WO2012105650A1 - モーター用電気絶縁性樹脂シート及びその製造方法 - Google Patents

モーター用電気絶縁性樹脂シート及びその製造方法 Download PDF

Info

Publication number
WO2012105650A1
WO2012105650A1 PCT/JP2012/052401 JP2012052401W WO2012105650A1 WO 2012105650 A1 WO2012105650 A1 WO 2012105650A1 JP 2012052401 W JP2012052401 W JP 2012052401W WO 2012105650 A1 WO2012105650 A1 WO 2012105650A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically insulating
resin sheet
thermoplastic resin
insulating resin
sheet
Prior art date
Application number
PCT/JP2012/052401
Other languages
English (en)
French (fr)
Inventor
笠置 智之
請井 博一
佳子 吉良
須藤 剛
恵子 落合
晋平 八鍬
紘子 池永
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP12742715.1A priority Critical patent/EP2672614A1/en
Priority to CN2012800075844A priority patent/CN103370857A/zh
Priority to KR20137023155A priority patent/KR20140052942A/ko
Priority to US13/982,521 priority patent/US20130309481A1/en
Publication of WO2012105650A1 publication Critical patent/WO2012105650A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to an electrically insulating resin sheet for a motor and a method for producing the same.
  • an electrically insulating resin sheet for motors is known as an insulating member used for insulation between motor coil wires or between a coil wire and an iron core. These are required to electrically insulate between the coil wires and between the coil wires and the iron core.
  • an insulating member used for insulation between motor coil wires or between a coil wire and an iron core.
  • (1) extend the life of the dielectric breakdown even if partial discharge occurs due to surge, (2) make the partial discharge start voltage equal to or higher than the surge voltage. Can be considered.
  • (1) there is a method of adding an inorganic filler to the insulating member, but the flexibility of the resin sheet is lowered, and there is a problem that the insulating property is lowered when stress due to molding is applied.
  • (2) if the partial discharge start voltage of the insulating member is equal to or higher than the surge voltage, the corona discharge does not occur and the life is extended.
  • the present invention has been made in view of the above-mentioned problems and the like, and provides an electrical insulating resin sheet for motors having a high partial discharge start voltage in addition to high heat resistance and electrical insulation, and a method for producing the same.
  • the present inventors have achieved partial discharge without changing the thickness of the insulating member.
  • the present invention has been completed by focusing on the fact that the insulating members between the coil wires and between the coil wires and the iron core have high heat resistance and low dielectric constant.
  • the present invention is an electric insulating resin sheet for a motor provided with a porous resin layer containing a thermoplastic resin, and has a relative dielectric constant at 1 GHz of 2.0 or less.
  • An insulating resin sheet is provided.
  • the porous resin layer preferably has bubbles having an average cell diameter of 5.0 ⁇ m or less and a porosity of 30% or more.
  • the thermoplastic resin is any one selected from polyimide, polyetherimide, and polyethersulfone.
  • the thermoplastic resin is a mixture of two or more kinds of thermoplastic resins having different glass transition temperatures.
  • an electrically insulating resin sheet for motors wherein the electrically insulating resin sheet for motors includes a sheet material on at least one surface of the porous resin layer.
  • thermoplastic resin composition containing at least a thermoplastic resin is impregnated with a non-reactive gas under pressure, a gas impregnation step.
  • a method for producing an electrically insulating resin sheet for a motor characterized in that a porous resin layer is produced by a foaming step of foaming a thermoplastic resin composition by reducing pressure later.
  • the method for producing an electrically insulating resin sheet for motors of the present invention it is preferable to include a heating step of heating the porous resin layer at a temperature of 150 ° C. or higher after the foaming step.
  • the non-reactive gas is preferably carbon dioxide, and the non-reactive gas is preferably impregnated in a supercritical state.
  • thermoplastic resin composition containing a thermoplastic resin and the phase-separation agent which carries out a phase separation with the hardening body of this thermoplastic resin.
  • a porous resin layer is produced by applying a coating on a substrate and drying or curing to produce a thermoplastic resin sheet having a microphase separation structure, and removing a phase separation agent from the thermoplastic resin sheet.
  • the phase separation agent is from liquefied carbon dioxide, subcritical carbon dioxide or supercritical carbon dioxide. It is suitable that it is one kind selected.
  • the electric insulating resin sheet for motors of the present invention is excellent in heat resistance and electric insulating properties, and has a high partial discharge starting voltage, so that the deterioration of the insulating member is suppressed and the life can be extended. Moreover, the manufacturing method of the electrically insulating resin sheet for motors of this invention can manufacture such an electrically insulating resin sheet for motors efficiently by a simple method.
  • FIG. 1 is a cross-sectional view of an embodiment of an electrically insulating resin sheet for motors of the present invention.
  • the electrically insulating resin sheet for motors of the present invention includes a porous resin layer containing a thermoplastic resin, and has a relative dielectric constant of 1 or less at 1 GHz.
  • the relative dielectric constant is 2.0 or less, dielectric breakdown due to surge voltage can be prevented when used as an insulating member for a motor. This is because the partial discharge start voltage, which is an initial phenomenon of dielectric breakdown, can be increased.
  • the relative dielectric constant at 1 GHz exceeds 2.0, the partial discharge start voltage cannot be sufficiently increased.
  • the relative dielectric constant at 1 GHz of the electrically insulating resin sheet for motors is preferably 1.9 or less, more preferably 1.8 or less (usually 1.4 or more).
  • the dielectric constant of the electrically insulating resin sheet for motors was measured by measuring the complex dielectric constant at a frequency of 1 GHz by the cavity resonator method, and the real part was defined as the dielectric constant.
  • the measuring instrument uses a strip-shaped sample (sample size 2 mm ⁇ 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Measured.
  • thermoplastic resin Although it does not specifically limit as a thermoplastic resin used for this invention, it is a thermoplastic resin which has heat resistance, and especially what has the heat resistance whose glass transition temperature is 150 degreeC or more, Preferably it is 180 degreeC or more is suitable. Used for.
  • thermoplastic resins include polyamide, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, polyimide, liquid crystal polymer, and polyetherimide. Can be mentioned.
  • a thermoplastic resin can be used individually or in mixture of 2 or more types.
  • thermoplastic resins polyimide, polyether imide, and polyether sulfone can be particularly preferably used because of high dimensional stability at high temperatures and high long-term durability.
  • a resin having a high glass transition temperature for example, 220 ° C. or higher, further 230 ° C. or higher
  • a resin having a low glass transition temperature for example, 150 ° C. or higher and lower than 220 ° C.
  • the polyimide can be obtained by a known or common method.
  • a polyimide can be obtained by reacting an organic tetracarboxylic dianhydride and a diamino compound (diamine) to synthesize a polyimide precursor (polyamic acid) and dehydrating and ring-closing the polyimide precursor.
  • organic tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 2,2-bis (2,3-dicarboxyl).
  • diamino compound examples include m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl.
  • the raw material of the polyimide used in the present invention is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as the organic tetracarboxylic dianhydride, p-phenylenediamine and / or diamino compound as the diamino compound.
  • 4,4′-diaminodiphenyl ether it is preferable to use 4,4′-diaminodiphenyl ether.
  • the polyimide precursor can be obtained by reacting approximately equimolar organic tetracarboxylic dianhydride and a diamino compound (diamine) usually in an organic solvent at 0 to 90 ° C. for about 1 to 24 hours.
  • organic solvent include polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and dimethyl sulfoxide.
  • the dehydration ring-closing reaction of the polyimide precursor is performed, for example, by heating to about 300 to 400 ° C. or by acting a dehydration cyclizing agent such as a mixture of acetic anhydride and pyridine.
  • a dehydration cyclizing agent such as a mixture of acetic anhydride and pyridine.
  • polyimide is a polymer that is insoluble in organic solvents and difficult to mold. Therefore, when a porous body made of polyimide is produced, the above polyimide precursor is generally used as a polymer for preparing the polymer composition having the microphase separation structure.
  • the polyimide can be obtained by a method in which a polyamic acid silyl ester obtained by reacting an organic tetracarboxylic dianhydride and an N-silylated diamine is heated and cyclized.
  • the polyetherimide can be obtained by a dehydration ring-closing reaction between the diamino compound and an aromatic bisether anhydride such as 2,2,3,3-tetracarboxydiphenylene ether dianhydride.
  • an aromatic bisether anhydride such as 2,2,3,3-tetracarboxydiphenylene ether dianhydride.
  • Ultem resin manufactured by SABIC
  • Superior resin manufactured by Mitsubishi Plastics
  • the polyethersulfone can be obtained by a condensation polymerization reaction of dichlorodiphenylsulfone and a potassium salt of dihydroxydiphenylsulfone, but is commercially available, for example, Ultrazone E series (manufactured by BASF), Radel A series (manufactured by Solvay) ) Etc. may be used.
  • the porous resin layer may contain various additives in addition to the thermoplastic resin as long as the effects of the present invention are not impaired.
  • the type of this additive is not particularly limited, and is a tackifier resin, a flame retardant, an antioxidant, an inorganic filler, a cell nucleating agent, a crystal nucleating agent, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, Common plastic compounding agents such as pigments, cross-linking agents, cross-linking aids, and silane coupling agents can be mentioned.
  • These additives can be used, for example, in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin composition.
  • the electrically insulating resin sheet for motors of the present invention includes a porous resin layer containing a thermoplastic resin, and the porous resin layer is made of a porous thermoplastic resin composition containing the thermoplastic resin and other additives. It can be obtained by qualifying. There are no particular limitations on the method of making the pores, and it can be obtained by foaming by well-known chemical foaming, physical foaming, etc., but in order to obtain a porous resin layer having a low relative dielectric constant according to the present invention, it is fine. From this point, (1) a method of foaming with a non-reactive gas, or (2) a phase separation agent phase-separated in a thermoplastic resin is preferable. Any of the extraction methods is preferred. In these methods, the reaction residue resulting from the foaming agent used in the case of chemical foaming does not remain, and since the bubbles have a closed cell structure, fluctuations in electrical characteristics due to moisture absorption and the like are unlikely to occur.
  • the method for producing a porous resin layer according to the present invention includes a gas impregnation step of impregnating a thermoplastic resin composition containing a thermoplastic resin with a non-reactive gas under pressure, a pressure reduction after the gas impregnation step, and a thermoplastic resin composition. Including a foaming step of foaming the product.
  • the gas impregnation step is a step of impregnating a thermoplastic resin composition containing at least a thermoplastic resin with a nonreactive gas under pressure.
  • a nonreactive gas include carbon dioxide, nitrogen gas, and air. . These gases may be used alone or in combination.
  • carbon dioxide which has a large amount of impregnation into the thermoplastic resin used as the material for the porous resin layer and has a high impregnation rate.
  • the pressure and temperature when impregnating the non-reactive gas depend on the type of non-reactive gas, the type of thermoplastic resin or thermoplastic resin composition, and the average cell diameter and porosity of the target porous resin layer. It is necessary to adjust accordingly.
  • the pressure is about 7.4 to 100 MPa, preferably 20 to 50 MPa, and the temperature is about 120 to 350 ° C., preferably about 120 to 300 ° C.
  • a porous resin layer having an average cell diameter of 5.0 ⁇ m or less and a porosity of 30% or more is produced.
  • the pressure is about 7.4 to 100 MPa, preferably 20 to 50 MPa, and the temperature is about 120 to 260 ° C., preferably about 120 to 220 ° C.
  • the non-reactive gas is preferably in a supercritical state.
  • the critical temperature is 31 ° C. and the critical pressure is 7.4 MPa
  • the temperature is 31 ° C. or higher and the pressure is 7.4 MPa or higher
  • the solubility of carbon dioxide in the polymer is remarkably increased. High concentration can be mixed.
  • the gas concentration in the polymer is high. Therefore, if the pressure is dropped rapidly, a large number of bubble nuclei are generated, and the bubble nuclei grow and the density of the bubbles is increased. , Very fine bubbles can be obtained.
  • the foaming step is a step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step. By reducing the pressure, a large amount of bubble nuclei are generated in the thermoplastic resin composition.
  • the degree of pressure reduction is not particularly limited, but is about 5 to 400 MPa / second.
  • a heating step of heating a porous resin layer made of a thermoplastic resin composition in which cell nuclei are formed by a foaming step at a temperature of 150 ° C. or more may be provided.
  • the heating temperature is preferably 180 ° C. or higher, more preferably 200 ° C. or higher.
  • the heating temperature is less than 150 ° C., it may be difficult to obtain a porous resin layer having a high porosity. Note that after the heating step, the porous resin layer may be rapidly cooled to prevent the growth of bubbles, or the shape of the bubbles may be fixed.
  • a gas impregnation step of impregnating a non-reactive gas under pressure into a thermoplastic resin composition containing at least a thermoplastic resin, and a foaming step of foaming the thermoplastic resin composition by reducing the pressure after the gas impregnation step The batch method or the continuous method may be used.
  • the foam can be produced as follows. That is, a sheet containing a thermoplastic resin as a base resin is formed by extruding a thermoplastic resin composition containing at least a thermoplastic resin using an extruder such as a single screw extruder or a twin screw extruder. Alternatively, a thermoplastic resin composition containing at least a thermoplastic resin is uniformly kneaded using a kneading machine provided with blades such as a roller, a cam, a kneader, a bambari type, and a hot plate press or the like. A sheet containing a thermoplastic resin as a base resin is formed by press molding to a predetermined thickness.
  • the non-foamed sheet thus obtained is placed in a high-pressure vessel, a non-reactive gas composed of carbon dioxide, nitrogen, air, etc. is injected, and the non-reactive gas is impregnated in the non-foamed sheet.
  • a non-reactive gas composed of carbon dioxide, nitrogen, air, etc.
  • the pressure is released (usually up to atmospheric pressure), and bubble nuclei are generated in the base resin.
  • bubble nuclei are generated in the base resin.
  • it cools rapidly with cold water etc., prevents the growth of a bubble, or a heat resistant polymer foam is obtained by fixing a shape.
  • a non-reactive gas is injected while kneading a thermoplastic resin composition containing at least a thermoplastic resin using an extruder such as a single screw extruder or a twin screw extruder, After sufficiently impregnating the non-reactive gas in the resin, the pressure is released by extrusion (usually up to atmospheric pressure) to generate bubble nuclei. And after making a bubble grow by heating, it can cool rapidly with cold water etc., and a heat-resistant polymer foam can be obtained by preventing the growth of a bubble or fixing a shape.
  • an extruder such as a single screw extruder or a twin screw extruder
  • Another method for producing the porous resin layer of the present invention is to apply a thermoplastic resin composition containing a thermoplastic resin and a phase separation agent that phase-separates with a cured product of the thermoplastic resin on a substrate, and to cure.
  • phase separation agent the component constituting the discontinuous phase of the microphase separation structure
  • thermoplastic resin a compound which phase-separates with the hardening body of this resin component.
  • phase separation agent a compound which phase-separates with a thermoplastic resin component, what becomes a uniform state (uniform solution) by adding an appropriate medium (for example, organic solvent) can be used.
  • phase separation agent examples include polyalkylene glycols such as polyethylene glycol and polypropylene glycol; one-end or both-end methyl-capped product of the polyalkylene glycol, or one-end or both-end (meth) acrylate capped product; Urethane prepolymer; phenoxypolyethylene glycol (meth) acrylate, ⁇ -caprolactone (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, Examples include (meth) acrylate compounds such as oligoester (meth) acrylate. One of these phase separation agents may be used alone, or two or more thereof may be mixed and used.
  • a fine microphase separation structure can be obtained by using the phase separation agent, and therefore, the average cell diameter can be 5 ⁇ m or less in the porous tree layer.
  • the molecular weight of the phase separation agent is not particularly limited, but is preferably 10000 or less, for example, about 100 to 10000, more preferably 100 to 2000 as the weight average molecular weight because the subsequent removal operation becomes easy. is there.
  • weight average molecular weight is less than 100, it becomes difficult to phase separate from the cured resin component, whereas when the weight average molecular weight exceeds 10,000, the microphase separation structure becomes too large or removed from the resin molding. It becomes difficult.
  • the addition amount of the phase separation agent can be appropriately selected according to the combination of the phase separation agent and the resin component.
  • the resin component 100 is usually used. 25 to 300 parts by weight, more preferably 30 to 200 parts by weight can be used with respect to parts by weight.
  • thermoplastic resin composition containing the thermoplastic resin component and a phase separation agent is applied onto a substrate.
  • aromatic hydrocarbons such as toluene and xylene
  • alcohols such as methanol, ethanol and isopropyl alcohol
  • ketones such as methyl ethyl ketone and acetone
  • N-methyl-2 Organic solvents such as amides such as pyrrolidone, dimethylacetamide and dimethylformamide
  • the amount of the organic solvent used is usually 100 to 500 parts by weight, preferably 200 to 500 parts by weight, based on 100 parts by weight of the resin component.
  • the substrate is not particularly limited as long as it has a smooth surface, and examples thereof include plastic films such as PET, PE, and PP; glass plates; metal foils such as stainless steel, copper, and aluminum.
  • plastic films such as PET, PE, and PP
  • glass plates such as glass plates
  • metal foils such as stainless steel, copper, and aluminum.
  • the method for applying the thermoplastic resin composition on the substrate is not particularly limited, and examples of the method for continuous application include wire bar, kiss coat, and gravure, and the method for applying in batch is as follows. For example, an applicator, a wire bar, a knife coater, etc. are mentioned.
  • thermoplastic resin composition applied on the substrate is cured to produce a thermoplastic resin sheet in which the phase separation agent is microphase-separated.
  • the microphase separation structure usually has a sea-island structure where the resin component is the sea and the phase separation agent is the island.
  • the coating film is subjected to a curing process such as a thermosetting process, and the thermoplastic resin component in the coating film is cured to insolubilize the phase separation agent.
  • the thermoplastic resin component may be cured after the solvent in the coating film is evaporated (dried) to form a microphase separation structure, or the thermoplastic resin component is cured. Then, the solvent may be evaporated (dried) to form a microphase separation structure.
  • the temperature at which the solvent is evaporated (dried) is not particularly limited, and may be appropriately adjusted depending on the type of the solvent used, but is usually 10 to 250 ° C., preferably 60 to 200 ° C.
  • phase separation agent that has undergone microphase separation is removed from the thermoplastic resin sheet to produce a porous resin layer.
  • the method of removing the phase separation agent from the thermoplastic resin sheet is not particularly limited, but a method of extracting with a solvent is preferable. It is necessary to use a solvent that is a good solvent for the phase separation agent and that does not dissolve the cured product of the thermoplastic resin component, such as organic solvents such as toluene, ethanol, ethyl acetate, and heptane, and liquefaction. Examples include carbon dioxide, subcritical carbon dioxide, and supercritical carbon dioxide. Since liquefied carbon dioxide, subcritical carbon dioxide and supercritical carbon dioxide easily penetrate into the resin sheet, the phase separation agent can be efficiently removed.
  • a solvent that is a good solvent for the phase separation agent and that does not dissolve the cured product of the thermoplastic resin component such as organic solvents such as toluene, ethanol, ethyl acetate, and heptane, and liquefaction. Examples include carbon dioxide, subcritical carbon dioxide, and supercritical carbon dioxide. Since liquefied carbon dioxide, subcritical carbon dioxide
  • a pressure vessel When using liquefied carbon dioxide, subcritical carbon dioxide or supercritical carbon dioxide as a solvent, a pressure vessel is usually used.
  • the pressure vessel for example, a batch type pressure vessel, a pressure vessel having a pressure-resistant sheet feeding and winding device, or the like can be used.
  • the pressure vessel is usually provided with carbon dioxide supply means composed of a pump, piping, valves and the like.
  • the temperature and pressure at the time of extracting the phase separation agent with liquefied carbon dioxide, subcritical carbon dioxide or supercritical carbon dioxide may be higher than the critical point of carbon dioxide, and usually 32 to 230 ° C., 7.3 to 100 MPa, preferably 40 to 200 ° C. and 10 to 50 MPa.
  • Extraction may be performed by continuously supplying and discharging liquefied carbon dioxide, subcritical carbon dioxide, or supercritical carbon dioxide into a pressure vessel containing a thermoplastic resin sheet.
  • the resin sheet, liquefied carbon dioxide, subcritical carbon dioxide or supercritical carbon dioxide may not be moved out of the container).
  • supercritical carbon dioxide and subcritical carbon dioxide are used, swelling of the thermoplastic resin sheet is promoted, and phase separation from the thermoplastic resin sheet is efficiently performed by improving the diffusion coefficient of the insolubilized phase separation agent.
  • the agent is removed.
  • liquefied carbon dioxide is used, the diffusion coefficient is lowered, but the permeability into the thermoplastic resin sheet is improved, so that the phase separation agent is efficiently removed from the resin sheet.
  • the extraction time needs to be appropriately adjusted depending on the temperature and pressure at the time of extraction, the blending amount of the phase separation agent, the thickness of the resin sheet, etc., but is usually 1 to 10 hours, preferably 2 to 10 hours. is there.
  • the phase separation agent when extracting with an organic solvent as the solvent, the phase separation agent can be removed under atmospheric pressure, so the porous resin layer is deformed compared to when extracting with liquefied carbon dioxide or supercritical carbon dioxide. Can be suppressed. In addition, the extraction time can be shortened. Further, the phase separation agent can be continuously extracted by passing the thermoplastic resin sheet sequentially through the organic solvent.
  • Examples of the extraction method using an organic solvent include a method of immersing a thermoplastic resin sheet in an organic solvent, and a method of spraying an organic solvent on the thermoplastic resin sheet.
  • the immersion method is preferable from the viewpoint of the removal efficiency of the phase separation agent.
  • the phase separation agent can be efficiently removed by exchanging the organic solvent several times or performing extraction while stirring.
  • the porous resin layer may be dried after removing the phase separation agent.
  • a phase separation agent that can be evaporated or decomposed by heating when used, it may be combined with a method of removing the phase separation agent by heating to evaporate or decompose before the extraction. it can.
  • the heating temperature in the case of evaporating or decomposing the phase separating agent by heating can be appropriately selected according to the boiling point and decomposition temperature of the phase separating agent, but is generally 100 ° C. or higher, for example, 100 to 500 ° C., preferably 250 to It is about 450 ° C.
  • the evaporation and decomposition operations are preferably performed under reduced pressure (for example, 1 mmHg or less) in order to increase the removal efficiency of the phase separation agent. Since evaporation or decomposition is performed in combination with extraction operation, additive residues that cannot be removed by one operation can be completely removed by another operation, and a porous body having a very low relative dielectric constant can be obtained. .
  • the porous resin layer used for the electrically insulating resin sheet for motors of the present invention preferably has a relative dielectric constant of 1 or less at 1 GHz. If the dielectric constant of the porous resin layer is 2.0 or less, the dielectric constant at 1 GHz of the electrically insulating resin sheet for motors can be reduced to 2.0 or less, and when used as an insulating member for a motor. In addition, dielectric breakdown due to surge voltage can be prevented. On the other hand, if the relative dielectric constant at 1 GHz exceeds 2.0, it is difficult to make the relative dielectric constant 2.0 or less when an electrically insulating resin sheet for motors is configured.
  • the dielectric constant at 1 GHz of the porous resin layer is preferably 1.9 or less, more preferably 1.8 or less (usually 1.4 or more).
  • the relative dielectric constant depends on the specific dielectric constant specific to the porous resin layer, but can be lowered by increasing the porosity.
  • the complex dielectric constant at a frequency of 1 GHz was measured by the cavity resonator contact method, and the real part was taken as the relative dielectric constant.
  • the measuring instrument uses a strip-shaped sample (sample size 2 mm ⁇ 70 mm length) by a cylindrical cavity resonator (“Network Analyzer N5230C” manufactured by Agilent Technologies, “Cavity Resonator 1 GHz” manufactured by Kanto Electronics Application Development Co., Ltd.). Measured.
  • the thickness of the porous resin layer of the present invention is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m. If the thickness of the porous resin layer is in the range of 10 to 500 ⁇ m, there is an advantage that the insulating property can be maintained in the electrically insulating resin sheet for motors. On the other hand, if the thickness of the porous resin sheet is less than 10 ⁇ m, dielectric breakdown is likely to occur, and if it exceeds 500 ⁇ m, the number of turns of the coil wire may be reduced, resulting in a problem that the motor output is reduced.
  • the average cell diameter of the bubbles contained in the porous resin layer of the present invention is preferably 5.0 ⁇ m or less, more preferably 4.5 ⁇ m or less, and particularly preferably 4.0 ⁇ m or less (usually 0 .01 ⁇ m or more). If the average cell diameter of the porous resin layer is 5.0 ⁇ m or less, there is an advantage that the relative dielectric constant can be lowered without lowering the insulation and mechanical strength. Mechanical strength may decrease.
  • the average cell diameter of the bubbles contained in the porous resin layer of the present invention is determined by observing the cut surface of the porous resin layer with a scanning electron microscope (SEM) (“S-3400N” manufactured by Hitachi, Ltd.) Was binarized with image processing software (“WinROOF” manufactured by Mitani Shoji Co., Ltd.), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. The average value of 50 bubbles from the larger bubble diameter was taken as the average bubble diameter.
  • SEM scanning electron microscope
  • the porosity of the porous resin layer of the present invention is preferably 30% or more, and more preferably 40% or more. If the porosity of the porous resin layer is 30% or more, there is an advantage that uniform pores exist in the porous resin layer, the variation in dielectric characteristics is reduced, and a low dielectric constant can be achieved. If it is less than 30%, the vacancy formation state is more uneven and the dielectric characteristics tend to vary, and the relative dielectric constant may not be lowered.
  • the porosity of the porous resin layer of the present invention was calculated from the following formula by measuring the specific gravity of the thermoplastic resin composition before porosity and the porous resin layer after porosity.
  • Porosity (%) [1 ⁇ (specific gravity of porous resin layer / specific gravity of thermoplastic resin composition before porosity)] ⁇ 100
  • FIG. 1 is a cross-sectional view of an embodiment of an electrically insulating resin sheet for a motor according to the present invention.
  • FIG. 1 schematically shows a cross section of an electrically insulating resin sheet for motors made of only a porous resin layer, cut in the thickness direction, and (b) to (d) are porous resin layers.
  • 1 schematically shows a cross section of a motor-use electrically insulating resin sheet further provided with another sheet material cut in the thickness direction.
  • the other shape of the electrically insulating resin sheet for motors is not particularly limited, and may be a sheet shape or a tape shape, may be appropriately stamped into a necessary shape, and further three-dimensional bent. May be made.
  • FIG. 1A shows an electrically insulating resin sheet 1 for a motor formed only from a porous resin layer 2.
  • the thickness of the porous resin layer 2 is as described above.
  • FIG. 1B shows an electrically insulating resin sheet 1 for a motor in which a sheet material 3 is arranged on one side of the porous resin layer 2.
  • the sheet material 3 includes, for example, a nonwoven fabric, paper, or a film.
  • the sheet material 3 has a nonwoven fabric, paper, or heat resistance in that the heat resistance of the electrically insulating resin sheet for motors can be improved.
  • a film is preferred.
  • the sheet material 3 preferably has a low relative dielectric constant in order to set the relative dielectric constant at 1 GHz of the electrically insulating resin sheet for motors to 2.0 or less.
  • the relative dielectric constant at 1 GHz is 3.5.
  • it is preferably 3.0 or less.
  • the thickness of the sheet material 3 is not particularly limited, and is usually 5 to 100 ⁇ m, preferably 5 to 50 ⁇ m. If the thickness of the sheet material 3 is less than 5 ⁇ m, it will be difficult to impart strength to the electric insulating resin sheet for motors, and if it exceeds 100 ⁇ m, the thickness of the electric insulating resin sheet for motors will increase, Problems such as a decrease in the number of windings and a decrease in motor output, and a difficulty in reducing the relative dielectric constant of the electrically insulating resin sheet for motors occur.
  • Examples of the sheet material 3 include those produced by a wet papermaking method (wet nonwoven fabric and the like), and those produced by a dry method in the atmosphere (dry nonwoven fabric and the like).
  • the sheet material 3 is preferably paper produced by a wet papermaking method in that the heat resistance of the electrically insulating resin sheet for motors can be improved.
  • Examples of the material of the paper include synthetic polymer compounds such as polyamide and polyester, natural polymer compounds such as cellulose, and the like, and the heat resistance of the electrically insulating resin sheet for motors can be improved.
  • Polyamide is preferred.
  • the polyamide includes a wholly aromatic polyamide in which all of the constituent monomers have aromatic hydrocarbons, an aliphatic polyamide in which all of the constituent monomers have only aliphatic hydrocarbons, and a semi-aromatic in which some of the constituent monomers have aromatic hydrocarbons.
  • examples include aromatic polyamides, and wholly aromatic polyamides are preferable in that the electrical insulating resin sheet for motors can be more excellent in heat resistance. That is, it is preferable that the sheet material 3 includes the wholly aromatic polyamide.
  • a wholly aromatic polyamide paper containing wholly aromatic polyamide fibers is more preferable in that the heat resistance of the electrically insulating resin sheet for motors can be improved. That is, a wholly aromatic polyamide paper produced by a wet papermaking method using a wholly aromatic polyamide fiber is more preferable.
  • the wholly aromatic polyamide paper examples include, for example, a wholly aromatic obtained by fiberizing a condensation polymer (fully aromatic polyamide) of phenylenediamine and phthalic acid having a benzene ring other than an amide group.
  • the one formed as a main constituent material is a group polyamide fiber.
  • the wholly aromatic polyamide paper is preferably excellent in mechanical properties and has a basis weight of 5 g / m 2 or more from the viewpoint of good handling in the production process of the electrically insulating resin sheet for motors.
  • the basis weight is 5 g / m 2 or more, an insufficient mechanical strength is suppressed, and there is an advantage that it is difficult to break during the production of the electrically insulating resin sheet for motors.
  • other components can be added to the wholly aromatic polyamide paper as long as the effects of the present invention are not impaired.
  • the other components include polyphenylene sulfide fibers, polyether ether ketone fibers, polyester fibers, and arylates.
  • organic fibers such as fibers, liquid crystal polyester fibers, and polyethylene naphthalate fibers, and inorganic fibers such as glass fibers, rock wool, asbestos, boron fibers, and alumina fibers.
  • the wholly aromatic polyamide paper those commercially available from DuPont under the trade name such as “NOMEX” can be used.
  • a heat-resistant film can also be used, and the heat resistance and strength of the electrically insulating resin sheet for motors can be improved, so that the glass transition temperature is 150 ° C. or higher.
  • a film made of a thermoplastic resin having the following is preferably used. Examples of such a film include polyamide, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyetheretherketone, polyamideimide, polyimide, and polyetherimide.
  • FIG. 1C shows an electrically insulating resin sheet 1 for a motor in which sheet materials 3 are arranged on both surfaces of a porous resin layer 2.
  • the sheet material 3 disposed on the porous resin layer 2 may be the same sheet material on both sides, or may be a different sheet material. That is, the sheet material 3 may be disposed on one surface of the porous resin layer 2 and the same sheet material 3 may be disposed on the other surface, or the sheet material 3 may be disposed on one surface of the porous resin layer 2. 3 may be disposed, and a different sheet material 3 ′ may be disposed on the other surface.
  • the sheet material 3 and the sheet material 3 ′ the above-described sheet material can be used.
  • FIG. 1 (d) shows an electrically insulating resin sheet 1 for a motor in which a porous resin layer 2 is disposed on both surfaces of a sheet material 3.
  • the porous resin layer 2 disposed on the sheet material 3 may be the same porous resin layer on both sides, or may be different porous resin layers. That is, the porous resin layer 2 may be disposed on one surface of the sheet material 3 and the same porous resin layer 2 may be disposed on the other surface, or the porous material may be disposed on one surface of the sheet material 3.
  • the resin layer 2 may be disposed, and a different porous resin layer 2 ′ may be disposed on the other surface.
  • the sheet material 3 is arranged on the porous resin layer 2. Therefore, as long as the effect of the present invention is not impaired, an adhesive or a pressure-sensitive adhesive may be used as appropriate (not shown).
  • the adhesive and pressure-sensitive adhesive used for such a purpose are not particularly limited, and conventionally known ones can be used, and examples thereof include an epoxy adhesive, a urethane adhesive, and an acrylic adhesive.
  • the corona treatment can be performed on the porous resin layer 2 side of the sheet material 3.
  • the corona treatment is a treatment in which one surface of the sheet material 3 in contact with the porous resin layer 2 is subjected to a discharge treatment to generate polar carboxyl groups and hydroxyl groups to roughen the surface.
  • a conventionally known general method can be employed as the corona treatment.
  • the thickness of the electrically insulating resin sheet 1 for motors of the present invention is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m. If the thickness of the electric insulating resin sheet for motor 1 is in the range of 10 to 500 ⁇ m, there is an advantage that the insulating property can be maintained in the electric insulating resin sheet for motor. On the other hand, if the thickness of the porous resin sheet is less than 10 ⁇ m, dielectric breakdown is likely to occur, and if it exceeds 500 ⁇ m, the number of turns of the coil wire may be reduced, resulting in a problem that the motor output is reduced.
  • the porous resin layer was cooled with liquid nitrogen and cut perpendicularly to the sheet surface using a blade to produce an evaluation sample.
  • the cut surface of the sample was subjected to Au vapor deposition, and the cut surface was observed with a scanning electron microscope (SEM) (“S-3400N” manufactured by Hitachi, Ltd.).
  • SEM scanning electron microscope
  • the image was binarized with image processing software (“WinROOF” manufactured by Mitani Corporation), separated into a bubble portion and a resin portion, and the maximum vertical chord length of the bubbles was measured. The average value of 50 bubbles from the larger bubble diameter was taken as the average bubble diameter.
  • Partial discharge start voltage A sample cut into 50 mm ⁇ 50 mm is sandwiched between a brass electrode and a stainless steel plate, connected to an AC power supply, applied with a voltage from 0 kV at 200 V / sec, and applied voltage (discharge starting voltage) Vpeak when the charge amount is 100 Pc. Was measured.
  • the partial discharge start voltage may be 1200 Vpeak or more.
  • Example 1 Polyetherimide resin (manufactured by SABIC, trade name “Ultem 1000”, Tg 217 ° C., specific gravity 1.27) was made into a single layer sheet having a thickness of 120 ⁇ m by a twin screw extruder. The unfoamed single layer sheet was put in a 500 cc pressure vessel, and the inside of the tank was kept in a carbon dioxide atmosphere at 200 ° C. and 25 MPa for 0.5 hours to impregnate carbon dioxide. Then, after returning this sheet
  • Example 2 Polyetherimide resin (manufactured by SABIC, trade name “Ultem 1000”, Tg 217 ° C., specific gravity 1.27) and polypropylene glycol (manufactured by NOF Corporation, trade name “Uniol D-400”, average molecular weight) 400) was dissolved in N-methyl-2-pyrrolidone (NMP) at a weight ratio of 100: 75 to obtain a thermoplastic resin composition having a solid concentration of 20%.
  • NMP N-methyl-2-pyrrolidone
  • thermoplastic resin sheet After putting this thermoplastic resin sheet in a 500 cc pressure vessel and pressurizing to 25 MPa in an atmosphere of 25 ° C., carbon dioxide is injected and exhausted at a flow rate of about 15 liters / minute while maintaining the pressure.
  • the operation for extracting polypropylene glycol was performed for 5 hours to obtain a porous resin layer made of polyetherimide having a thickness of 100 ⁇ m.
  • the obtained porous resin layer had an average cell diameter of 3.2 ⁇ m, a porosity of 66%, and a relative dielectric constant of 1.7 (1 GHz).
  • Example 3 Mass ratio of polyetherimide resin (SABIC, trade name “Ultem 1000”, Tg217 ° C. specific gravity 1.27) and polyetherimide resin (SABIC, trade name “Ultem XH6050”, Tg247 ° C. specific gravity 1.30)
  • a porous resin layer having a thickness of 200 ⁇ m was obtained in the same manner as in Example 1 except that a single-layer sheet having a thickness of 120 ⁇ m was obtained by kneading with a twin screw extruder so as to be 40:60.
  • the obtained porous resin layer had an average cell diameter of 3.9 ⁇ m, a porosity of 49%, and a relative dielectric constant of 1.9 (1 GHz).
  • Comparative Example 1 A nonporous resin layer made of polyetherimide having a thickness of 100 ⁇ m was obtained in the same manner except that the phase separation agent of Example 2 was not added. The obtained non-porous resin layer had a relative dielectric constant of 2.7 (1 GHz).
  • Comparative Example 2 A non-porous film of polyethylene naphthalate (PEN) (trade name “Teonex 100 ⁇ m” manufactured by Teijin DuPont Films Ltd.) was used as the electrically insulating resin sheet.
  • PEN polyethylene naphthalate
  • Table 1 shows the evaluation results in each example and comparative example.
  • Example 1 to 3 it was confirmed that the relative permittivity can be made 2.0 or less by forming holes, and the partial discharge starting voltage can be increased as compared with the non-porous resin layer having the same thickness. Moreover, also about heat resistance, it was confirmed that Example 1, 2 is maintaining the high heat resistance similar to a non-porous resin layer. In particular, in Example 3, it was confirmed that a product having improved heat resistance and a high strength residual ratio could be produced.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Insulating Bodies (AREA)

Abstract

 モーターのコイル線間やコイル線と鉄心間の絶縁に用いられるモーター用電気絶縁性樹脂シートにおいて、高い耐熱性、電気絶縁性に加え絶縁破壊電圧の高いモーター用電気絶縁性樹脂シート、およびその製造方法を提供する。熱可塑性樹脂を含む多孔質樹脂層を備えているモーター用電気絶縁性樹脂シートであって、当該多孔質樹脂層は1GHzにおける比誘電率が2.0以下であることを特徴とするモーター用電気絶縁性樹脂シートを提供する。前記多孔質層は、平均気泡径が5.0μm以下であり、空孔率が30%以上となる気泡を有することが好ましい。

Description

モーター用電気絶縁性樹脂シート及びその製造方法
 本発明は、モーター用電気絶縁性樹脂シート及びその製造方法に関する。
 従来、モーターのコイル線間やコイル線と鉄心間の絶縁に用いられる絶縁部材としてモーター用電気絶縁性樹脂シートが知られている。これらは、コイル線間やコイル線と鉄心間を電気的に絶縁することが要求されるが、モーターを高出力とする場合、電流密度が大きくなり、高温となるため、耐熱性を有する絶縁部材が提案されている(例えば、特許文献1、2参照)。
 また近年、モーターは省エネルギー化および小型化高性能化のため高電圧でのインバーター制御が必要となっている。しかし、インバーター電源を使用してモーター駆動を制御する場合、インバーターから発生する高いサージ電圧がモーターに侵入する。このためモーターに使用される絶縁部材は、 サージ電圧に対応するために絶縁部材の劣化を抑制する必要があった。
 サージ電圧による絶縁部材の劣化を抑制する手法としては、(1)サージによる部分放電が発生した場合でも絶縁破壊に至る寿命を長くする、(2)部分放電開始電圧をサージ電圧以上にする、ことが考えられる。(1)の場合では、無機フィラーを絶縁部材に添加する手法があるが、樹脂シートの可とう性が低下し、成型加工によるストレスが加えられた場合に絶縁性が低下するといった問題が発生する。(2)の場合では、絶縁部材の部分放電開始電圧がサージ電圧以上であればコロナ放電が発生せず寿命が長くなるが、部分放電開始電圧を向上するには絶縁部材を厚膜化する必要があり、この場合、モーターにおいてコイル占積率が低下し高出力が得られないという問題がある。
特開平9-23601号公報 特開2006-321183号公報
 本発明は、上記問題点等に鑑みてなされたものであり、高い耐熱性、電気絶縁性に加え部分放電開始電圧の高いモーター用電気絶縁性樹脂シート、およびその製造方法を提供することを課題とする。
 前記のとおり、インバーター電源を使用する際の急激なサージ電圧に対して、部分放電開始電圧の高いことが有効であることから、本発明者らは、絶縁部材の厚みを変えることなく、部分放電開始電圧を向上される一つの手法として、コイル線間やコイル線と鉄心間の絶縁部材を高耐熱でかつ低誘電化することに着目し、本発明を完成させた。
 すなわち本発明は、熱可塑性樹脂を含む多孔質樹脂層を備えているモーター用電気絶縁性樹脂シートであって、1GHzにおける比誘電率が2.0以下であることを特徴とする、モーター用電気絶縁性樹脂シートを提供する。
 本発明のモーター用電気絶縁性樹脂シートにおいては、前記多孔質樹脂層は、平均気泡径が5.0μm以下であり、空孔率が30%以上となる気泡を有することが好適であり、また前記熱可塑性樹脂が、ポリイミド、ポリエーテルイミド、ポリエーテルスルホンから選ばれるいずれか1種であることが好適である。さらに前記熱可塑性樹脂がガラス転移温度が異なる2種類以上の熱可塑性樹脂の混合物であることが好適である。
 また本発明においては、前記モーター用電気絶縁性樹脂シートにおいて、前記多孔質樹脂層の少なくとも片面にシート材を備えていることを特徴とする、モーター用電気絶縁性樹脂シートを提供する。
 さらに本発明においては、前記モーター用電気絶縁性樹脂シートの製造方法であって、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程、により多孔質樹脂層を製造することを特徴とする、モーター用電気絶縁性樹脂シートの製造方法を提供する。
 特に本発明のモーター用電気絶縁性樹脂シートの製造方法においては、前記発泡工程後に、150℃以上の温度で多孔質樹脂層を加熱する加熱工程を含むことが好適である。
 また本発明のモーター用電気絶縁性樹脂シートの製造方法においては、前記非反応性ガスが二酸化炭素であることが好適であり、前記非反応性ガスを超臨界状態で含浸させることが好適である。
 さらに本発明においては、前記モーター用電気絶縁性樹脂シートの別の製造方法であって、熱可塑性樹脂と、該熱可塑性樹脂の硬化体と相分離する相分離剤とを含む熱可塑性樹脂組成物を基板上に塗布し、乾燥あるいは硬化させてミクロ相分離構造を有する熱可塑性樹脂シートを作製する工程、熱可塑性樹脂シートから相分離化剤を除去する工程、により多孔質樹脂層を製造することを特徴とする、モーター用電気絶縁性樹脂シートの製造方法を提供する。
 特に本発明のモーター用電気絶縁性樹脂シートの製造方法においては、相分離化剤を溶剤抽出により除去することが好適であり、さらに溶剤が液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素から選ばれる一種であることが好適である。
 本発明のモーター用電気絶縁性樹脂シートは、耐熱性、電気絶縁性に優れ、部分放電開始電圧が高いため、絶縁部材の劣化が抑制され長寿命化が図れるという効果を奏する。また本発明のモーター用電気絶縁性樹脂シートの製造方法は、このようなモーター用電気絶縁性樹脂シートを簡易な方法で効率よく製造することが可能である。
図1は、本発明のモーター用電気絶縁性樹脂シートの一実施形態についての断面図である。
 以下、本発明の実施の形態について説明する。本発明のモーター用電気絶縁性樹脂シートは、熱可塑性樹脂を含む多孔質樹脂層を備えており、1GHzにおける比誘電率が2.0以下であることを特徴とする。比誘電率が2.0以下であれば、モーターの絶縁部材として使用した際に、耐サージ電圧による絶縁破壊を防止することができる。これは、絶縁破壊の初期現象である部分放電開始電圧を上げることができるためである。一方1GHzにおける比誘電率が2.0を超えると十分に部分放電開始電圧を上げることができない。本発明においては、モーター用電気絶縁性樹脂シートの1GHzにおける比誘電率は、1.9以下、さらに1.8以下であることが好ましい(通常1.4以上)。
 本発明においてモーター用電気絶縁性樹脂シートの比誘電率は、空洞共振器接動法により、周波数1GHzにおける複素誘電率を測定し、その実数部を比誘電率とした。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)によって、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定した。
(熱可塑性樹脂)
 本発明に用いられる熱可塑性樹脂としては特に限定されないが、耐熱性を有する熱可塑性樹脂であることが好ましく、特にガラス転移温度が150℃以上、好ましくは180℃以上の耐熱性を有するものが好適に使用される。このような熱可塑性樹脂としては、ポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド、液晶ポリマー、ポリエーテルイミドなどが挙げられる。熱可塑性樹脂は単独で又は2種以上混合して使用できる。
 本発明においては、上記の熱可塑性樹脂の中でも、高温時の寸法安定性がよく長期での耐久性が高いことから、特にポリイミド、ポリエーテルイミド、ポリエーテルスルホンを好適に使用することができる。また高ガラス転移温度(例えば220℃以上、さらに230℃以上)の樹脂と、低ガラス転移温度(例えば150℃以上220℃未満)の樹脂を併用することが好ましい。それにより、耐久性を維持しつつ微細な気泡を形成することができる(加工性の向上が可能)。ガラス転移温度が異なる熱可塑性樹脂を併用する場合、その配合割合(重量)は、高ガラス転移温度/低ガラス転移温度=20/80~80/20程度が好ましく、30/70~70/30程度がより好ましい。
 前記ポリイミドは公知乃至慣用の方法により得ることができる。例えば、ポリイミドは、有機テトラカルボン酸二無水物とジアミノ化合物(ジアミン)とを反応させてポリイミド前駆体(ポリアミド酸)を合成し、このポリイミド前駆体を脱水閉環することにより得ることができる。
 上記有機テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物等が挙げられる。これらの有機テトラカルボン酸二無水物は単独で又は2種以上混合して用いてもよい。
 上記ジアミノ化合物としては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、3,3′-ジアミノジフェニルスルホン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、ジアミノジフェニルメタン、4,4′-ジアミノ-2,2-ジメチルビフェニル、2,2-ビス(トリフルオロメチル)-4,4′-ジアミノビフェニル等が挙げられる。これらは単独で又は2種以上混合して用いてもよい。
 なお本発明において用いられるポリイミドの原料としては、有機テトラカルボン酸二無水物として、3,3′,4,4′-ビフェニルテトラカルボン酸二無水物を用い、ジアミノ化合物としてp-フェニレンジアミン及び/又は4,4′-ジアミノジフェニルエーテルを用いることが好ましい。
 前記ポリイミド前駆体は、略等モルの有機テトラカルボン酸二無水物とジアミノ化合物(ジアミン)とを、通常、有機溶媒中、0~90℃で1~24時間程度反応させることにより得られる。前記有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒が挙げられる。
 ポリイミド前駆体の脱水閉環反応は、例えば、300~400℃程度に加熱したり、無水酢酸とピリジンの混合物などの脱水環化剤を作用させることにより行われる。一般に、ポリイミドは有機溶媒に不溶であり、成形困難なポリマーである。そのため、ポリイミドからなる多孔質体を製造する場合、前記ミクロ相分離構造を有するポリマー組成物の調製には、ポリマーとして上記のポリイミド前駆体を用いるのが一般である。
 なお、ポリイミドは、上記方法のほか、有機テトラカルボン酸二無水物とN-シリル化ジアミンとを反応させて得られるポリアミド酸シリルエステルを加熱閉環させる方法などよっても得ることができる。
 前記ポリエーテルイミドは、前記ジアミノ化合物と、2,2,3,3-テトラカルボキシジュフェニレンエーテル二無水物のような芳香族ビスエーテル無水物との脱水閉環反応により得ることができるが、市販品、例えば、ウルテム樹脂(SABIC社製)、スペリオ樹脂(三菱樹脂社製)などを用いてもよい。
 前記ポリエーテルスルホンは、ジクロロジフェニルスルホンとジヒドロキシジフェニルスルホンのカリウム塩との縮重合反応により得ることができるが、市販品、例えば、ウルトラゾーンEシリーズ(BASF社製)、レーデルAシリーズ(ソルベイ社製)などを用いてもよい。
(その他の成分)
 本発明において、多孔質樹脂層には、熱可塑性樹脂のほか、本発明の効果を損ねない範囲において、種々の添加剤を含んでいてもよい。この添加剤の種類は特に限定されず、粘着付与樹脂、難燃剤、酸化防止剤、無機フィラー、気泡核剤、結晶核剤、熱安定剤、光安定剤、紫外線吸収剤、可塑剤、滑剤、顔料、架橋剤、架橋助剤、シランカップリング剤などの一般的なプラスチック用配合剤などを挙げることができる。これらの添加剤は、樹脂組成物100重量部に対して、例えば0.1~5重量部用いることができる。
(多孔質樹脂層の製造方法)
 本発明のモーター用電気絶縁性樹脂シートは、熱可塑性樹脂を含む多孔質樹脂層を備えており、多孔質樹脂層は、前記熱可塑性樹脂およびその他の添加剤を含む熱可塑性樹脂組成物を多孔質化することで得ることができる。多孔質化する方法は特に限定されず、従来周知の化学発泡、物理発泡などにより発泡させることで得ることが出来るが、本発明の低比誘電率の多孔質樹脂層を得るためには、微細な気泡を高い空孔率で均一に形成することが好ましく、この点から、(1)非反応性ガスにより発泡させる方法、または(2)熱可塑性樹脂中に相分離させた相分離化剤を抽出する方法、のいずれかが好ましい。これらの方法では、化学発泡の場合に用いられる発泡剤に起因する反応残渣が残らず、また気泡が独立気泡構造となるため、吸湿などによる電気特性の変動が起こりにくい。
 本発明の多孔質樹脂層の製造方法は、熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程を含む。
 ガス含浸工程は、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下に含浸させる工程であり、非反応性ガスとしては、例えば二酸化炭素、窒素ガス、空気等が挙げられる。これらのガスは、単独で使用してもよく、混合して使用してもよい。
 これらの非反応性ガスのうち、多孔質樹脂層の素材として用いる熱可塑性樹脂への含浸量が多く、含浸速度も速い二酸化炭素の使用が特に好ましい。
 非反応性ガスを含浸させる際の圧力および温度は、非反応性ガスの種類、熱可塑性樹脂または熱可塑性樹脂組成物の種類、および目的とする多孔質樹脂層の平均気泡径や空孔率によって適宜調整する必要がある。例えば非反応性ガスとして二酸化炭素を用い、熱可塑性樹脂としてポリイミドを用いた場合において、平均気泡径を5.0μm以下、空孔率を30%以上の多孔質樹脂層を製造するためには、圧力は7.4~100MPa程度、好ましくは20~50MPaであり、温度は120~350℃程度、好ましくは120~300℃程度である。また例えば非反応性ガスとして二酸化炭素を用い、熱可塑性樹脂としてポリエーテルイミドを用いた場合において、平均気泡径を5.0μm以下、空孔率を30%以上の多孔質樹脂層を製造するためには、圧力は7.4~100MPa程度、好ましくは20~50MPaであり、温度は120~260℃程度、好ましくは120~220℃程度である。
 また、ポリマー中への含浸速度を速めるという観点から、前記非反応性ガスは超臨界状態であることが好ましい。例えば、二酸化炭素の場合、臨界温度が31℃、臨界圧力が7.4MPaであり、温度31℃以上、圧力7.4MPa以上の超臨界状態にすると、ポリマーへの二酸化炭素の溶解度が著しく増大し、高濃度の混入が可能となる。また、超臨界状態でガスを含浸させるとポリマー中のガス濃度が高いため、急激に圧力を降下させると、気泡核が多量に発生し、その気泡核が成長してできる気泡の密度が大きくなり、非常に微細な気泡を得ることができる。
 本発明において発泡工程は、前記ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる工程である。圧力を減少させることにより、熱可塑性樹脂組成物中に気泡核が多量に発生する。圧力を減少させる程度(減圧速度)は特に制限されないが、5~400MPa/秒程度である。
 本発明においては、発泡工程により気泡核が形成された熱可塑性樹脂組成物からなる多孔質樹脂層を、150℃以上の温度で加熱する加熱工程を設けてもよい。気泡核が生じた多孔質樹脂層を加熱することにより、気泡核が成長し、気泡が形成される。加熱温度は180℃以上であることが好ましく、より好ましくは200℃以上である。加熱温度が150℃未満では、空孔率の高い多孔質樹脂層を得ることが困難な場合がある。なお加熱工程後には、多孔質樹脂層を急冷して気泡の成長を防止したり、気泡形状を固定してもよい。
 本発明において、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程と、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程は、バッチ方式、連続方式の何れの方式で行ってもよい。
 バッチ方式によれば、例えば以下のようにして発泡体を製造できる。すなわち、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を単軸押出機、二軸押出機等の押出機を使用して押し出すことにより、熱可塑性樹脂を基材樹脂として含むシートが形成される。あるいは、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を、ローラ、カム、ニーダ、バンバリ型等の羽根を設けた混錬機を使用して均一に混錬しておき、熱板のプレスなどを用いて所定の厚みにプレス成形することにより、熱可塑性樹脂を基材樹脂として含むシートが形成される。こうして得られる未発泡シートを高圧容器中に入れて、二酸化炭素、窒素、空気などからなる非反応性ガスを注入し、前記未発泡シート中に非反応性ガスを含浸させる。十分に非反応性ガスを含浸させた時点で圧力を解放し(通常、大気圧まで)、基材樹脂中に気泡核を発生させる。そして、この気泡核を加熱することによって気泡を成長させた後、冷水などで急激に冷却し、気泡の成長を防止したり、形状を固定することにより耐熱性ポリマー発泡体が得られる。
 一方、連続方式によれば、例えば、少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を単軸押出機、二軸押出機等の押出機を使用して混練しながら非反応性ガスを注入し、十分に非反応性ガスを樹脂中に含浸させた後、押し出すことにより圧力を解放(通常、大気圧まで)して気泡核を発生させる。そして、加熱することによって気泡を成長させた後、冷水などで急激に冷却し、気泡の成長を防止したり、形状を固定化することにより耐熱性ポリマー発泡体を得ることができる。
 本発明の多孔質樹脂層の別の製造方法は、熱可塑性樹脂と、該熱可塑性樹脂の硬化体と相分離する相分離剤とを含む熱可塑性樹脂組成物を基板上に塗布し、硬化させてミクロ相分離構造を有する樹脂シートを作製する工程、樹脂シートから相分離化剤を除去する工程を含む。
 本発明において、前記ミクロ相分離構造の非連続相を構成する成分(以下、単に「相分離化剤」と称する場合がある)としては、上記熱可塑性樹脂と混合した場合に相溶性であり、かつ該樹脂成分の硬化体と相分離する化合物である。ただし熱可塑性樹脂成分と相分離する化合物であっても、適宜な媒体(例えば有機溶剤)を加えることで均一状態(均一溶液)となるものは使用可能である。
 このような相分離化剤としては、例えば、ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール;前記ポリアルキレングリコールの片末端もしくは両末端メチル封鎖物、又は片末端もしくは両末端(メタ)アクリレート封鎖物;ウレタンプレポリマー;フェノキシポリエチレングリコール(メタ)アクリレート、ε-カプロラクトン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、オリゴエステル(メタ)アクリレートなどの(メタ)アクリレート系化合物などが例示される。これらの相分離化剤は1種を単独で用いてもよく、2種以上を混合して使用することも出来る。
 本発明においては、前記相分離化剤を用いることで、微小なミクロ相分離構造を得ることができ、このため多孔質樹層において、平均気泡径を5μm以下とすることができる。
 上記相分離化剤の分子量は特に制限はないが、後の除去操作が容易になることから、重量平均分子量として10000以下、例えば100~10000程度であるのが好ましく、より好ましくは100~2000である。重量平均分子量が100未満の場合には、樹脂成分の硬化体と相分離し難くなり、一方重量平均分子量が10000を超えると、ミクロ相分離構造が大きくなりすぎたり、樹脂成型体中から除去し難くなったりする。
 前記相分離剤の添加量は、該相分離剤と前記樹脂成分の組み合わせに応じて適宜選択出来るが、多孔質樹脂成型体の空孔率を30%以上にするためには、通常樹脂成分100重量部に対して25~300重量部、より好ましくは30~200重量部用いることができる。
 以下、本発明の多孔質樹脂成型体の製造方法について詳しく説明する。
 まず、前記熱可塑性樹脂成分と相分離化剤とを含む熱可塑性樹脂組成物を基板上に塗布する。
 均一な熱可塑性樹脂組成物を調製するために、トルエン、及びキシレンなどの芳香族炭化水素;メタノール、エタノール、及びイソプロピルアルコールなどのアルコール類;メチルエチルケトン、及びアセトンなどのケトン類;N-メチル-2-ピロリドン、ジメチルアセトアミド、及びジメチルホルムアミドなどのアミド類などの有機溶媒を使用してもよい。有機溶媒の使用量は、樹脂成分100重量部に対して通常100~500重量部であり、好ましくは200~500重量部である。
 基材としては、平滑な表面を有するものであれば特に制限されず、例えば、PET、PE、及びPPなどのプラスチックフィルム;ガラス板;ステンレス、銅、及びアルミニウムなどの金属箔が挙げられる。連続して樹脂シートを製造するために、ベルト状の基材を用いてもよい。
 熱可塑性樹脂組成物を基材上に塗布する方法は特に制限されず、連続的に塗布する方法としては、例えば、ワイヤーバー、キスコート、及びグラビアなどが挙げられ、バッチで塗布する方法としては、例えば、アプリケーター、ワイヤーバー、及びナイフコーターなどが挙げられる。
 次に、基板上に塗布した熱可塑性樹脂組成物を硬化させて、相分離化剤がミクロ相分離した熱可塑性樹脂シートを作製する。ミクロ相分離構造は、通常、樹脂成分を海、相分離化剤を島とする海島構造となる。
 熱可塑性樹脂組成物が溶媒を含まない場合には、塗布膜に熱硬化処理などの硬化処理を施し、塗布膜中の熱可塑性樹脂成分を硬化させて相分離化剤を不溶化する。
 熱可塑性樹脂組成物が溶媒を含む場合には、塗布膜中の溶媒を蒸発(乾燥)させてミクロ相分離構造を形成した後に熱可塑性樹脂成分を硬化させてもよく、熱可塑性樹脂成分を硬化させた後に溶媒を蒸発(乾燥)させてミクロ相分離構造を形成してもよい。溶媒を蒸発(乾燥)させる際の温度は特に制限されず、用いた溶媒の種類により適宜調整すればよいが、通常10~250℃であり、好ましくは60~200℃である。
 次に、熱可塑性樹脂シートからミクロ相分離した相分離化剤を除去して多孔質樹脂層を作製する。なお、相分離化剤を除去する前に熱可塑性樹脂シートを基材から剥離しておいてもよい。
 熱可塑性樹脂シートから相分離化剤を除去する方法は特に制限されないが、溶剤で抽出する方法が好ましい。溶剤は、相分離化剤に対して良溶媒であり、かつ熱可塑性樹脂成分の硬化体を溶解しないものを用いる必要があり、例えば、トルエン、エタノール、酢酸エチル、及びヘプタンなどの有機溶剤、液化二酸化炭素、亜臨界二酸化炭素、超臨界二酸化炭素などが挙げられる。液化二酸化炭素、亜臨界二酸化炭素及び超臨界二酸化炭素は、樹脂シート内に浸透しやすいため相分離化剤を効率よく除去することができる。
 溶剤として液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素を用いる場合には、通常、圧力容器を用いる。圧力容器としては、例えば、バッチ式の圧力容器、耐圧性のシート繰り出し・巻き取り装置を有する圧力容器などを用いることができる。圧力容器には、通常、ポンプ、配管、及びバルブなどにより構成される二酸化炭素供給手段が設けられている。
 液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素で相分離化剤を抽出する際の温度及び圧力は、二酸化炭素の臨界点以上であればよく、通常、32~230℃、7.3~100MPaであり、好ましくは40~200℃、10~50MPaである。
 抽出は、熱可塑性樹脂シートを入れた圧力容器内に、液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素を連続的に供給・排出して行ってもよく、圧力容器を閉鎖系(投入した樹脂シート、液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素が容器外に移動しない状態)にして行ってもよい。超臨界二酸化炭素および亜臨界二酸化炭素を用いた場合には、熱可塑性樹脂シートの膨潤が促進され、かつ不溶化した相分離化剤の拡散係数の向上によって効率的に熱可塑性樹脂シートから相分離化剤が除去される。液化二酸化炭素を用いた場合には、前記拡散係数は低下するが、熱可塑性樹脂シート内への浸透性が向上するため効率的に樹脂シートから相分離化剤が除去される。
 抽出時間は、抽出時の温度、圧力、相分離化剤の配合量、及び樹脂シートの厚みなどにより適宜調整する必要があるが、通常、1~10時間であり、好ましくは2~10時間である。
 一方、溶剤として有機溶剤を用いて抽出する場合、大気圧下で相分離化剤を除去できるため、液化二酸化炭素または超臨界二酸化炭素を用いて抽出する場合に比べて多孔質樹脂層の変形を抑制できる。また、抽出時間を短縮することもできる。さらに、有機溶剤中に順次熱可塑性樹脂シートを通すことにより、連続的に相分離化剤の抽出処理を行うことができる。
 有機溶剤を用いた抽出方法としては、例えば、有機溶剤中に熱可塑性樹脂シートを浸漬する方法、熱可塑性樹脂シートに有機溶剤を吹き付ける方法などが挙げられる。相分離化剤の除去効率の観点から浸漬法が好ましい。また、数回に亘って有機溶剤を交換したり、撹拌しながら抽出することで効率的に相分離化剤を除去することができる。
 相分離化剤を除去した後に多孔質樹脂層を乾燥処理等してもよい。
 本発明においては、相分離化剤として加熱により蒸発または分解できるものを用いた場合は、上記抽出の前に、相分離化剤を加熱して蒸発又は分解することで除去する方法と組み合わせることもできる。相分離化剤を加熱いより蒸発又は分解する場合の加熱温度は、相分離化剤の沸点、分解温度に応じて適宜選択できるが、一般に100℃以上、例えば100~500℃、好ましくは250~450℃程度である。蒸発、分解操作は、前記相分離化剤の除去効率を高めるため、減圧下(例えば、1mmHg以下)で行うことが好ましい。蒸発又は分解と抽出操作とを組み合わせて行うので、一方の操作では除去出来ない添加剤の残渣を他の操作により完全に取り除くことが出来、比誘電率の極めて低い多孔質体を得ることが出来る。
(多孔質樹脂層)
 本発明のモーター用電気絶縁性樹脂シートに用いる多孔質樹脂層は、1GHzにおける比誘電率が2.0以下であることが好ましい。多孔質樹脂層の比誘電率が2.0以下であれば、モーター用電気絶縁性樹脂シートの1GHzにおける比誘電率を2.0以下にすることが可能となり、モーターの絶縁部材として使用した際に、耐サージ電圧による絶縁破壊を防止することができる。一方1GHzにおける比誘電率が2.0を超えると、モーター用電気絶縁性樹脂シートを構成した際に、比誘電率を2.0以下にすることが困難となる。本発明においては、多孔質樹脂層の1GHzにおける比誘電率は、1.9以下、さらに1.8以下であることが好ましい(通常1.4以上)。なお比誘電率は、多孔質樹脂層固有の比誘電率に依存するが、空孔率を高くすることで低誘電化することが可能である。
 本発明において多孔質樹脂層の比誘電率は、空洞共振器接動法により、周波数1GHzにおける複素誘電率を測定し、その実数部を比誘電率とした。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)によって、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定した。
 本発明の多孔質樹脂層の厚さは10~500μmであることが好ましく、さらに好ましくは20~300μmである。多孔質樹脂層の厚さが10~500μmの範囲であれば、モーター用電気絶縁性樹脂シートにおいて、絶縁性を維持できるという利点がある。一方多孔質樹脂シートの厚さが10μm未満であると、絶縁破壊が起こりやすく、500μmを超えるとコイル線の巻数が低下して、モーター出力が低下するという不具合が発生する恐れがある。
 本発明の多孔質樹脂層に含まれる気泡の平均気泡径は、5.0μm以下であることが好ましく、さらに好ましくは4.5μm以下であり、特に4.0μm以下であることが好ましい(通常0.01μm以上)。多孔質樹脂層の平均気泡径が5.0μm以下であれば、絶縁性や機械強度を低下させることなく比誘電率を低くすることができるという利点があり、5.0μmを超えると絶縁性や機械強度が低下する場合がある。
 本発明の多孔質樹脂層に含まれる気泡の平均気泡径は、多孔質樹脂層の切断面を走査型電子顕微鏡(SEM)(日立製作所社製「S-3400N」)で観察したのち、その画像を画像処理ソフト(三谷商事社製「WinROOF」)で二値化処理し、気泡部と樹脂部とに分離して気泡の最大垂直弦長を測定した。気泡径の大きいほうから50個の気泡について平均値をとり、平均気泡径とした。
 また本発明の多孔質樹脂層の空孔率は、30%以上であることが好ましく、さらに好ましくは40%以上である。多孔質樹脂層の空孔率が30%以上であれば、多孔質樹脂層内に均等な空孔が存在する状態となり誘電特性のバラツキが低減され、低誘電率化を図れるという利点があり、30%未満であると空孔形成状態が偏より誘電特性のバラツキが発生しやすくなり、比誘電率を下げることができない場合がある。
 本発明の多孔質樹脂層の空孔率は、多孔化前の熱可塑性樹脂組成物、および多孔化後の多孔質樹脂層の比重を測定し、下記式より算出した。
空孔率(%)=[1-(多孔質樹脂層の比重/多孔化前の熱可塑性樹脂組成物の比重)]×100
(モーター用電気絶縁性樹脂シート)
 次に、本発明のモーター用電気絶縁性樹脂シートについて、図1を参照して、説明する。
 図1は、本発明のモーター用電気絶縁性樹脂シートの一実施形態についての断面図である。図1において(a)は、多孔質樹脂層のみからなるモーター用電気絶縁性樹脂シートを厚さ方向に切断した断面を模式的に示しており、(b)~(d)は多孔質樹脂層に他のシート材をさらに備えたモーター用電気絶縁性樹脂シートを厚さ方向に切断した断面を模式的に示している。モーター用電気絶縁性樹脂シートのその他の形状については特に限定されず、シート状、テープ状であってもよく、また適宜必要な形状に打ち抜き加工されてもよく、さらには3次元的な折り曲げ加工がなされていても良い。
 すなわち図1(a)においては、多孔質樹脂層2のみから形成されているモーター用電気絶縁性樹脂シート1を示している。多孔質樹脂層2の厚みは前述したとおりである。
 また図1(b)は、多孔質樹脂層2の片面側にシート材3が配されたモーター用電気絶縁性樹脂シート1を示している。シート材3を備えることで、モーター用電気絶縁性樹脂シート1の強度や滑り性が向上するという利点がある。
 前記シート材3は、例えば、不織布、紙、又はフィルム等が挙げられるが、モーター用電気絶縁性樹脂シートの耐熱性がより優れたものになり得るという点で、不織布、紙又は耐熱性を有するフィルムが好ましい。
 また前記シート材3は、モーター用電気絶縁性樹脂シートの1GHzにおける比誘電率を2.0以下とするために、低い比誘電率を有することが好ましく、例えば1GHzにおける比誘電率が3.5以下、好ましくは3.0以下であることが望ましい。
 前記シート材3の厚さは、特に限定されるものではなく、通常、5~100μm、好ましくは5~50μmである。シート材3の厚さが5μm未満であると、モーター用電気絶縁性樹脂シートに強度を付与することが困難となり、100μmを超えるとモーター用電気絶縁性樹脂シートとしての厚さが増しコイル線の巻数が低下してモーター出力が低下したり、モーター用電気絶縁性樹脂シートの比誘電率を低くすることが困難になるといった不具合が発生する。
 前記シート材3としては、湿式抄紙法により作製されたもの(湿式不織布等)、大気中で乾式法により作製されたもの(乾式不織布等)などが挙げられる。前記シート材3としては、モーター用電気絶縁性樹脂シートの耐熱性がより優れたものになり得るという点で、湿式抄紙法により作製された紙が好ましい。
 紙の材質としては、ポリアミド、ポリエステルなどの合成高分子化合物、セルロースなどの天然高分子化合物等が挙げられ、モーター用電気絶縁性樹脂シートの耐熱性がより優れたものになり得るという点で、ポリアミドが好ましい。
 該ポリアミドとしては、構成モノマーの全てが芳香族炭化水素を有する全芳香族ポリアミド、構成モノマーの全てが脂肪族炭化水素のみを有する脂肪族ポリアミド、構成モノマーの一部が芳香族炭化水素を有する半芳香族ポリアミドなどが挙げられ、モーター用電気絶縁性樹脂シートの耐熱性がより優れたものになり得るという点で、全芳香族ポリアミドが好ましい。すなわち、前記シート材3は、前記全芳香族ポリアミドを含んでいることが好ましい。
 また、前記紙としては、モーター用電気絶縁性樹脂シートの耐熱性がより優れたものになり得るという点で、全芳香族ポリアミド繊維を含む全芳香族ポリアミド紙がさらに好ましい。即ち、全芳香族ポリアミド繊維を用いて湿式抄紙法により作製された全芳香族ポリアミド紙がさらに好ましい。
 前記全芳香族ポリアミド紙(アラミド紙)としては、例えば、アミド基以外がベンゼン環で構成されたフェニレンジアミンとフタル酸との縮合重合物(全芳香族ポリアミド)を繊維化し、繊維化した全芳香族ポリアミド繊維を主たる構成材として形成されたものが挙げられる。
 前記全芳香族ポリアミド紙は、力学的特性に優れ、モーター用電気絶縁性樹脂シートの製造工程におけるハンドリングが良好であるという点で、坪量が5g/m2以上であることが好ましい。坪量が5g/m2以上であることにより、力学的強度の不足が抑制されモーター用電気絶縁性樹脂シートの製造中に破断しにくいという利点がある。
 なお、前記全芳香族ポリアミド紙には、本発明の効果を損なわない範囲において他の成分を加えることができ、該他の成分としては、ポリフェニレンスルフィド繊維、ポリエーテルエーテルケトン繊維、ポリエステル繊維、アリレート繊維、液晶ポリエステル繊維、ポリエチレンナフタレート繊維などの有機繊維やガラス繊維、ロックウール、アスベスト、ボロン繊維、アルミナ繊維などの無機繊維が挙げられる。
 このような前記全芳香族ポリアミド紙としては、デュポン社より「ノーメックス」などの商品名で市販されているもの等を用いることができる。
 前記シート3として、耐熱性を有するフィルムも用いることができ、モーター用電気絶縁性樹脂シートの耐熱性や強度がより優れたものになり得るという点で、ガラス転移温度が150℃以上の耐熱性を有する熱可塑性樹脂からなるフィルムが好適に使用される。そのようなフィルムとしては、例えばポリアミド、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリイミド、ポリエーテルイミドなどが挙げられる。
 また図1(c)は、多孔質樹脂層2の両面にシート材3が配されたモーター用電気絶縁性樹脂シート1を示している。この場合、多孔質樹脂層2に配されるシート材3は、両面側とも同じシート材であってもよく、異なるシート材であってもよい。すなわち、多孔質樹脂層2の一方の面にシート材3が配され、もう一方の面にも同じシート材3が配されていてもよく、あるいは多孔質樹脂層2の一方の面にシート材3が配され、もう一方の面には異なるシート材3´が配されていても良い。このようなシート材3およびシート材3´は前記したシート材を用いることができる。
 また図1(d)は、シート材3の両面に多孔質樹脂層2を配されたモーター用電気絶縁性樹脂シート1を示している。この場合、シート材3に配される多孔質樹脂層2は、両面側とも同じ多孔質樹脂層であってもよく、異なる多孔質樹脂層であってもよい。すなわち、シート材3の一方の面に多孔質樹脂層2が配され、もう一方の面にも同じ多孔質樹脂層2が配されていてもよく、あるいはシート材3の一方の面に多孔質樹脂層2が配され、もう一方の面には異なる多孔質樹脂層2´が配されていても良い。
 なお図1の(b)、(c)及び(d)に示す多孔質樹脂層2にシート材3を配するモーター用電気絶縁用樹脂シートにおいては、多孔質樹脂層2にシート材3を配するため、本発明の効果を損なわない限り、適宜接着剤や粘着剤を用いても良い(図示していない)。このような目的で使用される接着剤や粘着剤は特に限定されず、従来周知のものを用いることができ、例えばエポキシ接着剤、ウレタン接着剤、アクリル接着剤等を挙げることができる。
 前記シート材3の多孔質樹脂層2側には、コロナ処理を施すことができる。該コロナ処理が施されていることにより、シート材3と多孔質樹脂層2との間における層間剥離が抑制され得るという利点がある。前記コロナ処理は、多孔質樹脂層2と接するシート材3の一方の面に放電処理を行い、極性を持つカルボキシル基や水酸基を生成させ荒面化する処理である。前記コロナ処理としては、従来公知の一般的な方法を採用することができる。
 本発明のモーター用電気絶縁性樹脂シート1の厚さは10~500μmであることが好ましく、さらに好ましくは20~300μmである。モーター用電気絶縁性樹脂シート1の厚さが10~500μmの範囲であれば、モーター用電気絶縁性樹脂シートにおいて、絶縁性を維持できるという利点がある。一方多孔質樹脂シートの厚さが10μm未満であると、絶縁破壊が起こりやすく、500μmを超えるとコイル線の巻数が低下して、モーター出力が低下するという不具合が発生する恐れがある。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 〔測定及び評価方法〕
(比誘電率)
 空洞共振器接動法により、周波数1GHzにおける複素誘電率を測定し、その実数部を比誘電率とした。測定機器は、円筒空洞共振機(アジレント・テクノロジー社製「ネットワークアナライザ N5230C」、関東電子応用開発社製「空洞共振器1GHz」)によって、短冊状のサンプル(サンプルサイズ2mm×70mm長さ)を用いて測定した。
(平均気泡径)
 多孔質樹脂層を液体窒素で冷却し、刃物を用いてシート面に対して垂直に切断して評価サンプルを作製した。サンプルの切断面にAu蒸着処理を施し、該切断面を走査型電子顕微鏡(SEM)(日立製作所社製「S-3400N」)で観察した。その画像を画像処理ソフト(三谷商事社製「WinROOF」)で二値化処理し、気泡部と樹脂部とに分離して気泡の最大垂直弦長を測定した。気泡径の大きいほうから50個の気泡について平均値をとり、平均気泡径とした。
(空孔率)
 発泡前の熱可塑性樹脂組成物、および発泡後の多孔質樹脂層の比重を比重計(Alfa Mirage社製「MD-300S」)により測定し、下記式より算出した。
空孔率(%)=[1-(多孔質樹脂層の比重/多孔化前の熱可塑性樹脂組成物の比重)]×100
(部分放電開始電圧)
 50mm×50mmに切り出した試料を真鍮電極とステンレス板間挟み、交流電源を接続し、200V/秒で0kVから電圧を印加し、電荷量が100Pcを示したときの印加電圧(放電開始電圧)Vpeakを測定した。本発明においては、部分放電開始電圧が1200Vpeak以上であれば良い。
(耐熱性の評価)
 シートの流れ方向に沿って15mm幅で切断した試験サンプルを作製した。作製したサンプルを220℃に加熱した恒温槽に1000時間放置した。恒温槽に放置する前と後のサンプルについて、JIS C2151における「引張強さ」に準じ、23℃において、200mm/分、標線100mmの条件で引張試験を行い、引張強度を測定した。下記の式により、強度残率を算出した。
 強度残率(%)= [(放置後の引張強度)/(放置前の引張強度)]×100
 本発明においては、上記評価で得られる強度残率が50%以上であれば良い。
実施例1
 ポリエーテルイミド樹脂(SABIC社製、商品名「ウルテム1000」、Tg217℃ 比重1.27)を二軸押出機により厚さ120μmの単層シートとした。未発泡の単層シートを、500ccの耐圧容器に入れ、槽内を200℃、25MPaの二酸化炭素雰囲気中に0.5時間保持することにより、二酸化炭素を含浸させた。その後、300MPa/秒でこのシートを大気圧に戻した後、厚さ200μmのポリエーテルイミドからなる多孔質樹脂層を得た。得られた多孔質樹脂層の平均気泡径は4.1μm、空孔率は55%、比誘電率は1.8(1GHz)であった。
実施例2
 ポリエーテルイミド樹脂(SABIC社製、商品名「ウルテム1000」、Tg217℃ 比重1.27)と、相分離化剤としてポリプロピレングリコール(日油社製、商品名「ユニーオールD-400」、平均分子量400)を重量比100:75で、N-メチル-2-ピロリドン(NMP)に溶解させ、固形分濃度20%の熱可塑性樹脂組成物を得た。この熱可塑性樹脂組成物をアプリケーターを用いて塗布し、その後110℃で10分乾燥させてNMPを蒸発除去し、厚さ100μmの熱可塑性樹脂シートを得た。
 この熱可塑性樹脂シートを500ccの耐圧容器に入れ、25℃の雰囲気中、25MPaに加圧した後、圧力を保ったままガス量にして約15リットル/分の流量で二酸化炭素を注入、排気してポリプロピレングリコールを抽出する操作を5時間行い、厚さ100μmのポリエーテルイミドからなる多孔質樹脂層とした。得られた多孔質樹脂層の平均気泡径は3.2μm、空孔率は66%、比誘電率は1.7(1GHz)であった。
実施例3
 ポリエーテルイミド樹脂(SABIC社製、商品名「ウルテム1000」、Tg217℃ 比重1.27)とポリエーテルイミド樹脂(SABIC社製、商品名「ウルテムXH6050」、Tg247℃ 比重1.30)を質量比40:60になるように二軸押出機により混練し厚さ120μmの単層シートを得た以外は、実施例1と同様の方法で厚さ200μmの多孔質樹脂層を得た。得られた多孔質樹脂層の平均気泡径は3.9μm、空孔率は49%、比誘電率は1.9(1GHz)であった。
比較例1
 実施例2の相分離化剤を添加しない以外は、同様な方法で厚さ100μmのポリエーテルイミドからなる無孔の樹脂層を得た。得られた無孔樹脂層の比誘電率は2.7(1GHz)であった。
比較例2
 ポリエチレンナフタレート(PEN)の無孔フィルム(帝人デュポンフィルム社製商品名「テオネックス100μm」)を電気絶縁性樹脂シートとした。
 各実施例及び比較例における評価結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3は、空孔形成により比誘電率を2.0以下とすることができ、同じ厚さの無孔樹脂層と比べ部分放電開始電圧を高めることができることが確認された。また、耐熱性についても、実施例1、2は無孔樹脂層と同様の高耐熱性を維持していることが確認された。特に実施例3では、耐熱性が向上し強度残率の高いものが作製できることが確認された。
1 モーター用電気絶縁性樹脂シート
2(2´) 多孔質樹脂層
3(3´) シート材
 

Claims (12)

  1. 熱可塑性樹脂を含む多孔質樹脂層を備えているモーター用電気絶縁性樹脂シートであって、1GHzにおける比誘電率が2.0以下であることを特徴とする、モーター用電気絶縁性樹脂シート。
  2. 前記多孔質樹脂層は、平均気泡径が5.0μm以下であり、空孔率が30%以上となる気泡を有することを特徴とする、請求項1に記載のモーター用電気絶縁性樹脂シート。
  3. 前記熱可塑性樹脂が、ポリイミド、ポリエーテルイミド、ポリエーテルスルホンから選ばれるいずれか1種であることを特徴とする、請求項1または2に記載のモーター用電気絶縁性樹脂シート。
  4. 前記熱可塑性樹脂が、ガラス転移温度が異なる2種類以上の熱可塑性樹脂の混合物であることを特徴とする、請求項1~3に記載のモーター用電気絶縁性樹脂シート。
  5. 前記多孔質樹脂層の少なくとも片面にシート材を備えていることを特徴とする、請求項1~4のいずれか1項に記載のモーター用電気絶縁性樹脂シート。
  6. 請求項1~5のいずれか1項に記載のモーター用電気絶縁性樹脂シートの製造方法であって、
    少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物に非反応性ガスを加圧下で含浸させるガス含浸工程、ガス含浸工程後に圧力を減少させて熱可塑性樹脂組成物を発泡させる発泡工程、により多孔質樹脂層を製造することを特徴とする、モーター用電気絶縁性樹脂シートの製造方法。
  7. 前記発泡工程後に、150℃以上の温度で多孔質樹脂層を加熱する加熱工程を含むことを特徴とする、請求項6に記載のモーター用電気絶縁性樹脂シートの製造方法。
  8. 非反応性ガスが二酸化炭素であることを特徴とする、請求項6または7に記載のモーター用電気絶縁性樹脂シートの製造方法。
  9. 非反応性ガスを超臨界状態で含浸させることを特徴とする、請求項6~8のいずれか1項に記載のーター用電気絶縁性樹脂シートの製造方法。
  10. 請求項1~5のいずれか1項に記載のモーター用電気絶縁性樹脂シートの製造方法であって、
    熱可塑性樹脂と、該熱可塑性樹脂の硬化体と相分離する相分離剤とを含む熱可塑性樹脂組成物を基板上に塗布し、乾燥あるいは硬化させてミクロ相分離構造を有する熱可塑性樹脂シートを作製する工程、熱可塑性樹脂シートから相分離化剤を除去する工程、により多孔質樹脂層を製造することを特徴とする、モーター用電気絶縁性樹脂シートの製造方法。
  11. 相分離化剤を溶剤抽出により除去することを特徴とする、請求項10に記載のモーター用電気絶縁性樹脂シートの製造方法。
  12. 溶剤が液化二酸化炭素、亜臨界二酸化炭素または超臨界二酸化炭素から選ばれる一種であることを特徴とする、請求項11に記載のモーター用電気絶縁性樹脂シートの製造方法。
     
PCT/JP2012/052401 2011-02-03 2012-02-02 モーター用電気絶縁性樹脂シート及びその製造方法 WO2012105650A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12742715.1A EP2672614A1 (en) 2011-02-03 2012-02-02 Electrically insulating resin sheet for motors and process for production thereof
CN2012800075844A CN103370857A (zh) 2011-02-03 2012-02-02 马达用电绝缘性树脂片及其制造方法
KR20137023155A KR20140052942A (ko) 2011-02-03 2012-02-02 모터용 전기 절연성 수지 시트 및 그의 제조 방법
US13/982,521 US20130309481A1 (en) 2011-02-03 2012-02-02 Electrically insulating resin sheet for motors and process for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011022196 2011-02-03
JP2011-022196 2011-02-03
JP2012019948A JP2012182116A (ja) 2011-02-03 2012-02-01 モーター用電気絶縁性樹脂シート及びその製造方法
JP2012-019948 2012-02-01

Publications (1)

Publication Number Publication Date
WO2012105650A1 true WO2012105650A1 (ja) 2012-08-09

Family

ID=46602855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052401 WO2012105650A1 (ja) 2011-02-03 2012-02-02 モーター用電気絶縁性樹脂シート及びその製造方法

Country Status (6)

Country Link
US (1) US20130309481A1 (ja)
EP (1) EP2672614A1 (ja)
JP (1) JP2012182116A (ja)
KR (1) KR20140052942A (ja)
CN (1) CN103370857A (ja)
WO (1) WO2012105650A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295168A1 (en) * 2012-03-29 2014-10-02 Nitto Denko Corporation Electrically insulating resin sheet
US20150329675A1 (en) * 2012-12-17 2015-11-19 Nitto Denko Corporation Polyetherimide porous body and method for producing same
US20150344662A1 (en) * 2012-12-17 2015-12-03 Nitto Denko Corporation Polyetherimide porous body and method for producing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956314B2 (ja) * 2012-11-19 2016-07-27 日東電工株式会社 モーター用電気絶縁性樹脂シート
JP2015147892A (ja) * 2014-02-07 2015-08-20 株式会社カネカ 多孔性ポリイミドフィルム
JP6431316B2 (ja) * 2014-08-26 2018-11-28 日東シンコー株式会社 モーター用絶縁シート
JP5940123B2 (ja) * 2014-09-03 2016-06-29 三菱電機株式会社 回転電機の電機子
TR201900850T4 (tr) * 2014-12-16 2019-02-21 Soresina Claudio Bir elektrik motoru ile sağlanan saç kurutma makinesi.
FR3058144B1 (fr) * 2016-10-27 2019-03-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de traitement de polyamide charge en silice par impregnation dans le co2 supercritique
CN110475814B (zh) * 2017-04-06 2022-09-13 日东电工株式会社 毫米波天线用膜
JP6959778B2 (ja) * 2017-07-13 2021-11-05 株式会社デンソー 回転電機の固定子、及びその固定子の製造方法
JP2019126207A (ja) * 2018-01-18 2019-07-25 本田技研工業株式会社 回転電機用ステータ、回転電機および回転電機ユニット
CN109318116B (zh) * 2018-09-30 2020-10-13 赣州龙邦材料科技有限公司 基于对位芳纶纸的复合材料晶圆载板及其制造方法
JP7028152B2 (ja) * 2018-12-14 2022-03-02 トヨタ自動車株式会社 レゾルバ
EP4116058B1 (en) * 2021-07-09 2024-03-13 SHPP Global Technologies B.V. Foaming and shaping process for a thermoplastic sheet, and associated apparatus and shaped foamed thermoplastic sheet
CN117957272A (zh) * 2021-09-22 2024-04-30 宝理塑料赢创有限公司 发泡体、发泡膜以及层叠膜
CN114709011B (zh) * 2022-04-24 2023-06-30 住井科技(深圳)有限公司 绝缘电线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923601A (ja) 1995-07-04 1997-01-21 Hitachi Ltd 回転電気装置
JPH10159730A (ja) * 1996-11-30 1998-06-16 Techno Onishi:Kk 冷凍機用冷媒圧縮装置
JP2006321183A (ja) 2005-05-20 2006-11-30 Nitto Shinko Kk 積層シート
JP2007291202A (ja) * 2006-04-24 2007-11-08 Shin Etsu Polymer Co Ltd 熱可塑性ポリイミド系樹脂発泡体及びその製造方法
JP2010138391A (ja) * 2008-11-14 2010-06-24 Mitsui Chemicals Inc 発泡体およびその製造方法
JP2011018897A (ja) * 2009-06-11 2011-01-27 Nitto Denko Corp 圧電・焦電素子用多孔質樹脂シート及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468506A (en) * 1982-04-02 1984-08-28 General Electric Company Polyetherimide blends
US5189115A (en) * 1989-02-21 1993-02-23 Amoco Corporation Polyetherimide copolymers
JPH0431464A (ja) * 1990-05-25 1992-02-03 Mitsubishi Petrochem Co Ltd 回路用の硬化性樹脂組成物及び金属箔積層樹脂基板
JP4110669B2 (ja) * 1999-05-13 2008-07-02 宇部興産株式会社 多孔質絶縁材料およびその積層体
US20030129379A1 (en) * 1999-04-23 2003-07-10 Shigeru Yao Porous insulating film and its laminates
JP3262110B2 (ja) * 1999-10-26 2002-03-04 松下電器産業株式会社 コンプレッサおよびそれを用いた冷媒システム装置
TW528930B (en) * 1999-11-26 2003-04-21 Nitto Denko Corp Photosensitive resin composition and porous resin
JP2006111708A (ja) * 2004-10-14 2006-04-27 Inoac Corp 低誘電率発泡材料とその製造方法
US7838108B2 (en) * 2007-01-17 2010-11-23 Sabic Innovative Plastics Ip B.V. Nano-cellular polymer foam and methods for making them
JP5544083B2 (ja) * 2008-12-19 2014-07-09 日東シンコー株式会社 回転電機用ステータ
JP5328626B2 (ja) * 2009-12-17 2013-10-30 信越ポリマー株式会社 フィルムキャパシタ用フィルムの製造方法及びフィルムキャパシタ用フィルム
JP5916498B2 (ja) * 2011-06-06 2016-05-11 日東電工株式会社 ポリイミド多孔質体及びその製造方法
JP5458137B2 (ja) * 2012-03-29 2014-04-02 日東電工株式会社 電気絶縁性樹脂シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923601A (ja) 1995-07-04 1997-01-21 Hitachi Ltd 回転電気装置
JPH10159730A (ja) * 1996-11-30 1998-06-16 Techno Onishi:Kk 冷凍機用冷媒圧縮装置
JP2006321183A (ja) 2005-05-20 2006-11-30 Nitto Shinko Kk 積層シート
JP2007291202A (ja) * 2006-04-24 2007-11-08 Shin Etsu Polymer Co Ltd 熱可塑性ポリイミド系樹脂発泡体及びその製造方法
JP2010138391A (ja) * 2008-11-14 2010-06-24 Mitsui Chemicals Inc 発泡体およびその製造方法
JP2011018897A (ja) * 2009-06-11 2011-01-27 Nitto Denko Corp 圧電・焦電素子用多孔質樹脂シート及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140295168A1 (en) * 2012-03-29 2014-10-02 Nitto Denko Corporation Electrically insulating resin sheet
US20150329675A1 (en) * 2012-12-17 2015-11-19 Nitto Denko Corporation Polyetherimide porous body and method for producing same
US20150344662A1 (en) * 2012-12-17 2015-12-03 Nitto Denko Corporation Polyetherimide porous body and method for producing same

Also Published As

Publication number Publication date
EP2672614A1 (en) 2013-12-11
CN103370857A (zh) 2013-10-23
JP2012182116A (ja) 2012-09-20
US20130309481A1 (en) 2013-11-21
KR20140052942A (ko) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2012105650A1 (ja) モーター用電気絶縁性樹脂シート及びその製造方法
JP5956314B2 (ja) モーター用電気絶縁性樹脂シート
TWI666244B (zh) 毫米波天線用薄膜
JP7179912B2 (ja) ミリ波アンテナ用フィルム
JP5458137B2 (ja) 電気絶縁性樹脂シート
JP5916498B2 (ja) ポリイミド多孔質体及びその製造方法
KR101814225B1 (ko) 다공질 폴리이미드막 및 그의 제조 방법
US6387969B1 (en) Porous article and process for producing porous article
WO2012105678A1 (ja) 多孔質樹脂成型体、多孔体基板および前記多孔質樹脂成型体の製造方法
JP2012224692A (ja) 多孔質樹脂積層体
JP4219762B2 (ja) フォーム・ポリイミド・コンポジット、ポリイミド多孔体、およびそれらの製造方法
KR101317641B1 (ko) 폴리아미드이미드계 다공성 막의 제조방법
JP4557376B2 (ja) 多孔質体の製造方法及び多孔質体
CN114709011B (zh) 绝缘电线
CN114716859B (zh) 绝缘清漆及绝缘电线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742715

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13982521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012742715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012742715

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137023155

Country of ref document: KR

Kind code of ref document: A