WO2012105575A1 - 固体電解質材料およびこれを備えた固体酸化物形燃料電池 - Google Patents

固体電解質材料およびこれを備えた固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2012105575A1
WO2012105575A1 PCT/JP2012/052177 JP2012052177W WO2012105575A1 WO 2012105575 A1 WO2012105575 A1 WO 2012105575A1 JP 2012052177 W JP2012052177 W JP 2012052177W WO 2012105575 A1 WO2012105575 A1 WO 2012105575A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
layer
yttria
mol
electrolyte material
Prior art date
Application number
PCT/JP2012/052177
Other languages
English (en)
French (fr)
Inventor
めぐみ 島津
上野 晃
阿部 俊哉
元泰 宮尾
樋渡 研一
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to EP12742321.8A priority Critical patent/EP2672556B1/en
Priority to CN201280016250.3A priority patent/CN103477483B/zh
Priority to JP2012555911A priority patent/JP5652752B2/ja
Priority to US13/983,014 priority patent/US20130316267A1/en
Publication of WO2012105575A1 publication Critical patent/WO2012105575A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte material and a solid oxide fuel cell including the same.
  • SOFC solid oxide fuel cell
  • the basic configuration of the SOFC includes a solid electrolyte layer, a fuel electrode layer, and an oxygen electrode layer, and a fuel gas such as hydrogen (H 2 ) flows through and contacts the fuel electrode layer facing one side of the solid electrolyte layer.
  • a fuel gas such as hydrogen (H 2 ) flows through and contacts the fuel electrode layer facing one side of the solid electrolyte layer.
  • an oxidant gas such as air or oxygen (O 2 ) flows through the oxygen electrode layer facing the opposite side of the electrolyte layer
  • oxygen ions (O 2 ⁇ ) generated in the oxygen electrode layer move through the solid electrolyte layer and become fuel.
  • O 2 ⁇ reacts with H 2 and an electric output is obtained by an electrochemical reaction.
  • the characteristics required for SOFC solid electrolyte materials include (1) high oxygen ion conductivity, (2) excellent long-term durability, and (3) high material strength.
  • the most preferable material among the zirconia-based solid electrolyte materials is zirconia in which scandia is dissolved.
  • a solid electrolyte material is provided.
  • a solid electrolyte material according to the present invention is a solid electrolyte material in which a lanthanoid oxide and / or yttria is dissolved in zirconia (hereinafter referred to as ScSZ) in which scandia is dissolved, Furthermore, it is characterized by containing alumina.
  • ScSZ zirconia
  • impurities such as Si contained in the fuel gas come into contact with the solid electrolyte layer on the fuel electrode layer side during SOFC operation.
  • a solid electrolyte material in which lanthanoid oxide and / or yttria is dissolved in ScSZ means that scandia is dissolved in zirconia and then lanthanoid oxide and / or yttria is dissolved. It is not limited to the prepared solid electrolyte material.
  • the order in which scandia and lanthanoid oxide and / or yttria are dissolved in zirconia is not related, and they may be dissolved simultaneously as described in the examples. That is, the solid electrolyte material according to the present invention is a zirconia solid electrolyte material in which scandia, lanthanoid oxide and / or yttria are dissolved, and further contains alumina.
  • the zirconia contains scandia with respect to the total amount of substances (total molar amount) of zirconia, scandia, lanthanoid oxide and / or yttria in the solid electrolyte material. 9 to 15 mol%, more preferably 9 to 11 mol%, and lanthanoid oxide and / or yttria are dissolved in 2 to 5 mol%, more preferably 3 to 5 mol%.
  • alumina is more than 1 mol% with respect to the total amount of zirconia, scandia, lanthanoid oxide and / or yttria in the solid electrolyte material (total molar amount). Contains. The reason why the amount of scandia is 9 to 15 mol% is that tetragonal crystals may be formed when the amount is less than 9 mol%, and rhombohedral crystals may be formed when the amount exceeds 15 mol%. 2-5 mol% solid solution of lanthanoid oxide and / or yttria is preferable.
  • the solid electrolyte material of the present invention preferably contains 5 mol% or less of alumina. This is because when the alumina content is 5 mol% or less, the oxygen ion conductivity of the solid electrolyte material is not lowered or even if it is brought to a minimum.
  • the lanthanoid oxide is ceria.
  • the reason why ceria is preferable is that not only the scandia extraction due to impurities can be suppressed, but also the oxygen ion conductivity of the solid electrolyte material can be improved.
  • an SOFC comprising a solid electrolyte layer, an oxygen electrode layer provided on one surface of the solid electrolyte layer, and a fuel electrode layer provided on the other surface of the solid electrolyte layer.
  • the SOFC is characterized in that the solid electrolyte layer is formed of the solid electrolyte material.
  • the solid electrolyte layer has a lanthanoid oxide and / or yttria solid solution amount on the fuel electrode side larger than a lanthanoid oxide and / or yttria solid solution amount on the oxygen electrode side.
  • the lanthanoid oxide solid solution amount is inclined and decreased from the fuel electrode side to the oxygen electrode side. Thereby, it can suppress to the minimum that oxygen ion conductivity of the whole solid oxide layer falls, preventing pulverization peeling on the fuel electrode layer side.
  • the solid electrolyte layer is composed of two layers, a first layer formed on the oxygen electrode layer side and a second layer formed on the fuel electrode layer side,
  • the solid solution amount of the lanthanoid oxide and / or yttria in the second layer is larger than the solid solution amount of the lanthanoid oxide and / or yttria in the first layer, and the alumina in the second layer.
  • the content of is greater than the content of the alumina in the first layer. More preferably, the lanthanoid oxide and / or yttria are not dissolved in the first layer, and the first layer does not contain the alumina.
  • the first layer may be one using scandia-stabilized zirconia or one using yttria-stabilized zirconia.
  • the SOFC provided with the present solid electrolyte layer has a high efficiency and a lifetime of 90000 hours required in the popularization period. This is because, in the second layer on the fuel electrode layer side, pulverization and peeling can be prevented, while the ionic conductivity is reduced due to the inclusion of alumina or the like, whereas in the first layer on the oxygen electrode layer side, This is because the oxygen ion conductivity is high and the internal resistance remains small, so that the occurrence of pulverization peeling can be prevented while minimizing the decrease in oxygen ion conductivity of the entire solid electrolyte layer.
  • the first layer is formed thicker than the second layer.
  • the SOFC provided with the present solid electrolyte layer has a high efficiency and a lifetime of 90000 hours required in the popularization period. This is because the contribution of high oxygen ion conductivity by the first layer is increased by making the thickness of the second layer the minimum necessary to prevent pulverization and peeling, and the power generation efficiency can be further increased. is there.
  • the minimum thickness of the second layer necessary for preventing powder peeling is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more.
  • pulverization accompanying zirconia crystal transformation caused when impurities such as Si contained in the fuel gas come into contact with the solid electrolyte layer on the fuel electrode layer side and may occur after tens of thousands of hours
  • Solid electrolyte material that suppresses pulverization and separation between the fuel electrode layer and the solid electrolyte layer and has a life of about 90,000 hours, which is required in the popularization period of SOFC, and a solid oxide fuel comprising the same A battery can be provided.
  • FIG. 2 shows an SOFC according to an embodiment of the present invention, in which an oxygen electrode layer 101 is provided on one surface of the solid electrolyte layer 102 and a fuel electrode layer 103 is provided on the other surface of the solid electrolyte layer 102.
  • a solid electrolyte material in which a lanthanoid oxide and / or yttria is dissolved in ScSZ has been conventionally used as the solid electrolyte layer 102.
  • the solid electrolyte layer having a 10Sc1CeSZ composition corresponding to Comparative Example 1 has a cubic structure 110 at the time of manufacture.
  • Scandia (Sc 2 O 3 ) which is a stabilizer, is extracted from the crystalline phase by contacting Si or the like in the fuel gas with the solid electrolyte layer, and the crystalline phase is cubic (as shown in the phase diagram of FIG. c) Change from 110 to tetragonal (t) 111.
  • the lattice constant decreases and the volume shrinks.
  • the grain boundary fracture occurred and powdered like the SEM image of FIG. 1 occurred.
  • the amount of lanthanoid oxide and / or yttria solid solution is increased in order to suppress the extraction of scandia (Sc 2 O 3 ) from the crystal phase, and the scandia is extracted from the crystal phase to cause crystal transformation.
  • the composition of the solid electrolyte material is preferably 9 to 15 mol% of scandia and lanthanoid oxide with respect to the total amount of zirconia, scandia, and lanthanoid oxide and / or yttria in the solid electrolyte material (total molar amount). And / or 2 to 5 mol% of yttria is dissolved.
  • a more preferable composition of the solid electrolyte material of the present invention is more than 1 mol% of alumina with respect to the total amount (total molar amount) of zirconia, scandia, lanthanoid oxide and / or yttria in the solid electrolyte material. It is contained.
  • the reason why the amount of scandia is 9 to 15 mol% is that tetragonal crystals may be formed if the amount is less than 9 mol%, and rhombohedral crystals may be formed if the amount exceeds 15 mol%. 2-5 mol% solid solution of lanthanoid oxide and / or yttria is preferable. If it is less than 2 mol%, the effect of suppressing scandia extraction by impurities such as Si contained in the fuel gas is low, and if it exceeds 5 mol%, it is tetragonal. This is because crystal transformation is likely to occur.
  • the reason why alumina is contained in an amount of more than 1 mol% is that if it is 1 mol% or less, the effect of suppressing the grain boundary breakage against the volume change accompanying the crystal transformation is small.
  • the main problem of the solid electrolyte layer in the SOFC of the present invention is to prevent deterioration due to impurities such as Si in the fuel gas.
  • the solid electrolyte layer is on the oxygen electrode layer 101 side.
  • the first layer 107 formed on the fuel electrode layer side 103 and the second layer 108 formed on the fuel electrode layer side 103, and the second layer 108 on the fuel electrode layer 103 side comprises ScSZ and lanthanoid oxides.
  • the fuel electrode layer 103 in the SOFC of the present invention has high electronic conductivity, O 2 ⁇ reacts with H 2 to obtain an electrical output by an electrochemical reaction, is chemically stable, and has a thermal expansion coefficient of solid. Any material that satisfies conditions close to those of the electrolyte layer 102 may be used, and there is no particular limitation on those used conventionally. Typical examples include Ni and ScSZ cermets, Ni and yttria stabilized zirconia (hereinafter referred to as YSZ) cermets, and Ni and cerium oxide cermets.
  • the oxygen electrode layer 101 in the SOFC of the present invention has high electronic conductivity, high catalytic activity for replacing an oxidant gas such as oxygen (O 2 ) with oxygen ions (O 2 ⁇ ), and chemical stability.
  • an oxidant gas such as oxygen (O 2 ) with oxygen ions (O 2 ⁇ )
  • chemical stability As long as the coefficient of thermal expansion satisfies the conditions close to those of the solid electrolyte layer 102, there is no particular limitation on those used conventionally.
  • LSM Lanthanum manganite with solid solution of strontium
  • LSF lanthanum ferrite with solid solution of strontium
  • LSCF lanthanum cobaltite with solid solution of strontium and iron
  • any method usually used in this technical field may be used, and it is not particularly limited.
  • zirconia particles, scandia particles, lanthanoid oxide particles and / or yttria particles are mixed at a predetermined mixing ratio, and the mixture is pulverized by a ball mill or the like.
  • the solid electrolyte material of the present invention is manufactured by sintering after pulverization with a machine, and then pulverizing the sintered body with a pulverizer such as a ball mill and mixing with alumina and binder components, and molding and sintering the mixture. can do.
  • the SOFC of the present invention is manufactured by forming and sintering an oxygen electrode layer on one surface of the solid electrolyte material of the present invention and a fuel electrode layer on the other surface using a screen printing method or the like. Can do.
  • the SOFC of the present invention may be of any type such as a flat plate stripe type, a flat plate horizontal stripe type, a flat cylindrical type, a cylindrical vertical stripe type, a cylindrical horizontal stripe type, and a microtube.
  • Example 1 A description will be given of the production and testing of the type 2 cell.
  • ZrO 2 raw material (average particle size 0.3 ⁇ m), Sc 2 O 3 raw material (average particle size 0.3 ⁇ m), CeO 2 raw material (average particle size 0.3 ⁇ m) are represented by the general formula 89 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) Weighed so as to obtain a 10Sc1CeSZ composition represented by -1 mol% (CeO 2 ), wet-mixed in a solvent ethanol for 50 hr, dried and pulverized, and sintered at 1200 ° C.
  • Al 2 O 3 (average particle size 0.5 ⁇ m) is added to the total amount of zirconia, scandia, lanthanoid oxide and / or yttria in the solid electrolyte material (
  • the binder PVA was added in an amount of 1 mol% with respect to the total molar amount) and 5 wt% with respect to the powder, and mixed in a mortar.
  • the PVA-containing powder was press-molded at 50 MPa, and sintered at 1450 ° C. for 5 hours. A dense solid electrolyte layer of 10Sc1CeSZ1Al composition was obtained.
  • LSM average particle size 2 ⁇ m
  • a cermet of Ni and YSZ as a fuel electrode layer on the opposite side 40 wt% NiO-60 wt% YSZ (average particle diameter 2 ⁇ m) was formed by screen printing so that the thickness after sintering was 20 ⁇ m, and sintered at 1400 ° C. for 2 hr.
  • Example 2 Formula 89 mol% of (ZrO 2) -10mol% (Sc 2 O 3) -1mol% Al 2 O 3 in 10Sc1CeSZ composition represented by (CeO 2), zirconia solid electrolyte material, and scandia, lanthanide oxide
  • Example 2 was the same as Example 1 except that 2 mol% of the total material amount (total molar amount) with the product and / or yttria was mixed to obtain a dense solid electrolyte layer having a 10Sc1CeSZ2Al composition.
  • Example 3 Al 2 O 3 in 10Sc3CeSZ composition represented by general formula 87mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials 2 mol% was mixed with respect to the total amount of substances and / or yttria (total molar amount) to obtain a dense solid electrolyte layer having a 10Sc3CeSZ2Al composition.
  • Example 4 Al 2 O 3 in 10Sc3CeSZ composition represented by the general formula 87mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials
  • the same procedure as in Example 1 was conducted except that the equivalent amount of 5 mol% was mixed with the total amount of substances and / or yttria (total molar amount) to obtain a dense solid electrolyte layer having a composition of 10Sc3CeSZ5Al.
  • Example 5 Al 2 O 3 in 10Sc5CeSZ composition represented by the general formula 85mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -5mol% (CeO 2 ), zirconia, scandia and lanthanoid oxidation in solid electrolyte materials 2 mol% was mixed with the total amount of substances and / or yttria (total molar amount) to obtain a dense solid electrolyte layer having a 10Sc5CeSZ2Al composition.
  • Example 6 Al 2 O 3 in 10Sc6CeSZ composition represented by the general formula 84mol% (ZrO 2 ) -10mol% (Sc 2 O 3 ) -6mol% (CeO 2 ), zirconia in the solid electrolyte material, scandia, and lanthanoid oxidation
  • Example 7 Formula 89 mol% of (ZrO 2) -8mol% (Sc 2 O 3) -3mol% Al 2 O 3 in 8Sc3CeSZ composition represented by (CeO 2), zirconia solid electrolyte material, and scandia, lanthanide oxide 2 mol% with respect to the total amount of substances and / or yttria (total molar amount) to obtain a dense solid electrolyte layer having an 8Sc3CeSZ2Al composition.
  • Example 8 General formula 88mol% (ZrO 2 ) -9mol% (Sc 2 O 3 ) -3mol% (CeO 2 ) 9Sc3CeSZ composition Al 2 O 3 , zirconia in solid electrolyte material, scandia, lanthanoid oxidation Example 2 was the same as Example 1 except that 2 mol% of the total substance amount (total molar amount) with the product and / or yttria was mixed to obtain a dense solid electrolyte layer having a 9Sc3CeSZ2Al composition.
  • Example 9 Al 2 O 3 in the 15Sc3CeSZ composition represented by the general formula 82mol% (ZrO 2 ) -15mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia in the solid electrolyte material, scandia, and lanthanoid oxidation 2 mol% was mixed with the total amount of substances and / or yttria (total molar amount) to obtain a dense solid electrolyte layer having a 15Sc3CeSZ2Al composition.
  • Example 10 Al 2 O 3 in the 16Sc3CeSZ composition represented by the general formula 81mol% (ZrO 2 ) -16mol% (Sc 2 O 3 ) -3mol% (CeO 2 ), zirconia in the solid electrolyte material, scandia, and lanthanoid oxidation 2 mol% was mixed with the total amount of substances and / or yttria (total molar amount) to obtain a dense solid electrolyte layer having a 16Sc3CeSZ2Al composition.
  • Example 2 The same as Example 1 except that a dense solid electrolyte layer was obtained without adding Al 2 O 3 to the 10ScSZ composition represented by the general formula 90 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ). did.
  • Fig. 6 shows an outline of the test equipment.
  • a glass seal (SiO 2 + B 2 O 3 ) 104 was placed on the apparatus held by the zirconia tube 105, and the fabricated SOFC 100 was placed thereon. Furthermore, a zirconia tube 105 was placed on the upper surface of the SOFC100.
  • the temperature of the electric furnace 106 was increased to 1000 ° C. while flowing Air on the upper surface of the SOFC and 97% N 2 + 3% H 2 on the lower surface.
  • Table 1 shows the test results.
  • the notation is c: cubic, t: tetragonal, and r: rhombohedral. While all of Comparative Examples 1 to 3 were confirmed to be powdered, Examples 1 to 10 were not powdered. From this, it was confirmed that powdering can be suppressed by adopting the composition of the present invention.
  • the crystal phase was transformed into the t phase in Examples 1, 2, 6, and 7, whereas in Example 10, the r phase that caused the phase transformation was left in the vicinity of 630 ° C., whereas Examples 3, 4, 5, 8, and 9 remained in the c phase.
  • Table 2 shows the analysis results. Although powdering was not observed in the solid electrolyte layer covered with the fuel electrode layer, in Comparative Example 1, the crystal phase had already changed to the t phase, and cracks were confirmed at the grain boundaries. On the other hand, in Examples 2 and 3, there was no powdering, the crystal phase was not changed, and no cracks were observed at the grain boundaries. In the case of Comparative Example 1, it was suggested that pulverization occurred after a longer operation, and that the fuel electrode layer 103 and the solid electrolyte layer 102 might be pulverized and separated.
  • Lanthanoid oxides other than CeO 2 and yttria (Example 11) Al 2 O 3 in a 10Sc3YSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (Sm 2 O 3 ), zirconia in a solid electrolyte material, scandia, The same procedure as in Example 1 was performed except that 2 mol% of the total amount of the lanthanoid oxide and / or yttria (total molar amount) was mixed to obtain a dense solid electrolyte layer having a 10Sc3SmSZ2Al composition.
  • Example 12 Al 2 O 3 in a 10Sc3YbSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (Yb 2 O 3 ), zirconia in a solid electrolyte material, scandia,
  • the same procedure as in Example 1 was performed except that 2 mol% of the total amount (total molar amount) of the lanthanoid oxide and / or yttria was mixed to obtain a dense solid electrolyte layer having a 10Sc3YbSZ2Al composition.
  • Example 13 Al 2 O 3 in a 10Sc3LaSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (La 2 O 3 ), zirconia in a solid electrolyte material, scandia,
  • the same procedure as in Example 1 was conducted except that 2 mol% of the total amount of lanthanoid oxide and / or yttria (total molar amount) was mixed to obtain a dense solid electrolyte layer having a 10Sc3LaSZ2Al composition.
  • Example 14 Al 2 O 3 in the 10Sc3YSZ composition represented by the general formula 87 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -3 mol% (Y 2 O 3 ), zirconia in the solid electrolyte material, scandia,
  • the same procedure as in Example 1 was conducted, except that 2 mol% of the total amount of the lanthanoid oxide and / or yttria (total molar amount) was mixed to obtain a dense solid electrolyte layer having a 10Sc3YSZ2Al composition.
  • the electric furnace 106 was heated to 1000 ° C. while flowing Air on the SOFC upper surface of Examples 11 to 14 and 97% N 2 + 3% H 2 on the lower surface. Hold air at 1000 ° C for 600 hours while flowing air on the upper surface of the SOFC and fuel gas (70% H 2 + 30% H 2 O) on the lower surface, then air on the upper surface of the SOFC and 97% N 2 + 3% H 2 on the lower surface. The temperature was lowered to room temperature while flowing. Similarly, the surface of the solid electrolyte layer 102 of SOFC 100 in contact with the glass seal 104 was analyzed by SEM and Raman spectroscopy, and the presence or absence of powdering and the crystal phase were confirmed.
  • Table 3 shows the analysis results after the test. In all of Examples 11 to 14, no pulverization was observed, and the crystal phase remained as the c phase. This result was the same as in Example 3. It was confirmed that even when a lanthanoid oxide other than CeO 2 or yttria was dissolved, the same effect as when CeO 2 was dissolved was confirmed.
  • the electrical conductivity of the solid electrolyte materials of Examples 3, 11, 12, 13, and 14 was measured. Each solid electrolyte material was press-molded and sintered at 1450 ° C. for 5 hours, and then a platinum electrode was attached to both sides and a reference electrode was attached to the side surface, and impedance measurement was performed at 1000 ° C. in an air atmosphere.
  • Table 4 shows the conductivity results. It was confirmed that Example 3 had the highest conductivity, and ceria was most preferable as the lanthanoid oxide to be dissolved.
  • Solid electrolyte layer two-layer structure (Example 15) (1) Preparation of the first layer ZrO 2 raw material (average particle size 0.3 ⁇ m), Sc 2 O 3 raw material (average particle size 0.3 ⁇ m), CeO 2 raw material (average particle size 0.3 ⁇ m) are represented by the general formula 90 mol% (ZrO 2 ) Weighed so as to have a 10ScSZ composition represented by ⁇ 10 mol% (Sc 2 O 3 ), wet-mixed in a solvent ethanol for 50 hr, dried and pulverized, and sintered at 1200 ° C. The sintered body was pulverized into powder, and 5 wt% of binder PVA was added to the powder and mixed in a mortar. The PVA-containing powder was press-molded at 50 MPa to produce a molded body having a 10Sc1CeSZ1Al composition.
  • Second layer ZrO 2 raw material (average particle size 0.3 ⁇ m), Sc 2 O 3 raw material (average particle size 0.3 ⁇ m), and CeO 2 raw material (average particle size 0.3 ⁇ m) are represented by the general formula 87 mol% (ZrO 2) -10mol% (Sc 2 O 3) -3mol% ( weighed so as to 10Sc3CeSZ composition represented by CeO 2), and 50hr wet mixing in a solvent of ethanol, sintered at 1200 ° C. after drying and milling I let you.
  • Al 2 O 3 (average particle size 0.5 ⁇ m) is added to the total amount of zirconia, scandia, lanthanoid oxide and / or yttria in the second layer.
  • 2 mol% equivalent and 5 wt% of binder PVA was added to the powder with respect to (total molar amount) and mixed in a mortar.
  • the PVA-containing powder was press-molded at 50 MPa to produce a compact with a 10Sc3CeSZ2Al composition.
  • a film is formed by screen printing so that 40 wt% NiO-60 wt% YSZ (average particle size 2 ⁇ m) is formed as a fuel electrode layer on the surface of the second layer to a thickness of 20 ⁇ m after sintering.
  • the film was formed by screen printing so that it was sintered at 1400 ° C. for 2 hours.
  • the composition of the first layer is Al 2 O 3 (average particle size 0.5 ⁇ m) with a 10Sc1CeSZ composition represented by the general formula 89 mol% (ZrO 2 ) -10 mol% (Sc 2 O 3 ) -1 mol% (CeO 2 ) was added in an amount equivalent to 1 mol% with respect to the total amount of zirconia, scandia, and lanthanoid oxide and / or yttria in the first layer (total molar amount). It was.
  • an electric furnace was allowed to flow air on the SOFC upper surface (first layer side) of Examples 15 and 16 and 97% N 2 + 3% H 2 on the lower surface (second layer side).
  • 106 was heated to 1000 ° C. Hold the air on the SOFC upper surface (first layer side) and fuel gas (70% H 2 + 30% H 2 O) on the lower surface for 600 hours at 1000 ° C, then air on the SOFC upper surface (first layer side) The bottom surface was lowered to room temperature while 97% N 2 + 3% H 2 was allowed to flow.
  • the surface of the SOFC100 solid electrolyte layer 102 in contact with the glass seal 104 was analyzed by SEM and Raman spectroscopy to confirm the presence or absence of powdering and the crystalline phase, and compared with Example 3. .
  • Table 5 shows the analysis results after the test. In all of Examples 15 and 16, no pulverization was observed, and the crystal phase remained as the c phase. It was confirmed that powdering and crystal transformation can be suppressed by adopting an electrolyte two-layer structure, the first layer having the composition of Comparative Examples 1 and 2, and the second layer having the composition of Example 3.
  • the electrical conductivity of the solid electrolyte materials of Examples 3, 15, and 16 was measured.
  • Each solid electrolyte material was press-molded and sintered at 1450 ° C. for 5 hours, platinum electrodes were attached to both sides, reference electrodes were attached to the side surfaces, and impedance measurement was performed in an air atmosphere at 1000 ° C.
  • Table 6 shows the conductivity results. It was confirmed that by providing a layer having high oxygen ion conductivity in the first layer, the conductivity was higher than that of Example 3 and the power generation efficiency was improved. From the above, it was confirmed that it was more effective to form the second layer with a minimum thickness necessary for preventing powder peeling.
  • Example 17 The composition of the first layer was the same as that of Example 15 except that Al 2 O 3 was not added to the 10YSZ composition represented by the general formula 90 mol% (ZrO 2 ) -10 mol% (Y 2 O 3 ). did.
  • Table 7 shows the analysis results after the test. Also in Example 17, no pulverization was observed, and the crystal phase remained in the c phase. Even if the electrolyte has a two-layer structure, and the first layer uses yttria as a stabilizer, the same effect can be confirmed by forming the second layer with the solid electrolyte material of the present invention. It was.
  • the SOFC design has been described as a flat plate type, but any type such as a flat cylindrical type, a cylindrical vertical stripe type, and a micro tube has the same effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

 高い酸素イオン導電性を維持しながら、燃料ガス中のSi等の不純物によるスカンジアの引き抜きを抑制するとともに、結晶変態に伴う粒界破断を無くすために粒子間強度の向上を備えた固体電解質材料を提供する。本発明の固体電解質材料は、スカンジアと、ランタノイド酸化物および/またはイットリアが固溶されたジルコニア固体電解質材料であって、更にアルミナを含有することを特徴とする。

Description

固体電解質材料およびこれを備えた固体酸化物形燃料電池
 本発明は、固体電解質材料およびこれを備えた固体酸化物形燃料電池に関する。
 従来、スカンジアを固溶させたジルコニアのような固体電解質材料は、固体酸化物形燃料電池(以下、SOFCと略す)などの用途に適用されている。SOFCは、他の燃料電池であるリン酸型、溶融炭酸塩型などと比較して発電効率が高く、排熱温度も高いため、次世代型の省エネ発電システムとして注目されている。
 SOFCの基本構成は、固体電解質層と、燃料極層と、酸素極層とを備え、固体電解質層の一方に面した燃料極層に水素(H2)などの燃料ガスが貫流接触し、固体電解質層の反対面に面した酸素極層に空気もしくは酸素(O2)などの酸化剤ガスが貫流接触すると、酸素極層で発生した酸素イオン(O2-)が固体電解質層を移動し燃料極層に達し、燃料極層でO2-がH2と反応し電気化学反応により電気出力が得られるものである。
 このような反応メカニズムにおいて、SOFCの固体電解質材料に要求される特性としては、(1)高い酸素イオン導電性を有すること (2)長期耐久性に優れること (3)高い材料強度を有することなどが挙げられ、ジルコニア系固体電解質材料の中で最も好ましい材料は、スカンジアを固溶させたジルコニアである。
 スカンジアを固溶させたジルコニアは、結晶安定性が低いという理由から、スカンジアの他にイットリアやセリアなどをさらに固溶させ、結晶安定性の改善が図られたものが主に使用されている(特開2008-305804号公報参照)。
 しかし、特許文献1に記載のSOFCで数百~数千時間の長期耐久試験を行うと、燃料ガスに含まれるSiなどの不純物が燃料極層側の固体電解質層に接触する際に結晶内のスカンジアを引き抜き、固体電解質層の結晶変態(立方晶から正方晶へ変化)が生じることが明らかになった。また、燃料極近傍において固体電解質層の一部が粉末化していることが確認された。
 固体電解質層のうち燃料極層に覆われた部分においては、数千時間の長期耐久試験では粉末化は確認されなかったが、粉末化が生じた部分と同様に結晶変態が生じていることから数万時間運転することで粉末化が生じ、固体電解質層と燃料極層の間で剥離(以下、粉化剥離と示す)が生じると推定された。粉化剥離が生じれば電気が取り出せなくなり、発電不能となる。SOFCは、導入期で40000時間、普及期で90000時間程度の寿命が要求されており、ここで示す粉化剥離は市場導入において解決しなければならない技術課題である。
 粉末化部分についてSEM観察した結果、粒界から粒子が脱落し、粉末化していることがわかった。これは、立方晶から正方晶へ変化することで体積が収縮し、粒界で破断したためと推定された(図1参照)。
 本発明者らは、高い酸素イオン導電性を維持しながら、燃料ガス中のSi等の不純物によるスカンジアの引き抜きを抑制するとともに、結晶変態に伴う粒界破断を無くすために粒子間強度の向上を備えた固体電解質材料を提供する。
 上記課題を解決するために本発明に係る固体電解質材料は、スカンジアを固溶させたジルコニア(以下、ScSZと示す)にランタノイド酸化物および/またはイットリアが固溶された固体電解質材料であって、更にアルミナを含有していることを特徴としている。ScSZにランタノイド酸化物および/またはイットリアが固溶された固体電解質材料にアルミナを含有することで、SOFC運転作動中に燃料ガスに含まれるSi等の不純物が燃料極層側の固体電解質層に接触し、安定化剤のスカンジアが結晶外へ引き抜かれることを抑制するとともに、引き抜かれても粉末化が起こらず、普及期で必要とされる90000時間の寿命を有するSOFCを提供することができる。これは、ScSZにランタノイド酸化物および/またはイットリアが固溶されることでスカンジアが結晶外へ引き抜かれることを抑制するとともに、アルミナがScSZ粒子の粒界に存在することで、前記ScSZ粒子を強固につなぎ、結晶変態に伴う体積変化が生じても粒界が破断しないためである。
 なお、本明細書で言う「ScSZにランタノイド酸化物および/またはイットリアが固溶された固体電解質材料」とは、ジルコニアにスカンジアを固溶させ、次いでランタノイド酸化物および/またはイットリアを固溶させて調製された固体電解質材料に限定されるものではない。本発明の固体電解質材料において、ジルコニアにスカンジアとランタノイド酸化物および/またはイットリアとを固溶させる順序は関係なく、また実施例に記載の通りそれらを同時に固溶させてもよい。即ち、本発明に係る固体電解質材料は、スカンジアと、ランタノイド酸化物および/またはイットリアとが固溶されたジルコニア固体電解質材料であって、更にアルミナを含有することを特徴とするものである。
 本発明の固体電解質材料の好ましい態様においては、ジルコニアには、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、スカンジアが9~15mol%、より好ましくは9~11mol%、ランタノイド酸化物および/またはイットリアが2~5mol%、より好ましくは3~5mol%固溶されている。本発明の固体電解質材料のさらに好ましい態様においては、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアの総物質量(総モル量)に対して、アルミナを1mol%より多く含有している。スカンジア量が9~15mol%が好ましいのは、9mol%未満だと正方晶が、15mol%超えでは菱面体晶が生じる可能性があり、それぞれ酸素イオン導電性が低下するためである。ランタノイド酸化物および/またはイットリアの2~5mol%固溶が好ましいのは、2mol%未満だと燃料ガスに含まれるSi等の不純物によるスカンジア引き抜きを抑制する効果が低く、5mol%超えだと正方晶が生成し結晶変態が生じやすくなるためである。アルミナを1mol%より多く含有させるのは、1mol%以下では結晶変態に伴う体積変化に対する粒界破断を抑制する効果が小さいためである。また、本発明の固体電解質材料は、アルミナを5mol%以下含有することが好ましい。アルミナ含有量が5mol%以下であると、固体電解質材料の酸素イオン導電性の低下をもたらさない又はもたらしても最小限に抑えられるためである。
 本発明の固体電解質材料の好ましい態様においては、ランタノイド酸化物は、セリアであることを特徴とする。セリアが好ましい理由は、不純物によるスカンジア引き抜きを抑制するだけでなく、固体電解質材料の酸素イオン導電性を向上させることができるためである。
 本発明の別の態様においては、固体電解質層と、前記固体電解質層の一方の面に設けられた酸素極層と、前記固体電解質層の他方の面に設けられた燃料極層とを備えるSOFCであって、前記固体電解質層が、上記の固体電解質材料によって形成されていることを特徴とするSOFCが提供される。固体電解質層に上記の固体電解質材料を備えることで、普及期で必要とされる90000時間の寿命を有するSOFCを提供することができる。これは、SOFC運転作動中に燃料ガスに含まれるSi等の不純物が燃料極層側の固体電解質層に接触し、安定化剤のスカンジアが結晶外へ引き抜かれても粉末化が起こらず、燃料極層と電解質層間で粉化剥離が発生しないためである。さらに好ましい態様においては、前記固体電解質層は、前記燃料極側におけるランタノイド酸化物および/またはイットリアの固溶量が、前記酸素極側におけるランタノイド酸化物および/またはイットリアの固溶量よりも大きい。例えば、燃料極側から酸素極側にかけてランタノイド酸化物の固溶量が傾斜して減少しているものなどが挙げられる。これにより、燃料極層側での粉化剥離を防止しつつ、固体酸化物層全体の酸素イオン伝導性が低下することを最低限に抑えることができる。
 本発明のSOFCの好ましい態様においては、固体電解質層は、前記酸素極層側に形成された第一の層と、前記燃料極層側に形成された第二の層との二層からなり、前記第二の層における前記ランタノイド酸化物および/またはイットリアの固溶量は、前記第一の層における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きく、前記第二の層における前記アルミナの含有量は、前記第一の層における前記アルミナの含有量よりも大きい。より好ましくは、第一の層には、前記ランタノイド酸化物および/またはイットリアが固溶しておらず、且つ第一の層は、前記アルミナを含有していないことを特徴とする。また、第一の層は、スカンジア安定化ジルコニアを用いたものであっても、イットリア安定化ジルコニアを用いたものであってもよい。本固体電解質層を備えたSOFCは、高効率かつ普及期で必要とされる90000時間の寿命を有する。これは、燃料極層側である第二の層では、粉化剥離を防止できる一方でアルミナ含有等によりイオン導電性が低下してしまうのに対し、酸素極層側である第一の層では酸素イオン導電性が高く内部抵抗が小さいままであるので、固体電解質層全体の酸素イオン伝導性が低下することを最低限に抑えつつ、粉化剥離の発生を防止できるためである。
 本発明のSOFCの好ましい態様においては、第一の層は、前記第二の層よりも厚く形成されていることを特徴とする。本固体電解質層を備えたSOFCは、高効率かつ普及期で必要とされる90000時間の寿命を有する。これは、第二の層の厚みを粉化剥離防止に最低限必要なものとすることで第一の層による高酸素イオン伝導性の寄与が大きくなり、より発電効率を高めることができるためである。粉化剥離防止に最低限必要な第二の層の厚みは、例えば、1μm以上であり、好ましくは3μm以上である。
 本発明によれば、SOFC運転時において、燃料ガスに含まれるSi等の不純物が燃料極層側の固体電解質層に接触する際に引き起こすジルコニア結晶変態に伴う粉末化および数万時間後に発生する可能性のある燃料極層と固体電解質層との間の粉化剥離を抑制し、SOFCの普及期に必要とされる90000時間程度の寿命を有する固体電解質材料およびこれを備えた固体酸化物形燃料電池を提供することができる。
本発明における固体電解質層粉末化の現象を示すSEM写真である。 本発明におけるSOFCの一例を示す図である。 固体電解質層の結晶変態に伴う変化について、従来と本発明の差異を示す図である。 ScSZのSc2O3濃度と温度における結晶状態を示す図である。 本発明におけるSOFCの最良形態を示す図である。 本発明の効果を実証する試験装置を示す図である。
 以下、本発明の実施形態について図を参照して説明する。図2は、本発明の実施形態におけるSOFCであり、固体電解質層102の一方の面に酸素極層101、固体電解質層102の他方の面に燃料極層103を設けている。固体電解質層102としては酸素イオン導電性が高いという観点から、従来は、ScSZにランタノイド酸化物および/またはイットリアが固溶された固体電解質材料が利用されていた。しかし、同組成の固体電解質層を有するSOFCでは数百~数千時間の長期耐久試験を行うと、燃料ガスに含まれるSiなどの不純物が燃料極層側103の固体電解質層102に接触する際に結晶内のスカンジアが引き抜かれ、固体電解質層102の結晶変態(立方晶から正方晶へ変化)が生じることが明らかになった。また、固体電解質層102がむき出しになっているところでは、粉末化していることが確認されており、固体電解質層102の燃料極層103で覆われた部分においても同様に結晶変態が生じており、数万時間運転することで固体電解質層102と燃料極層103の間で粉化剥離が生じると推定された。
 固体電解質層102の結晶変態に伴う変化について、従来と本発明の差異を図3を用いて説明する。比較例1相当の10Sc1CeSZ組成を有する固体電解質層は製造時は立方晶構造110である。該固体電解質層に燃料ガス中のSi等が接触することで安定化剤であるスカンジア(Sc2O3)が結晶相から引き抜かれ、図4の状態図に示すように結晶相が立方晶(c)110から正方晶(t)111に変わる。立方晶(c)110から正方晶(t)111に変わると格子定数が小さくなり体積が収縮する。その結果、粒界破断が生じ、図1のSEM像のような粉末化が生じると考えられた。本発明の固体電解質材料では、スカンジア(Sc2O3)が結晶相から引き抜かれることを抑制するためにランタノイド酸化物および/またはイットリア固溶量を増やし、スカンジアが結晶相から引き抜かれて結晶変態が生じても粒界破断しないように粒界を強固なものにするために更にアルミナ112を含有させ、粉末化を発生させないようにすることが好ましい。
 好ましい固体電解質材料の組成は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、スカンジアが9~15mol%、ランタノイド酸化物および/またはイットリアが2~5mol%固溶されているものである。本発明の固体電解質材料のさらに好ましい組成は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、アルミナを1mol%より多く含有しているものである。スカンジア量が9~15mol%が好ましいのは、9mol%未満だと正方晶が、15mol%超えでは菱面体晶が生じる可能性があり酸素イオン導電性が低下するためである。ランタノイド酸化物および/またはイットリアの2~5mol%固溶が好ましいのは、2mol%未満だと燃料ガスに含まれるSi等の不純物によるスカンジア引き抜きを抑制する効果が低く、5mol%超えだと正方晶が生成し結晶変態が生じやすくなるためである。アルミナを1mol%より多く含有させるのは、1mol%以下では結晶変態に伴う体積変化に対する粒界破断を抑制する効果が小さいためである。
 本発明のSOFCにおける固体電解質層は燃料ガス中のSi等の不純物による劣化を防止することが主要課題であり、SOFC高効率化、高耐久性の観点から、固体電解質層は酸素極層101側に形成された第一の層107と、燃料極層側103に形成された第二の層108との二層からなり、燃料極層103側の第二の層108がScSZにランタノイド酸化物および/またはイットリアが固溶された固体電解質材料であって、更にアルミナを含有している組成のものから形成され、酸素極層101側の第一の層107が酸素イオン導電性が高いScSZ組成の固体電解質材料から形成されることが好ましい(図5参照)。高効率の観点から前記第一の層は、前記第二の層よりも厚く形成されていることがより好ましい。
 本発明のSOFCにおける燃料極層103は、電子導電性が高く、O2-がH2と反応し電気化学反応により電気出力を得られること、化学的に安定であることおよび熱膨張係数が固体電解質層102に近い条件を満たしているものであればよく、従来使用されるものに対して特に限定はない。NiとScSZのサーメット、Niとイットリア安定化ジルコニア(以下、YSZと示す)のサーメットおよびNiとセリウム酸化物のサーメットなどが代表的である。
 本発明のSOFCにおける酸素極層101は、電子導電性が高く、酸素(O2)などの酸化剤ガスを酸素イオン(O2-)に替える触媒活性が高いこと、化学的に安定であることおよび熱膨張係数が固体電解質層102に近い条件を満たしているものであればよく、従来使用されるものに対して特に限定はない。ストロンチウムを固溶させたランタンマンガナイト(以下、LSMと示す)、ストロンチウムを固溶させたランタンフェライト(以下、LSFと示す)およびストロンチウムと鉄を固溶させたランタンコバルタイト(以下、LSCF)等が挙げられる。
 本発明の固体電解質材料の製造においては、本技術分野において通常用いられるいずれの方法を用いてもよく、特に限定されるものではない。例えば、以下に限定されるものではないが、ジルコニアの粒子と、スカンジアの粒子と、ランタノイド酸化物の粒子および/またはイットリアの粒子とを所定の配合比率で混合し、該混合物をボールミル等の粉砕機で粉砕した後焼結させ、該焼結体をボールミル等の粉砕機で粉砕した後アルミナやバインダー成分と混合し、該混合物を成型及び焼結することによって、本発明の固体電解質材料を製造することができる。
 本発明のSOFCの製造においては、本技術分野において通常用いられるいずれの方法を用いてもよく、特に限定されるものではない。例えば、スクリーン印刷法等を用いて本発明の固体電解質材料の一方の面に酸素極層を、他方の面に燃料極層を形成させ、焼結することによって、本発明のSOFCを製造することができる。
 本発明のSOFCは、平板縦縞型、平板横縞型、扁平円筒型、円筒縦縞型、円筒横縞型、マイクロチューブなどのいずれのタイプであってもよい。
(実施例1)
 図2タイプのセルを製作し試験を行ったので説明する。ZrO2原料(平均粒径0.3μm)、Sc2O3原料(平均粒径0.3μm)、CeO2原料(平均粒径0.3μm)を一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、Al2O3(平均粒径0.5μm)を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当と、バインダーPVAを前記粉末に対して5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、1450℃で5hr焼結させた。10Sc1CeSZ1Al組成の緻密質な固体電解質層を得た。厚み200μm程度まで研磨した後、酸素極層としてLSM(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、反対面に燃料極層としてNiとYSZのサーメットになるよう40wt%NiO―60wt%YSZ(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、1400℃で2hr焼結させた。
(実施例2)
  一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc1CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例3)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2) で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例4)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2) で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、5mol%相当混ぜ合わせ、10Sc3CeSZ5Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例5)
  一般式85mol%(ZrO2)-10mol%(Sc2O3)-5mol%(CeO2) で表される10Sc5CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc5CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例6)
  一般式84mol%(ZrO2)-10mol%(Sc2O3)-6mol%(CeO2) で表される10Sc6CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc6CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例7)
  一般式89mol%(ZrO2)-8mol%(Sc2O3)-3mol%(CeO2) で表される8Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、8Sc3CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例8)
  一般式88mol%(ZrO2)-9mol%(Sc2O3)-3mol%(CeO2) で表される9Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、9Sc3CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例9)
  一般式82mol%(ZrO2)-15mol%(Sc2O3)-3mol%(CeO2) で表される15Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、15Sc3CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例10)
  一般式81mol%(ZrO2)-16mol%(Sc2O3)-3mol%(CeO2) で表される16Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、16Sc3CeSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例1)
  一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例2)
  一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例3)
  一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加し、10ScSZ1Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(試験方法)
 図6に試験装置の概略を示す。ジルコニアチューブ105で保持された装置にガラスシール(SiO2+B2O3)104を置き、その上に作製したSOFC100を乗せた。さらにSOFC100の上面にジルコニアチューブ105を乗せた。実施例1~10および比較例1~3のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で600hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。
(分析1)
  SOFC100をガラスシール104から引き剥がした後、ガラスシールと接触したSOFC100の固体電解質層102表面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。また、すべてのSOFCに対して試験前にラマン分光法で結晶相を確認した。
 SEM観察はS-4100,Hitachi High-Technologies Co.,Japanを用いて、加速電圧15kV,1000倍で実施した。ラマン分光はNRS-2100,JASCO Co.,Japanを用いて、電解質表面のZr-O振動モードを分析した。検出器はトリプルモノクロメータを搭載し、波数分解能1cm-1、観察スポットφ8μm、励起波長523nmで測定した。
Figure JPOXMLDOC01-appb-T000001
 表1に試験結果を示す。表記はc:立方晶、t:正方晶、r:菱面体晶である。比較例1~3はいずれも粉末化が確認されたのに対して、実施例1~10はいずれも粉末化は認められなかった。このことから本発明の組成を採用することで粉末化を抑制できることが確認された。また、結晶相については実施例1,2,6,7でt相に変態し、実施例10では630℃近傍で相変態を引き起こすr相が一部残った状態であったのに対して、実施例3,4,5,8,9はc相のままであった。このことからより好ましい組成は実施例3,4,5,8,9で示されるものであり、スカンジアが9~15mol%、ランタノイド酸化物が2~5mol%固溶され、さらにアルミナを1mol%より多く含有しているものである。
(分析2)
 実施例2と実施例3および比較例1のSOFCについては、燃料極層103を剥がし、燃料極層103で覆われていた固体電解質層102表面についてSEMおよびラマン分光法で分析した。
Figure JPOXMLDOC01-appb-T000002
 表2に分析結果を示す。燃料極層で覆われていた固体電解質層では粉末化は認められなかったが、比較例1ではすでに結晶相がt相に変化しており、粒界に亀裂が確認された。一方、実施例2,3では粉末化は無く、結晶相も変化しておらず、粒界に亀裂も認められなかった。比較例1の場合、さらなる長時間運転で粉末化が起こり、燃料極層103と固体電解質層102の間で粉化剥離する可能性が示唆された。
CeO2以外のランタノイド酸化物とイットリアについて
(実施例11)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Sm2O3) で表される10Sc3YSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3SmSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例12)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Yb2O3) で表される10Sc3YbSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3YbSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例13)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(La2O3) で表される10Sc3LaSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3LaSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例14)
  一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Y2O3) で表される10Sc3YSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3YSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
 図6に示す試験装置を用いて、実施例11~14のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で600hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触したSOFC100の固体電解質層102表面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。
Figure JPOXMLDOC01-appb-T000003
 表3に試験後の分析結果を示す。実施例11~14のいずれも粉末化が認められず、結晶相もc相のままであった。この結果は実施例3と同様で、CeO2以外のランタノイド酸化物またはイットリアを固溶した場合でも、CeO2を固溶した場合と同様の効果があることを確認した。
 実施例3,11,12,13,14の固体電解質材料の導電率を測定した。各々の固体電解質材料をプレス成形し、1450℃で5hr焼結させた後、両面に白金電極を取り付けるとともに側面に参照極を取り付け、1000℃大気雰囲気下でインピーダンス測定を行った。
Figure JPOXMLDOC01-appb-T000004
 表4に導電率の結果を示す。実施例3が最も導電率が高く、固溶させるランタノイド酸化物として最も好ましいのはセリアであることを確認した。
固体電解質層2層構造について
(実施例15)
(1)第一の層の作製
 ZrO2原料(平均粒径0.3μm),Sc2O3原料(平均粒径0.3μm),CeO2原料(平均粒径0.3μm)を一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、バインダーPVAを前記粉末に対して5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、10Sc1CeSZ1Al組成の成形体を作製した。
(2)第二の層の作製
 ZrO2原料(平均粒径0.3μm),Sc2O3原料(平均粒径0.3μm),CeO2原料(平均粒径0.3μm)を一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2) で表される10Sc3CeSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、Al2O3(平均粒径0.5μm)を、第二の層中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当およびバインダーPVAを前記粉末に対して5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、10Sc3CeSZ2Al組成の成形体を作製した。
(3)セル作製
 10Sc1CeSZ1Al組成からなる第一の層の成形体と10Sc3CeSZ2Al組成からなる第二の層の成形体を積層し熱圧着させた後、1450℃で5hr焼結させた。第一の層の厚みが190μm、第二の層が10μm程度になるよう研磨した後、第一の層の表面に酸素極層としてLSM(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、第二の層の表面に燃料極層としてNiとYSZのサーメットになるよう40wt%NiO―60wt%YSZ(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、1400℃で2hr焼結させた。
(実施例16)
 第一の層の組成を、一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3(平均粒径0.5μm)を、第一層中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加したものにしたこと以外は実施例15と同様とした。
 図6に示す試験装置を用いて、実施例15および16のSOFC上面(第一層側)にAirを、下面(第二層側)に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面(第一層側)にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で600hr保持した後、SOFC上面(第一層側)にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。ガラスシール104から引き剥がした後、ガラスシール104と接触したSOFC100の固体電解質層102表面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認し、実施例3と比較検討した。
Figure JPOXMLDOC01-appb-T000005
 表5に試験後の分析結果を示す。実施例15,16のいずれも粉末化が認められず、結晶相もc相のままであった。電解質2層構造とし、第一の層を比較例1,2の組成とし第二の層において実施例3の組成とすることで粉末化および結晶変態を抑制できることを確認した。
 実施例3,15,16の固体電解質材料の導電率を測定した。各々の固体電解質材料をプレス成形して1450℃で5hr焼結させたものの両面に白金電極を取り付けるとともに側面に参照極を取り付け、1000℃大気雰囲気下でインピーダンス測定を行った。
Figure JPOXMLDOC01-appb-T000006
 表6に導電率の結果を示す。酸素イオン導電性が高い層を第一の層に設けることで実施例3よりも導電率が高くなり、発電効率が高められることを確認した。以上により、第二の層は粉化剥離防止に最低限必要な厚みを形成することがより効果的であることを確認することができた。
(実施例17)
 第一の層の組成を一般式90mol%(ZrO2)-10mol%(Y2O3)で表される10YSZ組成にAl2O3を添加しないものにしたこと以外は実施例15と同様とした。
Figure JPOXMLDOC01-appb-T000007
 表7に試験後の分析結果を示す。実施例17についても粉末化が認められず、結晶相もc相のままであった。電解質2層構造とし、第一の層を安定化剤にイットリアを用いたものであっても第二の層を本発明の固体電解質材料によって形成されたものとすることで同様の効果が確認された。
 本発明の効果を固体電解質層を支持体とするタイプで説明したが、酸素極層および燃料極層を支持体とするSOFCも同様の効果を有する。
 SOFCデザインについては、平板型で説明したが、扁平円筒型、円筒縦縞型、マイクロチューブなどのいずれのタイプも同様の効果を有する。
 上記実施例においては、ScSZ電解質材料に、ランタノイド酸化物やイットリアなど1種類のみを固溶させた場合について試験したが、ScSZ電解質材料に、2種類以上のランタノイド酸化物の組合せやランタノイド酸化物とイットリアとの組合せを固溶させた場合においても、上記実施例と同様の効果が得られるものと考えられる。
 100 SOFC
 101 酸素極層
 102 固体電解質層
 103 燃料極層
 104 ガラスシール(SiO2+B2O3
 105 ジルコニアチューブ
 106 電気炉
 107 固体電解質層(第一の層)
 108 固体電解質層(第二の層)
 110 10Sc1CeSZ(立方晶)
 111 10Sc1CeSZ(正方晶)
 112 アルミナ(Al2O3)

Claims (9)

  1.  スカンジアと、ランタノイド酸化物および/またはイットリアとが固溶されたジルコニア固体電解質材料であって、更にアルミナを含有することを特徴とする固体電解質材料。
  2.  固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総モル量に対して、前記スカンジアが9~15mol%、前記ランタノイド酸化物および/またはイットリアが2~5mol%固溶されることを特徴とする請求項1に記載の固体電解質材料。
  3.  固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総モル量に対して、前記アルミナを1mol%より多く含有することを特徴とする請求項2に記載の固体電解質材料。
  4.  前記ランタノイド酸化物は、セリアであることを特徴とする、請求項2に記載の固体電解質材料。
  5.  固体電解質層と、前記固体電解質層の一方の面に設けられた酸素極層と、前記固体電解質層の他方の面に設けられた燃料極層とを備える固体酸化物形燃料電池であって、前記固体電解質層は、請求項1乃至4のいずれか1項に記載の固体電解質材料を含むことを特徴とする固体酸化物形燃料電池。
  6.  前記固体電解質層は、前記燃料極側におけるランタノイド酸化物および/またはイットリアの固溶量が、前記酸素極側における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きいことを特徴とする請求項5に記載の固体酸化物形燃料電池。
  7.  前記固体電解質層は、前記酸素極層側に形成された第一の層と、前記燃料極層側に形成された第二の層との二層からなり、前記第二の層における前記ランタノイド酸化物および/またはイットリアの固溶量は、前記第一の層における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きく、前記第二の層における前記アルミナの含有量は、前記第一の層における前記アルミナの含有量よりも大きいことを特徴とする請求項5に記載の固体酸化物形燃料電池。
  8.  前記第一の層は、前記ランタノイド酸化物および/またはイットリアが固溶しておらず、且つ前記アルミナを含有していないことを特徴とする請求項7に記載の固体酸化物形燃料電池。
  9.  前記第一の層は、前記第二の層よりも厚く形成されていることを特徴とする請求項8に記載の固体酸化物形燃料電池。
PCT/JP2012/052177 2011-01-31 2012-01-31 固体電解質材料およびこれを備えた固体酸化物形燃料電池 WO2012105575A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12742321.8A EP2672556B1 (en) 2011-01-31 2012-01-31 Solid electrolyte material and solid oxide fuel cell provided with same
CN201280016250.3A CN103477483B (zh) 2011-01-31 2012-01-31 固体电解质材料及具备该固体电解质材料的固体氧化物型燃料电池
JP2012555911A JP5652752B2 (ja) 2011-01-31 2012-01-31 固体電解質材料およびこれを備えた固体酸化物形燃料電池
US13/983,014 US20130316267A1 (en) 2011-01-31 2012-01-31 Solid electrolyte material and solid oxide fuel cell provided the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-018760 2011-01-31
JP2011018760 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105575A1 true WO2012105575A1 (ja) 2012-08-09

Family

ID=46602782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052177 WO2012105575A1 (ja) 2011-01-31 2012-01-31 固体電解質材料およびこれを備えた固体酸化物形燃料電池

Country Status (5)

Country Link
US (1) US20130316267A1 (ja)
EP (1) EP2672556B1 (ja)
JP (1) JP5652752B2 (ja)
CN (1) CN103477483B (ja)
WO (1) WO2012105575A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115600A (ja) * 2014-12-17 2016-06-23 株式会社日本触媒 メタルサポートセル
WO2022208705A1 (ja) * 2021-03-31 2022-10-06 株式会社日立ハイテク 燃料電池セルおよびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669045B2 (ja) * 2016-11-15 2020-03-18 株式会社デンソー ガスセンサ素子用固体電解質体とその製造方法及びガスセンサ素子
CN110856455B (zh) * 2017-06-30 2023-08-29 第一稀元素化学工业株式会社 氧化钪稳定化氧化锆粉末、烧结体、制造方法和燃料电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066916A (ja) * 1996-07-30 1998-03-10 Eastman Kodak Co 多層塗布装置および方法
JP2002134131A (ja) * 2000-10-23 2002-05-10 Toho Gas Co Ltd 支持膜式固体電解質型燃料電池
JP2005322547A (ja) * 2004-05-11 2005-11-17 Toho Gas Co Ltd 低温作動型固体酸化物形燃料電池単セル
JP2008305804A (ja) 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池
JP2010027359A (ja) * 2008-07-18 2010-02-04 Nippon Shokubai Co Ltd リサイクルジルコニア粉末の製造方法、当該製造方法によるリサイクルジルコニア粉末、およびそれを用いたジルコニア焼結体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339670B2 (ja) * 1996-08-28 2002-10-28 日本電信電話株式会社 希土類酸化物及びSc2O3,Al2O3添加ZrO2系固体電解質材料
JP3777903B2 (ja) * 1998-10-14 2006-05-24 三菱マテリアル株式会社 電極−電解質間に傾斜組成を持つ固体酸化物型燃料電池
JP2000340240A (ja) * 1999-05-31 2000-12-08 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びそれを用いた固体電解質型燃料電池
US6558831B1 (en) * 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
DE10212966B4 (de) * 2002-03-22 2006-08-03 Siemens Ag Hochtemperatur-Brennstoffzelle und Verfahren zu deren Herstellung
JP4524791B2 (ja) * 2002-08-06 2010-08-18 Toto株式会社 固体酸化物形燃料電池
WO2005017226A1 (en) * 2003-01-10 2005-02-24 University Of Connecticut Coatings, materials, articles, and methods of making thereof
US20060166070A1 (en) * 2003-09-10 2006-07-27 Ion America Corporation Solid oxide reversible fuel cell with improved electrode composition
US7618731B2 (en) * 2003-12-17 2009-11-17 University Of Dayton Ceramic-ceramic nanocomposite electrolyte
CN100353588C (zh) * 2005-12-26 2007-12-05 潮州三环(集团)股份有限公司 一种固体氧化物燃料电池电解质隔膜的制备方法
US7820332B2 (en) * 2006-09-27 2010-10-26 Corning Incorporated Electrolyte sheet with regions of different compositions and fuel cell device including such
DK2378599T3 (da) * 2006-11-23 2013-01-14 Univ Denmark Tech Dtu Fremgangsmåde til fremstilling af reversible fastoxidceller
WO2008127601A1 (en) * 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite sofc electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066916A (ja) * 1996-07-30 1998-03-10 Eastman Kodak Co 多層塗布装置および方法
JP2002134131A (ja) * 2000-10-23 2002-05-10 Toho Gas Co Ltd 支持膜式固体電解質型燃料電池
JP2005322547A (ja) * 2004-05-11 2005-11-17 Toho Gas Co Ltd 低温作動型固体酸化物形燃料電池単セル
JP2010027359A (ja) * 2008-07-18 2010-02-04 Nippon Shokubai Co Ltd リサイクルジルコニア粉末の製造方法、当該製造方法によるリサイクルジルコニア粉末、およびそれを用いたジルコニア焼結体の製造方法
JP2008305804A (ja) 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672556A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115600A (ja) * 2014-12-17 2016-06-23 株式会社日本触媒 メタルサポートセル
WO2022208705A1 (ja) * 2021-03-31 2022-10-06 株式会社日立ハイテク 燃料電池セルおよびその製造方法
TWI811984B (zh) * 2021-03-31 2023-08-11 日商日立全球先端科技股份有限公司 燃料電池胞及其製造方法

Also Published As

Publication number Publication date
US20130316267A1 (en) 2013-11-28
EP2672556A1 (en) 2013-12-11
JPWO2012105575A1 (ja) 2014-07-03
EP2672556B1 (en) 2017-05-10
CN103477483B (zh) 2016-09-28
CN103477483A (zh) 2013-12-25
JP5652752B2 (ja) 2015-01-14
EP2672556A4 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5725449B2 (ja) 固体酸化物形燃料電池
TWI501937B (zh) 低降能之相穩定性經摻雜氧化鋯電解質組合物
AU2011209829B2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
JP5729572B2 (ja) 固体電解質材料およびこれを備えた固体酸化物形燃料電池
JP5615771B2 (ja) 固体酸化物形燃料電池システム及び導電性接合材
JP2000340240A (ja) 高イオン導電性固体電解質材料及びそれを用いた固体電解質型燃料電池
TW201624812A (zh) 具有對固態氧化物燃料電池之退化有改善抗性之固態氧化物燃料電池陰極組合物
JP5652752B2 (ja) 固体電解質材料およびこれを備えた固体酸化物形燃料電池
JP2012134122A (ja) 固体酸化物型燃料電池
JP5546559B2 (ja) 固体酸化物形燃料電池および該燃料電池のカソード形成用材料
JP5219370B2 (ja) イオン伝導体
JP5652753B2 (ja) 固体酸化物形燃料電池
JP4496749B2 (ja) 固体酸化物型燃料電池
JP2012099322A (ja) 固体酸化物型燃料電池
JP2002316872A (ja) ランタンガレート系固体電解質材料、その製造方法および固体電解質型燃料電池
JP2012074304A (ja) 固体酸化物形燃料電池用発電セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13983014

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012742321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012742321

Country of ref document: EP