WO2012108050A1 - 四重極型質量分析装置 - Google Patents

四重極型質量分析装置 Download PDF

Info

Publication number
WO2012108050A1
WO2012108050A1 PCT/JP2011/052930 JP2011052930W WO2012108050A1 WO 2012108050 A1 WO2012108050 A1 WO 2012108050A1 JP 2011052930 W JP2011052930 W JP 2011052930W WO 2012108050 A1 WO2012108050 A1 WO 2012108050A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
voltage
quadrupole
power supply
detection
Prior art date
Application number
PCT/JP2011/052930
Other languages
English (en)
French (fr)
Inventor
司朗 水谷
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US13/983,498 priority Critical patent/US8907274B2/en
Priority to CN201180067394.7A priority patent/CN103370766B/zh
Priority to JP2012556725A priority patent/JP5527439B2/ja
Priority to EP11858336.8A priority patent/EP2674963B1/en
Priority to PCT/JP2011/052930 priority patent/WO2012108050A1/ja
Publication of WO2012108050A1 publication Critical patent/WO2012108050A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping

Definitions

  • the present invention relates to a quadrupole mass spectrometer using a quadrupole mass filter as a mass separator for separating ions according to the mass to charge ratio m / z.
  • the quadrupole mass spectrometer is a mass spectrometer that uses a quadrupole mass filter to separate ions according to the mass-to-charge ratio.
  • FIG. 6 shows a schematic configuration of a quadrupole mass spectrometer.
  • Various ions generated from the sample in the ion source 1 are introduced into a quadrupole mass filter 2 including four rod electrodes 2a, 2b, 2c, and 2d through an ion transport optical system (not shown).
  • a voltage ⁇ (U + V ⁇ cos ⁇ t) in which a high frequency voltage ⁇ V ⁇ cos ⁇ t and a DC voltage ⁇ U are superimposed is applied from the quadrupole power supply unit 4 to the four rod electrodes 2a to 2d, and a specific value corresponding to the voltage is applied. Only ions having a mass to charge ratio selectively pass through the quadrupole mass filter 2. The detector 3 detects ions that have passed through and acquires a detection signal corresponding to the amount of ions.
  • the control unit 5 when performing scan measurement over a predetermined mass-to-charge ratio range, changes the amplitude value V of the high-frequency voltage V ⁇ cos ⁇ t and the DC voltage value U so as to change while maintaining a certain relationship.
  • the multipole power supply unit 4 is controlled. Thereby, the mass-to-charge ratio of ions passing through the quadrupole mass filter 2 is scanned within a predetermined mass-to-charge ratio range.
  • the data processing unit 6 creates a mass spectrum with the horizontal axis representing the mass-to-charge ratio and the vertical axis representing the ion intensity.
  • FIG. 7 is a schematic block diagram of a conventional general quadrupole power supply unit 4 (see Patent Documents 1 and 3).
  • coils 10 and 12 having an inductance L and capacitors 11 and 13 having a capacitance C ′ are connected to the output stage of the quadrupole power supply unit 4.
  • the capacitance C in the rod electrodes 2a to 2d is a combination of the capacitance C 'of the capacitors 11 and 13 and the floating capacitance of the rod electrodes 2a to 2d.
  • the LC resonance circuit is formed by the series circuit of the synthesized capacitance C and inductance L, the rod electrodes 2a to 2d have a voltage in which a high frequency voltage and a DC voltage resonated by the LC resonance circuit are superimposed. Will be applied.
  • (1) the frequency f of the high frequency voltage to be injected is fixed, and the inductances of the coils 10 and 12 or the capacitances of the capacitors 11 and 13 are adjusted to achieve tuning.
  • the frequency variable tuning method (2) is often used.
  • the conventional quadrupole power supply unit using the variable frequency tuning method has the following problems.
  • FIG. 8 shows a circuit configuration of a quadrupole power supply unit 4 that employs a conventional frequency variable tuning method (see Patent Documents 1 and 2).
  • a detection unit 4D including a diode bridge rectifier circuit 401 and detection capacitors 402 and 403 detects a voltage value (hereinafter referred to as “V voltage”) of a high-frequency voltage applied to the quadrupole mass filter 2.
  • V voltage a voltage value of a high-frequency voltage applied to the quadrupole mass filter 2.
  • the detection output converted to DC is fed back to the high frequency power supply unit 4A and the DC power supply unit 4B via the detection gain adjustment unit 4C.
  • the detection gain adjustment unit 4C includes a V voltage detection resistor 404, a V voltage adjustment amplifier 405, and a V voltage adjustment variable resistor 406.
  • the high frequency power supply unit 4A includes a buffer amplifier 407, an m / z axis adjustment variable resistor 408, a V voltage comparison amplifier 409, a multiplier 410, a high frequency voltage signal generator 411, a buffer amplifier 412, a drive circuit 413, and a high frequency transformer 414.
  • the DC power supply unit 4B includes an inverting amplifier 415, a positive DC voltage amplifier 416, and a negative DC voltage amplifier 417.
  • the frequency f of the high-frequency voltage supplied from the secondary coil of the high-frequency transformer 414 to the LC resonance circuit including the quadrupole mass filter 2 is determined by the frequency of the rectangular wave signal generated by the high-frequency voltage signal generator 411.
  • the voltage value of the high-frequency voltage is determined by the voltage supplied from the V voltage comparison amplifier 409 to the multiplier 410.
  • the output voltage of the V voltage comparison amplifier 409 includes a detection output fed back from the detection unit 4D, a power supply control voltage (Qcont) corresponding to a target mass-to-charge ratio given from the control unit 5, and a variable resistor for adjusting the V voltage. 406 and the adjustment position of the variable resistor 408 for m / z axis adjustment.
  • the V voltage adjustment variable resistor 406 has a function of adjusting a gain for amplifying the detection output fed back from the detection unit 4D, and the detection amplified by the V voltage adjustment amplifier 405 with the gain set by the resistor 406.
  • the output voltage is input to the V voltage setting comparator including the m / z axis adjusting variable resistor 408 and the V voltage comparison amplifier 409, and the DC power supply unit 4B.
  • the V voltage setting comparator comprising the m / z axis adjustment variable resistor 408 and the V voltage comparison amplifier 409 compares the detection output after gain adjustment with the power supply control voltage, and according to the comparison result.
  • the multiplier 410 has a function of determining a multiplier (so-called gain).
  • the V voltage is inversely proportional to the frequency f. For this reason, for example, the V voltage decreases as the frequency f increases.
  • the V voltage changes when the frequency of the high frequency voltage is changed for tuning. For example, when the frequency f increases by 0.2% (1.2 MHz ⁇ 1.20024 MHz), the V voltage decreases by 0.2%. Then, the U / V that should be kept constant changes, and a phenomenon occurs in which the mass resolution becomes too high (sensitivity becomes low) in the high mass-to-charge ratio region.
  • FIGS. 9A and 9B are actual measurement examples of peak profiles at a plurality of mass-to-charge ratios with respect to a standard sample.
  • FIG. 9A shows a state in which the frequency f is optimally adjusted at 1.2 MHz
  • FIG. I s a state in which the voltage is only increased to 1.20024 MHz (voltage adjustment is not performed). Comparing (a) and (b), it can be seen that in (b) the peak half-value width is narrow and the peak value is low in the region where the mass-to-charge ratio is high. This means that mass resolution is increased and detection sensitivity is decreased.
  • FIG. 10A is an example of actual measurement when the V voltage is adjusted to return to the original state from the state of FIG. 9B, but there is a deviation in the m / z axis.
  • FIG. 10B is an actual measurement example in the case where the U voltage is adjusted so that U / V is further constant from the state of FIG. 10A, but there is still a deviation in the m / z axis.
  • the present invention has been made to solve these problems, and its main object is to provide a variable resistance even when the frequency is changed for tuning in a quadrupole power supply unit employing a variable frequency tuning system. It is an object of the present invention to provide a quadrupole mass spectrometer that can eliminate the need for mass peak shape adjustment or m / z axis adjustment by automatic adjustment or the like.
  • a quadrupole mass filter including a plurality of electrodes and ions having a specific mass-to-charge ratio that selectively pass through the quadrupole mass filter.
  • a quadrupole power source for applying a predetermined voltage to each electrode of the quadrupole mass filter, and a control means for instructing the quadrupole power source to a target voltage corresponding to a mass-to-charge ratio of ions to be measured.
  • the quadrupole power source includes a detection means for direct-current detection of a high-frequency voltage applied to the quadrupole mass filter, a detection output adjustment means for adjusting a gain of a detection output by the detection means, and a variable frequency.
  • the LC resonance circuit formed including a stray capacitance between the electrodes of the quadrupole mass filter increases the high frequency voltage superimposed by the superimposing means and applies it to the quadrupole mass filter.
  • the detection output adjustment means in the quadrupole power supply includes amplification means for amplifying a voltage with a constant gain independent of the frequency of the high-frequency signal, and the frequency of the high-frequency signal is changed from a standard frequency for tuning.
  • First correcting means for correcting the voltage according to the frequency change magnification at the input stage or output stage of the amplifying means so that the amplitude of the high-frequency voltage applied to the quadrupole mass filter is constant.
  • the quadrupole power supply further includes second correction means for correcting the target voltage in accordance with a square of a magnification of the frequency change when the frequency for tuning changes. Yes.
  • the frequency of the high-frequency signal generated by the high-frequency signal generating means for tuning the LC resonance circuit is set to, for example, the standard frequency (the stray capacitance of the quadrupole mass filter is previously
  • the first correction unit reduces the gain by an amount corresponding to the degree of change in the frequency.
  • the gain of the entire detection output adjusting means also decreases, so that feedback acts to increase the high frequency voltage output to compensate for the decrease, and the amplitude of the high frequency voltage applied to the quadrupole mass filter is the same as before the frequency change. Keep on level.
  • the second correction unit corrects the target voltage by the square of the rate of change due to the frequency increase for tuning.
  • the optimum state of ion selection according to the Matthew equation is maintained for an arbitrary mass-to-charge ratio, so that the occurrence of misalignment of the m / z axis can be avoided.
  • a second invention made to solve the above-described problems is a quadrupole mass filter composed of a plurality of electrodes, and ions having a specific mass-to-charge ratio selectively pass through the quadrupole mass filter.
  • the quadrupole power source includes a detection means for direct-current detection of a high-frequency voltage applied to the quadrupole mass filter, a detection output adjustment means for adjusting a gain of a detection output by the detection means, and a high-frequency signal that is variable in frequency.
  • a high-frequency power supply that outputs a high-frequency voltage having an amplitude based on a comparison between the output of the detection output adjusting unit and the target voltage and having a frequency that is the same as or proportional to the frequency of the high-frequency signal
  • a DC power supply that outputs a DC voltage based on the output of the detection output adjusting means, and a superimposing means that superimposes a DC voltage from the DC power supply and a high-frequency voltage from the high-frequency power supply, and the quadrupole
  • the quadrupole mass fill is increased by increasing the high frequency voltage superimposed by the superimposing means by an LC resonance circuit formed including a stray capacitance between the electrodes of the mass filter.
  • the quadrupole power supply is a) When the frequency of the high-frequency signal is changed from the standard frequency for tuning, the output given from the detection adjusting means to the DC power source is changed by the amount corresponding to the change in the output of the high-frequency power source, and the quadruple A first correction for correcting the output given from the detection adjusting means to the DC power source according to the frequency change magnification so that the ratio between the amplitude of the high-frequency voltage applied to the polar mass filter and the DC voltage is constant.
  • the first correction The means corrects the voltage applied from the detection adjusting means to the DC power supply so that the output from the DC power supply is lowered by the amount that the high-frequency voltage output is reduced as the frequency increases.
  • the relationship (ratio) between the amplitude of the high-frequency voltage applied to the quadrupole mass filter and the DC voltage is kept the same as before the frequency change, and the mass resolution is kept in a good state.
  • the second correction means corrects the target voltage by the cube of the rate of change due to the frequency increase for tuning.
  • the optimum state of ion selection according to the Matthew equation is maintained for an arbitrary mass-to-charge ratio, so that the occurrence of misalignment of the m / z axis can be avoided.
  • a target voltage to be a target of the high frequency voltage is given from the control means to the quadrupole power source, and the DC power source generates a DC voltage based on the detection output fed back.
  • the control means generates a target voltage such that the relationship between the high voltage and the direct current voltage becomes constant separately, and supplies the target voltage to the high frequency power supply and the direct current power supply.
  • a quadrupole mass filter including a plurality of electrodes, and ions having a specific mass-to-charge ratio selectively pass through the quadrupole mass filter.
