WO2012108362A1 - 多気筒内燃機関の制御装置 - Google Patents

多気筒内燃機関の制御装置 Download PDF

Info

Publication number
WO2012108362A1
WO2012108362A1 PCT/JP2012/052541 JP2012052541W WO2012108362A1 WO 2012108362 A1 WO2012108362 A1 WO 2012108362A1 JP 2012052541 W JP2012052541 W JP 2012052541W WO 2012108362 A1 WO2012108362 A1 WO 2012108362A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
amount
exhaust
air
internal combustion
Prior art date
Application number
PCT/JP2012/052541
Other languages
English (en)
French (fr)
Inventor
露木 毅
尚純 加藤
大介 高木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/983,686 priority Critical patent/US9399944B2/en
Priority to KR1020137013447A priority patent/KR101458732B1/ko
Priority to JP2012556864A priority patent/JP5668763B2/ja
Priority to CN201280004497.3A priority patent/CN103299052B/zh
Priority to EP12744322.4A priority patent/EP2674602B1/en
Publication of WO2012108362A1 publication Critical patent/WO2012108362A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to air-fuel ratio control of an internal combustion engine including a variable valve mechanism and a supercharger.
  • a turbocharger (hereinafter simply referred to as a supercharger) that uses exhaust energy to rotate the turbine, it is effective to increase the supercharging efficiency of the supercharger in order to improve the charging efficiency. It is. In order to increase the supercharging efficiency, it is effective to raise the exhaust gas temperature.
  • JP 2008-101502A obtains the amount of blow-through that blows from the cylinder to the exhaust passage during the valve overlap period of one cylinder.
  • a technique for injecting fuel for afterburning according to the amount is disclosed.
  • the air-fuel mixture burns in the exhaust passage, thereby increasing the exhaust temperature, and the turbine As a result, the energy for driving is increased, and as a result, the filling efficiency is improved. Further, since the air-fuel ratio is stoichiometric, there is no rebound to the exhaust performance.
  • an object of the present invention is to achieve both improvement in charging efficiency and exhaust performance in a multi-cylinder internal combustion engine with a supercharger.
  • FIG. 1 is a configuration diagram of a system to which this embodiment is applied.
  • FIG. 2 is a diagram showing a stroke order of the in-line four-cylinder internal combustion engine.
  • FIG. 3 is a block diagram showing the calculation contents for setting the fuel injection amount executed by the control unit.
  • FIG. 4 is a block diagram of control executed by the control unit to determine whether or not to reduce the valve overlap period.
  • FIG. 5 is a block diagram showing the calculation contents for obtaining the scavenging rate executed by the control unit.
  • FIG. 6 is a block diagram showing the calculation contents for obtaining the exhaust pressure executed by the control unit.
  • FIG. 7 is a block diagram showing the calculation contents for obtaining the transient exhaust pressure fluctuation executed by the control unit.
  • FIG. 1 is a configuration diagram of a system to which this embodiment is applied.
  • FIG. 2 is a diagram showing a stroke order of the in-line four-cylinder internal combustion engine.
  • FIG. 3 is a block diagram showing the calculation contents for setting the fuel injection amount executed
  • FIG. 8 is a block diagram showing the calculation contents for determining the conversion angle of the variable valve mechanism executed by the control unit.
  • FIG. 9 is a block diagram for calculating the scavenging amount upper limit value based on the catalyst temperature, which is executed by the control unit.
  • FIG. 10 is a block diagram showing the calculation contents for determining the fuel injection amount based on the scavenging gas amount and the exhaust gas amount of one cylinder and estimating the cylinder air-fuel ratio and the exhaust pipe air-fuel ratio, which is executed by the control unit. It is.
  • FIG. 1 is a system configuration diagram of an internal combustion engine to which the present embodiment is applied.
  • a throttle chamber 4 for adjusting the amount of air flowing into the internal combustion engine 1 is provided at the inlet of the intake manifold 2 of the internal combustion engine 1, and an intake passage 6 is connected upstream thereof.
  • a compressor 5 a of the supercharger 5 is installed on the upstream side of the throttle chamber 4 in the intake passage 6, and an air flow meter 8 for detecting the intake air amount is installed further on the upstream side.
  • a fuel injection valve 15 that directly injects fuel into the cylinder is disposed in each cylinder of the internal combustion engine 1.
  • a turbine 5 b of the supercharger 5 is installed in the exhaust passage 7.
  • the supercharger 5 is a so-called turbocharger, and a compressor 5a and a turbine 5b are connected via a shaft 5c. For this reason, when the turbine 5b is rotated by the exhaust energy of the internal combustion engine 1, the compressor 5a is also rotated, and the intake air is pumped downstream.
  • An exhaust gas purification catalyst 18 is disposed downstream of the turbine 5b.
  • a three-way catalyst or the like is used as the exhaust catalyst 18.
  • the recirculation passage 10 is a passage connecting the intake passage 6a and an intake passage downstream of the air flow meter 8 and upstream of the compressor 5a (hereinafter referred to as an intake passage 6b), and is provided in the middle.
  • an intake passage 6b an intake passage downstream of the air flow meter 8 and upstream of the compressor 5a
  • the recirculation valve 9 is opened when the differential pressure between the supercharging pressure and the pressure in the intake manifold 2 (hereinafter referred to as the intake pipe pressure) exceeds a predetermined value, as is generally known.
  • the intake pipe pressure For example, the reaction force of the built-in spring is urged in the valve closing direction against the valve body provided inside, and the boost pressure acts in the valve opening direction of the valve body, while the intake pressure is applied in the valve closing direction.
  • the valve is opened.
  • the differential pressure between the supercharging pressure and the intake pipe pressure when the recirculation valve 9 is opened can be set to an arbitrary value depending on the spring constant of the spring.
  • variable valve mechanism 14 can change the intake valve closing timing (IVC) so that an overlap period in which both the exhaust valve and the intake valve are opened occurs.
  • IVC intake valve closing timing
  • a generally known variable valve mechanism such as one that changes the rotational phase of the intake camshaft relative to the crankshaft or one that changes the operating angle of the intake valve can be used.
  • a similar variable valve mechanism 14 may be provided on the exhaust valve side to variably control the valve timing of the intake valve and the exhaust valve.
  • the control unit 12 reads parameters relating to the operating state such as the intake air amount detected by the air flow meter 8, the accelerator opening detected by the accelerator opening sensor 13, and the engine speed detected by a crank angle sensor (not shown). Based on this, the ignition timing, valve timing, air-fuel ratio, etc. are controlled.
  • valve timing control and air-fuel ratio control performed by the control unit 12 will be described.
  • control unit 12 When the pressure in the intake manifold 2 is higher than the pressure in the exhaust manifold 3, the control unit 12 is a variable valve operation so that a valve overlap period during which the intake valve and the exhaust valve are open occurs. Actuate mechanism 14.
  • FIG. 2 shows the stroke order of an in-line four-cylinder internal combustion engine in which the ignition order is the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder.
  • the hatched portion in the figure indicates the valve overlap period.
  • the exhaust manifold 3 joins the exhaust gas discharged from the cylinder during the exhaust stroke and the scavenging gas from the other cylinders during the intake stroke at that time.
  • the exhaust gas exhausted in the exhaust stroke # 3ex of the third cylinder in FIG. 2 and the scavenged gas scavenged in the valve overlap period # 1sc of the first cylinder that becomes the intake stroke at that time merge.
  • the amount of gas introduced into the turbine 5b increases when there is no valve overlap period, that is, when there is no scavenging.
  • the rotational speed of the turbine 5b increases and the supercharging pressure by the compressor 5a increases.
  • the scavenging discharges the residual gas in the cylinder together with the fresh air gas, the efficiency of filling the fresh air in the cylinder is increased as a result.
  • the energy for rotating the turbine 5b is obtained by burning the mixture of the exhaust gas and the scavenging gas joined by the exhaust manifold 3 before flowing into the turbine 5b by air-fuel ratio control described later. Increase more.
  • the fuel injection amount is set so that the air-fuel ratio is easy to burn. That is, the air-fuel ratio in the cylinder is made richer than the stoichiometric air-fuel ratio, exhaust gas containing unburned hydrocarbons is exhausted, and this exhaust gas and scavenging gas are mixed to facilitate combustion. For example, the fuel injection amount is set so that the stoichiometric air-fuel ratio is obtained.
  • the exhaust gas discharged in the exhaust stroke # 3ex of the third cylinder and the valve overlap of the first cylinder A fuel injection amount is set such that the mixture of scavenging gas discharged in the period # 1sc has an air-fuel ratio at which it is easy to burn. That is, when focusing on the air-fuel ratio in the cylinder of the third cylinder, the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, and exhaust gas including unburned fuel is discharged in the exhaust stroke.
  • the fuel injection amount set as described above is all injected by one fuel injection per stroke.
  • the fuel injection timing is after the valve overlap period during the intake stroke, that is, after the exhaust valve is closed, or during the compression stroke. Details of the air-fuel ratio control will be described later.
  • the fuel that becomes the unburned hydrocarbon in the exhaust gas changes from a higher hydrocarbon with a long carbon chain to a lower hydrocarbon with a short carbon chain by receiving the heat of combustion during the expansion stroke, It becomes more combustible.
  • the air-fuel ratio in the cylinder becomes richer than the stoichiometric air-fuel ratio, it approaches the output air-fuel ratio, so that the output can be improved as compared with the case of operating at the stoichiometric air-fuel ratio.
  • the inside of the cylinder is cooled by the latent heat of vaporization when the fuel is vaporized in the cylinder, it contributes to the improvement of the charging efficiency.
  • FIG. 3 is a block diagram showing the calculation contents for setting the fuel injection amount to be injected into the cylinder. This block diagram includes estimation of the air-fuel ratio in the cylinder and in the exhaust manifold 3, which is performed using the set fuel injection amount.
  • the exhaust pipe air-fuel ratio target value setting unit 301 sets an exhaust pipe target air-fuel ratio that is a target air-fuel ratio in the exhaust manifold 3.
  • the target air-fuel ratio is set to an air-fuel ratio at which the mixture of exhaust gas and scavenging gas is easy to burn, for example, the stoichiometric air-fuel ratio.
  • the air-fuel ratio is not limited to the stoichiometric air-fuel ratio, for example, so that the mixture of exhaust gas and scavenging gas satisfies the required value of exhaust performance, that is, an air-fuel ratio that does not decrease the conversion efficiency of the exhaust catalyst 18 It may be set. Even in this case, the charging efficiency in the cylinder is improved by the scavenging effect, the generated torque is increased, and the exhaust performance can be prevented from being lowered.
  • the in-cylinder trap intake air amount estimation unit 302 is a cylinder that is confined in the cylinder at the end of the intake stroke of the intake air amount based on the intake air amount detected by the air flow meter 8 and the scavenging rate. Estimate the amount of intake air in the inner trap.
  • the scavenging rate is a value obtained by dividing the amount of fresh air by the amount of gas in the cylinder. A method for calculating the scavenging rate will be described later.
  • the cylinder scavenging gas amount estimation unit 303 is the amount of the intake air amount that flows out to the exhaust manifold 3 during the valve overlap period for the cylinder that is in the intake stroke when the cylinder whose trap trap intake air amount has been calculated is in the exhaust stroke.
  • the cylinder scavenging gas amount is estimated based on the scavenging rate and the intake air amount.
  • the in-cylinder fuel injection amount setting unit 304 determines the fuel injection amount into the cylinder based on the exhaust air target air-fuel ratio, the in-cylinder trap intake air amount, and the cylinder scavenging gas amount.
  • the air-fuel ratio changes to the lean side by the amount diluted with the scavenging gas.
  • the fuel injection amount is set so as to be the stoichiometric air-fuel ratio with respect to the in-cylinder trap intake air amount
  • the air-fuel ratio of the exhaust gas becomes the stoichiometric air-fuel ratio.
  • the amount of hydrocarbons required to reach the target air-fuel ratio in the exhaust pipe when diluted to the scavenging gas is determined based on the trap air intake amount in the cylinder and the cylinder scavenging gas amount, and this hydrocarbon amount is generated.
  • the fuel injection amount necessary for the above is set based on the trap air intake amount in the cylinder.
  • the cylinder air-fuel ratio estimation unit 305 estimates the air-fuel ratio in the cylinder from the fuel injection amount and the trap trap intake air amount.
  • the exhaust pipe air-fuel ratio estimation unit 306 estimates the air-fuel ratio in the exhaust manifold 3 from the cylinder air-fuel ratio and the cylinder scavenging gas amount. If the in-cylinder fuel injection amount is feedback controlled based on these estimated values and the exhaust pipe target air-fuel ratio, the air-fuel ratio in the exhaust manifold 3 can be controlled with higher accuracy.
  • FIG. 4 is a block diagram of control for determining whether or not to reduce the valve overlap period based on the cylinder air-fuel ratio estimation value obtained by the cylinder air-fuel ratio estimation unit 305.
  • the scavenging amount increases, the amount of fuel necessary to bring the air-fuel ratio in the exhaust pipe to a desired air-fuel ratio also increases, and the air-fuel ratio in the cylinder becomes richer accordingly. Therefore, when the fuel injection amount obtained by the calculation of FIG. 3 causes the air-fuel ratio in the cylinder to exceed the combustion limit, the calculation of FIG. 4 is performed to reduce the scavenging amount by shortening the valve overlap period. I do.
  • In-cylinder air-fuel ratio allowable value calculation unit 401 sets an in-cylinder air-fuel ratio allowable value obtained based on conditions such as a combustion limit.
  • the cylinder air-fuel ratio estimation unit 402 reads the cylinder air-fuel ratio estimated by the cylinder air-fuel ratio estimation unit 305 in FIG.
  • the determination unit 403 compares the in-cylinder air-fuel ratio allowable value and the in-cylinder air-fuel ratio estimated value, and if it is determined that the in-cylinder air-fuel ratio estimated value is richer, the VTC control that is the control unit of the variable valve mechanism 14 A request to reduce the valve overlap period is made to the unit 404.
  • FIG. 5 is a block diagram showing calculation contents for calculating the scavenging rate.
  • the scavenging rate is determined based on the amount of heat generated from the engine speed and the amount of intake air and the amount of gas passing through the exhaust manifold 3 during steady operation.
  • the increase in the rotational speed of the turbine 5b is delayed with respect to the increasing speed of the amount of gas flowing through the exhaust manifold 3 during transient operation, pressure loss occurs.
  • the exhaust pressure during transient operation becomes higher than the exhaust pressure during steady operation with the same intake air amount and the same engine speed. Therefore, in the calculation of FIG. 5, the scavenging rate is calculated by correcting the exhaust pressure during steady operation by the increase / decrease of the exhaust pressure fluctuation amount during transient operation (hereinafter referred to as transient pressure fluctuation).
  • the collector pressure reading unit 501 reads the pressure in the intake manifold 2 as the collector pressure.
  • the exhaust pressure reading unit 502 reads the exhaust pressure obtained by calculation described later.
  • a transient pressure fluctuation reading unit 503 reads a transient exhaust pressure fluctuation amount obtained by calculation described later.
  • the exhaust valve front / rear differential pressure calculation unit 504 calculates the exhaust valve front / rear differential pressure by subtracting the exhaust pressure from the collector pressure and adding the transient pressure fluctuation thereto. As a result, the differential pressure before and after the exhaust valve including the transient exhaust pressure fluctuation amount is calculated.
  • the engine rotation speed reading unit 505 reads the engine rotation speed based on the detected value of the crank angle sensor
  • the overlap amount reading unit 506 reads the valve overlap amount obtained by the calculation described later.
  • a scavenging rate calculation unit 507 obtains a scavenging rate using a map set in advance based on the engine speed, the valve overlap amount, and the exhaust valve front-rear differential pressure, and the scavenging rate setting unit 508 scavenges the calculation result. Read as a rate. As shown in FIG. 5, the map used here is the exhaust valve front-rear differential pressure and the horizontal axis is the valve overlap amount.
  • the control unit 12 stores a plurality of maps for each engine speed. Yes.
  • FIG. 6 is a block diagram showing the calculation contents for obtaining the exhaust pressure read by the exhaust pressure reading unit 502. Since the exhaust pressure is greatly affected by the atmospheric pressure and the exhaust temperature, correction based on these increases the accuracy of estimating the exhaust pressure, and consequently the accuracy of estimating the scavenging rate. Specifically, the following calculation is performed.
  • the exhaust temperature reading unit 601 reads the detection value of the exhaust temperature sensor 17, and the intake air amount reading unit 602 reads the detection value of the air flow meter 8.
  • a reference exhaust pressure calculation unit 603 calculates a reference exhaust pressure using a map prepared in advance based on these read values. Thus, the exhaust pressure corresponding to the intake air amount and the exhaust temperature can be set as the reference value.
  • the reference atmospheric pressure reading unit 604 reads the detected value of the atmospheric pressure sensor 16 when the reference exhaust pressure is calculated. Further, the atmospheric pressure reading unit 605 reads the current detection value of the atmospheric pressure sensor 16. Then, the atmospheric pressure correction unit 606 calculates the sum of the value obtained by subtracting the reference atmospheric pressure from the reference exhaust pressure and the atmospheric pressure, and the exhaust pressure calculation unit 607 reads the calculation result as the exhaust pressure. Thereby, the exhaust pressure according to atmospheric pressure can be estimated.
  • FIG. 7 is a block diagram for calculating the transient exhaust pressure fluctuation amount read by the transient pressure fluctuation reading unit.
  • the transient exhaust pressure fluctuation amount is calculated using the intake air amount and the change amount of the throttle valve opening as a trigger for determining whether or not the operation is transient.
  • the intake air amount reading unit 701 reads the detection value of the air flow meter 8.
  • a throttle valve opening reading unit 702 reads the throttle opening.
  • the throttle valve opening may be detected by a throttle position sensor, or in the case of an electronically controlled throttle, an instruction value to an actuator that drives the throttle valve may be read.
  • the intake air change rate calculation unit 703 calculates the intake air change rate ⁇ QA / ms, which is the change rate of the intake air amount per millisecond, based on the intake air amount read by the intake air amount reading unit 701.
  • the intake air change rate correction value calculation unit 714 calculates a value obtained by adding a first-order lag to the intake air change rate ⁇ QA / ms as the intake air change rate correction value QMv by the following equation (1).
  • a transient exhaust pressure change amount estimation unit 711 calculates a reference transient exhaust pressure from a previously created map, and inputs the calculation result to the switch unit 712. To do.
  • a change amount of the intake air amount is calculated by the intake air amount change calculation unit 704, and the first transient determination criteria and the intake air amount change amount stored in advance in the first transient determination criteria setting unit 705 by the first determination unit 708. And compare.
  • the throttle valve opening change amount calculation unit 706 calculates the change amount of the throttle valve opening, and the second determination unit 709 stores the second transient determination criterion and the throttle stored in the second transient determination criterion setting unit 707 in advance. Compare the amount of change in valve opening.
  • the third determination unit 710 reads the determination results of the first determination unit 708 and the second determination unit 709. Then, at least one of the intake amount change amount larger than the first transient determination criteria in the first determination unit 708 or the throttle valve opening change amount larger than the first transient determination criteria in the second determination unit 709 is established. If it is, it is determined that the vehicle is in transient operation. This determination result is input to the switch unit 712, and the switch unit 712 switches to a side where a transient exhaust pressure fluctuation is added when in a transient operation, and switches to a side where a transient exhaust pressure fluctuation amount is not added when not in a transient operation. The transient exhaust pressure fluctuation determining unit 713 sets the value output from the switch unit 712 as the transient exhaust pressure fluctuation amount.
  • FIG. 8 is a flowchart showing a control routine for determining the conversion angle of the variable valve mechanism 14. During this control, the valve overlap period is calculated.
  • step S801 the control unit 12 reads the operating state of the internal combustion engine 1, for example, the collector pressure, the engine speed, the intake air temperature, the atmospheric pressure, the basic injection pulse, and the like.
  • step S802 the control unit 12 calculates a scavenging amount upper limit value obtained from the operation state.
  • a scavenging amount upper limit value obtained from the operation state.
  • FIG. 9 is a block diagram for calculating the scavenging amount upper limit value based on the catalyst temperature.
  • the collector pressure Boost As the operating state, the collector pressure Boost, the engine rotation speed NE, the basic injection pulse TP, the intake air temperature TAN, and the atmospheric pressure PAMB are read.
  • the catalyst upper limit temperature calculation unit 901 calculates a catalyst upper limit temperature that is an upper limit temperature of the exhaust catalyst 18 determined according to the operating state. Similarly, the scavenged catalyst upper limit temperature calculation unit 902 calculates the estimated scavenging catalyst temperature that is the estimated temperature of the exhaust catalyst 18 in the normal operating state where there is no scavenging, that is, the operating state in which the mixture of scavenging gas and exhaust gas is not combusted. calculate.
  • a scavenging catalyst temperature increase allowable value calculation unit 903 calculates a scavenging catalyst temperature increase allowable value that is a difference between the catalyst upper limit temperature and the non-scavenging estimated catalyst temperature.
  • the temperature rise of the exhaust catalyst 18 during scavenging can be allowed by the permissible value for the catalyst temperature rise during scavenging.
  • the catalyst temperature allowable scavenging amount calculation unit 905 uses a map created in advance based on the scavenging catalyst temperature increase allowable value and the air-fuel ratio in the cylinder of the internal combustion engine 1 calculated by the cylinder air-fuel ratio calculation unit 904.
  • a catalyst temperature allowable scavenging amount that is a scavenging amount upper limit value determined from the temperature of 18 is calculated.
  • the map used here shows the relationship between the scavenging amount and the catalyst temperature rise for each cylinder air-fuel ratio.
  • the calculation result is set by the catalyst temperature allowable scavenging amount determination unit 906 as the catalyst temperature allowable scavenging amount.
  • step S803 in FIG. 8 the control unit 12 determines the valve overlap period based on the scavenging amount obtained in step S802. If the scavenging amount and the valve overlap period are obtained in advance according to the specifications of the internal combustion engine to be applied, the valve overlap period can be easily set based on the scavenging amount. Then, the overlap amount reading unit 506 in FIG. 5 reads this value.
  • step S804 the control unit 12 determines the conversion angle of the variable valve mechanism 14 for realizing the valve overlap period determined in step S803. If the relationship between the valve overlap period and the conversion angle is obtained in advance in accordance with the profile of the intake cam and exhaust cam of the internal combustion engine 1 to be applied, the conversion angle can be easily determined in accordance with the valve overlap period. Can do.
  • the mixture of scavenging gas and exhaust gas mixed in the exhaust manifold 3 can be controlled to an air-fuel ratio at which combustion is easy.
  • the present embodiment has been described with respect to the case where the internal combustion engine 1 is a direct injection type in-cylinder, the present invention is not limited to this, and a so-called port injection type internal combustion in which fuel is injected into an intake port communicating with each cylinder. Applicable to institutions.
  • a port injection type internal combustion engine if the fuel injection is performed after the valve overlap period ends, that is, after the exhaust valve is closed, the injected fuel may be discharged together with the scavenging gas to the exhaust manifold 3. Therefore, the fuel injection amount setting method described above can be applied as it is.
  • the cylinder scavenging gas amount estimation unit 303 estimates the cylinder scavenging gas amount for the cylinder that is in the intake stroke when the cylinder whose trap trap intake air amount is calculated is in the exhaust stroke. This is to cope with a transient operation state. However, in the normal operation, the cylinder trap intake air amount and the cylinder scavenging gas amount are the same for each cylinder, so the cylinder scavenging gas amount of the same cylinder as the cylinder that calculated the cylinder trap intake air amount is used. Can also determine the fuel injection amount.
  • FIG. 10 is a block diagram showing the calculation contents for determining the fuel injection amount based on the scavenging gas amount and the exhaust gas amount of one cylinder and estimating the cylinder air-fuel ratio and the exhaust pipe air-fuel ratio.
  • the cylinder scavenging gas amount estimation unit 303 in FIG. 3 estimates the cylinder scavenging gas amount for the cylinder that is in the intake stroke when the cylinder for which the cylinder trap intake air amount has been calculated is in the exhaust stroke, but in FIG. The amount of scavenging gas in the same cylinder as the cylinder whose amount is calculated is estimated.
  • the control unit 12 includes an exhaust gas that is richer than the stoichiometric air-fuel ratio that is discharged during the exhaust stroke of one cylinder, and a scavenging gas that is scavenged during the valve overlap period from other cylinders that are in the intake stroke during the exhaust stroke.
  • a scavenging gas that is scavenged during the valve overlap period from other cylinders that are in the intake stroke during the exhaust stroke.
  • the control unit 12 determines the amount of fresh air at the end of the intake stroke of one cylinder and the amount of fresh air in the scavenging gas scavenged from other cylinders that are in the intake stroke during the exhaust stroke of one cylinder. Sets the fuel injection amount to the cylinder. As a result, the air-fuel ratio in the exhaust manifold 3 can be accurately controlled even during transient operation in which the exhaust valve front-rear pressure of each cylinder sequentially changes.
  • control unit 12 controls the fuel injection amount to be injected by one fuel injection in one stroke, effects such as improvement of filling efficiency due to latent heat of vaporization and improvement of reactivity of unburned hydrocarbons can be obtained.
  • the control unit 12 estimates the air-fuel ratio in the cylinder based on the fuel injection amount, and the air-fuel ratio in the cylinder is set based on one of the combustion stability limit, smoke generation limit, or rich misfire limit in the cylinder. If the value is exceeded, the scavenging amount is limited. Thereby, both drivability and exhaust performance can be achieved.
  • the control unit 12 sets the air-fuel ratio in the exhaust manifold 3 based on the output request or exhaust performance request of the internal combustion engine 1. As a result, even if the scavenging amount is large, the exhaust catalyst 18 is cooled by the scavenging gas and the conversion efficiency is lowered.
  • the fuel injection amount is set in consideration of the exhaust amount in order to set the air-fuel ratio of the exhaust gas to the stoichiometric air-fuel ratio. While the fuel injection timing is after the exhaust valve is closed during the intake stroke or during the compression stroke, the timing at which the injected fuel and the scavenging of the other cylinders meet is between the expansion stroke and the exhaust stroke of the injection cylinder. Therefore, there is a time delay.
  • the fuel injection timing # 3in of the third cylinder is after the exhaust valve is closed during the intake stroke or during the compression stroke, whereas the injected fuel and scavenging by the injection meet the valve overlap of the first cylinder.
  • Period # 1sc is delayed by 3 strokes.
  • control unit 12 increases the injection amount according to the degree of acceleration when calculating the fuel injection amount at the fuel injection timing # 3 in of the third cylinder.
  • the injection amount should be increased as the acceleration rate increases. Further, the scavenging amount for calculating the injection amount may be corrected according to the acceleration.
  • the acceleration degree can be calculated based on the change rate of the throttle opening, the change rate of the intake air amount, or the change rate of the vehicle speed.
  • the cylinder direct injection internal combustion engine has been described.
  • a so-called port injection internal combustion engine that injects fuel toward the intake port is also applicable. That is, in the port injection type internal combustion engine, since the intake valve is closed after the compression stroke, the method of additionally injecting fuel after the expansion stroke cannot control the air-fuel ratio in the exhaust manifold, but the fuel injection is in one stroke.
  • the fuel injection timing can be applied after the valve overlap period during the intake stroke ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 排気エネルギにより駆動する過給機と、燃料噴射制御手段とを備え、燃料噴射制御手段は、一の気筒への燃料噴射量をシリンダ内の空燃比が理論空燃比よりリッチになるように、かつ、一の気筒の排気行程中に排出される排気ガスと、当該排気行程中に吸気行程となる他の気筒からバルブオーバーラップ期間中に掃気される掃気ガスとが排気管内で混合したときに燃焼しやすい空燃比となるように、一の気筒への燃料噴射量を設定する。

Description

多気筒内燃機関の制御装置
 本発明は、可変動弁機構及び過給機を備える内燃機関の空燃比制御に関する。
 排気エネルギを利用してタービンを回転させるターボ式過給機(以下、単に過給機という)を備える内燃機関において、充填効率を向上させるためには過給機の過給効率を高めることが有効である。そして、過給効率を高めるためには、排気温度を上昇させることが有効である。
 例えば、JP2008-101502Aには、一の気筒のバルブオーバーラップ期間中にシリンダから排気通路へ吹き抜ける吹き抜け量を求め、同時期に膨張行程となっている気筒で、通常の燃料噴射とは別に、吹き抜け量に応じた後燃え用の燃料を噴射する技術が開示されている。
 これによれば、吹き抜けた空気と後燃え用の燃料の混合比が理論空燃比となるように制御することで、当該混合気が排気通路中で燃焼し、これにより排気温度が上昇し、タービンを駆動するエネルギが増大するので、結果的に充填効率が向上する。また、空燃比がストイキであるため、排気性能への跳ね返りもない。
 しかしながら、JP2008-101502Aの構成では、後燃え用の燃料は膨張行程の後半に噴射されているため、燃料中の炭化水素は相対的に燃焼しにくい炭素鎖の長い高級炭化水素のまま排気通路へ排出されることになり、また、吹き抜けた空気と混合して燃焼するまでに霧化が十分に進まないおそれがある。後燃え用燃料の一部が燃焼しない場合には、排気温度が狙ったほどには上昇しないので、過給効率の向上幅も小さくなる。また、理論空燃比よりリッチな排気が排気浄化装置に流入することになるので、排気性能を悪化させることになる。
 本発明の目的は、したがって、過給機付き多気筒内燃機関において、充填効率の向上と排気性能を両立することである。
 この発明の詳細並びに他の特徴や利点は、明細書の以降の記載の中で説明されるとともに、添付された図面に示される。
図1は本実施形態を適用するシステムの構成図である。 図2は直列4気筒内燃機関の行程順序を示す図である。 図3はコントロールユニットが実行する、燃料噴射量を設定するための演算内容を示すブロック図である。 図4はコントロールユニットが実行する、バルブオーバーラップ期間を低減するか否かを判断するための制御のブロック図である。 図5はコントロールユニットが実行する、掃気率を求めるための演算内容を示すブロック図である。 図6はコントロールユニットが実行する、排気圧力を求めるための演算内容を示すブロック図である。 図7はコントロールユニットが実行する、過渡排気圧力変動を求めるための演算内容を示すブロック図である。 図8はコントロールユニットが実行する、可変動弁機構の変換角を決定するための演算内容を示すブロック図である。 図9はコントロールユニットが実行する、触媒温度に基づく掃気量上限値算出のためのブロック図である。 図10はコントロールユニットが実行する、一のシリンダの掃気ガス量と排気ガス量に基づいて燃料噴射量を決定し、シリンダ内空燃比及び排気管内空燃比を推定するための演算内容を示すブロック図である。
 図1は本実施形態を適用する内燃機関のシステム構成図である。
 内燃機関1の吸気マニホールド2の入口には、内燃機関1に流入する空気量を調整するためのスロットルチャンバ4が設けられ、その上流には吸気通路6が接続されている。吸気通路6のスロットルチャンバ4より上流側には、過給機5のコンプレッサ5aが設置され、更にその上流には、吸入空気量を検出するエアフローメータ8が設置されている。
 内燃機関1の各シリンダには燃料をシリンダ内に直接噴射する燃料噴射弁15が配置されている。排気通路7には、過給機5のタービン5bが設置されている。
 過給機5は、いわゆるターボ式過給機であり、コンプレッサ5aとタービン5bがシャフト5cを介して接続されている。このため、タービン5bが内燃機関1の排気エネルギにより回転すると、コンプレッサ5aも回転し、吸入空気を下流側に圧送する。
 タービン5bの下流側には、排気浄化用の排気触媒18が配置される。排気触媒18としては、三元触媒等が用いられる。
 リサーキュレーション通路10は、吸気通路6aと、エアフローメータ8より下流側かつコンプレッサ5aより上流側の吸気通路(以下、吸気通路6bという)とを接続する通路であり、途中に設けたリサーキュレーションバルブ9が開弁すると両吸気通路6a、6bが連通し、閉弁すると連通が遮断される。
 リサーキュレーションバルブ9は、一般に知られているものと同様に、過給圧と吸気マニホールド2内の圧力(以下、吸気管圧という)との差圧が所定値以上になったときに開弁する。例えば、内部に備える弁体に対して、内蔵するスプリングの反力が閉弁方向に付勢されており、さらに、弁体の開弁方向に過給圧が作用し、閉弁方向には吸気管圧が作用しており、過給圧と吸気管圧との差圧がスプリングの反力を超えた場合に開弁する。これにより、過給状態で走行中にスロットルチャンバ4が全閉となった場合に、過給圧の過上昇を防止することができる。なお、リサーキュレーションバルブ9が開弁するときの過給圧と吸気管圧との差圧は、スプリングのバネ定数により任意の値に設定することができる。
 可変動弁機構14は、排気弁と吸気弁のいずれもが開弁したオーバーラップ期間が生ずるように、吸気弁閉時期(IVC)を変化させ得るものであれば足りる。例えば、クランクシャフトに対する吸気カムシャフトの回転位相を変化させるものや、吸気バルブの作動角を変化させるもの等、一般的に知られている可変動弁機構を用いることができる。なお、排気弁側にも同様の可変動弁機構14を設けて、吸気弁及び排気弁のバルブタイミングを可変制御するようにしてもよい。
 コントロールユニット12は、エアフローメータ8で検出する吸入空気量、アクセル開度センサ13で検出するアクセル開度、その他図示しないクランク角センサで検出するエンジン回転速度等といった運転状態に関するパラメータを読み込み、これらに基づいて点火時期、バルブタイミング、空燃比等の制御を行う。
 次に、コントロールユニット12が行うバルブタイミング制御及び空燃比制御について説明する。
 コントロールユニット12は、吸気マニホールド2内の圧力が排気マニホールド3内の圧力より高い場合には、吸気弁及び排気弁が開弁しているバルブオーバーラップ期間が生ずるバルブタイミングとなるように可変動弁機構14を作動させる。
 これは、バルブオーバーラップ期間中に、吸気マニホールド2から流入した新気が掃気ガスとしてそのまま排気マニホールド3へ吹き抜ける、いわゆる掃気効果を利用して、タービン5bの回転速度を高め、シリンダ内への充填効率を高めるためである。
 この効果について図2を用いて具体的に説明する。図2は点火順序が1番気筒-3番気筒-4番気筒-2番気筒である直列4気筒内燃機関の行程順序について示したものである。図中の斜線を付した部分はバルブオーバーラップ期間を示す。
 バルブオーバーラップ期間を設けると、排気マニホールド3では排気行程中の気筒から排出される排気ガスと、そのとき吸気行程中の他の気筒の掃気ガスが合流する。例えば、図2の3番気筒の排気行程#3exで排気される排気ガスと、そのとき吸気行程となる1番気筒のバルブオーバーラップ期間#1scに掃気される掃気ガスが合流する。
 このため、バルブオーバーラップ期間が無い場合、つまり掃気が無い場合に比べてタービン5bに導入されるガス量が増加する。これによりタービン5bの回転速度が高まり、コンプレッサ5aによる過給圧が高まる。また、掃気によって新気ガスとともにシリンダ内の残留ガスも排出されるので、結果的にシリンダの新気の充填効率が高まる。
 さらに、本実施形態では、後述する空燃比制御によって、排気マニホールド3で合流した排気ガスと掃気ガスの混合気を、タービン5bに流入する前に燃焼させることで、タービン5bを回転させるためのエネルギをより増大させる。
 このために、あるシリンダから排気行程中に排気される排気ガスと、同時期に吸気行程となるシリンダからバルブオーバーラップ期間中に掃気される掃気ガスの混合気が、タービン5bに流入する前に燃焼し易い空燃比となるように燃料噴射量を設定する。すなわち、シリンダ内の空燃比を理論空燃比よりもリッチな空燃比にして、未燃炭化水素を含んだ排気ガスを排出させ、この排気ガスと掃気ガスとが混合することで燃焼し易い空燃比、例えば理論空燃比になるような燃料噴射量を設定する。
 例えば、図2の3番気筒の吸気行程#3inで吸入した空気量に対する燃料噴射量を設定する場合は、3番気筒の排気行程#3exで排出される排気ガスと1番気筒のバルブオーバーラップ期間#1scで排出される掃気ガスの混合気が燃焼し易い空燃比となるような燃料噴射量を設定する。つまり、3番気筒のシリンダ内の空燃比に着目すると、理論空燃比よりリッチな空燃比となり、排気行程では未燃燃料を含む排気ガスが排出される。
 上記のように設定した燃料噴射量は、1行程あたり1回の燃料噴射によってすべて噴射する。燃料噴射時期は、吸気行程中のバルブオーバーラップ期間終了後、つまり排気弁閉弁後、又は圧縮行程中とする。なお、空燃比制御の詳細については後述する。
 このように噴射すると、排気ガス中の未燃炭化水素となる燃料は、膨張行程中の燃焼熱を受けることで炭素鎖の長い高級炭化水素から炭素鎖が短い低級炭化水素へと変化して、より燃焼性が高くなる。また、シリンダ内の空燃比が理論空燃比よりリッチになることで、出力空燃比に近づくので、理論空燃比で運転する場合より出力を向上させ得る。さらに、燃料がシリンダ内で気化する際の気化潜熱によってシリンダ内が冷却されるので、充填効率の向上に寄与する。
 図3は、シリンダ内に噴射する燃料噴射量を設定する演算内容を示すブロック図である。なお、このブロック図には、設定した燃料噴射量を用いて行う、シリンダ内及び排気マニホールド3内の空燃比の推定も含まれている。
 排気管内空燃比目標値設定部301は、排気マニホールド3内の目標空燃比である排気管内目標空燃比を設定する。目標空燃比は、排気ガスと掃気ガスの混合気が燃焼し易い空燃比、例えば理論空燃比に設定する。
 なお、理論空燃比に限らず、例えば、排気ガスと掃気ガスの混合気が、排気性能の要求値を満足するような、つまり排気触媒18の転換効率を低下させない程度の空燃比になるように設定してもよい。この場合でも、掃気効果によりシリンダ内の充填効率は向上して発生トルクは増大し、かつ排気性能の低下を防止できる。
 シリンダ内トラップ吸入空気量推定部302は、エアフローメータ8で検出した吸入空気量と、掃気率とに基づいて、吸入空気量のうち吸気行程終了時点でシリンダ内に閉じ込められている量であるシリンダ内トラップ吸入空気量を推定する。なお、掃気率は新気量をシリンダ内ガス量で除した値をいう。掃気率の算出方法については後述する。
 シリンダ掃気ガス量推定部303は、シリンダ内トラップ吸入空気量を算出した気筒が排気行程のときに吸気行程となる気筒について、吸入空気量のうちバルブオーバーラップ期間中に排気マニホールド3へ流出する量であるシリンダ掃気ガス量を掃気率と吸入空気量に基づいて推定する。
 シリンダ内燃料噴射量設定部304では、排気管内目標空燃比、シリンダ内トラップ吸入空気量、シリンダ掃気ガス量に基づいて、シリンダ内への燃料噴射量を決定する。
 排気ガスは、排気マニホールド3で掃気ガスと混合すると、掃気ガスに希釈される分だけ空燃比がリーン側に変化する。例えば、シリンダ内トラップ吸入空気量に対して理論空燃比となるように燃料噴射量を設定すると、排気の空燃比は理論空燃比となり、排気マニホールド3で掃気ガスと混合すると理論空燃比よりリーンになる。
 そこで、シリンダ内トラップ吸入空気量及びシリンダ掃気ガス量に基づいて、掃気ガスに希釈されたときに排気管内目標空燃比となるのに必要な炭化水素量を求め、この炭化水素量を発生させるのに必要な燃料噴射量を、シリンダ内トラップ吸入空気量に基づいて設定する。
 シリンダ内空燃比推定部305では、燃料噴射量とシリンダ内トラップ吸入空気量からシリンダ内の空燃比を推定する。排気管内空燃比推定部306では、シリンダ内空燃比とシリンダ掃気ガス量から排気マニホールド3内の空燃比を推定する。これらの推定値と排気管内目標空燃比とに基づいて、シリンダ内燃料噴射量をフィードバック制御すれば、排気マニホールド3内の空燃比をより高精度で制御することができる。
 図4は、シリンダ内空燃比推定部305で求めたシリンダ内空燃比推定値に基づいてバルブオーバーラップ期間を低減するか否かを判断する制御のブロック図である。掃気量が増大するほど、排気管内空燃比を所望の空燃比にするために必要な燃料量も増大し、これに伴ってシリンダ内の空燃比もよりリッチ化する。そこで、図3の演算によって求められた燃料噴射量ではシリンダ内の空燃比が燃焼限界を超えてしまう場合には、バルブオーバーラップ期間を短くして掃気量を減少させるために、図4の演算を行う。
 シリンダ内空燃比許容値算出部401では、燃焼限界等の条件に基づいて求まるシリンダ内空燃比許容値を設定する。シリンダ内空燃比推定部402は、図4のシリンダ内空燃比推定部305で推定したシリンダ内空燃比を読み込む。
 判定部403では、シリンダ内空燃比許容値とシリンダ内空燃比推定値を比較し、シリンダ内空燃比推定値の方がリッチであると判定したら、可変動弁機構14の制御部であるVTC制御部404にバルブオーバーラップ期間の低減要求を行う。
 上述した図3、図4の制御により、排気マニホールド3内の排気ガスと掃気ガスとの混合気の空燃比を燃焼し易い空燃比に制御し、かつシリンダ内の燃焼安定性を確保することができる。
 次に、図3でシリンダ内トラップ吸入空気量及びシリンダ掃気ガス量の推定に用いる掃気率について説明する。
 図5は掃気率を算出するための演算内容を示すブロック図である。
 掃気率は、定常運転時であればエンジン回転速度や吸入空気量から求まる発熱量や排気マニホールド3を通過するガス量に基づいて定まる。しかし、過渡運転時には排気マニホールド3を流れるガス量の増加速度に対してタービン5bの回転速度上昇が遅れるため、圧損が生じる。その結果、過渡運転時における排気圧力は、同一吸入空気量、同一エンジン回転速度の定常運転時における排気圧力に比べて高くなる。そこで、図5の演算では、定常運転時の排気圧力を、過渡運転時における排気圧力変動量(以下、過渡圧力変動という)の増減分で補正して掃気率を算出する。
 コレクタ圧力読込部501で、吸気マニホールド2内の圧力をコレクタ圧力として読み込む。排気圧力読込部502では後述する演算により求めた排気圧を読み込む。過渡圧力変動読込部503で、後述する演算により求めた過渡排気圧力変動量を読み込む。
 排気バルブ前後差圧算出部504では、コレクタ圧力から排気圧力を減算し、それに過渡圧力変動を加算して排気バルブ前後差圧を算出する。これにより過渡排気圧力変動量を含んだ排気バルブ前後差圧が算出される。
 一方、エンジン回転速度読込部505でクランク角センサの検出値に基づいてエンジン回転速度を読み込み、オーバーラップ量読込部506で後述する演算で求めたバルブオーバーラップ量を読み込む。
 そして、掃気率演算部507で、エンジン回転速度、バルブオーバーラップ量、及び排気バルブ前後差圧に基づいて予め設定したマップを用いて掃気率を求め、その演算結果を掃気率設定部508で掃気率として読み込む。ここで用いるマップは、図5に示すように、縦軸が排気バルブ前後差圧、横軸がバルブオーバーラップ量となっており、コントロールユニット12はこのマップをエンジン回転速度ごとに複数記憶している。
 図6は、排気圧力読み込む部502で読み込む排気圧力を求めるための演算内容を示すブロック図である。排気圧力は、大気圧や排気温度の影響を大きく受けるので、これらに基づく補正を行うことで排気圧力の推定精度を高め、ひいては掃気率の推定精度を高める。具体的には、次のような演算を行う。
 排気温度読込部601で排気温度センサ17の検出値を読み込み、吸入空気量読込部602でエアフローメータ8の検出値を読み込む。基準排気圧力算出部603で、これら読み込んだ値に基づいて、予め作成しておいたマップを用いて基準となる排気圧力を算出する。これにより吸入空気量及び排気温度に応じた排気圧力を基準値とすることができる。
 一方、基準大気圧読込部604で、基準排気圧を算出したときの大気圧センサ16の検出値を読み込む。さらに、大気圧読込部605で、大気圧センサ16の現在の検出値を読み込む。そして、大気圧補正部606で、基準排気圧力から基準大気圧を減算した値と大気圧との和を演算し、演算結果を排気圧力算出部607で排気圧力として読み込む。これにより、大気圧に応じた排気圧力を推定することができる。
 図7は、過渡圧力変動読み込み部で読み込む過渡排気圧力変動量を算出するためのブロック図である。
 ここでは、過渡運転か否かを判定するトリガーとして吸入空気量及びスロットルバルブ開度の変化量を用いて、過渡排気圧力変動量を算出する。
 吸入空気量読込部701でエアフローメータ8の検出値を読み込む。スロットルバルブ開度読込部702でスロットル開度を読み込む。スロットルバルブ開度は、スロットルポジションセンサで検出してもよいし、電子制御スロットルの場合にはスロットルバルブを駆動するアクチュエータへの指示値を読み込んでもよい。
 吸気変化速度算出部703では、吸入空気量読込部701で読み込んだ吸入空気量に基づいて吸入空気量の1ミリ秒あたりの変化速度である吸気変化速度△QA/msを算出する。吸気変化速度補正値演算部714では下式(1)により吸気変化速度△QA/msに一次遅れを与えた値を吸気変化速度補正値QMvとして算出する。
  QMv=△QA/ms×k+(1-k)×QMvz   ・・・(1)
 過渡排気圧変化量推定部711で、上記のようにして求めた吸気変化速度補正値QMvに基づいて、予め作成したマップから基準となる過渡排気圧を算出し、算出結果をスイッチ部712に入力する。
 吸気量変化量算出部704で吸入空気量の変化量を算出し、第1判定部708で、第1過渡判定クライテリア設定部705に予め格納しておいた第1過渡判定クライテリアと吸気量変化量とを比較する。
 スロットルバルブ開度変化量算出部706でスロットルバルブ開度の変化量を算出し、第2判定部709で、第2過渡判定クライテリア設定部707に予め格納しておいた第2過渡判定クライテリアとスロットルバルブ開度変化量とを比較する。
 第3判定部710は、第1判定部708及び第2判定部709の判定結果を読み込む。そして、第1判定部708で吸気量変化量が第1過渡判定クライテリアより大きい、または第2判定部709でスロットルバルブ開度変化量が第1過渡判定クライテリアより大きい、の少なくとも一方が成立していれば、過渡運転時であると判定する。この判定結果はスイッチ部712に入力され、スイッチ部712は過渡運転時である場合は過渡排気圧力変動を付加する側へ切り替わり、過渡運転時でない場合は過渡排気圧力変動量を付加しない側へ切り替る。過渡排気圧力変動決定部713では、スイッチ部712から出力された値を過渡排気圧力変動量として設定する。
 図8は、可変動弁機構14の変換角を決定するための制御ルーチンを示すフローチャートである。この制御の途中でバルブオーバーラップ期間を算出する。
 ステップS801で、コントロールユニット12は内燃機関1の運転状態、例えば、コレクタ圧、エンジン回転速度、吸気温度、大気圧、基本噴射パルス等を読み込む。
 ステップS802で、コントロールユニット12は上記運転状態から求まる掃気量上限値を算出する。ここで、掃気量上限値の求め方の一例について説明する。
 図9は、触媒温度に基づく掃気量上限値算出のためのブロック図である。
 掃気分を含めた排気マニホールド3内の空燃比が理論空燃比となるように燃料噴射をして、排気マニホールド3内で排気ガスと掃気ガスの混合気を燃焼させる場合、掃気量が多くなるほど燃焼による排気触媒18の温度上昇代が大きくなる。排気触媒18は、温度が過剰に上昇すると排気浄化性能の劣化を引き起こすので、排気触媒18の温度上昇を抑制するための掃気量の上限値を設定する。
 なお、運転状態としては、コレクタ圧Boost、エンジン回転速度NE、基本噴射パルスTP、吸気温度TAN、及び大気圧PAMBを読み込む。
 触媒上限温度算出部901は、運転状態に応じて定まる排気触媒18の上限温度である触媒上限温度を算出する。同様に、掃気無し触媒上限温度算出部902で掃気が無い通常運転状態、つまり掃気ガスと排気ガスとの混合気を燃焼させない運転状態での排気触媒18の推定温度である掃気無し触媒推定温度を算出する。
 掃気時触媒昇温許容値算出部903は、触媒上限温度と掃気無し触媒推定温度の差である掃気時触媒昇温許容値を算出する。この掃気時触媒昇温許容値分だけ、掃気時の排気触媒18の昇温を許容し得る。
 触媒温度許容掃気量算出部905では、掃気時触媒昇温許容値と、シリンダ内空燃比算出部904で求めた内燃機関1のシリンダ内の空燃比とから、予め作成したマップを用いて排気触媒18の温度から定まる掃気量上限値である触媒温度許容掃気量を算出する。ここで用いるマップは、シリンダ内空燃比ごとに掃気量と触媒昇温量との関係を示すものである。
 そして、算出結果を触媒温度許容掃気量決定部906で触媒温度許容掃気量として設定する。
 図8のステップS803で、コントロールユニット12はステップS802で求めた掃気量に基づいてバルブオーバーラップ期間を決定する。適用する内燃機関の仕様に応じて、掃気量とバルブオーバーラップ期間を予め求めておけば、掃気量に基づいて容易にバルブオーバーラップ期間を設定することができる。そして、図5のオーバーラップ量読込部506では、この値を読み込む。
 ステップS804で、コントロールユニット12はステップS803で決定したバルブオーバーラップ期間を実現するための可変動弁機構14の変換角を決定する。適用する内燃機関1の吸気カム、排気カムのプロフィール等に応じて、バルブオーバーラップ期間と変換角との関係を予め求めておけば、バルブオーバーラップ期間に応じて容易に変換角を決定することができる。
 上記にようにして図3の演算により燃料噴射量を設定すれば、排気マニホールド3内で混合した掃気ガスと排気ガスの混合気を燃焼し易い空燃比に制御することができる。
 なお、本実施形態は、内燃機関1が筒内直接噴射式の場合について説明したが、これに限られるわけではなく、各シリンダに連通する吸気ポート内に燃料を噴射する、いわゆるポート噴射式内燃機関にも適用できる。ポート噴射式内燃機関の場合には、上記燃料噴射をバルブオーバーラップ期間終了後、つまり排気弁閉弁後に行うようにすれば、噴射された燃料が掃気ガスとともに排気マニホールド3に排出されることがないので、上述した燃料噴射量の設定方法をそのまま適用することができる。
 また、図3では、シリンダ掃気ガス量推定部303において、シリンダ内トラップ吸入空気量を算出した気筒が排気行程のときに吸気行程となる気筒についてシリンダ掃気ガス量を推定している。これは、過渡運転状態にも対応するためである。しかし、定常運転の場合には、シリンダ内トラップ吸入空気量及びシリンダ掃気ガス量はいずれも各気筒とも同じなので、シリンダ内トラップ吸入空気量を算出した気筒と同じ気筒のシリンダ掃気ガス量を用いても燃料噴射量を決定できる。
 図10は、一のシリンダの掃気ガス量と排気ガス量に基づいて燃料噴射量を決定し、シリンダ内空燃比及び排気管内空燃比を推定するための演算内容を示すブロック図である。図3のシリンダ掃気ガス量推定部303では、シリンダトラップ吸入空気量を算出した気筒が排気行程のときに吸気行程となる気筒についてシリンダ掃気ガス量を推定したが、図10では、シリンダトラップ吸入空気量を算出した気筒と同じ気筒の掃気ガス量を推定する。
 上述した本実施形態の効果について説明する。
 コントロールユニット12は、一の気筒の排気行程中に排出される理論空燃比よりリッチな排気ガスと、当該排気行程中に吸気行程となる他の気筒からバルブオーバーラップ期間中に掃気される掃気ガスとが排気管内で混合して所望の空燃比となるように、一の気筒への燃料噴射量を設定する。これにより、掃気効果によって充填効率が向上して内燃機関1の発生トルクを増大させることができる。また、掃気ガスとなった新気によって排気ガスの空燃比がリーン化することを防止できるので、排気触媒18の転換効率の悪化を防止できる。
 コントロールユニット12は、一の気筒の吸気行程終了時の新気量と、一の気筒の排気行程時に吸気行程となる他の気筒から掃気される掃気ガス中の新気量とに基づいて一の気筒への燃料噴射量を設定する。これにより、各気筒の排気バルブ前後圧が逐次変化する過渡運転時でも、精度良く排気マニホールド3内の空燃比を制御できる。
 コントロールユニット12は、燃料噴射量を1行程中に1回の燃料噴射で噴射するよう制御するので、気化潜熱による充填効率の向上や、未燃炭化水素の反応性の向上といった効果が得られる。
 コントロールユニット12は、燃料噴射量に基づいて筒内の空燃比を推定し、筒内の空燃比が筒内の燃焼安定限界、スモーク発生限界、またはリッチ失火限界のいずれかに基づいて設定した所定値を超えた場合は、掃気量を制限する。これにより、運転性と排気性能の両立を図ることができる。
 コントロールユニット12は、内燃機関1の出力要求または排気性能要求に基づいて排気マニホールド3内の空燃比を設定する。これにより、掃気ガスによって排気触媒18が冷却されて転換効率が低下する等の理由により制限されていたような多量の掃気量であっても、制限されなくなる。
 次に、その他の実施形態について説明する。
 本実施形態では、排気の空燃比を理論空燃比とするために、排気量を考慮して燃料噴射量を設定する。燃料噴射のタイミングは吸気行程中の排気弁閉弁後、又は圧縮行程中であるのに対し、噴射燃料と他の気筒の掃気が出会うタイミングは、噴射気筒の膨張行程と排気行程の間であるため、時間的な遅れがある。
 図2を用いて、再度3番気筒の噴射と1番気筒の掃気を例にして説明する。
 3番気筒の燃料噴射タイミング#3inは、吸気行程中の排気弁閉弁後、又は圧縮行程中であるのに対し、当該噴射による噴射燃料と掃気が出会うのは、1番気筒のバルブオーバーラップ期間#1scとなり、3行程分の遅れがある。
 ここで、内燃機関1が加速運転中である場合に、3番気筒の燃料噴射のタイミング#3inで燃料噴射量を演算したとしても、実際の掃気量はエンジン回転速度の上昇に伴い増加している可能性がある。
 そこで、本実施形態では、コントロールユニット12は3番気筒の燃料噴射のタイミング#3inで燃料噴射量を演算する際に、加速の度合いに応じて噴射量を増量する。
 加速度合が大きいほど噴射量が多くなるようにすればよい。また、噴射量を演算するための掃気量を加速度合に応じて補正するようにしてもよい。
 なお、加速度合は、スロットル開度の変化速度、吸入空気量の変化速度、または車速の変化速度に基づいて算出することができる。
 なお、上述した実施形態では、筒内直接噴射式内燃機関について説明したが、吸気ポートに向けて燃料噴射をする、いわゆるポート噴射式内燃機関であっても適用可能である。すなわち、ポート噴射式内燃機関では圧縮行程以降は吸気弁が閉じているので、膨張行程以降に追加的に燃料を噴射する方法では排気マニホールド内の空燃比を制御できないが、燃料噴射が1行程中に1回の本実施形態では、燃料噴射時期を吸気行程中のバルブオーバーラップ期間終了後とすることで適用できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年2月7日に日本国特許庁に出願された特願2011-24138に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (7)

  1.  排気エネルギにより駆動する過給機と、
     燃料噴射制御手段と、
    を備える多気筒内燃機関の制御装置において、
     前記燃料噴射制御手段は、一の気筒への燃料噴射量をシリンダ内の空燃比が理論空燃比よりリッチになるように、かつ、前記一の気筒の排気行程中に排出される排気ガスと、当該排気行程中に吸気行程となる他の気筒からバルブオーバーラップ期間中に掃気される掃気ガスとが排気管内で混合して所望の空燃比となるように、前記一の気筒への燃料噴射量を設定する多気筒内燃機関の制御装置。
  2.  請求項1に記載の多気筒内燃機関の制御装置において、
     前記燃料噴射制御手段は、前記一の気筒の吸気行程終了時の新気量と、前記一の気筒の排気行程時に吸気行程となる他の気筒から掃気される掃気ガス中の新気量とに基づいて前記一の気筒への燃料噴射量を設定する多気筒内燃機関の制御装置。
  3.  請求項1または2に記載の多気筒内燃機関の制御装置において、
     前記燃料噴射制御手段は、前記燃料噴射量を1行程中に1回の燃料噴射で噴射するよう制御する多気筒内燃機関の制御装置。
  4.  請求項1から3のいずれかに記載の多気筒内燃機関の制御装置において、
     筒内の燃焼状態に応じて掃気量を決定する掃気量制御手段を備え、
     前記掃気量制御手段は、前記燃料噴射量に基づいて筒内の空燃比を推定し、前記筒内の空燃比が筒内の燃焼安定限界、スモーク発生限界、またはリッチ失火限界のいずれかに基づいて設定した所定値を超えた場合は、前記掃気量を制限する多気筒内燃機関の制御装置。
  5.  請求項1から3のいずれかに記載の多気筒内燃機関の制御装置において、
     前記燃料噴射制御手段は、前記多気筒内燃機関の出力要求値または排気性能の要求値に基づいて前記所望の空燃比を設定する多気筒内燃機関の制御装置。
  6.  請求項1から5のいずれかに記載の多気筒内燃機関の制御装置において、
     前記燃料噴射制御手段は、加速度合に応じて前記燃料噴射量を補正する多気筒内燃機関の制御装置。
  7.  請求項6に記載の多気筒内燃機関の制御装置において、
     前記燃料噴射制御手段は、スロットル開度の変化速度、吸入空気量の変化速度、または車速の変化速度のいずれかに基づいて加速度合を算出する多気筒内燃機関の制御装置。
PCT/JP2012/052541 2011-02-07 2012-02-03 多気筒内燃機関の制御装置 WO2012108362A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/983,686 US9399944B2 (en) 2011-02-07 2012-02-03 Control device for multi-cylinder internal combustion engine
KR1020137013447A KR101458732B1 (ko) 2011-02-07 2012-02-03 다기통 내연 기관의 제어 장치
JP2012556864A JP5668763B2 (ja) 2011-02-07 2012-02-03 多気筒内燃機関の制御装置
CN201280004497.3A CN103299052B (zh) 2011-02-07 2012-02-03 多气缸内燃机的控制装置
EP12744322.4A EP2674602B1 (en) 2011-02-07 2012-02-03 Control device for multi-cylinder internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024138 2011-02-07
JP2011024138 2011-02-07

Publications (1)

Publication Number Publication Date
WO2012108362A1 true WO2012108362A1 (ja) 2012-08-16

Family

ID=46638578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052541 WO2012108362A1 (ja) 2011-02-07 2012-02-03 多気筒内燃機関の制御装置

Country Status (6)

Country Link
US (1) US9399944B2 (ja)
EP (1) EP2674602B1 (ja)
JP (1) JP5668763B2 (ja)
KR (1) KR101458732B1 (ja)
CN (1) CN103299052B (ja)
WO (1) WO2012108362A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189586A1 (ja) * 2015-05-22 2016-12-01 日産自動車株式会社 内燃機関システム及び内燃機関の制御方法
JP2017002771A (ja) * 2015-06-08 2017-01-05 トヨタ自動車株式会社 内燃機関
CN107448309A (zh) * 2016-04-21 2017-12-08 通用汽车环球科技运作有限责任公司 内燃机的控制
CN111315976A (zh) * 2017-11-07 2020-06-19 Fca美国有限责任公司 调节扫气期间排放的发动机控制系统和方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015001448B1 (pt) * 2012-07-25 2021-06-08 Toyota Jidosha Kabushiki Kaisha aparelho de controle para motor sobrealimentado
DE102014001672A1 (de) * 2014-02-07 2015-08-13 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
US10441754B2 (en) * 2014-03-26 2019-10-15 Volcano Corporation Intravascular devices, systems, and methods having a core wire formed of multiple materials
DE102014214438B3 (de) * 2014-07-23 2015-08-13 Continental Automotive Gmbh Verfahren zur Steuerung der Kraftstoffzufuhr zur Einstellung eines gewünschten Luft-Kraftstoff-Verhältnisses in einem Zylinder eines Verbrennungsmotors
DE112015006304B4 (de) 2015-03-13 2022-08-11 GM Global Technology Operations LLC Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
JP2017008770A (ja) * 2015-06-19 2017-01-12 トヨタ自動車株式会社 内燃機関の制御装置
DE102015216830A1 (de) * 2015-09-03 2017-03-09 Volkswagen Aktiengesellschaft Verfahren sowie Vorrichtung zur Abgasnachbehandlung einer Brennkraftmaschine
JP6319255B2 (ja) * 2015-09-30 2018-05-09 マツダ株式会社 エンジンの制御装置
JP6319254B2 (ja) * 2015-09-29 2018-05-09 マツダ株式会社 エンジンの制御装置
DE102016201650A1 (de) * 2016-02-03 2017-08-03 Volkswagen Aktiengesellschaft Verfahren zum Berechnen einer Restgasmasse in einem Zylinder einer Verbrennungskraftmaschine und Steuerung
DE102016221847A1 (de) * 2016-11-08 2018-05-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors nach einem Kaltstart
JP6904071B2 (ja) * 2017-06-06 2021-07-14 トヨタ自動車株式会社 内燃機関の制御装置
DE102017222593A1 (de) 2017-12-13 2019-06-13 Volkswagen Aktiengesellschaft Verfahren und Steuervorrichtung zum Bestimmen eines Soll-Saugrohrdrucks einer Verbrennungskraftmaschine
US11002202B2 (en) * 2018-08-21 2021-05-11 Cummins Inc. Deep reinforcement learning for air handling control
US11060435B2 (en) 2018-11-13 2021-07-13 Ford Global Technologies, Llc Methods and systems for an exhaust system
FR3111665B1 (fr) * 2020-06-22 2022-06-24 Psa Automobiles Sa Procede d’estimation d’une pression des gaz d’echappement pour un moteur a combustion interne
JP7444028B2 (ja) * 2020-11-11 2024-03-06 トヨタ自動車株式会社 内燃機関の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146893A (ja) * 2003-11-11 2005-06-09 Toyota Motor Corp 内燃機関および内燃機関の制御方法
JP2008101502A (ja) 2006-10-18 2008-05-01 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2009197759A (ja) * 2008-02-25 2009-09-03 Mazda Motor Corp 過給機付エンジンシステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131333B2 (ja) 1993-05-31 2001-01-31 三菱電機株式会社 エンジンの電子制御燃料噴射装置
US6827051B2 (en) * 1999-12-03 2004-12-07 Nissan Motor Co., Ltd. Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control
JP2006046180A (ja) 2004-08-04 2006-02-16 Nissan Motor Co Ltd 排ガス浄化触媒の暖機制御装置
JP2006299992A (ja) 2005-04-22 2006-11-02 Toyota Motor Corp 内燃機関の制御システム
US7275516B1 (en) 2006-03-20 2007-10-02 Ford Global Technologies, Llc System and method for boosted direct injection engine
DE102006031254A1 (de) 2006-07-06 2008-01-10 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Verbrennungsmotors mit überströmender Luft
JP4253339B2 (ja) * 2006-09-21 2009-04-08 株式会社日立製作所 内燃機関の制御装置
US8126632B2 (en) * 2007-10-26 2012-02-28 Ford Global Technologies, Llc Engine idle speed and turbocharger speed control
JP4609541B2 (ja) 2008-07-18 2011-01-12 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
CN102232141B (zh) * 2010-02-26 2013-07-24 丰田自动车株式会社 内燃机的控制装置
JP5786348B2 (ja) * 2011-02-07 2015-09-30 日産自動車株式会社 過給機付き内燃機関の制御装置
JP2012251535A (ja) * 2011-06-07 2012-12-20 Nissan Motor Co Ltd 内燃機関
US9103293B2 (en) * 2011-12-15 2015-08-11 Ford Global Technologies, Llc Method for reducing sensitivity for engine scavenging
DE102012204885B3 (de) * 2012-03-27 2013-03-14 Ford Global Technologies, Llc Verfahren zum Betreiben einer Brennkraftmaschine mit Closed-Loop-Regelung und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146893A (ja) * 2003-11-11 2005-06-09 Toyota Motor Corp 内燃機関および内燃機関の制御方法
JP2008101502A (ja) 2006-10-18 2008-05-01 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP2009197759A (ja) * 2008-02-25 2009-09-03 Mazda Motor Corp 過給機付エンジンシステム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189586A1 (ja) * 2015-05-22 2016-12-01 日産自動車株式会社 内燃機関システム及び内燃機関の制御方法
JP2017002771A (ja) * 2015-06-08 2017-01-05 トヨタ自動車株式会社 内燃機関
CN107448309A (zh) * 2016-04-21 2017-12-08 通用汽车环球科技运作有限责任公司 内燃机的控制
CN111315976A (zh) * 2017-11-07 2020-06-19 Fca美国有限责任公司 调节扫气期间排放的发动机控制系统和方法

Also Published As

Publication number Publication date
KR20130108612A (ko) 2013-10-04
EP2674602A1 (en) 2013-12-18
JPWO2012108362A1 (ja) 2014-07-03
CN103299052A (zh) 2013-09-11
US9399944B2 (en) 2016-07-26
EP2674602A4 (en) 2014-06-25
CN103299052B (zh) 2016-06-01
EP2674602B1 (en) 2018-08-08
KR101458732B1 (ko) 2014-11-05
JP5668763B2 (ja) 2015-02-12
US20140000554A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
JP5668763B2 (ja) 多気筒内燃機関の制御装置
WO2012108296A1 (ja) ターボ式過給機付き内燃機関の制御装置
JP5772025B2 (ja) 内燃機関の制御装置
WO2012108287A1 (ja) 過給機付き内燃機関の制御装置
WO2013080362A1 (ja) 内燃機関の制御装置
US10731580B2 (en) Method for determining a dilution of recirculated gases in a split exhaust engine
US10648413B2 (en) Method for determining a dilution of recirculated gases in a split exhaust engine
JP2015200294A (ja) エンジン
JP5240385B2 (ja) 多気筒内燃機関の制御装置
JP5110119B2 (ja) 多気筒内燃機関の制御装置
JP6112186B2 (ja) ターボ式過給機付き内燃機関の制御装置
JP5644342B2 (ja) 多気筒内燃機関の制御装置
JP5240384B2 (ja) 多気筒内燃機関の制御装置
JP2020176595A (ja) エンジンの制御方法およびエンジンの制御装置
JP2005226492A (ja) ターボチャージャを備えた内燃機関
JPWO2013080362A1 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013447

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012744322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012556864

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983686

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE