TWI501937B - 低降能之相穩定性經摻雜氧化鋯電解質組合物 - Google Patents

低降能之相穩定性經摻雜氧化鋯電解質組合物 Download PDF

Info

Publication number
TWI501937B
TWI501937B TW100102963A TW100102963A TWI501937B TW I501937 B TWI501937 B TW I501937B TW 100102963 A TW100102963 A TW 100102963A TW 100102963 A TW100102963 A TW 100102963A TW I501937 B TWI501937 B TW I501937B
Authority
TW
Taiwan
Prior art keywords
mol
composition
fuel cell
electrolyte
zirconia
Prior art date
Application number
TW100102963A
Other languages
English (en)
Other versions
TW201136863A (en
Inventor
Tad Armstrong
Emad El Batawi
Martin Janousek
Manoj Pillai
Original Assignee
Bloom Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bloom Energy Corp filed Critical Bloom Energy Corp
Publication of TW201136863A publication Critical patent/TW201136863A/zh
Application granted granted Critical
Publication of TWI501937B publication Critical patent/TWI501937B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

低降能之相穩定性經摻雜氧化鋯電解質組合物
本發明大體上係關於燃料電池組件,且特定言之,關於固體氧化物燃料電池電解質材料。
本申請案主張在2010年1月26日申請之美國臨時申請案第61/298,468號之權利,其全文係以引用的方式併入本文中。
燃料電池為可以高效率將儲存於燃料中之能量轉化成電能之電化學裝置。電解槽電池為可利用電能還原所給物質(諸如水)以產生燃料(諸如氫氣)之電化學裝置。該等燃料電池及電解槽電池可包括以燃料電池及電解模式兩者操作之可逆電池。
在高溫燃料電池系統(諸如固體氧化物燃料電池(SOFC)系統)中,氧化流通過該燃料電池之陰極側而燃料流通過該燃料電池之陽極側。該氧化流一般為空氣,然而,該燃料流可為烴類燃料,諸如甲烷、天然氣、戊烷、乙醇、或甲醇。於介於650℃與950℃之間的典型溫度下操作之燃料電池可將帶負電之氧離子自陰極流動流輸送至陽極流動流,其中該離子與游離氫或烴分子中之氫結合形成水蒸氣及/或與一氧化碳結合形成二氧化碳。帶負電離子之過剩電子經陽極與陰極間之電路回至燃料電池之陰極側,產生通過電路的電流。固體氧化物可逆燃料電池(SORFC)系統以燃料電池或放電方式由燃料及氧化劑產生電能與反應物(即,氧化燃料)且以電解或放電方式利用電能產生燃料與氧化劑。
經氧化鈧穩定之氧化鋯(SSZ)SOFC電解質材料顯示高氧離子導電率。一般,氧化鋯係摻雜有8至11莫耳%之氧化鈧(Sc2 O3 )以使立方相氧化鋯於650至850℃之高SOFC操作溫度下穩定。
然而,SSZ電解質材料存在兩個問題:1)於約580℃下,其等顯示立方相轉變成菱形相,及2)離子導電率經時緩慢減小,稱為老化。
其等已顯示共摻雜一第二稀土氧化物之SSZ將阻止立方相轉變成菱形相。例如,10Sc1Ce氧化鋯(10莫耳% Sc2 O3 -1莫耳% CeO2 -氧化鋯)及10Sc1Y(1莫耳% Sc2 O3 -1莫耳% Y2 O3 -氧化鋯)為未顯示立方相轉變成菱形相之共摻雜之氧化鋯組合物之實例。
然而,此等氧化鋯組合物仍發生老化(即,於800-850℃之SOFC操作溫度下,離子導電率經時緩慢減小)。雖然離子導電率經時之該老化降能之真實機理於科學文獻中沒有達成一致,但是,一種假設為立方相不穩定且緩慢分解為具有較低離子導電率之四邊形相。所得材料係由主要為立方相與小區域(例如,2至5 nm)為四邊形相之兩相混合物組成。如圖1及2所示,10Sc1Ce氧化鋯可顯示四邊形相之模糊超晶格以及氧化鋯之立方螢石結構。
本發明之一實施例提供一種用於固體氧化物燃料電池之電解質及/或電極組合物,其包括經(i)氧化鈧,(ii)氧化鈰,及(iii)氧化釔及氧化鐿中之至少一者穩定之氧化鋯。較佳地,氧化釔及氧化鐿中之至少一者存在量係大於0且等於或小於2.5莫耳%。
本發明之另一實施例提供一種用於固體氧化物燃料電池之經氧化鈧穩定之氧化鋯電解質組合物,其包括式(ZrO2 )1-w-x-z (Sc2 O3 )w (CeO2 )x (Y2 O3 )a (Yb2 O3 )b ,其中0.09w0.11;0<x0.025;a+b=z;0z0.025;且x+z0.02。本發明之另一實施例提供一種用於固體氧化物燃料電池之經氧化鈧穩定之氧化鋯電解質組合物,其包括式(ZrO2 )1-w-x-z (Sc2 O3 )w (CeO2 )x (Y2 O3 )a (Yb2 O3 )b ,其中0.09w0.11;0x0.0125;a+b=z,及0.0025z0.02;且x+z0.02。
本發明之另一實施例提供一種操作固體氧化物燃料電池之方法,該固體氧化物燃料電池包括經氧化鈧及氧化鈰穩定之氧化鋯電解質。該方法包括操作固體氧化物燃料電池至少4000小時以使該燃料電池之電解質之離子導電率之降能不大於15%。
不期受到特殊理論之約束,本發明者認為10Sc1Ce組合物係略低摻雜且不完全穩定(即,穩定性不充足),且因此由於高溫下之立方相至四邊形相之緩慢分解或轉變而易老化。
根據本發明之第一實施例,該SSZ組合物包含至少2莫耳%之另一種穩定氧化物(諸如氧化鈰、氧化釔及/或氧化鐿)以提供該SSZ組合物充足的穩定性來減少或防止老化分解。該穩定氧化物提供SSZ立方相之穩定性且因此阻止立方相轉變成四邊形相。根據第二實施例,將氧化釔及氧化鐿中之至少一者及氧化鈰均添加於SSZ組合物中以減少或防止老化分解。添加氧化釔及氧化鐿中之至少一者及氧化鈰提供SSZ立方相之穩定性且因此阻止立方相轉變成四邊形相。該等實施例之一例示性組合物為共摻雜有至少兩種其他元素之氧化鋯:10SclCelY(10莫耳% Sc2 O3 -1莫耳% CeO2 -1莫耳% Y2 O3 -氧化鋯)。根據第三實施例,SSZ組合物之熱膨脹係數(「CTE」)接近於含SSZ電解質SOFC之燃料電池堆疊中使用之互連件之熱膨脹係數。該等互連件可包括具有至少94重量% Cr、4-6重量% Fe及0-1重量% Y之鉻合金互連件。在第三實施例之第一態樣中,SSZ組合物包含總計大於0然小於2莫耳%之氧化鈰、氧化釔及/或氧化鐿,諸如總計1至2莫耳%之氧化釔及/或氧化鐿中之至少一者及氧化鈰。藉由略減小氧化鈰、氧化釔及/或氧化鐿中之至少一者的量,增加電解質之CTE以致其與互連件之CTE相差10%或更小,諸如5%或更小,諸如0至1%,且不會降低電解質之穩定性或耐老化降能性。在第三實施例之第二態樣中,以氧化鐿替代氧化釔。認為以氧化鐿替代氧化釔應增加電解質材料之CTE及離子導電率。因此,認為第三實施例之電解質組合物顯示改良之離子導電率初期、低降能及與Cr合金互連件之CTE相同或略微不同之較高CTE。SOFC堆疊中SOFC電解質與互連件間之CTE差異減小降低堆疊組件之熱誘導應力及對其等的破壞。較佳地,三個所有實施例中之電解質組合物於其高度、寬度及厚度整體均勻而非藉由混合經氧化釔及氧化鈧穩定之氧化鋯粉末製得之經氧化釔及氧化鈧穩定之氧化鋯之非均勻複合物。