  • a quadrupole power source that applies a predetermined voltage, which is a superposition of a high-frequency voltage and a DC voltage, to each electrode of the quadrupole mass filter, and the amplitude of the high-frequency voltage and the voltage value of the DC voltage are measured while maintaining a certain relationship.
  • control means for instructing The quadrupole power source includes a detection means for direct-current detection of a high-frequency voltage applied to the quadrupole mass filter, a detection output adjustment means for adjusting a gain of a detection output by the detection means, and a high-frequency signal that is variable in frequency.
  • a high-frequency voltage having an amplitude based on a comparison between the output of the detection output adjusting unit and the first target voltage and having a frequency that is the same as or proportional to the frequency of the high-frequency signal.
  • a quadrupole comprising: a high frequency power supply; a direct current power supply that outputs a direct current voltage corresponding to the second target voltage; and a superimposing unit that superimposes the direct current voltage from the direct current power supply and the high frequency voltage from the high frequency power supply.
  • the high frequency voltage superimposed by the superimposing means is increased and applied to the quadrupole mass filter by the LC resonance circuit formed including the stray capacitance between the electrodes of the mass filter.
  • the quadrupole power supply is a) first correction means for correcting the first target voltage according to the cube of the frequency change when the frequency of the high-frequency signal is changed from a standard frequency for tuning; b) second correction means for correcting the second target voltage according to the square of the magnification of the frequency change when the frequency changes for tuning; It is characterized by having.
  • the first and second correction means in the quadrupole mass spectrometer according to the third invention are substantially the first and second corrections in the quadrupole mass spectrometer according to the first or second invention. It has the same effect as that of the means, and maintains the relationship (ratio) between the amplitude of the high-frequency voltage and the DC voltage as before the frequency change, and maintains the mass resolution. Further, by maintaining the optimum state of ion selection according to the Matthew equation for an arbitrary mass-to-charge ratio, the occurrence of m / z axis misalignment is avoided.
  • the frequency of the high-frequency voltage is changed in order to tune the LC resonance circuit in the quadrupole power supply unit employing the variable frequency tuning method. Even in this case, correction is automatically performed in accordance with the amount of change in the frequency so that the mass resolution is maintained and no m / z axis deviation occurs. This eliminates the need for manual adjustment of variable resistance, mass peak shape adjustment by automatic tuning, and m / z axis adjustment even when frequency adjustment for tuning is performed, thus reducing the burden on the operator and analyzing work. Efficiency can be improved.
  • the circuit block diagram of the quadrupole power supply part in the quadrupole-type mass spectrometer which is 1st Example of this invention.
  • the circuit block diagram of the quadrupole power supply part in the quadrupole-type mass spectrometer which is 2nd Example of this invention.
  • the circuit block diagram of the quadrupole power supply part in the quadrupole-type mass spectrometer which is 3rd Example of this invention.
  • the circuit block diagram of the quadrupole power supply part in the quadrupole-type mass spectrometer which is 4th Example of this invention.
  • the circuit block diagram of the quadrupole power supply part in the quadrupole-type mass spectrometer which is 5th Example of this invention.
  • FIG. 1 is a schematic configuration diagram of a general quadrupole mass spectrometer.
  • the schematic block diagram of the conventional quadrupole power supply part The circuit block diagram of the conventional quadrupole power supply part.
  • the figure which shows the actual measurement example of the peak profile in the some mass to charge ratio with respect to a standard sample The figure which shows the actual measurement example of the peak profile in the some mass to charge ratio with respect to a standard sample.
  • FIG. 1 is a circuit configuration diagram of a quadrupole power supply unit 4 in the quadrupole mass spectrometer of the present embodiment.
  • the same components as those already described in FIG. 8 are denoted by the same reference numerals and detailed description thereof is omitted.
  • the m / z axis correction coefficient Mcomp1 and the V voltage correction coefficient Vcomp1 are input from the control unit 5 to the quadrupole power supply unit 4 in the first embodiment. It has V voltage correction function and m / z axis correction function.
  • the V voltage correction function added to the detection gain adjustment unit 4C is realized by the multiplier 421 multiplying the output Vdet ′ of the V voltage adjustment amplifier 405 by the V voltage correction coefficient Vcomp1.
  • the V voltage monitor voltage Vmon is always constant due to the feedback function regardless of the change of the set frequency f.
  • the V voltage is compensated for. It becomes a feedback operation that raises.
  • the V voltage decreases as the set frequency f increases in the absence of the V voltage correction.
  • the V voltage correction function the V voltage increases so as to compensate for the decrease. Keep the same as before the change.
  • the m / z axis correction function added to the high frequency power supply unit 4A is realized by the multiplier 420 multiplying the power control voltage Qcont by the m / z axis correction coefficient Mcomp1.
  • Mcomp1 (set frequency f / standard frequency f 0 ) 2 , that is, the square of the frequency change magnification. .
  • the optimum voltage for an arbitrary mass-to-charge ratio needs to change the square of the frequency change. Since a square change of the frequency change occurs, an optimum V voltage is obtained for an arbitrary mass-to-charge ratio, and the m / z axis can be prevented from shifting even when the set frequency f changes.
  • V voltage (at 1.20024 MHz) V voltage (at 1.2 MHz)
  • the V voltage is an optimum voltage for an arbitrary mass-to-charge ratio, that is, a voltage that does not cause an m / z axis shift.
  • the control unit 5 changes the set frequency f of the high-frequency voltage signal generator 411 from the standard frequency f 0 in order to tune the LC resonance circuit.
  • V voltage correction coefficient Vcomp1 (standard frequency f 0 / set frequency f)
  • the quadrupole power supply unit 4 corrects the detection output voltage and the power supply control voltage as described above. As a result, the mass resolution remains high even after the set frequency f is changed, and the m / z axis does not shift.
  • the multipliers 420 and 421 are analog multipliers, but it is natural that the multiplication may be performed digitally in a CPU or the like. The same applies to the other embodiments described below.
  • FIG. 2 is a circuit configuration diagram of the quadrupole power supply unit 4 in the quadrupole mass spectrometer of the second embodiment.
  • the same components as those already described in FIGS. 1 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the quadrupole mass spectrometer of the second embodiment is obtained by adding a U voltage correction function to the DC power supply unit 4B in place of the V voltage correction function provided in the apparatus of the first embodiment.
  • the U voltage correction function added to the DC power supply unit 4B changes the U voltage so that the ratio between the V voltage and the U voltage is kept constant for the V voltage change caused by the change in the set frequency f.
  • U voltage (at 1.2MHz) U voltage (at 1.20024MHz)
  • the m / z axis correction function provided in the high frequency power supply unit 4A is realized by the multiplier 430 multiplying the power control voltage Qcont by the m / z axis correction coefficient Mcomp2.
  • the V voltage is an optimum voltage for an arbitrary mass-to-charge ratio, that is, a voltage that does not cause an m / z axis shift.
  • the controller 5 changes the set frequency f of the high-frequency voltage signal generator 411 from the standard frequency f 0 in order to tune the LC resonance circuit.
  • the quadrupole power supply unit 4 corrects the U voltage control voltage and the power supply control voltage input to the DC power supply unit 4B as described above. Thereby, even after the set frequency f is changed, the mass resolution remains high, and the m / z axis is not displaced.
  • FIG. 3 is a circuit configuration diagram of the quadrupole power supply unit 4 in the quadrupole mass spectrometer of the third embodiment.
  • the same components as those already described in FIGS. 1, 2 and 8 are designated by the same reference numerals, and detailed description thereof is omitted.
  • the V voltage monitor voltage Vmon output from the detection gain adjusting section 4C is used as the U voltage control voltage that is the input of the DC power supply section 4B.
  • a U voltage control voltage dedicated to the DC power supply unit 4B is applied from the control unit 5 to the quadrupole power supply unit 4, and the quadrupole power supply unit 4 generates a DC voltage using this.
  • V voltage correction and m / z axis correction are applied to the V voltage control voltage Vcont supplied from the control unit 5 in the high frequency power supply unit 4A, and supplied from the control unit 5 in the DC power supply unit 4B.
  • M / z axis correction is applied to the U voltage control voltage Ucont.
  • the V voltage correction function is realized by the multiplier 440 multiplying the V voltage control voltage Vcont by a V voltage correction coefficient Vcomp2 corresponding to the set frequency f.
  • the multiplier 440 multiplies the V voltage control voltage Vcont by the m / z axis correction coefficient Mcomp3 corresponding to the set frequency f, and in the DC power supply unit 4B the multiplier 441. Is realized by multiplying the U voltage control voltage Ucont by the m / z axis correction coefficient Mcomp3.
  • the multiplier 440 Since the multiplier 440 multiplies both the V voltage correction coefficient Vcomp2 and the m / z axis correction coefficient Mcomp3 by the V voltage control voltage Vcont, the multiplier 440 actually sets the V voltage control voltage Vcont to (the set frequency f / Standard frequency f 0 ) 3 is multiplied. Thereby, similarly to the first and second embodiments, high mass resolution can be maintained even after the set frequency f is changed, and the accuracy of the m / z axis can be maintained.
  • FIG. 4 is a circuit configuration diagram of the quadrupole power supply unit 4 in the quadrupole mass spectrometer of the fourth embodiment.
  • the same components as those already described in FIGS. 1 to 3 and 8 are designated by the same reference numerals, and detailed description thereof is omitted.
  • U voltage correction and m / z axis correction are performed on the U voltage control voltage Ucont supplied from the control unit 5 in the DC power supply unit 4B, and V applied from the control unit 5 in the high frequency power supply unit 4A.
  • M / z axis correction is applied to the voltage control voltage Vcont.
  • the U voltage correction function is realized by the multiplier 451 multiplying the U voltage control voltage Ucont by a U voltage correction coefficient Ucomp2 corresponding to the set frequency f.
  • the multiplier 450 in the high frequency power supply unit 4A multiplies the V voltage control voltage Vcont by the m / z axis correction coefficient Mcomp4 corresponding to the set frequency f and the multiplier 451 in the DC power supply unit 4B. Is realized by multiplying the U voltage control voltage Ucont by the m / z axis correction coefficient Mcomp4.
  • the multiplier 451 Since the multiplier 451 multiplies both the U voltage correction coefficient Ucomp2 and the m / z axis correction coefficient Mcomp4 by the U voltage control voltage Ucont, the multiplier 451 actually uses the U voltage control voltage Ucont (set frequency f). / Standard frequency f 0 ) 2 is multiplied. Thereby, similarly to the first and second embodiments, high mass resolution can be maintained even after the set frequency f is changed, and the accuracy of the m / z axis can be maintained.
  • FIG. 5 is a circuit configuration diagram of the quadrupole power supply unit 4 in the quadrupole mass spectrometer of the fifth embodiment.
  • the same components as those already described in FIGS. 1 to 4 and 8 are designated by the same reference numerals, and detailed description thereof is omitted.
  • the U voltage control voltage Ucont supplied from the control unit 5 in the DC power supply unit 4B is subjected to U voltage correction and m / z axis correction, and the V voltage supplied from the control unit 5 in the high frequency power supply unit 4A.
  • V voltage correction and m / z axis correction are applied to the voltage control voltage Vcont.
  • the multiplier 461 sets the U voltage / m / z axis correction coefficient U / Mcomp corresponding to the set frequency f to the U voltage control voltage Ucont. Multiply.
  • the multiplier 460 multiplies the V voltage control voltage Vcont by a V voltage / m / z axis correction coefficient V / Mcomp corresponding to the set frequency f.
  • tuning is performed by the LC resonance circuit including each rod electrode of the quadrupole mass filter 2 to generate a high-frequency voltage having a large amplitude. Even when the frequency is changed to be applied to the power supply, the correction of the voltage according to the change in the frequency is automatically performed by the quadrupole power supply unit 4, so that the mass resolution is adjusted by manual adjustment of the variable resistors 406 and 408 or the like. And m / z misalignment adjustment is not required.
  • High frequency voltage signal generator 412 ... Buffer amplifier 413 ... Drive circuit 414 ... High frequency transformer 415 ... Inverting amplifier 416 ... Positive DC voltage amplifier 417 ... Negative DC voltage Amplifiers 420, 421, 430, 431, 440, 441, 450, 451, 460, 461 ... multiplier 5 ... control unit 6 ... Over data processing unit 10 ... coil 11 ... capacitor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 四重極マスフィルタ(2)の各電極(2a~2d)に電圧を印加する四重極電源部には、目的イオンのm/z に応じた電源コントロール電圧Qcont のほか、m/z 軸補正係数Mcomp1 及びV電圧補正係数Vcomp1 が入力される。Vcomp1は周波数変化の倍率の逆数であり、Mcomp1 は周波数変化の倍率の二乗である。検波ゲイン調整部(4C)では、乗算器(421)がV電圧調整用アンプ(405)の出力Vdet'にVcomp1 を乗じ、LC共振回路を同調させるために信号発生器(411)の設定周波数が変化しても高周波電源部(4A)から出力される高周波電圧は一定に保たれる。また高周波電源部では、乗算器(420)がQcont にMcomp1 を乗じ、設定周波数が変化しても質量選択のための最適電圧が維持される。これにより、同調のために設定周波数が調整されても、高い質量分解能と質量精度が自動的に維持される。

Description

四重極型質量分析装置
 本発明は、質量電荷比m/zに応じてイオンを分離する質量分離器として四重極マスフィルタを用いた四重極型質量分析装置に関する。
 四重極型質量分析装置はイオンを質量電荷比に応じて分離するために四重極マスフィルタを利用した質量分析装置である。図6に四重極型質量分析装置の概略構成を示す。イオン源1において試料から生成された各種イオンは、図示しないイオン輸送光学系を経て4本のロッド電極2a、2b、2c、2dから成る四重極マスフィルタ2に導入される。4本のロッド電極2a~2dには四重極電源部4から高周波電圧±V・cosωtと直流電圧±Uとを重畳した電圧±(U+V・cosωt)が印加され、その電圧に応じた特定の質量電荷比を有するイオンのみが選択的に四重極マスフィルタ2を通過する。検出器3は通過してきたイオンを検出し、イオンの量に応じた検出信号を取得する。
 例えば所定の質量電荷比範囲に亘るスキャン測定を行う際には、制御部5は高周波電圧V・cosωtの振幅値Vと直流電圧値Uとが一定の関係を保持しながらそれぞれ変化するように四重極電源部4を制御する。これにより、四重極マスフィルタ2を通過するイオンの質量電荷比は所定の質量電荷比範囲で走査される。データ処理部6はその走査時に検出器3により得られる検出信号に基づき、横軸を質量電荷比、縦軸をイオン強度とするマススペクトルを作成する。
 図7は従来一般的な四重極電源部4の概略ブロック図である(特許文献1、3参照)。この四重極電源部4の出力段には、インダクタンスがLであるコイル10、12とキャパシタンスがC’であるコンデンサ11、13とが接続される。ロッド電極2a~2dにおけるキャパシタンスCは、上記コンデンサ11、13のキャパシタンスC’とロッド電極2a~2dの浮遊キャパシタンスとを合成したものとなる。この合成されたキャパシタンスCとインダクタンスLとの直列回路によりLC共振回路が形成されるため、ロッド電極2a~2dにはこのLC共振回路で共振された高周波電圧と直流電圧とが重畳された電圧が印加されることになる。四重極電源部4から出力される、つまり上記のLC共振回路に注入される高周波電圧の周波数は例えばf=1.2MHzである。
 LC共振回路での共振の条件は、f=1/(2π√LC)である。この条件を満たし共振を起こすための方法としては、(1)注入する高周波電圧の周波数fを固定し、コイル10、12のインダクタンス又はコンデンサ11、13のキャパシタンスを調整することにより同調をとってLC共振を起こさせる方式、と、(2)コイル10、12のインダクタンス及びコンデンサ11、13のキャパシタンスを固定し、注入する高周波電圧の周波数fを調整することにより同調をとってLC共振を起こさせる方式、とがある。(1)の方式では、コイル10、12のインダクタンスやコンデンサ11、13のキャパシタンスを高精度で可変とするために高価な部品を用いる必要がある、部品の特性のばらつきのために安定した性能を持たせることが困難な場合がある、といった問題がある。そのため、(2)の周波数可変同調方式が用いられることが多い。しかしながら、従来の周波数可変同調方式を用いた四重極電源部は次に述べるような問題を有している。
 従来一般的な周波数可変同調方式を採用した四重極電源部4の回路構成を図8に示す(特許文献1、2参照)。この回路において、ダイオードブリッジ整流回路401及び検波用コンデンサ402、403を含む検波部4Dは、四重極マスフィルタ2に印加される高周波電圧の電圧値(以下「V電圧」と称す)を検出するものであり、直流化された検波出力が検波ゲイン調整部4Cを介して高周波電源部4A及び直流電源部4Bにフィードバックされる。検波ゲイン調整部4Cは、V電圧検波用抵抗404、V電圧調整用アンプ405、V電圧調整用可変抵抗406を含む。高周波電源部4Aは、バッファアンプ407、m/z軸調整用可変抵抗408、V電圧比較用アンプ409、乗算器410、高周波電圧用信号発生器411、バッファアンプ412、ドライブ回路413、高周波トランス414を含む。直流電源部4Bは、反転アンプ415、正極性直流電圧用アンプ416、負極性直流電圧用アンプ417を含む。
 高周波トランス414の2次側コイルから四重極マスフィルタ2を含むLC共振回路に供給される高周波電圧の周波数fは、高周波電圧用信号発生器411で生成される矩形波信号の周波数で決まる。また、その高周波電圧の電圧値は、V電圧比較用アンプ409から乗算器410に与えられる電圧で決まる。このV電圧比較用アンプ409の出力電圧は、検波部4Dからフィードバックされる検波出力、制御部5から与えられる目的とする質量電荷比に応じた電源コントロール電圧(Qcont)、V電圧調整用可変抵抗406及びm/z軸調整用可変抵抗408の調整位置などに依存する。
 V電圧調整用可変抵抗406は、検波部4Dからフィードバックされる検波出力を増幅するゲインを調整する機能を有し、該抵抗406により設定されたゲインでV電圧調整用アンプ405において増幅された検波出力電圧が、m/z軸調整用可変抵抗408及びV電圧比較用アンプ409からなるV電圧設定用の比較器と、直流電源部4Bとに入力される。また、m/z軸調整用可変抵抗408及びV電圧比較用アンプ409からなるV電圧設定用の比較器は、ゲイン調整後の検波出力と電源コントロール電圧とを比較し、その比較結果に応じた乗算器410の乗数(いわばゲイン)を決定する機能を持つ。
 この四重極電源部4の回路は、電源コントロール電圧Qcontが一定であるとき、V電圧調整用アンプ405の出力であるV電圧モニタ電圧Vmonが常に一定となるように動作する。したがって、
  [V電圧モニタ電圧Vmon]∝[V電圧検波電圧Vdet]
   =[検波用コンデンサ402、403に流れる電流i]×[V電圧検波用抵抗404の抵抗値R]
   ∝[V電圧]×2πf×[検波用コンデンサ402、403のキャパシタンスC]×[V電圧検波用抵抗404の抵抗値R]
   ∝[V電圧]・f
となる。
 即ち、図8に示した四重極電源部4の回路では、V電圧は周波数fと反比例する。そのため、例えば周波数fが高くなればV電圧は小さくなる。これは、周波数可変同調方式の場合、同調のために高周波電圧の周波数を変化させるとV電圧が変化してしまうことを意味している。例えば、周波数fが0.2%高くなると(1.2MHz→1.20024MHz)V電圧は0.2%下がる。そうなると、本来一定に維持するべきU/Vが変化することになり、高質量電荷比の領域において質量分解能が高くなりすぎる(感度は低くなる)といった現象が起こる。
 図9は標準試料に対する複数の質量電荷比におけるピークプロファイルの実測例であり、(a)は周波数fが1.2MHzで最適に調整された状態、(b)は(a)の状態から周波数fを1.20024MHzに上げただけの(電圧調整を行っていない)状態である。(a)と(b)とを比較すると(b)では質量電荷比が高い領域でピークの半値幅が狭く且つ波高値は低くなっていることが分かる。これは、質量分解能が上がり検出感度が下がっていることを意味する。
 また、以下の(1)式に示す四重極電場におけるイオンの安定状態を解析するためのマシュー方程式によれば、高周波電圧の周波数fが変化した場合、任意の質量電荷比に対する最適電圧は周波数変化の二乗の変化が必要となることが分かる。
   au=ax=-ay=4eU/(mω20 2)  …(1)
   qu=qx=-qy=2eU/(mω20 2
例えば上述のように周波数fが0.2%上昇した場合、V電圧とU電圧の最適値は、周波数f=1.20024MHzにおけるV電圧(又はU電圧)×(1.20024/1.2)2となる。したがって、周波数fを高くしたときに、それに伴って下がった分だけ電圧を上げてV電圧を元のV電圧に戻すように調整しただけでは、m/z軸のずれが生じることになる。図10(a)は図9(b)の状態からV電圧を元に戻すように調整した場合の実測例であるが、m/z軸にずれが発生している。
 さらにまた、U/Vが一定になるようにU電圧を変化させた場合でも、m/z軸にはずれが発生する。図10(b)は図10(a)の状態からさらにU/Vが一定になるようにU電圧を調整した場合の実測例であるが、やはりm/z軸にずれが発生している。
 即ち、上記説明から明らかなことは、周波数可変同調方式を採用して同調のために高周波電圧の周波数を変化させた場合には、その度に可変抵抗406、408のマニュアル調整や自動チューニングを実施して分解能調整及びm/z軸調整を行う必要がある。
特開平10-69880号公報 特開2000-77025号公報 国際公開第2010/023706号パンフレット
 即ち、周波数可変同調方式の場合には、LC共振回路を形成するインダクタンス素子やキャパシタンス素子のパラメータ調整による同調は不要であるために安定的な動作が可能であるものの、同調のために周波数を調整する度に面倒な分解能調整やm/z軸調整(精度調整)が必要となり、作業者には大きな負担であるとともに分析作業の効率を落とすことにもなる。
 本発明はこうした課題を解決するために成されたものであり、その主な目的は、周波数可変同調方式を採用した四重極電源部において同調のために周波数を変化させた場合でも、可変抵抗等の調整や自動チューニングによるマスピーク形状調整或いはm/z軸調整の手間を省くことができる四重極型質量分析装置を提供することにある。
 上記課題を解決するために成された第1発明は、複数の電極からなる四重極マスフィルタと、特定の質量電荷比を有するイオンが前記四重極マスフィルタを選択的に通過するように所定の電圧を該四重極マスフィルタの各電極に印加する四重極電源と、測定対象であるイオンの質量電荷比に応じた目標電圧を前記四重極電源に指示する制御手段と、を具備し、前記四重極電源は、前記四重極マスフィルタに印加される高周波電圧を直流検波する検波手段と、該検波手段による検波出力のゲインを調整する検波出力調整手段と、周波数可変である高周波信号を生成する信号生成手段を含み、前記検波出力調整手段の出力と前記目標電圧との比較に基づく振幅を有し前記高周波信号の周波数と同一又はそれに比例する周波数を有する高周波電圧を出力する高周波電源と、前記検波出力調整手段の出力に基づいて直流電圧を出力する直流電源と、該直流電源による直流電圧と前記高周波電源による高周波電圧とを重畳する重畳手段と、を有し、前記四重極マスフィルタの電極間の浮遊容量を含んで形成されるLC共振回路により前記重畳手段により重畳された高周波電圧を増大させて前記四重極マスフィルタに印加するとともに、前記高周波信号の周波数を調整することで前記LC共振回路を同調させる四重極型質量分析装置において、
 前記四重極電源にあって前記検波出力調整手段は、前記高周波信号の周波数に依らない一定のゲインで電圧を増幅する増幅手段と、同調のために前記高周波信号の周波数が標準周波数から変化されたときに前記四重極マスフィルタに印加される高周波電圧の振幅が一定になるように、前記増幅手段の入力段又は出力段で周波数変化の倍率に応じて電圧を補正する第1の補正手段と、を含み、さらに前記四重極電源は、同調のための前記周波数の変化時に、その周波数変化の倍率の二乗に応じて前記目標電圧を補正する第2の補正手段を備えることを特徴としている。
 第1発明に係る四重極型質量分析装置では、LC共振回路を同調させるために高周波信号生成手段において生成される高周波信号の周波数を例えば標準周波数(四重極マスフィルタの浮遊容量等が予め想定される理想状態であるときの共振周波数)から高い方向に変化させると、第1の補正手段は、その周波数上昇の変化度合に応じた分だけゲインを下げる。それによって、検波出力調整手段全体のゲインも下がるため、その下がった分を補うように高周波電圧出力を上げるべくフィードバックが働き、四重極マスフィルタに印加される高周波電圧の振幅は周波数変化前のレベルに保たれる。これにより、四重極マスフィルタに印加される高周波電圧の振幅と直流電圧との関係(比)は一定に保たれるために、質量分解能は良好な状態に保たれる。また、第2の補正手段は同調のための周波数上昇による変化率の二乗だけ目標電圧を補正する。これにより、任意の質量電荷比に対してマシュー方程式に従ったイオン選択の最適状態が保たれるので、m/z軸のずれの発生も回避できる。
 また上記課題を解決するために成された第2発明は、複数の電極からなる四重極マスフィルタと、特定の質量電荷比を有するイオンが前記四重極マスフィルタを選択的に通過するように所定の電圧を該四重極マスフィルタの各電極に印加する四重極電源と、測定対象であるイオンの質量電荷比に応じた目標電圧を前記四重極電源に指示する制御手段と、を具備し、
 前記四重極電源は、前記四重極マスフィルタに印加される高周波電圧を直流検波する検波手段と、該検波手段による検波出力のゲインを調整する検波出力調整手段と、周波数可変である高周波信号を生成する信号生成手段を含み、前記検波出力調整手段の出力と前記目標電圧との比較に基づく振幅を有し前記高周波信号の周波数と同一又はそれに比例する周波数を有する高周波電圧を出力する高周波電源と、前記検波出力調整手段の出力に基づいて直流電圧を出力する直流電源と、該直流電源による直流電圧と前記高周波電源による高周波電圧とを重畳する重畳手段と、を有し、前記四重極マスフィルタの電極間の浮遊容量を含んで形成されるLC共振回路により前記重畳手段により重畳された高周波電圧を増大させて前記四重極マスフィルタに印加するとともに、前記高周波信号の周波数を調整することで前記LC共振回路を同調させる四重極型質量分析装置において、
 前記四重極電源は、
 a)同調のために前記高周波信号の周波数が標準周波数から変化されたときに、前記高周波電源の出力が変化した分だけ前記検波調整手段から前記直流電源に与えられる出力を変化させて前記四重極マスフィルタに印加される高周波電圧の振幅と直流電圧との比が一定になるように、前記検波調整手段から前記直流電源に与えられる出力を周波数変化の倍率に応じて補正する第1の補正手段と、
 b)同調のための前記周波数の変化時に、その周波数変化の倍率の三乗に応じて前記目標電圧を補正する第2の補正手段と、
 を備えることを特徴としている。
 第2発明に係る四重極型質量分析装置では、LC共振回路を同調させるために高周波信号生成手段において生成される高周波信号の周波数を例えば標準周波数から高い方向に変化させると、第1の補正手段はその周波数上昇に伴って高周波電圧出力が下がる分だけ直流電源からの出力も下げるように、検波調整手段から直流電源に与えられる電圧を補正する。これにより、四重極マスフィルタに印加される高周波電圧の振幅と直流電圧との関係(比)は周波数変化前と同じに保たれ、質量分解能は良好な状態に保たれる。また、第2の補正手段は同調のための周波数上昇による変化率の三乗だけ目標電圧を補正する。これにより、任意の質量電荷比に対してマシュー方程式に従ったイオン選択の最適状態が保たれるので、m/z軸のずれの発生も回避できる。
 上記第1及び第2発明はいずれも、制御手段から四重極電源に対し高周波電圧の目標となるべき目標電圧が与えられ、直流電源はフィードバックされる検波出力に基づいて直流電圧を生成する。これに対し、制御手段が高周波電圧と直流電圧とでそれぞれ別々に両電圧の関係が一定になるような目標電圧を生成して高周波電源及び直流電源に与える構成も採り得る。
 上記課題を解決するために成された第3発明は、複数の電極からなる四重極マスフィルタと、特定の質量電荷比を有するイオンが前記四重極マスフィルタを選択的に通過するように高周波電圧と直流電圧とを重畳した所定の電圧を該四重極マスフィルタの各電極に印加する四重極電源と、高周波電圧の振幅と直流電圧の電圧値とが一定の関係を保ちつつ測定対象であるイオンの質量電荷比に応じた電圧が前記四重極マスフィルタに印加されるように、前記四重極電源に対し高周波電圧の振幅に関する第1目標電圧と直流電圧に関する第2目標電圧とを指示する制御手段と、を具備し、
 前記四重極電源は、前記四重極マスフィルタに印加される高周波電圧を直流検波する検波手段と、該検波手段による検波出力のゲインを調整する検波出力調整手段と、周波数可変である高周波信号を生成する信号生成手段を含み、前記検波出力調整手段の出力と前記第1目標電圧との比較に基づく振幅を有し前記高周波信号の周波数と同一又はそれに比例する周波数を有する高周波電圧を出力する高周波電源と、前記第2目標電圧に応じた直流電圧を出力する直流電源と、該直流電源による直流電圧と前記高周波電源による高周波電圧とを重畳する重畳手段と、を有し、前記四重極マスフィルタの電極間の浮遊容量を含んで形成されるLC共振回路により前記重畳手段により重畳された高周波電圧を増大させて前記四重極マスフィルタに印加するとともに、前記高周波信号の周波数を調整することで前記LC共振回路を同調させる四重極型質量分析装置において、
 前記四重極電源は、
 a)同調のために前記高周波信号の周波数が標準周波数から変化されたときに、周波数変化の三乗に応じて前記第1目標電圧を補正する第1の補正手段と、
 b)同調のための前記周波数の変化時にその周波数変化の倍率の二乗に応じて前記第2目標電圧を補正する第2の補正手段と、
 を備えることを特徴としている。
 この第3発明に係る四重極型質量分析装置における第1及び第2の補正手段は、実質的に第1又は第2発明に係る四重極型質量分析装置における第1及び第2の補正手段と同様の作用を有し、高周波電圧の振幅と直流電圧との関係(比)を周波数変化前と同じに保ち、質量分解能を維持する。また、任意の質量電荷比に対してマシュー方程式に従ったイオン選択の最適状態を保つことにより、m/z軸のずれの発生を回避する。
 第1乃至第3発明に係る四重極型質量分析装置によればいずれも、周波数可変同調方式を採用した四重極電源部においてLC共振回路を同調させるために高周波電圧の周波数を変化させた場合でも、その周波数の変化量に応じて、質量分解能が維持され且つm/z軸ずれも生じないないように自動的に補正が行われる。それにより、同調のための周波数調整を行った場合でも、可変抵抗のマニュアル調整や自動チューニングによるマスピーク形状調整やm/z軸調整が不要となるので、作業者の負担が軽減されるとともに分析作業の効率アップを図ることができる。
本発明の第1実施例である四重極型質量分析装置における四重極電源部の回路構成図。 本発明の第2実施例である四重極型質量分析装置における四重極電源部の回路構成図。 本発明の第3実施例である四重極型質量分析装置における四重極電源部の回路構成図。 本発明の第4実施例である四重極型質量分析装置における四重極電源部の回路構成図。 本発明の第5実施例である四重極型質量分析装置における四重極電源部の回路構成図。 一般的な四重極型質量分析装置の概略構成図。 従来の四重極電源部の概略ブロック図。 従来の四重極電源部の回路構成図。 標準試料に対する複数の質量電荷比におけるピークプロファイルの実測例を示す図。 標準試料に対する複数の質量電荷比におけるピークプロファイルの実測例を示す図。
  [第1実施例]
 本発明の一実施例(以下「第1実施例」という)である四重極型質量分析装置について、添付図面を参照して詳細に説明する。
 第1実施例の四重極型質量分析装置の全体構成は図6で説明した従来の装置と同じであるので説明を省略する。本実施例の四重極型質量分析装置の特徴は四重極電源部4の回路構成にある。図1は本実施例の四重極型質量分析装置における四重極電源部4の回路構成図である。図中、既に説明した図8中の構成要素と同一のものについては同一符号を付して詳しい説明を省略する。
 第1実施例における四重極電源部4には、制御部5から、電源コントロール電圧Qcont以外に、m/z軸補正係数Mcomp1及びV電圧補正係数Vcomp1が入力され、四重極電源部4はV電圧補正機能及びm/z軸補正機能を有する。
 検波ゲイン調整部4Cに追加されるV電圧補正機能は、乗算器421がV電圧調整用アンプ405の出力Vdet'にV電圧補正係数Vcomp1を乗じることにより実現される。このV電圧補正係数Vcomp1は高周波電圧用信号発生器411における設定周波数(実際の発振周波数)fに応じたものであり、具体的には、Vcomp1=(標準周波数f0/設定周波数f)、つまり周波数変化の倍率の逆数である。即ち、設定周波数fが変化したときには、乗算器421でV電圧補正係数Vcomp1が乗じられる分だけ検波ゲイン調整部4C全体のゲインが変化する。設定周波数fの変化に拘わらずフィードバックの働きによりV電圧モニタ電圧Vmonは常に一定となるから、例えば設定周波数fが上がって検波ゲイン調整部4C全体のゲインが下がれば、これを補うべくV電圧を上げるようなフィードバック動作となる。上述したようにV電圧補正がない状態では設定周波数fが上がるとV電圧は下がるが、V電圧補正機能によればその降下分を補うようにV電圧が上昇するため、V電圧は設定周波数f変化以前と同じに保たれる。
 具体例で説明するとV電圧補正機能がない場合、例えば標準周波数f0=1.2MHz、設定周波数f=1.20024MHz、であるとすると、f=1.20024MHzにおけるV電圧は、
  V電圧(at 1.20024MHz)=V電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)
である。これに対し乗算器421によりV電圧補正を行うと、
  Vcomp1・Vdet’=Vmon(一定値)
であるので、
  V電圧(at 1.20024MHz)=V電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)/Vcomp1=V電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)/(1.2MHz/1.20024MHz)=V電圧(at 1.2MHz)
となる。即ち、高周波電圧の周波数が1.2MHz→1.20024MHzに変化した場合でもV電圧は一定に保たれる。
 一方、高周波電源部4Aに追加されるm/z軸補正機能は、乗算器420が電源コントロール電圧Qcontにm/z軸補正係数Mcomp1を乗じることにより実現される。このm/z軸補正係数Mcomp1も設定周波数fに応じたものであり、具体的には、Mcomp1=(設定周波数f/標準周波数f02であって、つまり周波数変化の倍率の二乗である。上述したようにマシュー方程式によれば、高周波電圧の周波数fが変化した場合、任意の質量電荷比に対する最適電圧は周波数変化の二乗の変化が必要となるが、乗算器420において電源コントロール電圧Qcontは周波数変化の二乗の変化を生じるから、任意の質量電荷比に対して最適なV電圧となり、設定周波数fが変化してもm/z軸がずれないようにすることができる。
 m/z軸補正機能がない場合、設定周波数f=1.20024MHzであるときのV電圧は、
  V電圧(at 1.20024MHz)=V電圧(at 1.2MHz)
であり、周波数f=1.20024MHzのときの任意の質量電荷比における最適なV電圧は、
  V電圧(at 1.20024MHz)=V電圧(at 1.2MHz)×(1.20024MHz/1.2MHz)2
である。したがって、出力電圧は最適電圧とは異なり、これによりm/z軸はずれることになる。これに対し乗算器420による上述したm/z軸補正を行うと、
  V電圧(at 1.20024MHz)=Qcont×Mcomp1=V電圧(at 1.2MHz)×(1.20024MHz/1.2MHz)2
となり、高周波電圧の周波数が1.2MHz→1.20024MHzに変化した場合でもV電圧は任意の質量電荷比に対して最適な電圧、つまりm/z軸ずれの生じない電圧となる。
 即ち、第1実施例の四重極型質量分析装置において、制御部5はLC共振回路の同調をとるために高周波電圧用信号発生器411の設定周波数fを標準周波数f0から変化させる際に、V電圧補正係数Vcomp1=(標準周波数f0/設定周波数f)及びm/z軸補正係数Mcomp1=(設定周波数f/標準周波数f02を計算して、それら係数を四重極電源部4に与える。これを受けて四重極電源部4は上述したように検波出力電圧及び電源コントロール電圧を補正する。これにより、設定周波数f変更後も質量分解能は高い状態を維持し、m/z軸もずれずに済む。
 なお、第1実施例の構成では、乗算器420、421はアナログ乗算器であるが、CPUなどにおいてデジタル的に乗算を行ってもよいことは当然である。これは、以下に述べる他の実施例でも同様である。
  [第2実施例]
 次に、本発明の別の実施例(以下「第2実施例」という)である四重極型質量分析装置について、添付図面を参照して詳細に説明する。
 図2は第2実施例の四重極型質量分析装置における四重極電源部4の回路構成図である。図中、既に説明した図1、図8中の構成要素と同一のものについては同一符号を付して詳しい説明を省略する。
 この第2実施例の四重極型質量分析装置は、第1実施例の装置で設けていたV電圧補正機能に代えて、直流電源部4BにU電圧補正機能を付加したものである。直流電源部4Bに追加されるU電圧補正機能は、設定周波数fの変化によって生じたV電圧変化分についてV電圧とU電圧との比が一定に保たれるようにU電圧を変化させることにより、実質的にV電圧補正と同じ効果をもたらすものである。具体的には、U電圧補正機能は、乗算器431において、検波ゲイン調整部4Cから直流電源部4Bに入力されるU電圧コントロール電圧Ucont(=Vmon)に、設定周波数fに応じたU電圧補正係数Ucomp1を乗じることにより実現される。この補正係数はUcomp1=(標準周波数f0/設定周波数f)である。これにより、設定周波数fが変化しても、V電圧とU電圧との比は一定に保たれる。
 例えばU電圧補正機能がない場合、標準周波数f0=1.2MHz、設定周波数f=1.20024MHz、であるとすると、1.20024MHzにおけるV電圧は、
  V電圧(at 1.20024MHz)=V電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)
であり、
  Ucont=Vmon=一定値
であるから、
  U電圧(at 1.2MHz)=U電圧(at 1.20024MHz)
となり、V電圧とU電圧との比は、
  V電圧/U電圧(at 1.20024MHz)=[V電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)]/U電圧(at 1.2MHz)=[V電圧/U電圧(at 1.2MHz)]×(1.2MHz/1.20024MHz)]
となる。即ち、V電圧とU電圧との比は周波数変化に伴って変化してしまう。
 これに対し乗算器422による上述したU電圧補正を行うと、
  U電圧(at 1.20024MHz)=U電圧(at 1.2MHz)/Ucomp1=U電圧(at 1.2MHz)/(1.2MHz/1.20024MHz)
となり、V電圧とU電圧との比は、
  V電圧/U電圧(at 1.20024MHz)=[V電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)]/[U電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)]=V電圧/U電圧(at 1.2MHz)
となる。即ち、1.2MHz→1.20024MHzに周波数が変化しても、V電圧とU電圧との比は一定となる。
 一方、高周波電源部4Aに設けられるm/z軸補正機能は、乗算器430が電源コントロール電圧Qcontにm/z軸補正係数Mcomp2を乗じることにより実現される。このm/z軸補正係数Mcomp2は設定周波数fに応じたものであり、具体的には、Mcomp2=(設定周波数f/標準周波数f03である。これにより、設定周波数fが変化してもm/z軸がずれないようにすることができる。
 例えばm/z軸補正機能がない場合、第1実施例で説明したように、設定周波数f=1.20024MHzであるときのV電圧は、
  V電圧(at 1.20024MHz)=V電圧(at 1.2MHz)
であり、周波数f=1.20024MHzのときの任意の質量電荷比における最適なV電圧は、
  V電圧(at 1.20024MHz)=V電圧(at 1.2MHz)×(1.20024MHz/1.2MHz)2
である。したがって、出力電圧は最適電圧とは異なり、これによりm/z軸はずれることになる。これに対し乗算器430によりm/z軸補正を行うと、
  V電圧(at 1.20024MHz)=Qcont×Mcomp2=V電圧(at 1.2MHz)×(1.2MHz/1.20024MHz)×(1.20024MHz/1.2MHz)3=V電圧(at 1.2MHz)×(1.20024MHz/1.2MHz)2
となり、高周波電圧の周波数が1.2MHz→1.20024MHzに変化した場合でもV電圧は任意の質量電荷比に対して最適な電圧、つまりm/z軸ずれの生じない電圧となる。
 即ち、第2実施例の四重極型質量分析装置において、制御部5はLC共振回路の同調をとるために高周波電圧用信号発生器411の設定周波数fを標準周波数f0から変化させる際に、U電圧補正係数Vcomp1=(標準周波数f0/設定周波数f)及びm/z軸補正係数Mcomp2=(設定周波数f/標準周波数f03を計算して、それら係数を四重極電源部4に与える。これを受けて四重極電源部4は上述したように直流電源部4Bに入力されたU電圧コントロール電圧及び電源コントロール電圧を補正する。これにより、設定周波数f変更後も質量分解能は高い状態を維持し、m/z軸のずれも生じずにすむ。
  [第3実施例]
 次に、本発明の別の実施例(以下「第3実施例」という)である四重極型質量分析装置について、添付図面を参照して詳細に説明する。
 図3は第3実施例の四重極型質量分析装置における四重極電源部4の回路構成図である。図中、既に説明した図1、図2、図8中の構成要素と同一のものについては同一符号を付して詳しい説明を省略する。
 第1及び第2実施例の構成では、直流電源部4Bの入力であるU電圧コントロール電圧として検波ゲイン調整部4Cの出力によるV電圧モニタ電圧Vmonを使用していたが、この第3実施例以降の各実施例の構成では、直流電源部4B専用のU電圧コントロール電圧を制御部5から四重極電源部4に与え、四重極電源部4はこれを用いて直流電圧を生成する。
 この第3実施例の構成では、高周波電源部4Aにおいて制御部5から与えられるV電圧コントロール電圧Vcontに対しV電圧補正及びm/z軸補正を施し、直流電源部4Bにおいて制御部5から与えられるU電圧コントロール電圧Ucontに対しm/z軸補正を施している。V電圧補正機能は、乗算器440がV電圧コントロール電圧Vcontに設定周波数fに応じたV電圧補正係数Vcomp2を乗じることにより実現される。具体的には、V電圧補正係数はVcomp2=(設定周波数f/標準周波数f0)である。これにより、設定周波数fが変化してもV電圧を一定に保つことができる。
 一方、m/z軸補正機能は、高周波電源部4Aにおいて乗算器440がV電圧コントロール電圧Vcontに設定周波数fに応じたm/z軸補正係数Mcomp3を乗じるとともに、直流電源部4Bにおいて乗算器441がU電圧コントロール電圧Ucontに上記m/z軸補正係数Mcomp3を乗じることにより実現される。m/z軸補正係数はMcomp3=(設定周波数f/標準周波数f02である。乗算器440はV電圧補正係数Vcomp2とm/z軸補正係数Mcomp3の両方をV電圧コントロール電圧Vcontに乗じることになるから、実際には、乗算器440はV電圧コントロール電圧Vcontに(設定周波数f/標準周波数f03なる係数を乗じることになる。これにより、第1及び第2実施例と同様に、設定周波数f変更後も高い質量分解能を維持し、m/z軸の精度も保つことができる。
  [第4実施例]
 次に、本発明の別の実施例(以下「第4実施例」という)である四重極型質量分析装置について、添付図面を参照して詳細に説明する。
 図4は第4実施例の四重極型質量分析装置における四重極電源部4の回路構成図である。図中、既に説明した図1~図3、図8中の構成要素と同一のものについては同一符号を付して詳しい説明を省略する。
 第4実施例の構成では、直流電源部4Bにおいて制御部5から与えられるU電圧コントロール電圧Ucontに対しU電圧補正及びm/z軸補正を施し、高周波電源部4Aにおいて制御部5から与えられるV電圧コントロール電圧Vcontに対しm/z軸補正を施している。U電圧補正機能は、乗算器451がU電圧コントロール電圧Ucontに設定周波数fに応じたU電圧補正係数Ucomp2を乗じることにより実現される。具体的には、U電圧補正係数はUcomp2=(標準周波数f0/設定周波数f)である。これにより、設定周波数fが変化してもV電圧とU電圧との比を一定に保つことができる。
 一方、m/z軸補正機能は、高周波電源部4Aにおいて乗算器450がV電圧コントロール電圧Vcontに設定周波数fに応じたm/z軸補正係数Mcomp4を乗じるとともに、直流電源部4Bにおいて乗算器451がU電圧コントロール電圧Ucontに上記m/z軸補正係数Mcomp4を乗じることにより実現される。m/z軸補正係数はMcomp4=(設定周波数f/標準周波数f03である。乗算器451はU電圧補正係数Ucomp2とm/z軸補正係数Mcomp4の両方をU電圧コントロール電圧Ucontに乗じることになるから、実際には、乗算器451はU電圧コントロール電圧Ucontに(設定周波数f/標準周波数f02なる係数を乗じることになる。これにより、第1及び第2実施例と同様に、設定周波数f変更後も高い質量分解能を維持し、m/z軸の精度も保つことができる。
  [第5実施例]
 さらに本発明の別の実施例(以下「第5実施例」という)である四重極型質量分析装置について、添付図面を参照して詳細に説明する。
 図5は第5実施例の四重極型質量分析装置における四重極電源部4の回路構成図である。図中、既に説明した図1~図4、図8中の構成要素と同一のものについては同一符号を付して詳しい説明を省略する。
 第5実施例の構成では、直流電源部4Bにおいて制御部5から与えられるU電圧コントロール電圧Ucontに対しU電圧補正及びm/z軸補正を施し、高周波電源部4Aにおいて制御部5から与えられるV電圧コントロール電圧Vcontに対しV電圧補正及びm/z軸補正を施している。この実施例では、U電圧補正及びm/z軸補正を併せて行うために、乗算器461がU電圧コントロール電圧Ucontに設定周波数fに応じたU電圧/m/z軸補正係数U/Mcompを乗じる。具体的には、U電圧/m/z軸補正係数はU/Mcomp=(設定周波数f/標準周波数f02である。また、V電圧補正及びm/z軸補正を併せて行うために、乗算器460がV電圧コントロール電圧Vcontに設定周波数fに応じたV電圧/m/z軸補正係数V/Mcompを乗じる。具体的には、V電圧/m/z軸補正係数はV/Mcomp=(設定周波数f/標準周波数f03である。
 これにより、第1及び第2実施例と同様に、設定周波数f変更後も高い質量分解能を維持し、m/z軸の精度も保つことができる。
 以上説明したように本発明に係る四重極型質量分析装置では、四重極マスフィルタ2の各ロッド電極を含むLC共振回路で同調を行って振幅の大きな高周波電圧を四重極マスフィルタ2に印加するために周波数を変化させる場合でも、その周波数変化に応じた電圧の補正が四重極電源部4で自動的に行われるので、可変抵抗406、408のマニュアル調整等による質量分解能の調整やm/z軸ずれ調整などが不要である。
 なお、上記実施例は単に本発明の一例にすぎず、本発明の趣旨の範囲で適宜変更や修正、追加を行っても本願請求の範囲に包含されることは明らかである。
1…イオン源
2…四重極マスフィルタ
2a、2b、2c、2d…ロッド電極
3…検出器
4…四重極電源部
4A…高周波電源部
4B…直流電源部
4C…検波ゲイン調整部
4D…検波部
401…ダイオードブリッジ整流回路
402、403…検波用コンデンサ
404…V電圧検波用抵抗
405…V電圧調整用アンプ
406…V電圧調整用可変抵抗
407…バッファアンプ
408…m/z軸調整用可変抵抗
409…V電圧比較用アンプ
410…乗算器
411…高周波電圧用信号発生器
412…バッファアンプ
413…ドライブ回路
414…高周波トランス
415…反転アンプ
416…正極性直流電圧用アンプ
417…負極性直流電圧用アンプ
420、421、430、431、440、441、450、451、460、461…乗算器
5…制御部
6…データ処理部
10…コイル
11…コンデンサ

Claims (3)

  1.  複数の電極からなる四重極マスフィルタと、特定の質量電荷比を有するイオンが前記四重極マスフィルタを選択的に通過するように所定の電圧を該四重極マスフィルタの各電極に印加する四重極電源と、測定対象であるイオンの質量電荷比に応じた目標電圧を前記四重極電源に指示する制御手段と、を具備し、
     前記四重極電源は、前記四重極マスフィルタに印加される高周波電圧を直流検波する検波手段と、該検波手段による検波出力のゲインを調整する検波出力調整手段と、周波数可変である高周波信号を生成する信号生成手段を含み、前記検波出力調整手段の出力と前記目標電圧との比較に基づく振幅を有し前記高周波信号の周波数と同一又はそれに比例する周波数を有する高周波電圧を出力する高周波電源と、前記検波出力調整手段の出力に基づいて直流電圧を出力する直流電源と、該直流電源による直流電圧と前記高周波電源による高周波電圧とを重畳する重畳手段と、を有し、前記四重極マスフィルタの電極間の浮遊容量を含んで形成されるLC共振回路により前記重畳手段により重畳された高周波電圧を増大させて前記四重極マスフィルタに印加するとともに、前記高周波信号の周波数を調整することで前記LC共振回路を同調させる四重極型質量分析装置において、
     前記四重極電源にあって前記検波出力調整手段は、前記高周波信号の周波数に依らない一定のゲインで電圧を増幅する増幅手段と、同調のために前記高周波信号の周波数が標準周波数から変化されたときに、前記四重極マスフィルタに印加される高周波電圧の振幅が一定になるように、前記増幅手段の入力段又は出力段で周波数変化の倍率に応じて電圧を補正する第1の補正手段と、を含み、さらに前記四重極電源は、同調のための前記周波数の変化時に、その周波数変化の倍率の二乗に応じて前記目標電圧を補正する第2の補正手段を備えることを特徴とする四重極型質量分析装置。
  2.  複数の電極からなる四重極マスフィルタと、特定の質量電荷比を有するイオンが前記四重極マスフィルタを選択的に通過するように所定の電圧を該四重極マスフィルタの各電極に印加する四重極電源と、測定対象であるイオンの質量電荷比に応じた目標電圧を前記四重極電源に指示する制御手段と、を具備し、
     前記四重極電源は、前記四重極マスフィルタに印加される高周波電圧を直流検波する検波手段と、該検波手段による検波出力のゲインを調整する検波出力調整手段と、周波数可変である高周波信号を生成する信号生成手段を含み、前記検波出力調整手段の出力と前記目標電圧との比較に基づく振幅を有し前記高周波信号の周波数と同一又はそれに比例する周波数を有する高周波電圧を出力する高周波電源と、前記検波出力調整手段の出力に基づいて直流電圧を出力する直流電源と、該直流電源による直流電圧と前記高周波電源による高周波電圧とを重畳する重畳手段と、を有し、前記四重極マスフィルタの電極間の浮遊容量を含んで形成されるLC共振回路により前記重畳手段により重畳された高周波電圧を増大させて前記四重極マスフィルタに印加するとともに、前記高周波信号の周波数を調整することで前記LC共振回路を同調させる四重極型質量分析装置において、
     前記四重極電源は、
     a)同調のために前記高周波信号の周波数が標準周波数から変化されたときに、前記高周波電源の出力が変化した分だけ前記検波調整手段から前記直流電源に与えられる出力を変化させて前記四重極マスフィルタに印加される高周波電圧の振幅と直流電圧との比が一定になるように、前記検波調整手段から前記直流電源に与えられる出力を周波数変化の倍率に応じて補正する第1の補正手段と、
     b)同調のための前記周波数の変化時に、その周波数変化の倍率の三乗に応じて前記目標電圧を補正する第2の補正手段と、
     を備えることを特徴とする四重極型質量分析装置。
  3.  複数の電極からなる四重極マスフィルタと、特定の質量電荷比を有するイオンが前記四重極マスフィルタを選択的に通過するように高周波電圧と直流電圧とを重畳した所定の電圧を該四重極マスフィルタの各電極に印加する四重極電源と、高周波電圧の振幅と直流電圧の電圧値とが一定の関係を保ちつつ測定対象であるイオンの質量電荷比に応じた電圧が前記四重極マスフィルタに印加されるように、前記四重極電源に対し高周波電圧の振幅に関する第1目標電圧と直流電圧に関する第2目標電圧とを指示する制御手段と、を具備し、
     前記四重極電源は、前記四重極マスフィルタに印加される高周波電圧を直流検波する検波手段と、該検波手段による検波出力のゲインを調整する検波出力調整手段と、周波数可変である高周波信号を生成する信号生成手段を含み、前記検波出力調整手段の出力と前記第1目標電圧との比較に基づく振幅を有し前記高周波信号の周波数と同一又はそれに比例する周波数を有する高周波電圧を出力する高周波電源と、前記第2目標電圧に応じた直流電圧を出力する直流電源と、該直流電源による直流電圧と前記高周波電源による高周波電圧とを重畳する重畳手段と、を有し、前記四重極マスフィルタの電極間の浮遊容量を含んで形成されるLC共振回路により前記重畳手段により重畳された高周波電圧を増大させて前記四重極マスフィルタに印加するとともに、前記高周波信号の周波数を調整することで前記LC共振回路を同調させる四重極型質量分析装置において、
     前記四重極電源は、
     a)同調のために前記高周波信号の周波数が標準周波数から変化されたときに、周波数変化の三乗に応じて前記第1目標電圧を補正する第1の補正手段と、
     b)同調のための前記周波数の変化時にその周波数変化の倍率の二乗に応じて前記第2目標電圧を補正する第2の補正手段と、
     を備えることを特徴とする四重極型質量分析装置。
PCT/JP2011/052930 2011-02-10 2011-02-10 四重極型質量分析装置 WO2012108050A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/983,498 US8907274B2 (en) 2011-02-10 2011-02-10 Quadrupole mass spectrometer
CN201180067394.7A CN103370766B (zh) 2011-02-10 2011-02-10 四极型质量分析装置
JP2012556725A JP5527439B2 (ja) 2011-02-10 2011-02-10 四重極型質量分析装置
EP11858336.8A EP2674963B1 (en) 2011-02-10 2011-02-10 Quadrupole type mass spectrometer
PCT/JP2011/052930 WO2012108050A1 (ja) 2011-02-10 2011-02-10 四重極型質量分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052930 WO2012108050A1 (ja) 2011-02-10 2011-02-10 四重極型質量分析装置

Publications (1)

Publication Number Publication Date
WO2012108050A1 true WO2012108050A1 (ja) 2012-08-16

Family

ID=46638289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052930 WO2012108050A1 (ja) 2011-02-10 2011-02-10 四重極型質量分析装置

Country Status (5)

Country Link
US (1) US8907274B2 (ja)
EP (1) EP2674963B1 (ja)
JP (1) JP5527439B2 (ja)
CN (1) CN103370766B (ja)
WO (1) WO2012108050A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076244A2 (en) * 2012-11-16 2014-05-22 Thermo Fisher Scientific (Bremen) Gmbh Rf transformer
WO2015177886A1 (ja) * 2014-05-21 2015-11-26 株式会社島津製作所 高周波電圧生成装置
WO2023067658A1 (ja) * 2021-10-18 2023-04-27 株式会社島津製作所 質量分析装置および検波ユニット

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490115B2 (en) * 2014-12-18 2016-11-08 Thermo Finnigan Llc Varying frequency during a quadrupole scan for improved resolution and mass range
CN105931944A (zh) * 2016-05-18 2016-09-07 中山大学 一种离子传输系统
US20190311891A1 (en) * 2016-07-11 2019-10-10 Shimadzu Corporation Analyzer
CN106571285A (zh) * 2016-10-20 2017-04-19 中国科学技术大学 一种质谱仪及其射频电源
US11270874B2 (en) 2020-03-30 2022-03-08 Thermo Finnigan Llc Amplifier amplitude digital control for a mass spectrometer
US11336290B2 (en) 2020-03-30 2022-05-17 Thermo Finnigan Llc Amplifier amplitude digital control for a mass spectrometer
CN117890821B (zh) * 2024-03-13 2024-05-14 陕西威思曼高压电源股份有限公司 一种三重四极杆用快速逆转高压电源故障监测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371546A (ja) * 1989-08-10 1991-03-27 Japan Atom Energy Res Inst 四重極質量分析計
JPH06503679A (ja) * 1991-10-24 1994-04-21 ファイソンズ・ピーエルシー 多極質量フィルタ用電源
JPH07240170A (ja) * 1994-02-24 1995-09-12 Shimadzu Corp 四重極質量分析装置
JPH1069880A (ja) 1996-08-29 1998-03-10 Shimadzu Corp 四重極質量分析計
JP2000077025A (ja) 1998-08-31 2000-03-14 Shimadzu Corp 四重極質量分析装置
JP2000187021A (ja) * 1998-12-24 2000-07-04 Japan Atom Energy Res Inst 四極子質量分析計
JP2002033075A (ja) * 2000-07-18 2002-01-31 Shimadzu Corp 質量分析装置
WO2010023706A1 (ja) 2008-08-25 2010-03-04 株式会社島津製作所 四重極型質量分析装置及び四重極型質量分析装置の調整方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078686B2 (en) * 2004-07-23 2006-07-18 Agilent Technologies, Inc. Apparatus and method for electronically driving a quadrupole mass spectrometer to improve signal performance at fast scan rates
GB0524042D0 (en) * 2005-11-25 2006-01-04 Micromass Ltd Mass spectrometer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371546A (ja) * 1989-08-10 1991-03-27 Japan Atom Energy Res Inst 四重極質量分析計
JPH06503679A (ja) * 1991-10-24 1994-04-21 ファイソンズ・ピーエルシー 多極質量フィルタ用電源
JPH07240170A (ja) * 1994-02-24 1995-09-12 Shimadzu Corp 四重極質量分析装置
JPH1069880A (ja) 1996-08-29 1998-03-10 Shimadzu Corp 四重極質量分析計
JP2000077025A (ja) 1998-08-31 2000-03-14 Shimadzu Corp 四重極質量分析装置
JP2000187021A (ja) * 1998-12-24 2000-07-04 Japan Atom Energy Res Inst 四極子質量分析計
JP2002033075A (ja) * 2000-07-18 2002-01-31 Shimadzu Corp 質量分析装置
WO2010023706A1 (ja) 2008-08-25 2010-03-04 株式会社島津製作所 四重極型質量分析装置及び四重極型質量分析装置の調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2674963A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076244A2 (en) * 2012-11-16 2014-05-22 Thermo Fisher Scientific (Bremen) Gmbh Rf transformer
WO2014076244A3 (en) * 2012-11-16 2015-01-22 Thermo Fisher Scientific (Bremen) Gmbh Rf transformer
US8957391B2 (en) 2012-11-16 2015-02-17 Thermo Fisher Scientific (Bremen) Gmbh RF transformer
WO2015177886A1 (ja) * 2014-05-21 2015-11-26 株式会社島津製作所 高周波電圧生成装置
JPWO2015177886A1 (ja) * 2014-05-21 2017-04-20 株式会社島津製作所 高周波電圧生成装置
WO2023067658A1 (ja) * 2021-10-18 2023-04-27 株式会社島津製作所 質量分析装置および検波ユニット

Also Published As

Publication number Publication date
EP2674963A4 (en) 2015-11-25
EP2674963A1 (en) 2013-12-18
US20130313427A1 (en) 2013-11-28
JPWO2012108050A1 (ja) 2014-07-03
JP5527439B2 (ja) 2014-06-18
CN103370766A (zh) 2013-10-23
US8907274B2 (en) 2014-12-09
CN103370766B (zh) 2015-11-25
EP2674963B1 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5527439B2 (ja) 四重極型質量分析装置
US11361952B2 (en) Method and device for crosstalk compensation
EP2602809B1 (en) Quadrupole-type mass spectrometer apparatus
US8563925B2 (en) Mass spectroscope and its adjusting method
US9030056B2 (en) High-frequency (HF) voltage supply system and method for supplying a multipole mass spectrometer with the HF AC voltage used to generate a multipole field
CN107079571B (zh) 高电压发生器
JP5970274B2 (ja) 質量分析装置
US20080303505A1 (en) Self Tuning High Voltage Power Supply
JP2014123469A (ja) 質量分析装置および質量分析装置の調整方法
JP4506285B2 (ja) イオントラップ装置及び該装置の調整方法
US11469742B2 (en) Waveform generator
JP2005050689A (ja) 多重極型質量分析計
JP4496014B2 (ja) 電圧源回路
US20220181133A1 (en) Spectrometer amplifier compensation
JP3946133B2 (ja) 質量分析装置及びその調整方法。
WO2023067658A1 (ja) 質量分析装置および検波ユニット
CN117059469A (zh) 一种多极杆离子传输用自激式射频电源
JPH04106858A (ja) 四重極質量分析計
JP2007312567A (ja) 電源装置
JP2017099085A (ja) 電源装置
JPH02223145A (ja) 四重極質量分析装置
JP2004303707A (ja) 高圧回路の共振点の調整方法および調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556725

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983498

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011858336

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011858336

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE