 車両の制御方法及び車両の制御装置
JP6200208B2 (ja) 変速機の制御装置
CN108603591B (zh) 车辆的控制装置及车辆的控制方法
JP2006189113A (ja) 自動車およびその制御方法
JP2006151018A (ja) ハイブリッド車両の制御装置
JP2019203527A (ja) 車両制御装置
US11078851B2 (en) Control device of vehicle
WO2019069444A1 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP6168805B2 (ja) 車両の制御装置
JP6481536B2 (ja) エンジン制御方法及びエンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP