JP5652753B2 - 固体酸化物形燃料電池 - Google Patents

固体酸化物形燃料電池 Download PDF

Info

Publication number
JP5652753B2
JP5652753B2 JP2012555912A JP2012555912A JP5652753B2 JP 5652753 B2 JP5652753 B2 JP 5652753B2 JP 2012555912 A JP2012555912 A JP 2012555912A JP 2012555912 A JP2012555912 A JP 2012555912A JP 5652753 B2 JP5652753 B2 JP 5652753B2
Authority
JP
Japan
Prior art keywords
layer
solid electrolyte
solid
yttria
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012555912A
Other languages
English (en)
Other versions
JPWO2012105576A1 (ja
Inventor
めぐみ 島津
めぐみ 島津
上野 晃
晃 上野
阿部 俊哉
俊哉 阿部
元泰 宮尾
元泰 宮尾
樋渡 研一
研一 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2012555912A priority Critical patent/JP5652753B2/ja
Publication of JPWO2012105576A1 publication Critical patent/JPWO2012105576A1/ja
Application granted granted Critical
Publication of JP5652753B2 publication Critical patent/JP5652753B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Description

本発明は、固体酸化物形燃料電池に関する。
従来、スカンジアを固溶させたジルコニア(以下、ScSZと記す)のような固体電解質材料は、固体酸化物形燃料電池(以下、SOFCと略す)などの用途に適用されている。SOFCは、他の燃料電池であるリン酸型、溶融炭酸塩型などと比較して発電効率が高く、排熱温度も高いため、次世代型の省エネ発電システムとして注目されている。
SOFCの基本構成は、固体電解質層と、燃料極層と、酸素極層とを備え、固体電解質層の一方に面した燃料極層に水素(H2)などの燃料ガスが貫流接触し、固体電解質層の反対面に面した酸素極層に空気もしくは酸素(O2)などの酸化剤ガスが貫流接触すると、酸素極層で発生した酸素イオン(O2-)が固体電解質層を移動し燃料極層に達し、燃料極層でO2-がH2と反応し電気化学反応により電気出力が得られるものである。
このような反応メカニズムにおいて、SOFCの固体電解質材料に要求される特性としては、(1)高い酸素イオン導電性を有すること (2)長期耐久性に優れること (3)高い材料強度を有することなどが挙げられ、ジルコニア系固体電解質材料の中で最も好ましい材料は、ScSZである。
SOFCの酸素極層として、ストロンチウムを固溶させたランタンマンガイト(以下、LSMと示す)、ストロンチウムを固溶させたランタンフェライト(以下、LSFと示す)およびストロンチウムと鉄を固溶させたランタンコバルタイト(以下、LSCF)が一般的に使用される。これらの材料を用いて酸素極層を焼結法で製造する際及び運転時にはセルが高温となるため、LSMの場合マンガン(Mn)が、LSFおよびLSCFの場合、鉄(Fe)が固体電解質層であるScSZに拡散し、酸素イオン導電性を低下させる。この拡散を抑制するためにScSZにアルミナを含有させた固体電解質層が提案されている(特開平8-250135号公報参照)。
ScSZにアルミナを含有させることで、ScSZ内部に酸素極からMn、Feが固溶拡散することを抑制することができる。しかし、Mn、Feの固溶量を完全に0にすることはできず、ScSZの燃料極層界面近傍においてもMn、Feが微量ながら依然固溶拡散している。
酸素極層にLSMを用い、固体電解質層にScSZを備えたSOFCにおいて、数百〜数千時間の長期耐久試験を行ったところ、燃料極近傍において固体電解質層の一部が粉末化していることが確認された。様々な調査の結果、ScSZに固溶拡散したMnが還元雰囲気に晒されることでScSZから抜けることを発見し、この際に安定化剤のスカンジアが一緒に結晶から引き抜かれ、固体電解質層の結晶変態(立方晶から正方晶へ変化)が生じることが明らかになった。
燃料極界面近傍におけるMnの固溶拡散量は雰囲気により変化し、SOFCが還元雰囲気に曝された際には、固溶していたMnの一部がScSZから燃料極側に抜け出ていくと考えられ、FeについてもMnと同様の現象が生じると推定された。
固体電解質層のうち燃料極層に覆われた部分においては、数千時間の長期耐久試験では粉末化は確認されなかったが、粉末化が生じた部分と同様に結晶変態が生じていることから、数万時間運転することでやはり粉末化が生じ、固体電解質層と燃料極層の間で剥離(以下、粉化剥離と示す)が生じると推定された。粉化剥離が生じれば電気が取り出せなくなり、発電不能となる。SOFCは、導入期で40000時間、普及期で90000時間程度の寿命が要求されており、ここで示す粉化剥離は市場導入において解決しなければならない技術課題である。
粉末化部分についてSEM観察した結果、粒界から粒子が脱落し、粉末化していることがわかった。これは、立方晶から正方晶へ変化することで体積が収縮し、粒界で破断したためと推定された(図1参照)。
本発明者らは、酸素極層からのMn、Feが拡散したScSZを固体電解質層として備えたSOFCにおいて、ScSZに固溶拡散したMn、Feが還元雰囲気に晒されることでScSZから抜ける際に安定化剤のスカンジアが結晶から引き抜かれることを抑制するとともに、結晶変態が生じても結晶変態に伴う粒界破断を無くすために粒子間強度の向上を備えた固体電解質層を備えたSOFCを提供する。
上記課題を解決するために本発明に係るSOFCは、固体電解質層と、固体電解質層の一方の面に設けられた酸素極層と、固体電解質層の他方の面に設けられた燃料極層とを備える固体酸化物形燃料電池であって、前記酸素層は、鉄又はマンガンを含む材料から構成されており、前記固体電解質層はアルミナを含有したScSZ電解質材料から構成され、且つ前記ScSZ電解質材料中にランタノイド酸化物および/またはイットリアが固溶していることを特徴とする。ScSZにアルミナを含有させることで、ScSZ内部にMn、Feが固溶拡散する量が低減されるため、Mn、FeがScSZから抜ける際に安定化剤のスカンジアが一緒に結晶から引き抜かれる量も低減される。しかし、これだけではMn、Feの固溶量を0にすることはできないため、微量のMn、FeがScSZから抜けるという現象を無くすことはできない。そこで本発明では、ScSZにアルミナを含有させることに加えてランタノイド酸化物および/またはイットリアを固溶することで、Mn、FeがScSZから抜けたとしても、スカンジアがScSZから引き抜かれるという現象自体の発生を抑制することができる。更に、アルミナはScSZ粒子の粒界に存在し、前記ScSZ粒子同士を強固につなぐため、結晶変態に伴う微量な体積変化が生じたとしても、粒界の破断を抑制するという効果も合わせて奏する。その結果、粉末化が生じないため、普及期で必要とされる90000時間の寿命を有するSOFCを提供することができる。さらに好ましい態様においては、前記固体電解質層は、前記燃料極側におけるランタノイド酸化物および/またはイットリアの固溶量が、前記酸素極側におけるランタノイド酸化物および/またはイットリアの固溶量よりも大きい。例えば、燃料極側から酸素極側にかけてランタノイド酸化物の固溶量が傾斜して減少しているものなどが挙げられる。これにより、燃料極層側での粉化剥離を防止しつつ、固体酸化物層全体の酸素イオン伝導性が低下することを最低限に抑えることができる。
本発明の好ましい態様においては、ジルコニアには、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、スカンジアが9〜15mol%、より好ましくは9〜11mol%、ランタノイド酸化物および/またはイットリアが2〜5mol%、より好ましくは3〜5mol%固溶されている。本発明のさらに好ましい態様においては、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、アルミナを1mol%より多く含有している。スカンジア量が9〜15mol%が好ましいのは、9mol%未満だと正方晶が、15mol%超えでは菱面体晶が生じる可能性があり、それぞれ酸素イオン導電性が低下するためである。ランタノイド酸化物および/またはイットリアの2〜5mol%固溶が好ましいのは、2mol%未満だとMn、FeがScSZから抜ける際のスカンジア引き抜きを抑制する効果が低く、5mol%超えだと正方晶が生成し結晶変態が生じやすくなるためである。アルミナを1mol%より多く含有させるのは、1mol%以下では、Mn、Feの固溶量を低減する効果が小さく、結晶変態に伴う体積変化に対する粒界破断を抑制する効果も小さいためである。また、本発明の固体電解質材料は、アルミナを5mol%以下含有することが好ましい。アルミナ含有量が5mol%以下であると、固体電解質材料の酸素イオン導電性の低下をもたらさない又はもたらしても最小限に抑えられるためである。
本発明の好ましい態様においては、ランタノイド酸化物は、セリアであることを特徴とする。セリアが好ましい理由は、Mn、FeがScSZから抜ける際のスカンジア引き抜きを抑制するだけでなく、固体電解質材料の酸素イオン導電性を向上させることができるためである。
本発明の好ましい態様においては、固体電解質層は、前記酸素極層側に形成された第一の層と、前記燃料極層側に形成された第二の層との二層からなり、前記第二の層における前記ランタノイド酸化物および/またはイットリアの固溶量は、前記第一の層における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きく、前記第二の層における前記アルミナの含有量は、前記第一の層における前記アルミナの含有量よりも大きい。より好ましくは、第一の層には、前記ランタノイド酸化物および/またはイットリアが固溶しておらず、且つ第一の層は、前記アルミナを含有していないことを特徴とする。また、第一の層は、スカンジア安定化ジルコニアを用いたものであっても、イットリア安定化ジルコニアを用いたものであってもよい。本固体電解質層を備えたSOFCは、高効率かつ普及期で必要とされる90000時間の寿命を有する。これは、燃料極層側である第二の層では、粉化剥離を防止できる一方でアルミナ含有等によりイオン導電性が低下してしまうのに対し、酸素極層側である第一の層では酸素イオン導電性が高く内部抵抗が小さいままであるので、固体酸化物層全体の酸素イオン伝導性が低下することを最低限に抑えつつ、粉化剥離の発生を防止できるためである。
本発明の好ましい態様においては、固体電解質層の第一の層は、前記第二の層よりも厚く形成されていることを特徴とする。このような固体電解質層を備えた本発明のSOFCは、高効率かつ普及期で必要とされる90000時間の寿命を有する。これは、第二の層の厚みを粉化剥離防止に最低限必要なものとすることで第一の層による高酸素イオン伝導性の寄与が大きくなり、より発電効率を高めることができるためである。粉化剥離防止に最低限必要な第二の層の厚みは、例えば、1μm以上であり、好ましくは3μm以上である。
本発明によれば、酸素極層からのMn、Feが拡散したScSZを備えたSOFCにおいて、ScSZに固溶拡散したMn、Feが還元雰囲気に晒されることでScSZから抜ける際に安定化剤のスカンジアが結晶から引き抜かれることを抑制するとともに、結晶変態が生じても結晶変態に伴う粒界破断を無くすために粒子間強度の向上を有する固体電解質層を備えることで、ジルコニア結晶変態に伴う粉末化および数万時間後に発生する可能性のある燃料極層と固体電解質層との間の粉化剥離を抑制し、SOFCの普及期に必要とされる90000時間程度の寿命を有する固体酸化物形燃料電池を提供することができる。
従来技術における固体電解質層粉末化の現象を示すSEM写真である。 本発明におけるSOFCの一例を示す図である。 固体電解質層の結晶変態に伴う変化について、従来と本発明の差異を示す図である。 ScSZのSc2O3濃度と温度における結晶状態を示す図である。 本発明におけるSOFCの最良形態を示す図である。 本発明の効果を実証する試験装置を示す図である。
以下、本発明の実施形態について図を参照して説明する。図2は、本発明の実施形態におけるSOFCであり、固体電解質層102の一方の面に酸素極層101、固体電解質層102の他方の面に燃料極層103を設けている。固体電解質層としては酸素イオン導電性が高いという観点から、従来は、ScSZが利用されていた。しかし、同組成の固体電解質層を有するSOFCでは数百〜数千時間の長期耐久試験を行うと、酸素極層から拡散してきたMn、Feが還元雰囲気に晒されることでScSZから抜ける際に安定化剤のスカンジアが結晶から引き抜かれ、固体電解質層102の結晶変態(立方晶から正方晶へ変化)が生じることが明らかになった。また、固体電解質層102がむき出しになっているところでは、粉末化していることが確認されており、固体電解質層102の燃料極層103で覆われた部分においても同様に結晶変態が生じており、数万時間運転することで固体電解質層102と燃料極層103の間で粉化剥離が生じると推定された。
固体電解質層の結晶変態に伴う変化について、比較例と本発明の差異を図3を用いて説明する。比較例1相当の10Sc1CeSZ組成を有する固体電解質層にMnが数mol%固溶されたものは製造時は立方晶構造110である。これが還元雰囲気に晒されることでMnがMnOまたはMn(OH)2の形で抜けるとともにスカンジア(Sc2O3)が結晶相から引き抜かれ、図4の状態図に示すように結晶相が立方晶(c)110から正方晶(t)111に変わる。立方晶(c)110から正方晶(t)111に変わると格子定数が小さくなり体積が収縮する。その結果、粒界破断が生じ、図1のSEM像のような粉末化が生じると考えられた。本発明のSOFCにおける固体電解質材料では、スカンジア(Sc2O3)が結晶相から引き抜かれることを抑制するためにランタノイド酸化物および/またはイットリア固溶量を増やし、スカンジアが結晶相から引き抜かれて結晶変態が生じても粒界破断しないように粒界を強固なものにするために更にアルミナ112を含有させ、粉末化を発生させないようにすることが好ましい。
好ましい固体電解質層の組成は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、スカンジアが9〜15mol%、ランタノイド酸化物および/またはイットリアが2〜5mol%固溶されているものである。本発明の固体電解質材料のさらに好ましい組成は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、アルミナを1mol%より多く含有しているものである。スカンジア量が9〜15mol%が好ましいのは、9mol%未満だと正方晶が、15mol%超えでは菱面体晶が生じる可能性があり酸素イオン導電性が低下するためであり、ランタノイド酸化物および/またはイットリアの2〜5mol%固溶が好ましいのは、2mol%未満だとMn、FeがScSZから抜ける際のスカンジア引き抜きを抑制する効果が低く、5mol%超えだと正方晶が生成し結晶変態が生じやすくなるためである。アルミナを1mol%より多く含有させるのは、1mol%以下では結晶変態に伴う体積変化に対する粒界破断を抑制する効果が小さいためである。
本発明のSOFCにおける固体電解質層は酸素極層から拡散してきたMnやFeが還元雰囲気でScSZから抜け出す際の劣化を防止することが主要課題であり、SOFC高効率化、高耐久性の観点から、固体電解質層は、酸素極層101側に酸素イオン導電性が高い第一の層107と、燃料極層側103にScSZにランタノイド酸化物および/またはイットリアが固溶された固体電解質材料であって、更にアルミナを含有している組成のものから形成された第二の層108との二層からなることが好ましい(図5参照)。高効率の観点から前記第一の層は、前記第二の層よりも厚く形成されていることがより好ましい。
本発明のSOFCにおける燃料極層103は、電子導電性が高く、O2-がH2と反応し電気化学反応により電気出力を得られること、化学的に安定であることおよび熱膨張係数が固体電解質層102に近い条件を満たしているものであればよく、従来使用されるものに対して特に限定はない。NiとScSZのサーメット、Niとイットリア安定化ジルコニア(以下、YSZと示す)のサーメットおよびNiとセリウム酸化物のサーメットなどが代表的である。
本発明のSOFCにおける酸素極層101は、電子導電性が高く、酸素(O2)などの酸化剤ガスを酸素イオン(O2-)に替える触媒活性が高いこと、化学的に安定であることおよび熱膨張係数が固体電解質層102に近い条件を満たしているものであればよく、従来使用されるものに対して特に限定はない。ストロンチウムを固溶させたランタンマンガナイト(以下、LSMと示す)、ストロンチウムを固溶させたランタンフェライト(以下、LSFと示す)およびストロンチウムと鉄を固溶させたランタンコバルタイト(以下、LSCF)等が挙げられる。
本発明のSOFCにおいて用いられる固体電解質材料の製造においては、本技術分野において通常用いられるいずれの方法を用いてもよく、特に限定されるものではない。例えば、以下に限定されるものではないが、ジルコニアの粒子と、スカンジアの粒子と、ランタノイド酸化物の粒子および/またはイットリアの粒子とを所定の配合比率で混合し、該混合物をボールミル等の粉砕機で粉砕した後焼結させ、該焼結体をボールミル等の粉砕機で粉砕した後アルミナやバインダー成分と混合し、該混合物を成型及び焼結することによって、本発明の固体電解質材料を製造することができる。
本発明のSOFCの製造においては、本技術分野において通常用いられるいずれの方法を用いてもよく、特に限定されるものではない。例えば、スクリーン印刷法等を用いて上記固体電解質材料の一方の面に酸素極層を、他方の面に燃料極層を形成させ、焼結することによって、本発明のSOFCを製造することができる。
本発明のSOFCは、平板縦縞型、平板横縞型、扁平円筒型、円筒縦縞型、円筒横縞型、マイクロチューブなどのいずれのタイプであってもよい。
(実施例1)
図2タイプのセルを製作し試験を行ったので説明する。ZrO2原料(平均粒径0.3μm)、Sc2O3原料(平均粒径0.3μm)、CeO2原料(平均粒径0.3μm)を一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2)で表される10Sc3CeSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、Al2O3(平均粒径0.5μm)を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当と、前記粉末に対して、MnO2(平均粒径0.5μm)をMn含有量で2重量%およびバインダーPVAを5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、1450℃で5hr焼結させた。10Sc3CeSZ2Al組成の緻密質な固体電解質層を得た。厚み200μm程度まで研磨した後、酸素極層としてLSM(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、反対面に燃料極層としてNiとYSZのサーメットになるよう40wt%NiO―60wt%YSZ(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、1400℃で2hr焼結させた。
(実施例2)
一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2)で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、Fe2O3(平均粒径0.5μm)をFeの含有量で2重量%およびバインダーPVAを5wt%加え、10Sc3CeSZ2Al組成の緻密質な固体電解質層を得たことと、酸素極層をLSF(平均粒径2μm)とした以外は実施例1と同様とした。
(実施例3)
一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2)で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、MnO2(平均粒径0.5μm)をMn含有量で1重量%、Fe2O3(平均粒径0.5μm)をFe含有量で1重量%およびバインダーPVAを5wt%加え、10Sc3CeSZ2Al組成の緻密質な固体電解質層を得たことと、酸素極層をLSF(平均粒径2μm)とした以外は実施例1と同様とした。
(比較例1)
一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例2)
一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例2と同様とした。
(比較例3)
一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例4)
一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を添加しないで緻密質な固体電解質層を得たこと以外は実施例2と同様とした。
(比較例5)
一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(比較例6)
一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例2と同様とした。
(試験方法)
図6に試験装置の概略を示す。ジルコニアチューブ105で保持された装置にガラスシール(SiO2+B2O3)104を置き、その上に作製したSOFC100を乗せた。さらにSOFC100の上面にジルコニアチューブ105を乗せた。実施例1〜10および比較例1〜3のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。
(分析1)
SOFC100をガラスシール104から引き剥がした後、ガラスシール104と接触していないSOFC100の固体電解質層102の露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。また、すべてのSOFCに対して試験前にラマン分光法で結晶相を確認した。
SEM観察はS-4100,Hitachi High-Technologies Co.,Japanを用いて、加速電圧15kV,1000倍で実施した。ラマン分光はNRS-2100,JASCO Co.,Japanを用いて、電解質表面のZr-O振動モードを分析した。検出器はトリプルモノクロメータを搭載し、波数分解能1cm-1、観察スポットφ8μm、励起波長523nmで測定した。
表1に試験結果を示す。表記はc:立方晶、t:正方晶である。比較例1〜6はいずれも粉末化が確認されたのに対して、実施例1〜3はいずれも粉末化は認められなかった。このことから本発明の組成を採用することで粉末化を抑制できることが確認された。また、結晶相についても実施例1〜3はc相を維持し、比較例1〜6のすべてがt相に変態していることがわかった。本発明の組成とすることでMnやFeを含んでいても粉末化および結晶変態が起こりにくくなることを確認することができた。
(分析2)
実施例1,2および比較例1,2のSOFCについては、燃料極層103を剥がし、燃料極層103で覆われていた固体電解質層102表面についてSEMおよびラマン分光法で分析した。
表2に分析結果を示す。燃料極層で覆われていた固体電解質層では粉末化は認められなかったが、比較例1,2ではすでに結晶相がt相に変化しており、粒界に亀裂が確認された。一方、実施例1,2では粉末化は無く、結晶相も変化しておらず、粒界に亀裂も認められなかった。比較例1,2の場合、さらなる長時間運転で粉末化が起こり、燃料極層103と固体電解質層102の間で粉化剥離する可能性が示唆された。
(組成の最適化)
(実施例4)−参考例−
一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例5)−参考例−
一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例6)
一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2) で表される10Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、5mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例7)
一般式85mol%(ZrO2)-10mol%(Sc2O3)-5mol%(CeO2) で表される10Sc5CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例8)−参考例−
一般式84mol%(ZrO2)-10mol%(Sc2O3)-6mol%(CeO2) で表される10Sc6CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例9)−参考例−
一般式89mol%(ZrO2)-8mol%(Sc2O3)-3mol%(CeO2) で表される8Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例10)
一般式88mol%(ZrO2)-9mol%(Sc2O3)-3mol%(CeO2) で表される9Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例11)
一般式82mol%(ZrO2)-15mol%(Sc2O3)-3mol%(CeO2) で表される15Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例12)−参考例−
一般式81mol%(ZrO2)-16mol%(Sc2O3)-3mol%(CeO2) で表される16Sc3CeSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当添加し、緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
図6に示す試験装置を用いて、実施例1,4〜12のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触していないSOFC100の固体電解質層102露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。
表3に試験結果を示す。表記はc:立方晶、t:正方晶、r:菱面体晶である。実施例1,4〜12のいずれも粉末化は認められなかった。このことから本発明の組成を採用することで粉末化を抑制できることが確認された。また、結晶相については実施例4,5,8,9でt相に変態し、実施例12では630℃近傍で相変態を引き起こすr相が一部残った状態であったのに対して、実施例1,6,7,10,11はc相のままであった。このことからより好ましい組成は実施例1,6,7,10,11で示されるものであり、スカンジアが9〜15mol%、ランタノイド酸化物が2〜5mol%固溶され、さらにアルミナを1mol%より多く含有しているものである。
CeO2以外のランタノイド酸化物およびイットリアについて
(実施例13)
一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Sm2O3) で表される10Sc3SmSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3SmSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例14)
一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Yb2O3) で表される10Sc3YbSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3YbSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例15)
一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(La2O3) で表される10Sc3LaSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3LaSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
(実施例16)
一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(Y2O3) で表される10Sc3YSZ組成にAl2O3を、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当混ぜ合わせ、10Sc3YSZ2Al組成の緻密質な固体電解質層を得たこと以外は実施例1と同様とした。
図6に示す試験装置を用いて、実施例1,13〜16のSOFC上面にAirを、下面に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触していないSOFC100の固体電解質層102露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認した。
表4に試験後の分析結果を示す。実施例13〜16のいずれも粉末化が認められず、結晶相もc相のままであった。この結果は実施例1と同様で、CeO2以外のランタノイド酸化物またはイットリアを固溶した場合でも、CeO2を固溶した場合と同様の効果があることを確認した。
実施例1,13,14,15,16の固体電解質材料の導電率を測定した。各々の固体電解質材料をプレス成形し、1450℃で5hr焼結させた後、両面に白金電極を取り付けるとともに側面に参照極を取り付け、1000℃大気雰囲気下でインピーダンス測定を行った。
表5に導電率の結果を示す。実施例1が最も導電率が高く、固溶させるランタノイド酸化物として最も好ましいのはセリアであることを確認した。
固体電解質層2層構造について
(実施例17)
(1)第一の層の作製
ZrO2原料(平均粒径0.3μm),Sc2O3原料(平均粒径0.3μm),CeO2原料(平均粒径0.3μm)を一般式90mol%(ZrO2)-10mol%(Sc2O3)で表される10ScSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、前記粉末に対して、MnO2(平均粒径0.5μm)をMn含有量で2重量%およびバインダーPVAを5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、10Sc1CeSZ1Al組成の成形体を作製した。
(2)第二の層の作製
ZrO2原料(平均粒径0.3μm),Sc2O3原料(平均粒径0.3μm),CeO2原料(平均粒径0.3μm)を一般式87mol%(ZrO2)-10mol%(Sc2O3)-3mol%(CeO2) で表される10Sc3CeSZ組成になるように秤量し、溶媒エタノールの中で50hr湿式混合し、乾燥および粉砕後1200℃で焼結させた。該焼結体を粉砕して粉末にした後、Al2O3(平均粒径0.5μm)を、第二の層中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、2mol%相当と、前記粉末に対して、MnO2(平均粒径0.5μm)をMn含有量で2重量%およびバインダーPVAを5wt%加え、乳鉢で混合した。50MPaで前記PVAを含んだ粉末をプレス成形し、10Sc3CeSZ2Al組成の成形体を作製した。
(3)セル作製
10Sc1CeSZ1Al組成からなる第一の層の成形体と10Sc3CeSZ2Al組成からなる第二の層の成形体を積層し熱圧着させた後、1450℃で5hr焼結させた。第一の層の厚みが190μm、第二の層が10μm程度になるよう研磨した後、第一の層の表面に酸素極層としてLSM(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、第二の層の表面に燃料極層としてNiとYSZのサーメットになるよう40wt%NiO―60wt%YSZ(平均粒径2μm)を焼結後の厚みが20μmになるようスクリーン印刷で成膜し、1400℃で2hr焼結させた。
(実施例18)
第一の層の組成を一般式89mol%(ZrO2)-10mol%(Sc2O3)-1mol%(CeO2) で表される10Sc1CeSZ組成にAl2O3(平均粒径0.5μm)を、第一層中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総物質量(総モル量)に対して、1mol%相当添加したものにしたこと以外は実施例17と同様とした。
図6に示す試験装置を用いて、実施例17および18のSOFC上面(第一層側)にAirを、下面(第二層側)に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面(第一層側)にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面(第一層側)にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触していないSOFC100の固体電解質層102露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認し、実施例1と比較検討した。
表6に試験後の分析結果を示す。実施例17,18のいずれも粉末化が認められず、結晶相もc相のままであった。電解質2層構造とし、第一の層を比較例1,3の組成とし第二の層において実施例1の組成とすることで粉末化および結晶変態を抑制できることを確認した。
実施例1,17,18の固体電解質材料の導電率を測定した。各々の固体電解質材料をプレス成形して1450℃で5hr焼結させたものの両面に白金電極を取り付けるとともに側面に参照極を取り付け、1000℃大気雰囲気下でインピーダンス測定を行った。
表7に導電率の結果を示す。酸素イオン導電性が高い層を第一の層に設けることで実施例1よりも導電率が高くなり、発電効率が高められることを確認した。以上により、第二の層は粉化剥離防止に最低限必要な厚みを形成することがより効果的であることを確認することができた。
(実施例19)
第一の層の組成を一般式90mol%(ZrO2)-10mol%(Y2O3)で表される10YSZ組成にAl2O3を添加しないものにしたこと以外は実施例17と同様とした。
図6に示す試験装置を用いて、実施例19のSOFC上面(第一層側)にAirを、下面(第二層側)に97%N2+3%H2を流しながら電気炉106を1000℃まで昇温した。SOFC上面(第一層側)にAirを、下面に燃料ガス(70%H2+30%H2O)を流しながら1000℃で400hr保持した後、SOFC上面(第一層側)にAirを、下面に97%N2+3%H2を流しながら室温まで下げた。同様にガラスシール104と接触していないSOFC100の固体電解質層102露出面をSEMおよびラマン分光法で分析し、粉末化の有無および結晶相を確認し、実施例1と比較検討した。
表8に試験後の分析結果を示す。実施例19のいずれも粉末化が認められず、結晶相もc相のままであった。電解質2層構造とし、第一の層を安定化剤にイットリアを用いたものであっても第二の層を本発明のSOFCにおける固体電解質層の組成とすることで同様の効果が確認された。
本発明の効果を固体電解質層を支持体とするタイプで説明したが、酸素極層および燃料極層を支持体とするSOFCも同様の効果を有する。
SOFCデザインについては、平板型で説明したが、扁平円筒型、円筒縦縞型、マイクロチューブなどのいずれのタイプも同様の効果を有する。
上記実施例においては、ScSZ電解質材料に、ランタノイド酸化物やイットリアなど1種類のみを固溶させた場合について試験したが、ScSZ電解質材料に、2種類以上のランタノイド酸化物の組合せやランタノイド酸化物とイットリアとの組合せを固溶させた場合においても、上記実施例と同様の効果が得られるものと考えられる。
100 SOFC
101 酸素極層
102 固体電解質層
103 燃料極層
104 ガラスシール(SiO2+B2O3
105 ジルコニアチューブ
106 電気炉
107 固体電解質層(第一の層)
108 固体電解質層(第二の層)
110 10Sc1CeSZ(立方晶)
111 10Sc1CeSZ(正方晶)
112 アルミナ(Al2O3)

Claims (8)

  1. 固体電解質層と、前記固体電解質層の一方の面に設けられた酸素極層と、前記固体電解質層の他方の面に設けられた燃料極層とを備える固体酸化物形燃料電池であって、前記酸素極層は、鉄又はマンガンを含む材料から構成されており、前記固体電解質層は、アルミナを含有したスカンジア安定化ジルコニア固体電解質材料を含み、前記固体電解質材料には、ランタノイド酸化物および/またはイットリアが固溶されており、前記固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総モル量に対して、スカンジアが9〜15mol%、ランタノイド酸化物および/またはイットリアが3〜5mol%固溶されており、前記固体電解質材料の結晶相が立方晶のみからなることを特徴とする固体酸化物形燃料電池。
  2. 前記固体電解質材料は、固体電解質材料中のジルコニアと、スカンジアと、ランタノイド酸化物および/またはイットリアとの総モル量に対して、アルミナを1mol%より多く含有していることを特徴とする請求項に記載の固体酸化物形燃料電池。
  3. 前記ランタノイド酸化物は、セリアであることを特徴とする、請求項に記載の固体酸化物形燃料電池。
  4. 前記固体電解質層は、前記燃料極側におけるランタノイド酸化物および/またはイットリアの固溶量が、前記酸素極側における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きいことを特徴とする請求項1乃至のいずれか一に記載の固体酸化物形燃料電池。
  5. 前記固体電解質層は、前記酸素極層側に形成された第一の層と、前記燃料極層側に形成された第二の層との二層からなり、前記第二の層における前記ランタノイド酸化物および/またはイットリアの固溶量は、前記第一の層における前記ランタノイド酸化物および/またはイットリアの固溶量よりも大きいことを特徴とする請求項1乃至のいずれか一に記載の固体酸化物形燃料電池。
  6. 前記第二の層における前記アルミナの含有量は、前記第一の層における前記アルミナの含有量よりも大きいことを特徴とする請求項に記載の固体酸化物形燃料電池。
  7. 前記第一の層は、前記ランタノイド酸化物および/またはイットリアが固溶しておらず、且つ前記アルミナを含有していないことを特徴とする請求項に記載の固体酸化物形燃料電池。
  8. 前記第一の層は、前記第二の層よりも厚く形成されていることを特徴とする、請求項に記載の固体酸化物形燃料電池。
JP2012555912A 2011-01-31 2012-01-31 固体酸化物形燃料電池 Active JP5652753B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012555912A JP5652753B2 (ja) 2011-01-31 2012-01-31 固体酸化物形燃料電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011018761 2011-01-31
JP2011018761 2011-01-31
JP2012555912A JP5652753B2 (ja) 2011-01-31 2012-01-31 固体酸化物形燃料電池
PCT/JP2012/052178 WO2012105576A1 (ja) 2011-01-31 2012-01-31 固体酸化物形燃料電池

Publications (2)

Publication Number Publication Date
JPWO2012105576A1 JPWO2012105576A1 (ja) 2014-07-03
JP5652753B2 true JP5652753B2 (ja) 2015-01-14

Family

ID=46602783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012555912A Active JP5652753B2 (ja) 2011-01-31 2012-01-31 固体酸化物形燃料電池

Country Status (5)

Country Link
US (1) US20130309583A1 (ja)
EP (1) EP2672554B1 (ja)
JP (1) JP5652753B2 (ja)
CN (1) CN103636042B (ja)
WO (1) WO2012105576A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062452A1 (ja) * 2016-09-30 2018-04-05 国立大学法人九州大学 酸化セリウム安定化酸化ジルコニウム系組成物及びその製造方法
US11515545B2 (en) * 2018-03-29 2022-11-29 Sakai Chemical Industry Co., Ltd. Air electrode material powder for solid oxide fuel cells
CN115784738B (zh) * 2022-12-06 2023-12-01 郑州方铭高温陶瓷新材料有限公司 用于氢能源sofc电堆的耐高温氧化锆高熵陶瓷管的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076622A (ja) * 1993-06-17 1995-01-10 Toho Gas Co Ltd 結晶相安定化固体電解質材料
JP2002134131A (ja) * 2000-10-23 2002-05-10 Toho Gas Co Ltd 支持膜式固体電解質型燃料電池
JP2005322547A (ja) * 2004-05-11 2005-11-17 Toho Gas Co Ltd 低温作動型固体酸化物形燃料電池単セル
JP2007055862A (ja) * 2005-08-25 2007-03-08 Nippon Shokubai Co Ltd ジルコニアシートおよびその製造方法
JP2010027359A (ja) * 2008-07-18 2010-02-04 Nippon Shokubai Co Ltd リサイクルジルコニア粉末の製造方法、当該製造方法によるリサイクルジルコニア粉末、およびそれを用いたジルコニア焼結体の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3573519B2 (ja) 1995-03-14 2004-10-06 東邦瓦斯株式会社 固体電解質型燃料電池単セル及びその製造方法
JP3339670B2 (ja) * 1996-08-28 2002-10-28 日本電信電話株式会社 希土類酸化物及びSc2O3,Al2O3添加ZrO2系固体電解質材料
JP3777903B2 (ja) * 1998-10-14 2006-05-24 三菱マテリアル株式会社 電極−電解質間に傾斜組成を持つ固体酸化物型燃料電池
US6558831B1 (en) * 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
JP4771579B2 (ja) * 2000-10-23 2011-09-14 東邦瓦斯株式会社 固体電解質型燃料電池
JP4524791B2 (ja) * 2002-08-06 2010-08-18 Toto株式会社 固体酸化物形燃料電池
US7160647B2 (en) * 2003-12-22 2007-01-09 The Gillette Company Battery cathode
JP5031187B2 (ja) * 2004-11-19 2012-09-19 東邦瓦斯株式会社 固体酸化物形燃料電池用燃料極および固体酸化物形燃料電池
US20060136328A1 (en) * 2004-12-17 2006-06-22 Raytheon Company (Copy) Method and system for analyzing the risk of a project
US7820332B2 (en) * 2006-09-27 2010-10-26 Corning Incorporated Electrolyte sheet with regions of different compositions and fuel cell device including such
WO2008127601A1 (en) * 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite sofc electrolyte
JP5311913B2 (ja) * 2008-07-28 2013-10-09 東邦瓦斯株式会社 高イオン導電性固体電解質材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076622A (ja) * 1993-06-17 1995-01-10 Toho Gas Co Ltd 結晶相安定化固体電解質材料
JP2002134131A (ja) * 2000-10-23 2002-05-10 Toho Gas Co Ltd 支持膜式固体電解質型燃料電池
JP2005322547A (ja) * 2004-05-11 2005-11-17 Toho Gas Co Ltd 低温作動型固体酸化物形燃料電池単セル
JP2007055862A (ja) * 2005-08-25 2007-03-08 Nippon Shokubai Co Ltd ジルコニアシートおよびその製造方法
JP2010027359A (ja) * 2008-07-18 2010-02-04 Nippon Shokubai Co Ltd リサイクルジルコニア粉末の製造方法、当該製造方法によるリサイクルジルコニア粉末、およびそれを用いたジルコニア焼結体の製造方法

Also Published As

Publication number Publication date
EP2672554A4 (en) 2014-10-15
EP2672554A1 (en) 2013-12-11
EP2672554B1 (en) 2017-07-12
CN103636042B (zh) 2016-02-17
JPWO2012105576A1 (ja) 2014-07-03
US20130309583A1 (en) 2013-11-21
CN103636042A (zh) 2014-03-12
WO2012105576A1 (ja) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5725449B2 (ja) 固体酸化物形燃料電池
EP2698852B1 (en) Solid electrolyte fuel cell
JP5225336B2 (ja) 燃料電池セル及び燃料電池
JP5729572B2 (ja) 固体電解質材料およびこれを備えた固体酸化物形燃料電池
JP6573243B2 (ja) 空気極組成物、空気極およびこれを含む燃料電池
JP5652752B2 (ja) 固体電解質材料およびこれを備えた固体酸化物形燃料電池
JP5652753B2 (ja) 固体酸化物形燃料電池
JP5242840B1 (ja) 燃料電池セル
JP2012043773A (ja) 電極材料及びそれを含む固体酸化物型燃料電池セル
KR102427389B1 (ko) 고체 산화물 연료 전지용 실링재 조성물, 이로 제조된 실링재를 갖는 고체 산화물 연료 전지 및 이의 실링방법
JP2012043801A (ja) 電極材料及びそれを含む固体酸化物型燃料電池セル
JP4496749B2 (ja) 固体酸化物型燃料電池
JP4739665B2 (ja) 燃料電池セル及び燃料電池
KR20120085488A (ko) 고체산화물 연료전지용 고체 전해질, 및 상기 고체전해질을 포함하는 고체산화물 연료전지
KR20190045618A (ko) 고체 산화물 연료 전지용 실링재 조성물, 이로 제조된 실링재를 갖는 고체 산화물 연료 전지 및 이의 실링방법
Liang et al. Effect of MgO and Fe2O3 dual sintering aids on the microstructure and electrochemical performance of the solid state Gd0. 2Ce0. 8O2-δ electrolyte in intermediate-temperature solid oxide fuel cells
JP4868557B2 (ja) 固体酸化物形燃料電池のセル
JP2002316872A (ja) ランタンガレート系固体電解質材料、その製造方法および固体電解質型燃料電池
KR20170036559A (ko) 고체산화물 연료전지용 실링재, 이를 포함하는 고체산화물 연료전지, 상기 고체산화물 연료전지를 포함하는 전지모듈 및 고체산화물 연료전지용 실링재의 제조방법
Toyofuku et al. Durability of SOFCs using inexpensive Ca-doped ZrO2 electrolytes
JP2012074304A (ja) 固体酸化物形燃料電池用発電セル

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5652753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141109

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250