因此,本發明之第一實施例提供一種SOFC電解質組合物,其包括經(i)氧化鈧,(ii)氧化鈰,及(iii)氧化釔及氧化鐿中之至少一者穩定之氧化鋯。氧化鈧存在量可等於9至11莫耳%(諸如10莫耳%),氧化鈰存在量可大於0(例如,至少0.5莫耳%)且等於或小於2.5莫耳%(諸如1莫耳%),及氧化釔及氧化鐿中之至少一者存在量可大於0且等於或小於2.5莫耳%(諸如1莫耳%)。
在第一實施例之一態樣中,氧化釔及氧化鐿中之至少一者包括氧化釔。在第一實施例之另一態樣中,氧化釔及氧化鐿中之至少一者包括氧化鐿。在第一實施例之又另一態樣中,氧化釔及氧化鐿中之至少一者包括氧化釔及氧化鐿。在該態樣中,氧化釔可佔組合物之0.5至1.5莫耳%及氧化鐿可佔組合物之1.5至0.5莫耳%以使氧化釔及氧化鐿之總含量大於0.5莫耳%且小於2.5莫耳%。氧化鈧量大於氧化鈰量及氧化釔與氧化鐿中之至少一者的量。氧化鈰量可等於、小於或大於氧化釔及氧化鐿中之至少一者的量。
在本發明之第二實施例中,穩定氧化物(諸如氧化鈰)量為至少2莫耳%以提供SSZ組合物充足的穩定性來減少或避免老化。在此實施例中,氧化釔及/或氧化鐿係視需要添加於組合物中且可省略。
因此,第一及第二實施例中之SSZ電解質組合物可具有式(1):
(ZrO2 )1-w-x-z (Sc2 O3 )w (CeO2 )x (Y2 O3 )a (Yb2 O3 )b  (1),
其中w為約0.09至0.11,x為大於0至0.025,a與b的總和等於z,且z為0至0.025,及x加z的總和大於或等於0.02。換言之,0.09w0.11;0<x0.025;a+b=z,且0z0.025;及x+z0.02。較佳地,x為0.005至0.025,z為0.005至0.025,且x與z的總和大於或等於0.02且小於或等於0.03。換言之,0.005x0.025;0.005z0.025;且0.02(x+z)0.03。更佳地,w=0.1;x=0.01;及z=0.01。因此,w可為約10莫耳%,x可為約1莫耳%,及z可為約1莫耳%。式(1)中,b可小於a(即b<a),a可小於b(即a<b),a可等於0(即a=0),b可等於0(即b=0),或a可等於b(即a=b)。
根據第三實施例,SSZ組合物具有接近於含SSZ電解質SOFC之燃料電池堆疊中之互連件之熱膨脹係數之相對較高的熱膨脹係數(「CTE」)。該等互連件可包括具有至少94重量% Cr、4至6重量% Fe及0至1重量% Y之鉻合金互連件。在第三實施例之第一態樣中,SSZ組合物包含總計大於0然小於2莫耳%之氧化釔及/或氧化鐿中之至少一者及氧化鈰。例如,SSZ組合物包含總計0.5至1.75莫耳%(諸如總計0.5至1.5莫耳%,包括總計1至1.5莫耳%)之氧化釔及/或氧化鐿中之至少一者及氧化鈰。SSZ組合物可包含0.25至1.25莫耳%氧化鈰,諸如0.5至1莫耳%氧化鈰,及0.25至1.25莫耳%(諸如0.5至1莫耳%)之氧化釔、氧化鐿或氧化釔與氧化鐿之組合。在第三實施例之第二態樣中,以氧化鐿替代氧化釔以使組合物大體上不含氧化釔(例如,無法避免之微量氧化釔或小於1莫耳%氧化釔)。認為以氧化鐿替代氧化釔可增加電解質材料之CTE及離子導電率。SSZ組合物可包含0至1.25莫耳%氧化鈰,諸如0.5至1莫耳%氧化鈰,及0.25至2莫耳%(諸如0.5至1莫耳%)氧化鐿。若組合物包含至少0.75莫耳%氧化鐿,諸如1至2莫耳%氧化鐿,包括1至1.5莫耳%氧化鐿,則SSZ組合物可大體上不含氧化鈰(例如,無法避免之微量氧化鈰或小於0.1莫耳%氧化鈰)。因此,在第三實施例之第二態樣中,固體氧化物燃料電池之電解質組合物包括經:(i)存在量等於9至11莫耳%之氧化鈧,及(ii)存在量等於1至2莫耳%之氧化鐿穩定之氧化鋯。
因此,第三實施例之SSZ電解質組合物可具有式(2):
(ZrO2 )1-w-x-z (Sc2 O3 )w (CeO2 )x (Y2 O3 )a (Yb2 O3 )b  (2),
其中w為約0.09至0.11,x為0至0.0125,a為0至0.0125,b為0至0.02,a與b的總和等於z,及z為0.0025至0.02,且x加z的總和小於或等於0.02。換言之,0.09w0.11;0x0.0125;a+b=z,及0.0025z0.02;且x+z0.02。較佳地,在第三實施例之第一態樣中,x為0.0025至0.0125,諸如0.005至0.01,z為0.0025至0.0125,諸如0.005至0.01,且x與z的總和大於或等於0.005且小於或等於0.0175,諸如大於或等於0.01且小於或等於0.015。換言之,0.0025x0.0125,諸如0.005x0.01;0.0025z0.0125,諸如0.005z0.01,且0.005(x+z)0.0175,諸如0.01(x+z)0.015。更佳地,w=0.1;當z=0.005時,x=0.01,及當z=0.01時,x=0.005。因此,w可為約10莫耳%,x可為約0.5至1莫耳%,及z可為約0.5至1莫耳%。較佳地,於第三實施例之第二態樣中,x為0至0.0125,諸如0.005至0.01,0a0.001(較佳地,a=0),且b與z為0.0025至0.02,諸如0.005至0.01,且x與z的總和大於或等於0.005且小於或等於0.02,諸如0.01至0.015。式(2)中,b可小於a(即b<a),a可小於b(即a<b),a可等於0(即a=0),b可等於0(即b=0),或a可等於b(即a=b)。較佳地,a或b中僅有一者等於0。根據第三實施例之例示性組合物包括:10Sc1Ce1Y(10莫耳% Sc2 O3 +1莫耳% CeO2 +1莫耳% Y2 O3 ),餘量為氧化鋯;10Sc1Ce0.5Y(10莫耳% Sc2 O3 +1莫耳% CeO2 +0.5莫耳% Y2 O3 ),餘量為氧化鋯;10Sc1Ce1Yb(10莫耳% Sc2 O3 +1莫耳% CeO2 +1莫耳% Yb2 O3 ),餘量為氧化鋯;10Sc1Ce0.5Yb(10莫耳% Sc2 O3 +1莫耳%CeO2 +0.5莫耳% Yb2 O3 ),餘量為氧化鋯;10Sc0.5Ce0.5Y(10莫耳% Sc2 O3 +0.5莫耳% CeO2 +0.5莫耳% Y2 O3 ),餘量為氧化鋯;10Sc0.5Ce0.5Yb(10莫耳% Sc2 O3 +0.5莫耳% CeO2 +0.5莫耳% Yb2 O3 ),餘量為氧化鋯;10Sc0.5Ce1Y(10莫耳% Sc2 O3 +0.5莫耳% CeO2 +1莫耳% Y2 O3 ),餘量為氧化鋯;10Sc0.5Ce1Yb(10莫耳% Sc2 O3 +0.5莫耳% CeO2 +1莫耳% Yb2 O3 ),餘量為氧化鋯;及10Sc1Yb(10莫耳% Sc2 O3 +1莫耳% Yb2 O3 ),餘量為氧化鋯。
電解質組合物之實施例具有0.14 S/cm或更大,較佳0.15 S/cm或更大,諸如0.16至0.17 S/cm之高起始離子導電率。在空氣及/或含H2 環境中,於4000小時之後,本發明之組合物之離子導電率經時降能小於15%,諸如0至15%,例如0至10%,包括1至5%。此離子導電率降能之最小化可由於立方相之穩定而阻止立方相轉變成四邊形相。此外,本發明實施例中之至少一者提供一種電解質組合物,其中,於約25至850℃之溫度下,該組合物未發生立方相轉變成菱形相。換言之,該組合物自室溫至約850℃下為立方體(即該組合物自室溫至SOFC操作溫度維持於立方相,而未經時產生四邊形區域或轉變成菱形相)。因此,於850℃之溫度下4000小時之後,本發明之組合物之離子導電率之降能不大於15%。
例如,如圖3所示,比較及例示性組合物樣品之經時導電率測定係於850℃下進行。利用DC 4-點法藉由Van der Pauw幾何形狀測得該等樣品之導電率。該等樣品係於具高溫及受控氣體環境之試驗中進行測試。在空氣或氫氣環境中,於850℃下進行測定。例示性樣品包括經10莫耳%氧化鈧、1莫耳%氧化鈰及1莫耳%氧化釔穩定之氧化鋯組合物(「10Sc1Ce1Y」)。例示性樣品中之一者之導電率測定係在氫氣環境中進行,及另一樣品係於空氣中進行。比較樣品包括經10莫耳%氧化鈧及1莫耳%氧化鈰穩定之氧化鋯組合物(「10Sc1Ce」)。比較組合物之導電率係在空氣及氫氣氛圍中測得。如圖3所示,在4000小時之後,10Sc1Ce之比較組合物之導電率降能經時明顯,例如,降能大於約15%。然而,在空氣或氫氣中,於4000小時之後,10Sc1Ce1Y之例示性組合物之離子導電率之降能不大於15%。
可利用本發明之實施例作為平面固體氧化物燃料電池之電解質層。換言之,可利用該組合物作為包括一陽極及一陰極之平面固體氧化物燃料電池之電解質層。較佳地,將該組合物用於其中電解質層支撐陽極及陰極之經電解質支撐之電池中。例如,圖4說明根據本發明之一實施例之固體氧化物燃料電池1。該電池1包括一陽極電極3、一固體氧化物電解質5及一陰極電極7。該電解質5可包括經穩定之氧化鋯,如上所述,諸如經(i)氧化鈧,(ii)氧化鈰,及(iii)氧化釔及氧化鐿中之至少一者穩定之氧化鋯。或者,該電解質5可包括含式(1)及包括該式之上述任何實施例之電解質組合物。
形成圖4所示之經電解質支撐之平面SOFC 1之方法包括於平面固體氧化物電解質5之第一面上形成陰極電極7及於該平面固體氧化物電極之第二面上形成陽極電極3。該陽極及該陰極可依任意順序形成於該電解質之相對面上。
如圖4所示,陽極電極3可包含一層或複數層子層。因此,該陽極電極3可包含組成及鎳含量各不同之第一部分13及第二部分23。例如,該第一部分13係位於電解質5與該第二部分23之間。陽極電極之該第一部分13可包含鎳及陶瓷相,諸如經穩定之氧化鋯及/或經摻雜之氧化鈰,諸如經氧化釤摻雜之氧化鈰。陽極電極之該第二部分23亦可包含鎳及陶瓷相,諸如經穩定之氧化鋯及/或經摻雜之氧化鈰,諸如經氧化釤摻雜之氧化鈰。該第一部分13可包含較陽極電極之該第二部分23更低之含鎳相對陶瓷相之比。陰極電極7可包括導電材料,諸如導電鈣鈦礦材料,諸如鑭鍶水錳礦(LSM)。亦可使用其他導電鈣鈦礦(諸如LSCo等),或金屬(諸如Pt)。該等陰極及陽極電極之組成、定向及組態可包括共同待審中之美國專利申請案號11/907,204及11/785,034中所論述之其等,其全文係以引用的方式併入本文。
在本發明之另一實施例中,包括經氧化釔及氧化鐿中之至少一者、氧化鈧及氧化鈰穩定之氧化鋯之第一、第二及/或第三實施例之組合物可用於固體氧化物燃料電池之陽極電極、陰極電極、或兩種電極中。因此,此等第一、第二及第三實施例之組合物可用於SOFC陽極、陰極及電解質中之任一者、兩者或所有三者中。在複合陽極及/或陰極電極中,第一、第二或第三實施例之經穩定之氧化鋯作為固體氧化物離子導電相,然而,導電材料(諸如金屬(例如鎳、銅、鈷、鉑、鈀等或其等合金)或導電陶瓷(例如鑭鍶水錳礦(LSM)、鑭鍶輝鈷礦(La,Sr)CoO3 、鑭鍶鈷鐵氧體(La,Sr)(Co,Fe)O3 等))作為導電相。複合電極(諸如陽極或陰極)之固體氧化物離子導電相之離子導電率之降能會導致電極性能之降能。因此,較包含具有較高降能速率之陶瓷材料之複合電極,包含具有低離子導電率降能之固體氧化物離子導電相(諸如10Sc1Ce1Y)之複合電極顯示較低降能。
例如,經氧化釔及氧化鐿中之至少一者、氧化鈧及氧化鈰穩定之氧化鋯可用於單層或多層複合陽極電極中。例如,經氧化釔及氧化鐿中之至少一者、氧化鈧及氧化鈰穩定之氧化鋯可用於上述陽極電極3之第一部分13及/或第二部分23中。陽極電極之該第一部分13可包含鎳及經穩定之氧化鋯陶瓷相。陽極電極之該第二部分23亦可包含鎳及經穩定之氧化鋯陶瓷相。該第一部分13可包含較陽極電極之該第二部分23更低之含鎳相對陶瓷相之比。例如,陽極電極之該第一部分13可包含5至30體積%之孔隙率及1至20體積%之鎳相含量且餘量為經穩定之氧化鋯陶瓷相。陽極電極之該第二部分23可包含31至60體積%之更高孔隙率、21至60體積%之鎳相含量且餘量為經穩定之氧化鋯陶瓷相。該含鎳相可視需要包含1至50原子%,諸如5至30原子%之另一金屬(諸如鈷及/或銅),且餘量為鎳。
在另一實例中,陰極電極7可包括一複合陰極,其包括10至70體積%之導電相(諸如導電鈣鈦礦材料(例如LSM))且餘量為孔隙及經穩定之氧化鋯離子導電相。
在本發明之另一實施例中,一種操作固體氧化物燃料電池(例如,圖4之燃料電池1)之方法包括操作該燃料電池至少4000小時以使該燃料電池之SSZ電解質之離子導電率之降能不大於15%。較佳地,設於電解質之陰極及陽極面上之電解質組合物自室溫至約850℃且在空氣及氫氣環境中於850℃下操作至少4000小時之後為立方體(即該組合物自室溫至SOFC操作溫度保持立方相,且在至少4000小時內未產生四邊形區域或轉變成菱形相)。
燃料電池堆疊通常係由呈平面元件、管、或其他幾何結構形式之多個SOFC 1組建。須將燃料及空氣提供於可極大之電化學活性表面。該堆疊可包括複數個平面或板狀燃料電池。該等燃料電池可具有其他組態,諸如管狀。該等堆疊可為豎直定向堆疊或該等燃料電池可水平堆疊或在介於豎直及水平之間之任何其他合適的方向上進行堆疊。如以上提及之美國申請案號11/907,204及11/785,034所述,將複數個互連件位於堆疊中,以致各燃料電池位於兩互連件之間,且各互連件係作為氣體隔板發揮作用。
通常,如圖5所示,電連接一電池之燃料電極3與相鄰電池之空氣電極7之互連件9亦用作氣流隔板9。該氣流隔板將流至堆疊中一電池之燃料電極(即陽極3)之燃料(諸如烴類燃料)與流至該堆疊中一相鄰電池之空氣電極(即陰極7)之氧化劑(諸如空氣)分開。該分離器9包括介於肋狀物10之間之氣流通路或通道8。在此情況中,作為互連件之氣流隔板係由導電材料製得或包含導電材料。可於陽極電極與互連件之間提供導電接觸層,諸如鎳接觸層。圖5顯示下層SOFC 1係位於兩塊氣體隔板9之間。
文中所用術語「燃料電池堆疊」意指共用一燃料進口及排放通路或立管之複數個經堆疊之燃料電池。文中所用之「燃料電池堆疊」包括一相異電實體,其包括連接至電力調節設備及堆疊之電力(即,電)輸出之兩塊端板。因此,可由其它堆疊以多種組態單獨地控制自此相異電實體之電力輸出。文中所用術語「燃料電池堆疊」亦包括該相異電實體之一部分。例如,該等堆疊可共用相同的端板。在此情況中,該等堆疊共同地包括一相異電實體,諸如管柱。在此情況中,無法單獨地對自兩堆疊之電力輸出進行控制。
為了例示及描述的目的,已呈示本發明之先前描述。其無意詳述或限制本發明於所揭示之精確形式,且修改及變化可根據以上教示作出或可從本發明之實施中獲得。選擇描述內容來解釋本發明之原理及其實際應用。期望本發明之範圍係由文中附屬之專利請求範圍及其等等效物定義。
1...固體氧化物燃料電池
3...陽極電極
5...固體氧化物電解質
7...陰極電極
8...氣流通路或通道
9...氣流隔板
10...肋狀物
13...陽極電極3之第一部分
23...陽極電極3之第二部分
圖1為先前技術10Sc1Ce氧化鋯之對比增強之選區電子繞射圖。立方氧化鋯之晶帶軸為<110>類;
圖2為先前技術10Sc1Ce氧化鋯之對比增強之選區電子繞射圖。立方氧化鋯之晶帶軸為<112>類;
圖3為顯示經穩定之氧化鋯電解質組合物之例示性及比較實例之離子導電率對時間的圖;及
圖4為根據本發明之一實施例之固體氧化物燃料電池之橫截面視圖及圖5為根據本發明之一實施例之SOFC堆疊之橫截面側視圖。
1...固體氧化物燃料電池
3...陽極電極
5...固體氧化物電解質
7...陰極電極
13...陽極電極3之第一部分
23...陽極電極3之第二部分

Claims (9)

  1. 一種用於固體氧化物燃料電池之經氧化鈧穩定之氧化鋯電解質組合物,其包括式(ZrO2 )1-w-x-z (Sc2 O3 )w (CeO2 )x (Y2 O3 )a (Yb2 O3 )b ,其中0.09w0.11;0<x0.025;a+b=z;0z0.025;且x+z0.02;且w=0.1;x=0.01;及z=0.01;且該組合物包括含10莫耳% Sc2 O3 、1莫耳% CeO2 及1莫耳% Y2 O3 之氧化鋯。
  2. 如請求項1之電解質組合物,其中:該組合物於850℃之溫度下4000小時之後,離子導電率之降能不大於15%;該組合物在固體氧化物燃料電池中於空氣或氫氣環境中之至少一者中在850℃下操作至少4000小時之後,包括實質上不含四邊形相區域之立方相;及該組合物於約25至850℃之溫度下未發生立方相轉變成菱形相。
  3. 如請求項1之組合物,其中該組合物係用作包括一陽極及一陰極之平面固體氧化物燃料電池之一電解質層,且該電解質層支撐該陽極及該陰極。
  4. 一種用於固體氧化物燃料電池之經氧化鈧穩定之氧化鋯電解質組合物,其包括式(ZrO2 )1-w-x-z (Sc2 O3 )w (CeO2 )x (Y2 O3 )a (Yb2 O3 )b ,其中0.09w0.11;0x0.0125;a+b=z,及0.0025z0.02;且x+z0.02;其中該組合物包括以下中之至少一者: 10莫耳% Sc2 O3 、1莫耳% CeO2 、1莫耳% Y2 O3 ,餘量為氧化鋯;10莫耳% Sc2 O3 、1莫耳% CeO2 、0.5莫耳% Y2 O3 ,餘量為氧化鋯;10莫耳% Sc2 O3 、1莫耳% CeO2 、1莫耳% Yb2 O3 ,餘量為氧化鋯;10莫耳% Sc2 O3 、1莫耳% CeO2 、0.5莫耳% Yb2 O3 ,餘量為氧化鋯;10莫耳% Sc2 O3 、0.5莫耳% CeO2 、0.5莫耳% Y2 O3 ,餘量為氧化鋯;10莫耳% Sc2 O3 、0.5莫耳% CeO2 、0.5莫耳% Yb2 O3 ,餘量為氧化鋯;及10莫耳% Sc2 O3 、0.5莫耳% CeO2 、1莫耳% Y2 O3 ,餘量為氧化鋯。
  5. 如請求項4之電解質組合物,其中該組合物包括:10莫耳% Sc2 O3 、1莫耳% CeO2 、1莫耳% Yb2 O3 ,餘量為氧化鋯。
  6. 如請求項4之電解質組合物,其中:該組合物於850℃之溫度下4000小時之後,離子導電率之降能不大於15%;該組合物在固體氧化物燃料電池中於空氣或氫氣環境中之至少一者中在850℃下操作至少4000小時之後,包括實質上不含四邊形相區域之立方相;及該組合物於約25至850℃之溫度下未發生立方相轉變 成菱形相。
  7. 如請求項4之組合物,其中:該組合物係用作包括一陽極及一陰極之平面固體氧化物燃料電池之一電解質層;該電解質層支撐該陽極及該陰極;該固體氧化物燃料電池係位於鄰近互連件之固體氧化物燃料電池堆疊中,該互連件包括至少94重量% Cr、4至6重量% Fe及0至1重量% Y;及該電解質之熱膨脹係數與該互連件之熱膨脹係數相差1%或更小。
  8. 一種操作包括經氧化鈧、氧化鐿及氧化鈰穩定之氧化鋯電解質之固體氧化物燃料電池之方法,該方法包括操作該固體氧化物燃料電池至少4000小時以使該燃料電池之電解質之離子導電率之降能不大於15%,其中:(i)氧化鈧存在量係等於9至11莫耳%;(ii)氧化鐿存在量係等於1至2莫耳%;及(iii)氧化鈰存在量係等於0.25至1.25莫耳%。
  9. 如請求項8之方法,其中該電解質在固體氧化物燃料電池中,於空氣及氫氣環境中之至少一者中在850℃下操作至少4000小時之後,包括實質上不含四邊形相區域之立方相。
TW100102963A 2010-01-26 2011-01-26 低降能之相穩定性經摻雜氧化鋯電解質組合物 TWI501937B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29846810P 2010-01-26 2010-01-26
US13/009,085 US8580456B2 (en) 2010-01-26 2011-01-19 Phase stable doped zirconia electrolyte compositions with low degradation

Publications (2)

Publication Number Publication Date
TW201136863A TW201136863A (en) 2011-11-01
TWI501937B true TWI501937B (zh) 2015-10-01

Family

ID=44309204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102963A TWI501937B (zh) 2010-01-26 2011-01-26 低降能之相穩定性經摻雜氧化鋯電解質組合物

Country Status (7)

Country Link
US (3) US8580456B2 (zh)
EP (2) EP3432401B1 (zh)
JP (1) JP5323269B2 (zh)
CN (1) CN102725902B (zh)
AU (1) AU2011209829C1 (zh)
TW (1) TWI501937B (zh)
WO (1) WO2011094098A2 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432401B1 (en) 2010-01-26 2020-08-12 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
EP2810330B1 (en) * 2012-02-01 2016-08-24 Carleton Life Support Systems Inc. Composite electrolyte consisting of fully stabilized zirconia and partially stabilized zirconia
WO2014050124A1 (ja) * 2012-09-26 2014-04-03 株式会社日本触媒 固体酸化物形燃料電池用電解質シート、電解質支持型セル、固体酸化物形燃料電池用単セル及び固体酸化物形燃料電池
US9515344B2 (en) 2012-11-20 2016-12-06 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
CN103236550B (zh) * 2013-04-22 2015-07-01 陕西煤业化工技术研究院有限责任公司 一种石墨烯改性的固体氧化物燃料电池镍基复合阳极材料及其制备方法
US9847545B2 (en) * 2014-03-06 2017-12-19 Kceracell Co., Ltd. Highly ionic conductive zirconia electrolyte for high-efficiency solid oxide fuel cell
KR101772264B1 (ko) * 2014-03-06 2017-08-29 주식회사케이세라셀 고효율 고체산화물 연료전지용 고 이온전도성 지르코니아 전해질
JP5770400B1 (ja) * 2014-05-26 2015-08-26 日本碍子株式会社 燃料電池
US10249883B2 (en) 2014-11-12 2019-04-02 Bloom Energy Corporation SOFC cathode compositions with improved resistance to SOFC degradation
CN104638287A (zh) * 2015-01-28 2015-05-20 潮州三环(集团)股份有限公司 一种阳极支撑型固体氧化物燃料电池的制备方法
JP6422120B2 (ja) * 2015-02-19 2018-11-14 株式会社日本触媒 固体電解質材料
BR102015021820B1 (pt) * 2015-09-04 2021-12-07 Oxiteno S.A. Indústria E Comércio Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível
US10458027B2 (en) * 2015-10-08 2019-10-29 Low Emission Resources Corporation Electrode-supported tubular solid-oxide electrochemical cell
TWI750185B (zh) * 2016-06-17 2021-12-21 丹麥商托普索公司 具有加熱能力的soec系統
KR102141266B1 (ko) * 2016-09-30 2020-08-04 주식회사 엘지화학 고체 산화물 연료전지의 전해질, 이를 포함하는 고체 산화물 연료전지, 상기 전해질용 조성물 및 상기 전해질의 제조방법
US11001915B1 (en) 2016-11-28 2021-05-11 Bloom Energy Corporation Cerium and cerium oxide containing alloys, fuel cell system balance of plant components made therefrom and method of making thereof
CN107244914B (zh) * 2017-05-10 2019-10-18 杭州而然科技有限公司 一种彩色氧化锆陶瓷
US10680251B2 (en) * 2017-08-28 2020-06-09 Bloom Energy Corporation SOFC including redox-tolerant anode electrode and system including the same
US11133511B2 (en) 2017-11-13 2021-09-28 Bloom Energy Corporation Method of providing a functionally graded composite layer for coefficient of thermal expansion compliance in solid oxide fuel cell stacks and system components
US10651479B2 (en) 2018-02-05 2020-05-12 Bloom Energy Corporation Method of recovering metal compounds from solid oxide fuel cell scrap
US11283085B1 (en) 2020-03-06 2022-03-22 Bloom Energy Corporation Low VOC ink compositions and methods of forming fuel cell system components using the same
JP2023526279A (ja) * 2020-05-14 2023-06-21 ブルーム エネルギー コーポレイション 固体酸化物形電解セル用電解質材料
US11515543B1 (en) 2020-06-03 2022-11-29 Bloom Energy Corporation Aqueous fuel cell system component ink compositions and methods of forming fuel cell system components using the same
US20220190373A1 (en) 2020-12-14 2022-06-16 Bloom Energy Corporation Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
US20220231317A1 (en) 2021-01-15 2022-07-21 Bloom Energy Corporation Method of manufacturing solid oxide electrolyzer cells using a continuous furnace
US11824205B2 (en) 2021-01-18 2023-11-21 Bloom Energy Corporation Systems and methods for refurbishing fuel cell stack components
US20220399559A1 (en) 2021-06-11 2022-12-15 Bloom Energy Corporation Solid oxide fuel cell having laminated anode and electrolyte layers and method of making thereof
US20230141938A1 (en) 2021-11-05 2023-05-11 Bloom Energy Corporation Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
JP2023071616A (ja) 2021-11-11 2023-05-23 ブルーム エネルギー コーポレイション 固体酸化物形電気化学的電池用のNi-Feを基礎としたカソード機能層
TW202335111A (zh) 2022-01-10 2023-09-01 美商博隆能源股份有限公司 用於sofc及soec之電極的優化製備方法
CN114538922A (zh) * 2022-03-22 2022-05-27 北京理工大学 一种用于氧化锆的多主组元掺杂剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942349A (en) * 1995-03-15 1999-08-24 Ceramic Fuel Cells Limited Fuel cell interconnect device
US20060110633A1 (en) * 2004-11-19 2006-05-25 Toho Gas Co., Ltd. Fuel electrode material, a fuel electrode, and a solid oxide fuel cell
US20060199057A1 (en) * 2005-03-04 2006-09-07 Toto Ltd. Solid oxide fuel cell
US20080075984A1 (en) * 2006-09-27 2008-03-27 Michael Edward Badding Electrolyte sheet with regions of different compositions and fuel cell device including such
JP2008305804A (ja) * 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE634204A (zh) 1962-06-27 1900-01-01
NL300914A (zh) 1962-11-23 1900-01-01
US4575407A (en) 1962-12-03 1986-03-11 Diller Isaac M Product and process for the activation of an electrolytic cell
CH594292A5 (zh) 1974-11-19 1978-01-13 Raffinage Cie Francaise
CA1117589A (en) 1978-03-04 1982-02-02 David E. Brown Method of stabilising electrodes coated with mixed oxide electrocatalysts during use in electrochemical cells
US4272353A (en) 1980-02-29 1981-06-09 General Electric Company Method of making solid polymer electrolyte catalytic electrodes and electrodes made thereby
US4459340A (en) 1982-04-30 1984-07-10 Board Of Trustees, Stanford University Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte
EP0180538A1 (en) 1984-10-23 1986-05-07 Mitsubishi Jukogyo Kabushiki Kaisha Solid electrolyte fuel cell and method for preparing it
US4925745A (en) 1985-03-29 1990-05-15 Institute Of Gas Technoloy Sulfur tolerant molten carbonate fuel cell anode and process
US4792502A (en) 1986-11-14 1988-12-20 International Fuel Cells Corporation Apparatus for producing nitrogen
US4913982A (en) 1986-12-15 1990-04-03 Allied-Signal Inc. Fabrication of a monolithic solid oxide fuel cell
US4847173A (en) 1987-01-21 1989-07-11 Mitsubishi Denki Kabushiki Kaisha Electrode for fuel cell
US4804592A (en) 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
US4898792A (en) 1988-12-07 1990-02-06 Westinghouse Electric Corp. Electrochemical generator apparatus containing modified high temperature insulation and coated surfaces for use with hydrocarbon fuels
US4917971A (en) 1989-03-03 1990-04-17 Energy Research Corporation Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
US5302470A (en) 1989-05-16 1994-04-12 Osaka Gas Co., Ltd. Fuel cell power generation system
JPH03196465A (ja) 1989-12-25 1991-08-27 Yuasa Battery Co Ltd 燃料電池用固体電解質の製造方法
US4983471A (en) 1989-12-28 1991-01-08 Westinghouse Electric Corp. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths
US5034287A (en) 1990-04-23 1991-07-23 International Fuel Cells Corporation Fuel cell cooling using heat of reaction
CA2018639A1 (en) 1990-06-08 1991-12-08 James D. Blair Method and apparatus for comparing fuel cell voltage
US6592965B1 (en) 1990-07-06 2003-07-15 Igr Enterprises, Inc. Ductile ceramic composite electrolyte
US5047299A (en) 1990-07-25 1991-09-10 Westinghouse Electric Corp. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser
US5169730A (en) 1990-07-25 1992-12-08 Westinghouse Electric Corp. Electrochemical cell apparatus having an exterior fuel mixer nozzle
US5143800A (en) 1990-07-25 1992-09-01 Westinghouse Electric Corp. Electrochemical cell apparatus having combusted exhaust gas heat exchange and valving to control the reformable feed fuel composition
US5162167A (en) 1990-09-11 1992-11-10 Allied-Signal Inc. Apparatus and method of fabricating a monolithic solid oxide fuel cell
US5290642A (en) 1990-09-11 1994-03-01 Alliedsignal Aerospace Method of fabricating a monolithic solid oxide fuel cell
US5256499A (en) 1990-11-13 1993-10-26 Allied Signal Aerospace Monolithic solid oxide fuel cells with integral manifolds
US5290323A (en) 1990-12-10 1994-03-01 Yuasa Corporation Manufacturing method for solid-electrolyte fuel cell
US5171645A (en) 1991-01-08 1992-12-15 Gas Research Institute, Inc. Zirconia-bismuth oxide graded electrolyte
JPH04292865A (ja) 1991-03-20 1992-10-16 Ngk Insulators Ltd 固体電解質型燃料電池
DE4114644A1 (de) 1991-05-04 1992-11-05 Abb Patent Gmbh Verfahren zur mechanischen verbindung von hochtemperaturbrennstoffzellen mit einem brennstoffzellentraeger
US5215946A (en) 1991-08-05 1993-06-01 Allied-Signal, Inc. Preparation of powder articles having improved green strength
JPH05294629A (ja) 1992-04-17 1993-11-09 Nippon Telegr & Teleph Corp <Ntt> 酸素イオン導伝体及び固体燃料電池
US5273837A (en) 1992-12-23 1993-12-28 Corning Incorporated Solid electrolyte fuel cells
JP3145522B2 (ja) 1993-01-18 2001-03-12 三菱重工業株式会社 固体電解質型燃料電池
US5368667A (en) 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
US5342705A (en) 1993-06-04 1994-08-30 Allied-Signal, Inc. Monolithic fuel cell having a multilayer interconnect
JP3064167B2 (ja) 1993-09-01 2000-07-12 三菱重工業株式会社 固体電解質燃料電池
US5589285A (en) 1993-09-09 1996-12-31 Technology Management, Inc. Electrochemical apparatus and process
JP3196465B2 (ja) 1993-12-24 2001-08-06 三菱マテリアル株式会社 射出成形用金型
TW299345B (zh) 1994-02-18 1997-03-01 Westinghouse Electric Corp
JP3349245B2 (ja) 1994-03-04 2002-11-20 三菱重工業株式会社 固体電解質型燃料電池の製造方法
US5498487A (en) 1994-08-11 1996-03-12 Westinghouse Electric Corporation Oxygen sensor for monitoring gas mixtures containing hydrocarbons
DK112994A (da) 1994-09-29 1996-03-30 Haldor Topsoe As Fremgangsmåde til fremstilling af elektricitet i en intern reformet højtemperatur brændselscelle
US5441821A (en) 1994-12-23 1995-08-15 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
US5505824A (en) 1995-01-06 1996-04-09 United Technologies Corporation Propellant generator and method of generating propellants
US5601937A (en) 1995-01-25 1997-02-11 Westinghouse Electric Corporation Hydrocarbon reformer for electrochemical cells
FR2736343B1 (fr) 1995-07-03 1997-09-19 Rhone Poulenc Chimie Composition a base d'oxyde de zirconium et d'oxyde de cerium, procede de preparation et utilisation
US5733675A (en) 1995-08-23 1998-03-31 Westinghouse Electric Corporation Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer
US5573867A (en) 1996-01-31 1996-11-12 Westinghouse Electric Corporation Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
US5741605A (en) 1996-03-08 1998-04-21 Westinghouse Electric Corporation Solid oxide fuel cell generator with removable modular fuel cell stack configurations
US5741406A (en) 1996-04-02 1998-04-21 Northerwestern University Solid oxide fuel cells having dense yttria-stabilized zirconia electrolyte films and method of depositing electrolyte films
FR2748740B1 (fr) 1996-05-15 1998-08-21 Rhone Poulenc Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium a haute surface specifique et a capacite elevee de stockage d'oxygene, procede de preparation et utilisation en catalyse
US5686196A (en) 1996-10-09 1997-11-11 Westinghouse Electric Corporation System for operating solid oxide fuel cell generator on diesel fuel
US5955039A (en) 1996-12-19 1999-09-21 Siemens Westinghouse Power Corporation Coal gasification and hydrogen production system and method
US6238816B1 (en) 1996-12-30 2001-05-29 Technology Management, Inc. Method for steam reforming hydrocarbons using a sulfur-tolerant catalyst
US5993989A (en) 1997-04-07 1999-11-30 Siemens Westinghouse Power Corporation Interfacial material for solid oxide fuel cell
CA2242176C (en) 1997-06-30 2009-01-27 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6013385A (en) 1997-07-25 2000-01-11 Emprise Corporation Fuel cell gas management system
US5922488A (en) 1997-08-15 1999-07-13 Exxon Research And Engineering Co., Co-tolerant fuel cell electrode
US5908713A (en) * 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
FR2770790B1 (fr) 1997-11-10 1999-12-10 Rhodia Chimie Sa Composition a support a base d'un oxyde de cerium, d'un oxyde de zirconium et d'un oxyde de scandium ou de terre rare et utilisation pour le traitement des gaz d'echappement
US6051125A (en) 1998-09-21 2000-04-18 The Regents Of The University Of California Natural gas-assisted steam electrolyzer
JP3777903B2 (ja) 1998-10-14 2006-05-24 三菱マテリアル株式会社 電極−電解質間に傾斜組成を持つ固体酸化物型燃料電池
US6228521B1 (en) 1998-12-08 2001-05-08 The University Of Utah Research Foundation High power density solid oxide fuel cell having a graded anode
JP2000281438A (ja) 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd ジルコニアシート及びその製法
US6403245B1 (en) 1999-05-21 2002-06-11 Microcoating Technologies, Inc. Materials and processes for providing fuel cells and active membranes
JP2000340240A (ja) * 1999-05-31 2000-12-08 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びそれを用いた固体電解質型燃料電池
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US6682842B1 (en) 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
US6329090B1 (en) 1999-09-03 2001-12-11 Plug Power Llc Enthalpy recovery fuel cell system
US6280865B1 (en) 1999-09-24 2001-08-28 Plug Power Inc. Fuel cell system with hydrogen purification subsystem
US6489050B1 (en) 1999-11-01 2002-12-03 Technology Management, Inc. Apparatus and method for cooling high-temperature fuel cell stacks
US6361892B1 (en) 1999-12-06 2002-03-26 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
EP1113518B1 (en) 1999-12-27 2013-07-10 Corning Incorporated Solid oxide electrolyte, fuel cell module and manufacturing method
US6451466B1 (en) 2000-04-06 2002-09-17 Utc Fuel Cells, Llc Functional integration of multiple components for a fuel cell power plant
US6630264B2 (en) 2000-05-01 2003-10-07 Delphi Technologies, Inc. Solid oxide fuel cell process gas sampling for analysis
US6835488B2 (en) 2000-05-08 2004-12-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell with patterned electrolyte/electrode interface
AU2001274926A1 (en) 2000-05-22 2001-12-03 Acumentrics Corporation Electrode-supported solid state electrochemical cell
DE10026940A1 (de) 2000-05-30 2001-12-06 Creavis Tech & Innovation Gmbh Elektrochemische Zelle zur Oxidation organischer Verbindungen und elektrokatalytischer Oxidationsprozess
US6558831B1 (en) 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
JP2004507877A (ja) 2000-09-01 2004-03-11 グローバル サーモエレクトリック インコーポレイテッド 高温燃料電池の陽極酸化保護
US6767662B2 (en) 2000-10-10 2004-07-27 The Regents Of The University Of California Electrochemical device and process of making
JP4771579B2 (ja) * 2000-10-23 2011-09-14 東邦瓦斯株式会社 固体電解質型燃料電池
US6811913B2 (en) 2000-11-15 2004-11-02 Technology Management, Inc. Multipurpose reversible electrochemical system
CA2431231A1 (en) 2001-01-12 2002-07-18 Global Thermoelectric Inc. Redox solid oxide fuel cell
US7294421B2 (en) 2001-02-07 2007-11-13 Delphi Technologies, Inc. Solid oxide auxiliary power unit reformate control
US20020127455A1 (en) 2001-03-08 2002-09-12 The Regents Of The University Of California Ceria-based solid oxide fuel cells
US6803141B2 (en) 2001-03-08 2004-10-12 The Regents Of The University Of California High power density solid oxide fuel cells
US6677070B2 (en) 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
US6623880B1 (en) 2001-05-29 2003-09-23 The United States Of America As Represented By The Department Of Energy Fuel cell-fuel cell hybrid system
AT4810U1 (de) 2001-05-31 2001-11-26 Plansee Ag Stromsammler für sofc-brennstoffzellen
US6495279B1 (en) 2001-10-02 2002-12-17 Ford Global Technologies, Inc. Ultrahigh power density miniaturized solid-oxide fuel cell
US7067208B2 (en) 2002-02-20 2006-06-27 Ion America Corporation Load matched power generation system including a solid oxide fuel cell and a heat pump and an optional turbine
US20030196893A1 (en) 2002-04-23 2003-10-23 Mcelroy James Frederick High-temperature low-hydration ion exchange membrane electrochemical cell
US6854688B2 (en) 2002-05-03 2005-02-15 Ion America Corporation Solid oxide regenerative fuel cell for airplane power generation and storage
US6972161B2 (en) 2002-10-10 2005-12-06 Hewlett-Packard Development Company, L.P. Fuel cell assembly and method of making the same
CN1297026C (zh) 2002-10-11 2007-01-24 株式会社日本触媒 固体氧化物型燃料电池用电解质薄片及其制法
US6821663B2 (en) 2002-10-23 2004-11-23 Ion America Corporation Solid oxide regenerative fuel cell
WO2005017226A1 (en) * 2003-01-10 2005-02-24 University Of Connecticut Coatings, materials, articles, and methods of making thereof
US7045238B2 (en) 2003-03-24 2006-05-16 Ion America Corporation SORFC power and oxygen generation method and system
US6924053B2 (en) 2003-03-24 2005-08-02 Ion America Corporation Solid oxide regenerative fuel cell with selective anode tail gas circulation
US7575822B2 (en) 2003-04-09 2009-08-18 Bloom Energy Corporation Method of optimizing operating efficiency of fuel cells
US7482078B2 (en) 2003-04-09 2009-01-27 Bloom Energy Corporation Co-production of hydrogen and electricity in a high temperature electrochemical system
US7364810B2 (en) 2003-09-03 2008-04-29 Bloom Energy Corporation Combined energy storage and fuel generation with reversible fuel cells
AU2004247229B2 (en) 2003-06-09 2006-12-14 Saint-Gobain Ceramics & Plastics, Inc. Fused zirconia-based solid oxide fuel cell
AU2004252862B2 (en) 2003-06-09 2008-04-17 Saint-Gobain Ceramics & Plastics, Inc. Stack supported solid oxide fuel cell
US7531261B2 (en) * 2003-06-30 2009-05-12 Corning Incorporated Textured electrolyte sheet for solid oxide fuel cell
US20070082254A1 (en) 2003-08-06 2007-04-12 Kenichi Hiwatashi Solid oxide fuel cell
US7150927B2 (en) 2003-09-10 2006-12-19 Bloom Energy Corporation SORFC system with non-noble metal electrode compositions
US20060166070A1 (en) 2003-09-10 2006-07-27 Ion America Corporation Solid oxide reversible fuel cell with improved electrode composition
WO2005041329A1 (en) 2003-09-30 2005-05-06 Pirelli & C. S.P.A. Solid oxide fuel cell
US7618731B2 (en) 2003-12-17 2009-11-17 University Of Dayton Ceramic-ceramic nanocomposite electrolyte
US7422810B2 (en) 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same
CA2561214A1 (en) 2004-03-31 2006-02-23 Corning Incorporated Fuel cell device with varied active area sizes
US20050227134A1 (en) 2004-04-13 2005-10-13 Ion American Corporation Offset interconnect for a solid oxide fuel cell and method of making same
JP5260052B2 (ja) * 2004-06-10 2013-08-14 テクニカル ユニバーシティ オブ デンマーク 固体酸化物型燃料電池
US7455925B2 (en) 2004-07-08 2008-11-25 Angstrom Power Incorporated Thin-layer fuel cell structure
WO2007001343A2 (en) 2004-08-20 2007-01-04 Ion America Corporation Nanostructured fuel cell electrode
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
EP1844517B1 (en) 2005-02-02 2010-04-21 Technical University of Denmark A method for producing a reversible solid oxid fuel cell
JP4143938B2 (ja) 2005-02-28 2008-09-03 東京電力株式会社 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法
US7462412B2 (en) * 2005-03-04 2008-12-09 Toto Ltd. Solid oxide fuel cell
US20090023027A1 (en) 2005-03-23 2009-01-22 Kazuo Hata Fuel Electrode Material for Solid Oxide Fuel Cell, Fuel Electrode Using the Same, and Fuel Cell
US20060216575A1 (en) 2005-03-23 2006-09-28 Ion America Corporation Perovskite materials with combined Pr, La, Sr, "A" site doping for improved cathode durability
US7514166B2 (en) 2005-04-01 2009-04-07 Bloom Energy Corporation Reduction of SOFC anodes to extend stack lifetime
US8075746B2 (en) 2005-08-25 2011-12-13 Ceramatec, Inc. Electrochemical cell for production of synthesis gas using atmospheric air and water
US20090029195A1 (en) 2005-10-19 2009-01-29 Eidgenossische Technische Hochschule Zurich Thin film and composite element produced from the same
US7931990B2 (en) 2005-12-15 2011-04-26 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell having a buffer layer
US20070141422A1 (en) 2005-12-16 2007-06-21 Saint-Gobain Ceramics & Plastics, Inc. Fuel cell component having an electrolyte dopant
US20070141444A1 (en) 2005-12-16 2007-06-21 Saint-Gobain Ceramics & Plastics, Inc. Fuel cell component having an electrolyte dopant
JP2007172846A (ja) 2005-12-19 2007-07-05 National Institute Of Advanced Industrial & Technology チューブ型電気化学リアクターセル及びそれらから構成される電気化学反応システム
JP2007265650A (ja) 2006-03-27 2007-10-11 National Institute Of Advanced Industrial & Technology 電気化学リアクターセル用マニフォールド、スタック及びそれらから構成される電気化学反応システム
EP2013936A2 (en) 2006-04-05 2009-01-14 Saint-Gobain Ceramics and Plastics, Inc. A sofc stack having a high temperature bonded ceramic interconnect and method for making same
US8216738B2 (en) 2006-05-25 2012-07-10 Versa Power Systems, Ltd. Deactivation of SOFC anode substrate for direct internal reforming
US7976686B2 (en) 2006-07-22 2011-07-12 Ceramatec, Inc. Efficient reversible electrodes for solid oxide electrolyzer cells
KR20080010737A (ko) 2006-07-28 2008-01-31 한국에너지기술연구원 고체산화물 연료전지 전해질용 입방정 스칸디아 안정화지르코니아와 그 제조 방법
CN101500943B (zh) 2006-08-17 2012-07-18 H.C.施塔克有限公司 氧化锆及其生产方法
US7968245B2 (en) 2006-09-25 2011-06-28 Bloom Energy Corporation High utilization stack
WO2008048445A2 (en) 2006-10-18 2008-04-24 Bloom Energy Corporation Anode with remarkable stability under conditions of extreme fuel starvation
WO2008143657A1 (en) 2006-12-28 2008-11-27 Saint-Gobain Ceramics & Plastics, Inc Bilayer interconnnects for solid oxide fuel cells
US20080261099A1 (en) * 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite SOFC electrolyte
US20080254336A1 (en) * 2007-04-13 2008-10-16 Bloom Energy Corporation Composite anode showing low performance loss with time
CN101295792A (zh) 2007-04-24 2008-10-29 中国科学院大连化学物理研究所 一种固体氧化物燃料电池复合阳极及其制备方法
JP2009064641A (ja) 2007-09-05 2009-03-26 Toshiba Corp 固体酸化物電気化学セルの燃料極、その製造方法、及び固体酸化物電気化学セル
WO2009064391A2 (en) * 2007-11-13 2009-05-22 Bloom Energy Corporation Electrolyte supported cell designed for longer life and higher power
KR100958514B1 (ko) 2007-12-12 2010-05-17 한국생산기술연구원 고체산화물 연료전지의 제조방법
KR100886239B1 (ko) 2007-12-12 2009-02-27 한국생산기술연구원 반응 부산물 발생 억제 방법 및 이를 이용한 고체산화물연료전지와 그 제조방법
US20100297534A1 (en) 2008-01-30 2010-11-25 Corning Corporated Seal Structures for Solid Oxide Fuel Cell Devices
JP4771261B2 (ja) 2008-02-27 2011-09-14 独立行政法人産業技術総合研究所 電気化学リアクターバンドル、スタック及びそれらから構成される電気化学反応システム
JP5317274B2 (ja) 2008-05-22 2013-10-16 独立行政法人産業技術総合研究所 電気化学リアクターユニット、それらから構成される電気化学リアクターモジュール及び電気化学反応システム
US8163353B2 (en) * 2008-07-08 2012-04-24 Siemens Energy, Inc. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
KR100966098B1 (ko) 2008-10-07 2010-06-28 한국에너지기술연구원 스칸디아가 치환 고용된 입방정 이트리아 안정화 지르코니아 및 이를 이용한 고체산화물연료전지
US8617763B2 (en) 2009-08-12 2013-12-31 Bloom Energy Corporation Internal reforming anode for solid oxide fuel cells
JP4972140B2 (ja) * 2009-10-09 2012-07-11 Agcセイミケミカル株式会社 スカンジア安定化ジルコニアおよびその製造方法
EP3432401B1 (en) 2010-01-26 2020-08-12 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
JP6215778B2 (ja) 2014-06-10 2017-10-18 有限会社近江蚊帳 蚊帳

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942349A (en) * 1995-03-15 1999-08-24 Ceramic Fuel Cells Limited Fuel cell interconnect device
US20060110633A1 (en) * 2004-11-19 2006-05-25 Toho Gas Co., Ltd. Fuel electrode material, a fuel electrode, and a solid oxide fuel cell
US20060199057A1 (en) * 2005-03-04 2006-09-07 Toto Ltd. Solid oxide fuel cell
US20080075984A1 (en) * 2006-09-27 2008-03-27 Michael Edward Badding Electrolyte sheet with regions of different compositions and fuel cell device including such
JP2008305804A (ja) * 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池

Also Published As

Publication number Publication date
EP2529442B1 (en) 2018-10-03
US8580456B2 (en) 2013-11-12
US20110183233A1 (en) 2011-07-28
AU2011209829C1 (en) 2016-09-01
CN102725902B (zh) 2016-01-20
EP2529442A2 (en) 2012-12-05
TW201136863A (en) 2011-11-01
WO2011094098A3 (en) 2011-11-17
AU2011209829A1 (en) 2012-07-19
EP3432401B1 (en) 2020-08-12
EP3432401A1 (en) 2019-01-23
JP2013518389A (ja) 2013-05-20
WO2011094098A2 (en) 2011-08-04
CN102725902A (zh) 2012-10-10
EP2529442A4 (en) 2015-05-27
US20160322663A1 (en) 2016-11-03
US9799909B2 (en) 2017-10-24
US20140051010A1 (en) 2014-02-20
JP5323269B2 (ja) 2013-10-23
US9413024B2 (en) 2016-08-09

Similar Documents

Publication Publication Date Title
TWI501937B (zh) 低降能之相穩定性經摻雜氧化鋯電解質組合物
AU2011209829B2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
US10593981B2 (en) Heterogeneous ceramic composite SOFC electrolyte
US20080254336A1 (en) Composite anode showing low performance loss with time
TWI688154B (zh) 具有對固態氧化物燃料電池之退化有改善抗性之固態氧化物燃料電池陰極組合物
US20090011314A1 (en) Electrode/electrolyte interfaces in solid oxide fuel cells
JP5144236B2 (ja) 固体酸化物形燃料電池
EP2693545B1 (en) Fuel cell
EP2772473B1 (en) Ceramic sintered compact, high-temperature member, and electrochemical element
JP5596594B2 (ja) 固体酸化物形燃料電池セルの燃料極材料,燃料極,固体酸化物形燃料電池セル,および燃料極材料の製造方法
JP4849774B2 (ja) 固体電解質形燃料電池セル及び固体電解質形燃料電池
EP3926719A1 (en) Membrane electrode assembly and fuel cell
TWI788078B (zh) 包含耐電解之空氣側電極的固體氧化物電解電池
WO2023195246A1 (ja) 電気化学セル
WO2023195245A1 (ja) 電気化学セル
US9935318B1 (en) Solid oxide fuel cell cathode with oxygen-reducing layer
JP2023070100A (ja) 電気分解耐性の空気側電極を有する固体酸化物電解槽セル