WO2012105381A1 - 太陽電池用スクリーン製版及び太陽電池の電極の印刷方法 - Google Patents

太陽電池用スクリーン製版及び太陽電池の電極の印刷方法 Download PDF

Info

Publication number
WO2012105381A1
WO2012105381A1 PCT/JP2012/051488 JP2012051488W WO2012105381A1 WO 2012105381 A1 WO2012105381 A1 WO 2012105381A1 JP 2012051488 W JP2012051488 W JP 2012051488W WO 2012105381 A1 WO2012105381 A1 WO 2012105381A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
bus bar
opening
printing
screen plate
Prior art date
Application number
PCT/JP2012/051488
Other languages
English (en)
French (fr)
Inventor
陽子 遠洞
怜 三田
渡部 武紀
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46602599&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012105381(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to ES12742616T priority Critical patent/ES2547680T5/es
Priority to EP12742616.1A priority patent/EP2672523B2/en
Priority to SG2013057864A priority patent/SG192214A1/en
Priority to CA2825141A priority patent/CA2825141A1/en
Priority to RU2013140396/12A priority patent/RU2597573C2/ru
Priority to CN201280007073.2A priority patent/CN103339739B/zh
Priority to US13/980,902 priority patent/US9216607B2/en
Priority to JP2012555815A priority patent/JP5761208B2/ja
Priority to KR1020137021706A priority patent/KR101685669B1/ko
Publication of WO2012105381A1 publication Critical patent/WO2012105381A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • B41N1/248Mechanical details, e.g. fixation holes, reinforcement or guiding means; Perforation lines; Ink holding means; Visually or otherwise detectable marking means; Stencil units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to screen plate making that enables a method for producing a long-term reliable solar cell with high productivity, and more specifically, by changing the mask pattern of the bus bar electrode, while maintaining high conversion efficiency,
  • the present invention relates to a screen plate making capable of forming an electrode at a cost, and a method for printing an electrode of a solar cell using the screen plate making.
  • FIG. 1 A cross-sectional view (FIG. 1), a front surface structure (FIG. 2), and a back surface structure (FIG. 3) of a solar cell manufactured using a conventional technique will be described.
  • a pn junction is formed by diffusing an n-type dopant into a p-type semiconductor substrate 100 such as silicon to form an n-type diffusion layer 101.
  • an antireflection film 102 such as a SiN x film is formed.
  • an aluminum paste is applied to almost the entire surface, and the BSF layer 103 and the aluminum electrode 104 are formed by sintering.
  • a thick electrode 106 called a bus bar electrode for current collection is formed by applying and baking a conductive paste containing silver or the like.
  • a thick electrode called a current collecting finger electrode 107 and a bus bar electrode 105 formed to collect current from the finger electrodes are arranged in a comb shape so as to intersect at a substantially right angle.
  • the surface finger electrode 107 is easy to form and low cost, etc. Therefore, it is generally formed by a printing / firing method as shown below. That is, as the surface electrode material, generally a conductive paste containing silver powder, glass frit, organic vehicle, and organic solvent as main components is used, and after applying this conductive paste by a screen printing method or the like. The surface electrode is formed by high-temperature sintering in a firing furnace.
  • Screen printing is the following method. First, in the screen plate making used in the screen printing method, a mesh material 110 in which warp and weft perpendicular to each other are knitted is coated with a photosensitive emulsion 111, and this emulsion is partially removed by exposure. A substantially rectangular pattern hole is formed (FIG. 4). The screen plate making is placed on a substrate, and a printing paste (ink) placed on the screen plate making is spread on the pattern, and a flexible spatula called a printing squeegee 112 is applied to an appropriate squeegee hardness (60 to 80 degrees).
  • the printing paste does not adhere to the portion corresponding to the warp and weft in the pattern hole immediately after the printing paste falls through the opening where the mesh material in the pattern hole does not exist and adheres to the substrate.
  • the flow of the printing paste adhering to the portion corresponding to the opening portion thereafter occurs, a continuous printing pattern with a uniform thickness is obtained.
  • the screen printing method uses the same pattern as the pattern holes formed in the screen plate making by transferring the printing paste filled into the pattern openings on the screen plate making to the printed material by the movement of the printing squeegee. Is formed on the substrate.
  • the contact resistance (contact resistance) between the surface finger electrode 107 and the Si substrate 100 formed by such a method and the wiring resistance of the electrode have a great influence on the conversion efficiency of the solar cell, and high efficiency (low cell series resistance, In order to obtain a high fill factor (FF, curve factor)), the contact resistance and the wiring resistance value of the surface finger electrode 107 are required to be sufficiently low.
  • the electrode area must be reduced so that as much light as possible can be captured on the light receiving surface.
  • the finger electrode In order to improve the short circuit current (Jsc) while maintaining the FF, the finger electrode must be thin and have a large cross-sectional area, that is, a high aspect ratio finger electrode must be formed.
  • high aspect ratio and ultrathin wires can be formed by forming a groove in a cell and filling a paste (Japanese Patent Application Laid-Open No. 2006-54374) or printing by an inkjet method. Techniques and the like are disclosed.
  • the former is not preferable because it includes a step of forming a groove in the substrate and may damage the substrate.
  • the latter ink-jet method is a method suitable for forming a thin line because it applies a pressure to eject droplets from a thin nozzle, but it is difficult to increase the height.
  • the screen printing method is easy to produce a printed pattern, can minimize damage to the substrate by adjusting the printing pressure, has a high work speed per cell, is low cost, and has excellent productivity. It is.
  • a conductive paste having high thixotropy it is possible to form an electrode having a high aspect ratio while maintaining the shape after being transferred.
  • screen printing is cheaper than other printing methods and is a method suitable for forming electrodes with a high aspect ratio.
  • connection portion between the bus bar electrode and the finger electrode becomes very thin or is severely disconnected. If the finger electrode is partially thinned or the disconnection occurs in the electrode on the light receiving surface, the portion becomes the rate-limiting rate of the resistance, and the fill factor decreases.
  • the cause of the disconnection is the difference in film thickness at the connection between the bus bar electrode and the finger electrode.
  • the amount of paste applied is proportional to the size of the opening. That is, the amount of paste applied to the bus bar electrode with a large opening is large, whereas the amount of paste applied to the finger electrode with a small opening is small, so that a difference occurs in the film thickness of the bus bar electrode and the finger electrode.
  • the bus bar electrode having a larger coating amount has a larger contraction amount, and therefore the wire is disconnected at the boundary between the bus bar electrode and the finger electrode.
  • this is mild, a phenomenon occurs in which the connection portion between the bus bar electrode and the finger electrode becomes very thin.
  • the printing direction (the direction in which the printing squeegee moves) is also an element that promotes disconnection.
  • the printing direction and the finger electrode opening 2 are generally parallel, while the printing direction and the bus bar electrode opening 3 are substantially vertical (FIG. 8).
  • the width of the connection portion between the bus bar electrode 13 and the finger electrode 12 on the printing start side of the electrode after printing becomes very narrow with respect to the finger electrode 12 (FIG. 9). This is particularly noticeable in the case of fine line printing.
  • the bus bar electrode opening 3 is wider than the finger electrode opening 2, and as described above, the squeegee 112 is perpendicular to the bus bar electrode opening 3, so that a saddle phenomenon is likely to occur.
  • the saddle phenomenon is a phenomenon 113 in which the opening is pressed by the squeegee 112 when a portion having a wide opening such as a bus bar is printed (FIG. 5), and the central portion is recessed from the end in the width direction of the bus bar electrode. Yes (Fig. 6).
  • the saddle phenomenon occurs, there is a difference between the height of the end in the bus bar electrode width direction and the height of the finger electrode.
  • the bus bar electrode end portion with a larger coating amount has a higher shrinkage rate during electrode firing, and therefore the connection portion between the bus bar electrode 13 and the finger electrode 12 is disconnected 114 (FIG. 10).
  • a chain line is a connection portion between the bus bar electrode 13 and the finger electrode 12.
  • connection portion between the bus bar electrode and the finger electrode In order to solve the above problem, a method of widening the width of the connection portion between the bus bar electrode and the finger electrode is disclosed (Japanese Patent Laid-Open No. 2009-272405).
  • Japanese Patent Laid-Open No. 2009-272405 Japanese Patent Laid-Open No. 2009-272405
  • the connection portion between the bus bar electrode and the finger electrode is excessively thick, so that it is blurred or fooled. For this reason, there is a problem that the shadow loss increases and the characteristics are lowered.
  • a solar cell is a device used under sunlight, and unlike other semiconductor devices, it has many opportunities to be exposed to the public. Therefore, not only the characteristics but also the appearance of solar cells are very important elements.
  • the said invention had the problem that the connection part of a bus-bar electrode and a finger electrode will become thick, and the thickness of a finger electrode will become discontinuous and the beauty
  • the present invention has been made in view of the above problems, and an object thereof is to manufacture a solar cell with high conversion efficiency at low cost by forming an electrode having a high aspect ratio and low resistance.
  • the present invention provides a method for printing a solar cell electrode using the screen plate making for solar cells and the screen plate making.
  • the solar cell according to the present invention in the method for manufacturing a solar cell in which a conductive paste is printed and the bus bar electrode and the finger electrode are simultaneously printed, It was found that by providing a closed portion in the opening of the electrode portion, the pressure with which the squeegee presses the paste filled in the opening can be reduced, and disconnection can be suppressed. It came to an eggplant.
  • the present invention provides the following screen plate making for solar cells and a method for printing electrodes of solar cells.
  • a screen plate for a solar cell that simultaneously prints a bus bar electrode and a finger electrode using a conductive paste, wherein the opening width of the finger electrode opening of the screen plate making is less than 80 ⁇ m, and the bus bar electrode of the screen plate making A screen plate making wherein the opening has a closed portion.
  • the finger opening width is generally 80 to 100 ⁇ m, the above disconnection rarely occurs. This technique is effective for fine wires having a finger opening width of less than 80 ⁇ m.
  • the printing direction is substantially perpendicular to the longitudinal direction of the bus bar electrode in order to sufficiently obtain the effect of the present invention. Is desirable.
  • the solar cell manufacturing cost can be reduced, the shadow loss is not increased, and further, the disconnection of the connection portion between the bus bar electrode and the finger electrode is prevented without deteriorating the aesthetic appearance of the solar cell. Therefore, a highly reliable solar cell can be manufactured with high productivity.
  • FIG. 1 It is sectional drawing of the electrode of a common solar cell. It is a top view which shows the surface shape of a common solar cell. It is a back view which shows the back surface shape of a common solar cell. It is explanatory drawing which shows the mode during printing of the conventional screen plate making. It is explanatory drawing which shows the mode of the saddle phenomenon during the printing of the conventional screen plate making. It is sectional drawing of the electrode shape after printing using the conventional screen plate making. It is explanatory drawing which shows an example of the disconnection avoidance method using the conventional screen plate making. It is an opening part enlarged view of the conventional screen plate making. It is an enlarged view after printing by the conventional screen plate making. FIG.
  • FIG. 10 is a cross-sectional view of the connection portion between the bus bar electrode and the finger electrode along the line AA in FIG. 9. It is an opening part enlarged view which shows an example of the screen platemaking of this invention. It is an enlarged view after printing by the same screen plate-making of this invention.
  • FIG. 13 is a cross-sectional view of the connection portion between the bus bar electrode and the finger electrode along the line BB in FIG. 12.
  • the screen plate making for a solar cell according to the present invention is such that the bus bar electrode portion has a closed portion, and in this case, 60% of the opening area calculated from the contour of the bus bar electrode.
  • the closed portion is 55% or less.
  • the effect of this invention can be more effectively exhibited by making a closed part into 30% or more of the said opening area, especially 45% or more.
  • the opening width of the finger electrode in the screen plate making is less than 80 ⁇ m, preferably 40 to 80 ⁇ m, 40 ⁇ m or more and less than 80 ⁇ m, more preferably 40 to 75 ⁇ m, still more preferably 45 to 70 ⁇ m, particularly 50 to 60 ⁇ m.
  • FIG. 11 shows an example of the screen plate making according to the present invention.
  • a plurality of finger electrode openings 2 are formed in parallel with the printing direction of the screen plate making 1 (arrow direction in the figure), and the printing direction is shown.
  • the bus bar electrode opening 3 having a wide width (Wb) is formed at right angles.
  • the width of Wb is preferably 0.5 to 3 mm, particularly preferably 1 to 2 mm.
  • a plurality of closing portions 4 are formed in the bus bar electrode opening 3. These closed portions 4 are formed at positions corresponding to the longitudinal direction of the finger electrode openings 2.
  • the closed portion 4 in the bus bar electrode opening 3 has an interval (Wc) of 50 to 700 ⁇ m, preferably 100 to 300 ⁇ m from the side where the finger electrode opening 2 and the bus bar electrode opening 3 are in contact with each other. .
  • Wc an interval of 50 to 700 ⁇ m
  • the interval between the closed portions 4 is preferably 100 to 2,000 ⁇ m, particularly 300 to 1,000 ⁇ m.
  • each closing part 4 is the total area of the bus bar electrode opening 3 and the closing part 4 (that is, the bus bar area calculated from the contour of the bus bar electrode opening 3 of the screen making) as described above.
  • the width Wf of the finger electrode opening 2 is less than 80 ⁇ m.
  • a high-purity silicon is doped with a group III element such as boron or gallium, and the slice damage on the surface of an as-cut single crystal ⁇ 100 ⁇ p-type silicon substrate having a specific resistance of 0.1 to 5 ⁇ ⁇ cm has a concentration of 5 to 60
  • Etching is performed using a high-concentration alkali such as sodium hydroxide or potassium hydroxide of mass%, or a mixed acid of hydrofluoric acid and nitric acid.
  • the single crystal silicon substrate may be manufactured by either the CZ method or the FZ method.
  • Texture is an effective way to reduce solar cell reflectivity.
  • the texture should be immersed for about 10 to 30 minutes in an alkali solution (concentration 1 to 10% by mass, temperature 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, or sodium bicarbonate. Easy to make. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction.
  • hydrochloric acid After texture formation, wash in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, etc., or a mixture of these. From an economic and efficient standpoint, washing in hydrochloric acid is preferred. In order to improve the cleanliness, the hydrochloric acid solution may be mixed with 0.5 to 5% by mass of hydrogen peroxide and heated to 60 to 90 ° C. for washing.
  • an emitter layer is formed by vapor phase diffusion using phosphorus oxychloride.
  • silicon solar cells it is necessary to form a pn junction only on the light-receiving surface, and in order to achieve this, diffusion is performed in a state where two substrates are overlapped, or a SiO 2 film or the like is formed on the back surface before diffusion. It is necessary to devise such that a pn junction cannot be formed on the back surface by forming a SiN x film or the like as a diffusion mask. After diffusion, the glass formed on the surface is removed with hydrofluoric acid or the like.
  • an antireflection film is formed on the light receiving surface.
  • a SiN x film is formed to a thickness of about 100 nm using a plasma CVD apparatus.
  • the reaction gas monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and the reaction gas diluted.
  • hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.
  • the back electrode is formed by screen printing.
  • a paste in which silver powder and glass frit are mixed with an organic binder is screen-printed on the back surface of the substrate in a bus bar shape, and then a paste in which aluminum powder is mixed with an organic binder is screen-printed in a region other than the bus bar.
  • the back electrode is formed by baking at a temperature of 700 to 800 ° C. for 5 to 30 minutes.
  • the back electrode is preferably formed by a printing method, but can also be formed by a vapor deposition method, a sputtering method, or the like.
  • the surface electrode is formed by a screen printing method using the screen plate making according to the present invention. More specifically, a paste of silver powder, glass frit, and organic binder mixed on the surface of the substrate is a comb-shaped design designed with a finger electrode width of 30 to 80 ⁇ m and a finger electrode interval of 0.5 to 4.0 mm. Printing is performed using a screen plate having a printing pattern.
  • the finger opening width of generally used screen plate making is 80 to 100 ⁇ m.
  • the finger electrode is sufficiently thick and can be printed thickly, the disconnection as described above rarely occurs.
  • the finger opening width is less than 80 ⁇ m, the difference in film thickness between the bus bar electrode and the finger electrode increases, and disconnection occurs due to the difference in heat shrinkage (FIG. 9).
  • the present invention in the solar cell manufacturing method in which the bus bar electrode and the finger electrode are printed at the same time, printing is performed using a screen plate making with 60% or less of the opening area calculated from the contour of the bus bar electrode as a closed portion. Therefore, disconnection can be avoided (FIG. 13).
  • the printing direction in a method for manufacturing a solar cell that is printed using a screen plate having such characteristics, it is desirable that the printing direction be substantially perpendicular to the bus bar electrode in order to sufficiently obtain the effects of the present invention.
  • the presence of the closed portion in the bus bar electrode reduces the discharge amount at the end of printing as described above, and thus has an effect of suppressing the thickness of the finger electrode (FIG. 12).
  • the bus bar opening partly has a closed part, there is a possibility that an unprinted part is formed after printing.
  • the solder coated copper lead wire is bonded at the time of manufacturing the module, there is no problem in appearance.
  • the bus bar electrode area is 40% or more compared to the conventional bus bar electrode area, the adhesive strength of the lead wire can be maintained.
  • the electrode is formed using the above-described method, it is sintered by heat treatment in the atmosphere at a temperature of 700 to 800 ° C. for 5 to 30 minutes.
  • the back electrode and the light-receiving surface electrode can be baked at the same time.
  • the printed pattern is a pattern B (FIG. 11) in which a closed portion is provided in the bus bar electrode opening, compared to the conventional pattern A (finger electrode opening width (Wf) 60 ⁇ m: comparative example: FIG. 8), and the finger opening width.
  • a screen plate having a pattern C of 100 ⁇ m was prepared (Comparative Example: FIG. 8). All the opening widths Wb of the bus bar electrodes were unified to 1.5 mm.
  • the gap Wc in the bus bar electrode opening from the side where the opening of the finger electrode and the opening of the bus bar electrode are in contact is 100 ⁇ m, and the gap between the closed parts is 1,000 ⁇ m.
  • the total area was 55% of the bus bar area calculated from the contour of the bus bar electrode opening.
  • a boron-doped ⁇ 100 ⁇ p-type as-cut silicon substrate (100) having a 15 cm square, a thickness of 250 ⁇ m, and a specific resistance of 2.0 ⁇ ⁇ cm is prepared, and the damaged layer is removed with a concentrated potassium hydroxide aqueous solution to create a texture.
  • the emitter layer 101 formed and heat-treated at 850 ° C. in a phosphorus oxychloride atmosphere was formed, and the phosphorus glass was removed with hydrofluoric acid, washed and dried.
  • a SiN x film 102 is formed using a plasma CVD apparatus, and a paste obtained by mixing silver powder and glass frit with an organic binder is screen-printed in a bus bar shape on the back surface (106), and then aluminum powder is coated with an organic binder.
  • the mixed paste was screen printed in an area other than the bus bar (104).
  • a semiconductor substrate having a back electrode formed by drying the organic solvent was produced.
  • a conductive paste containing silver powder, glass frit, an organic vehicle, and an organic solvent as main components and a metal oxide as an additive is applied to a screen plate having the above printing pattern.
  • the organic solvent was dried in a clean oven at 150 ° C. and then fired in an air atmosphere at 800 ° C.
  • the 30 solar cells thus fabricated were evaluated by electrode observation with an optical microscope and a solar simulator (in a 25 ° C. atmosphere, irradiation intensity: 1 kW / m 2 , spectrum: AM1.5 global). Moreover, the finger width after printing and the width of the connecting portion were observed with an optical microscope, and the presence or absence of disconnection was confirmed. Table 1 shows the average results of Examples and Comparative Examples.
  • connection part of a bus-bar electrode and a finger electrode was confirmed by standard condition A, it was not confirmed by the method which concerns on this invention, and it was not confirmed also in the level C with a large opening width.
  • the short-circuit current decreased in C where the finger electrode width was large. This is due to the shadow loss due to the increase in width.
  • the curve factor showed 75.1%, which is about 1.5% higher than the level A in which the disconnection occurred, compared with the level A in which the disconnection occurred.
  • disconnection of the connection portion between the bus bar electrode and the finger electrode occurred.
  • an electrode having a high aspect ratio can be formed without disconnection without increasing the number of steps.
  • a solar cell with high conversion efficiency can be manufactured with high yield by forming an electrode without disconnecting the connection portion between the bus bar electrode and the finger electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Printing Methods (AREA)

Abstract

 導電性ペーストを用いて、バスバー電極とフィンガー電極を同時に印刷する太陽電池用のスクリーン製版であって、上記スクリーン製版のフィンガー電極開口部の開口幅が80μm未満であって、該スクリーン製版のバスバー電極開口部が閉口部を有することを特徴とするスクリーン製版に関するものであり、本発明のスクリーン製版を用いれば、太陽電池製造コストを低減でき、シャドーロスを増加させることなく、更には、太陽電池の美観を損ねることなく、バスバー電極とフィンガー電極の接続部の断線を防止することができ、信頼性の高い太陽電池を生産性よく製造することができる。

Description

太陽電池用スクリーン製版及び太陽電池の電極の印刷方法
 本発明は、長期信頼性の高い太陽電池を生産性よく作製する方法を可能とするスクリーン製版に関し、更に詳しくは、バスバー電極のマスクパターンを変更することによって、高い変換効率を維持したまま、低コストで電極を形成することができるスクリーン製版、及びそのスクリーン製版を用いた太陽電池の電極の印刷方法に関する。
 従来の技術を用いて作製された、太陽電池の断面図(図1)と、表面の構造(図2)、裏面の構造(図3)を説明する。一般的な太陽電池セルは、シリコン等のp型半導体基板100に、n型となるドーパントを拡散して、n型拡散層101を形成することによりpn接合が形成されている。n型拡散層101の上には、SiNx膜のような反射防止膜102が形成されている。p型半導体基板100の裏面側には、ほぼ全面にアルミニウムペーストが塗布され、焼結することによりBSF層103とアルミニウム電極104が形成される。また、裏面には集電用としてバスバー電極とよばれる太い電極106が、銀等を含む導電性ペーストが塗布され、焼成することで形成される。一方、受光面側には集電用のフィンガー電極107と、フィンガー電極から電流を集めるために形成されたバスバー電極105とよばれる太い電極が、略直角に交わるように櫛形状に配置される。
 そして、この種の太陽電池を製造する際、電極形成の方法としては、蒸着法、メッキ法、印刷法等が挙げられるが、表面フィンガー電極107は、形成が容易で低コストである等の理由のため、一般的には、以下に示すような印刷・焼成法で形成される。すなわち、表面電極材料には、一般に銀粉末と、ガラスフリットと、有機ビヒクルと、有機溶媒とを主成分として配合した導電性ペーストが用いられ、スクリーン印刷法等によりこの導電性ペーストを塗布した後、焼成炉中で高温焼結して表面電極を形成するものである。
 スクリーン印刷とは以下のような方法である。
 まず、スクリーン印刷法で用いられているスクリーン製版は、互いに直交する縦糸と横糸とを編み込んだメッシュ材110を、感光性の乳剤111で被覆すると共に、この乳剤を露光により一部除去することによって略長方形のパターン孔を形成して形成される(図4)。このスクリーン製版を被印刷物上に配置させ、スクリーン製版上に載せた印刷ペースト(インク)をパターン上に塗り広げ、印刷スキージ112とよばれる柔軟性を有するヘラを適切なスキージ硬度(60~80度)、スキージ角度(60~80度)、圧力(印圧)(0.2~0.5MPa)、印刷速度(20~100mm/sec)で移動させることによって、パターン孔を介して被印刷物に付着させ、更に被印刷物に付着させた印刷ペーストを乾燥し、印刷パターンを形成させる方法である。
 このとき、印刷ペーストがパターン孔内のメッシュ材が存在しない開口部を通って落下し、被印刷物に付着させた直後は、パターン孔内の縦糸と横糸に相当する部分には印刷ペーストは付着しないが、この後開口部に相当する部分に付着した印刷ペーストの流動が生じるため、均一な厚みの連続的な印刷パターンとなる。
 このように、スクリーン印刷法は、スクリーン製版上のパターン開口へ充填された印刷ペーストが、印刷スキージ(ヘラ)の移動により被印刷物に転写されることによって、スクリーン製版に形成したパターン孔と同じパターンを被印刷物上に形成する手法である。
 このような方法により形成された表面フィンガー電極107とSi基板100とのコンタクト抵抗(接触抵抗)と電極の配線抵抗は、太陽電池の変換効率に大きな影響を及ぼし、高効率(低セル直列抵抗、高フィルファクター(FF、曲線因子))を得るためには、コンタクト抵抗と表面フィンガー電極107の配線抵抗の値が十分に低いことが要求される。
 また、受光面においてはできるだけ多くの光を取り込めるように電極面積を小さくしなければならない。前記FFを維持したまま短絡電流(Jsc)を向上させるために、フィンガー電極は細く、断面積は大きく、つまり高アスペクト比のフィンガー電極を形成しなくてはならない。
 太陽電池の電極を形成する手法のうち、高アスペクト比、超細線を形成する手法としては、セルに溝を作ってペーストを充填する方法(特開2006-54374号公報)や、インクジェット法による印刷手法等が開示されている。しかし、前者は基板に溝を作る工程を含むために基板にダメージを与える可能性があるため好ましくない。後者のインクジェット法は圧力をかけて細いノズルから液滴を噴射する仕組みのため、細線を形成するには適した手法であるが、高さを稼ぐことは難しい。
 一方、スクリーン印刷法は、印刷パターンの作製が容易なこと、印圧の調節により基板に与えるダメージを最小限にできること、セル1枚あたりの作業速度も早く、低コストで生産性に優れた手法である。そしてチクソ性の高い導電性ペーストを用いることで、転写されたあとも形状を保ち、高アスペクト比の電極を形成することができる。
 以上より、スクリーン印刷は他の印刷手法に比べ安価で、高アスペクト比の電極を形成するのに適した手法である。
 しかしながら、上記の方法を用いて細線の印刷を行った場合、バスバー電極とフィンガー電極の接続部が非常に細くなったり、ひどい場合には断線してしまうという問題が起こった。受光面の電極において、部分的にフィンガー電極が細くなったり、断線が起こったりすると、その部分が抵抗の律速となり、曲線因子が低下してしまう。
 断線の原因は、バスバー電極とフィンガー電極の接続部の膜厚の差である。スクリーン印刷において、ペースト塗布量は、開口部の大きさに比例する。つまり、開口部が大きいバスバー電極のペースト塗布量は多いのに対して、開口部が小さいフィンガー電極のペースト塗布量は少ないために、バスバー電極とフィンガー電極の膜厚には差が生じる。この状態で電極を焼結させると、塗布量の多いバスバー電極の方が収縮量が大きいため、バスバー電極とフィンガー電極の境界で断線してしまう。また、これが軽度の場合には、バスバー電極とフィンガー電極の接続部は非常に細くなるという現象が起こる。
 また、スクリーン印刷の場合には、印刷方向(印刷スキージの進行方向)も断線を助長させる要素となる。スクリーン製版1において、一般的にはフィンガー電極の断線を防ぐために、印刷方向とフィンガー電極開口部2はほぼ平行に、一方、印刷方向とバスバー電極開口部3はほぼ垂直となっている(図8)。このとき、印刷後の電極は、フィンガー電極12に対し印刷開始側の、バスバー電極13とフィンガー電極12の接続部の幅が、非常に狭くなってしまう(図9)。特に細線印刷の場合には顕著に見られる。これは、フィンガー電極開口部2とバスバー電極開口部3の接続部では、バスバー電極開口部3に印刷スキージが落ち込み、接続部のペースト塗布量が減るためである。一方で、印刷終了側のバスバー電極13とフィンガー電極12の接続部の幅は、ペースト塗布量が多いために太くなる傾向がある(図9)。なお、図中5は閉口部である。
 加えて、バスバー電極開口部3はフィンガー電極開口部2に比べて幅が大きく、更に、上記のように、スキージ112はバスバー電極開口部3に対して垂直となることにより、サドル現象が起こりやすくなる。サドル現象とは、バスバーのように開口が広い部分を印刷するとき、開口部がスキージ112により押しつけられ(図5)、バスバー電極の幅方向における端部よりも中央部が凹む現象113のことである(図6)。サドル現象が発生すると、バスバー電極幅方向における端部の高さと、フィンガー電極の高さに差が生じる。上記のように、塗布量の多いバスバー電極端部の方が、電極焼成時の収縮率が大きいため、バスバー電極13とフィンガー電極12の接続部が断線114してしまう(図10)。なお、図10中、鎖線はバスバー電極13とフィンガー電極12との接続部である。
 また、フィンガー電極とバスバー電極を別々に印刷した場合にも、バスバー電極でサドル現象が起こるため、バスバー電極とフィンガー電極の接続部の断線を防ぐことができない。
 上記問題を解決するために、バスバー電極とフィンガー電極の接続部の幅を広くする方法が開示されている(特開2009-272405号公報)。しかしながら、この手法を用いると、バスバー電極とフィンガー電極の接続部が過剰に太いためににじんだり、だまになったりする。そのためにシャドーロスが増加してしまい、特性が低くなってしまうという問題があった。また、太陽電池は当然のことながら太陽光の下で使用されるデバイスであり、他の半導体デバイスと異なって、公衆の目に触れる機会が多い。従って、太陽電池には特性だけでなく、見た目も非常に重要な要素となる。前記発明は、バスバー電極とフィンガー電極の接続部が太くなってしまうことにより、フィンガー電極太さが不連続となり、美観を損ねてしまうという問題があった。
 また、上記のスキージ進行方向に対してスクリーン製版を設置する場所を90°の倍数以外の角度に回転させて印刷することにより、バスバー開口にスキージが転落することを防ぐ方法もある(図7)。ただ、この場合、スキージの進行方向がフィンガー開口に対して平行ではなくなるため、フィンガー電極ににじみが生じ、精細な印刷ができなくなるという問題があった。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、高いアスペクト比を有し抵抗が低い電極を形成することによって、変換効率の高い太陽電池を低コストで製造することを可能とする太陽電池用スクリーン製版及びそのスクリーン製版を用いる太陽電池の電極の印刷方法を提供するものである。
 上記課題を解決するために、本発明に係る太陽電池では、導電性ペーストを印刷してバスバー電極とフィンガー電極を同時に印刷する太陽電池の製造方法において、スクリーン印刷による電極形成時に、スクリーン製版のバスバー電極部の開口部に、部分的に閉口部を設けることによって、開口部に充填されたペーストをスキージが押し付ける圧力を減少させることができ、断線を抑制することができることを知見し、本発明をなすに至った。
 従って、本発明は下記太陽電池用スクリーン製版及び太陽電池の電極の印刷方法を提供する。
[1]:
 導電性ペーストを用いて、バスバー電極とフィンガー電極を同時に印刷する太陽電池用のスクリーン製版であって、上記スクリーン製版のフィンガー電極開口部の開口幅が80μm未満であって、該スクリーン製版のバスバー電極開口部が閉口部を有することを特徴とするスクリーン製版。
[2]:
 上記スクリーン製版のバスバー電極開口部の輪郭から算出されるバスバー面積のうち、60%以下を閉口部とすることを特徴とする[1]記載のスクリーン製版。
[3]:
 上記バスバー電極開口部の中の閉口部と、フィンガー電極開口部とバスバー電極開口部が接する辺との間は50μm以上700μm以下の間隔があることを特徴とする[1]又は[2]記載のスクリーン製版。
[4]:
 [1]~[3]のいずれかに記載のスクリーン製版を用い、バスバー電極の長手方向に対してスキージの進行方向が垂直方向となるように導電性ペーストを印刷することを特徴とする太陽電池の電極の印刷方法。
 なお、一般的に用いられているフィンガー開口幅80~100μmであれば、上記のような断線が発生することは稀である。本手法が効果的なのはフィンガー開口幅80μm未満の細線である。
 上記のような特徴を有するスクリーン製版を用いて印刷する太陽電池の電極の印刷方法において、本発明の効果を十分得るためには、バスバー電極の長手方向に対して印刷方向がほぼ垂直であることが望ましい。
 本発明のスクリーン製版を用いれば、太陽電池製造コストを低減でき、シャドーロスを増加させることなく、更には、太陽電池の美観を損ねることなく、バスバー電極とフィンガー電極の接続部の断線を防止することができ、信頼性の高い太陽電池を生産性よく製造することができる。
一般的な太陽電池の電極の断面図である。 一般的な太陽電池の表面形状を示す平面図である。 一般的な太陽電池の裏面形状を示す裏面図である。 従来のスクリーン製版の印刷中の様子を示す説明図である。 従来のスクリーン製版の印刷中のサドル現象の様子を示す説明図である。 従来のスクリーン製版を用いて印刷した後の電極形状の断面図である。 従来のスクリーン製版を用いた断線回避法の一例を示す説明図である。 従来のスクリーン製版の開口部拡大図である。 従来のスクリーン製版による印刷後拡大図である。 図9のA-A線に沿ったバスバー電極とフィンガー電極の接続部の断面図である。 本発明のスクリーン製版の一例を示す開口部拡大図である。 本発明の同スクリーン製版による印刷後拡大図である。 図12のB-B線に沿ったバスバー電極とフィンガー電極の接続部の断面図である。
 以下、本発明につき更に詳しく説明すると、本発明に係る太陽電池用スクリーン製版は、バスバー電極部が閉口部を有するもので、この場合、バスバー電極の輪郭から算出される開口面積のうち、60%以下、より好ましくは55%以下を閉口部とすることが好ましい。なお、閉口部は上記開口面積の30%以上、特に45%以上とすることで、本発明の効果をより有効に発揮させることができる。また、スクリーン製版におけるフィンガー電極の開口幅は80μm未満であり、好ましくは40~80μm、40μm以上80μm未満、より好ましくは40~75μm、更に好ましくは45~70μm、特に50~60μmである。
 図11は、本発明のスクリーン製版の一例を示すもので、図11において、スクリーン製版1の印刷方向(図中矢印方向)と平行にフィンガー電極開口部2が複数本形成されると共に、印刷方向と直交して幅広(Wb)のバスバー電極開口部3が形成されたものである。また、Wbの幅は0.5~3mm、特に1~2mmが好ましい。この場合、本発明に係るスクリーン製版1にあっては、バスバー電極開口部3内に複数の閉口部4が形成されたものである。これら閉口部4は、上記フィンガー電極開口部2の長手方向に対応一致する位置に形成されている。ここで、バスバー電極開口部3内の閉口部4は、フィンガー電極開口部2とバスバー電極開口部3とが接する辺から50~700μm、好ましくは100~300μmの間隔(Wc)があることが好ましい。50μm未満の間隔しかない場合、ペースト吐出量が減って断線を招く一方、700μmより大きくなると、スキージの押し込みによる、ペーストの押し出しが顕著になり、サドル現象が起きやすくなり、焼成時の熱収縮率の違いから断線が発生してしまうおそれがある。なお、各閉口部4間の間隔は100~2,000μm、特に300~1,000μmであることが好ましい。
 また、各閉口部4の合計面積は、上述したようにバスバー電極開口部3とその閉口部4との総面積(つまり、スクリーン製版のバスバー電極開口部3の輪郭から算出されるバスバー面積)の60%以下であり、更にフィンガー電極開口部2の幅Wfは80μm未満である。
 上述したスクリーン製版を用いることにより、図12,13に示したように、フィンガー電極の断線、印刷時におけるバスバー電極開口部でのスキージの転落、バスバー電極からフィンガー電極にかけてのフィンガー電極の太りを抑制することができる。
 次に、上記スクリーン製版を用いた本発明の太陽電池の作製方法の一例を以下に述べる。但し、本発明はこの方法で作製された太陽電池に限られるものではない。
 まず、高純度シリコンにホウ素あるいはガリウムのようなIII族元素をドープし、比抵抗0.1~5Ω・cmとしたアズカット単結晶{100}p型シリコン基板表面のスライスダメージを、濃度5~60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、フッ酸と硝酸の混酸等を用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法のいずれの方法によって作製されてもよい。
 引き続き、基板表面にテクスチャとよばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ溶液(濃度1~10質量%、温度60~100℃)中に10~30分間程度浸漬することで容易に作製される。上記溶液中に、所定量の2-プロパノールを溶解させ、反応を促進させることが多い。
 テクスチャ形成後、塩酸、硫酸、硝酸、フッ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。経済的及び効率的見地から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5~5質量%の過酸化水素を混合させ、60~90℃に加温して洗浄してもよい。
 この基板上に、オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する。一般的なシリコン太陽電池は、pn接合を受光面にのみ形成する必要があり、これを達成するために基板同士を2枚重ね合わせた状態で拡散したり、拡散前に裏面にSiO2膜やSiNx膜等を拡散マスクとして形成して、裏面にpn接合ができないような工夫を施す必要がある。拡散後、表面にできたガラスをフッ酸等で除去する。
 次に、受光面の反射防止膜形成を行う。製膜にはプラズマCVD装置を用いSiNx膜を約100nm製膜する。反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、プロセス圧力の調整、反応ガスの希釈、更には、基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。
 次いで、裏面電極をスクリーン印刷法で形成する。上記基板の裏面に、銀粉末とガラスフリットを有機物バインダで混合したペーストをバスバー状にスクリーン印刷した後、アルミニウム粉末を有機物バインダで混合したペーストをバスバー以外の領域にスクリーン印刷する。印刷後、700~800℃の温度で5~30分間焼成して、裏面電極が形成される。裏面電極形成は印刷法による方が好ましいが、蒸着法、スパッタ法等で作製することも可能である。
 次に、表面電極を、本発明に係るスクリーン製版を用いたスクリーン印刷法で形成する。
 より詳しくは、上記基板の表面に、銀粉末と、ガラスフリットと、有機物バインダを混合したペーストを、フィンガー電極幅が30~80μm、フィンガー電極間隔0.5~4.0mmで設計されたくし型の印刷パターンを有するスクリーン製版を用いて印刷する。
 本発明のスクリーン製版は、上記のような一般的な太陽電池のパターンは変更することなく、図11に示すようにバスバー電極内に閉口部を設けるだけでよい。
 一般的に用いられているスクリーン製版のフィンガー開口幅は80~100μmである。この場合、フィンガー電極は十分太く、厚く印刷できるために、上記のような断線が発生することは稀である。しかし、フィンガー開口幅80μm未満の細線になると、バスバー電極とフィンガー電極の膜厚差が大きくなり、熱収縮量の違いにより断線が発生してしまう(図9)。
 そのため、本発明では、バスバー電極とフィンガー電極を同時に印刷する太陽電池の製造方法において、バスバー電極の輪郭から算出される開口面積のうち、60%以下を閉口部としたスクリーン製版を用いて印刷することで断線を回避することができる(図13)。
 このような特徴を有するスクリーン製版を用いて印刷する太陽電池の製造方法において、本発明の効果を十分得るためには、バスバー電極に対して印刷方向がほぼ垂直であることが望ましい。
 本発明のスクリーン製版を用いると、上記した通りバスバー電極内の閉口部の存在により、刷り終わり側の吐出量が小さくなるために、フィンガー電極の太りを抑制する効果もある(図12)。
 バスバー開口部に部分的に閉口部を有すると、印刷後に印刷されていない部分ができる可能性がある。しかしこれは、モジュール作製時に、はんだコーティングされた銅のリード線を接着するため、外観上の問題は発生しない。また、従来のバスバー電極面積に比べて、40%以上バスバー電極面積があれば、リード線の接着強度を保つことができる。
 また、バスバー電極の使用量が減少することによって、低コストの太陽電池を製造することが可能となる。
 このように、スクリーン製版のバスバー電極内に閉口部を設置することで、バスバー電極とフィンガー電極の接続部の断線を回避することができる。
 上記のような手法を用いて電極を形成した後、大気下、700~800℃の温度で5~30分間熱処理することにより焼結させる。裏面電極及び受光面電極の焼成は一度に行うことも可能である。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
  [実施例、比較例]
 本発明の有効性を確認するため、以下の工程を半導体基板30枚について行い、太陽電池を作製した。
 印刷パターンは、従来のパターンA(フィンガー電極の開口幅(Wf)60μm:比較例:図8)に対して、バスバー電極開口内に閉口部を設けたパターンB(図11)と、フィンガー開口幅が100μmのパターンCのスクリーン製版を用意した(比較例:図8)。バスバー電極の開口幅Wbはすべて1.5mmに統一した。
 この場合、パターンBにおいて、フィンガー電極の開口部とバスバー電極の開口部が接する辺からバスバー電極開口部内の間隙Wcは100μmであり、また各閉口部間の間隙は1,000μmであり、閉口部の合計面積はバスバー電極開口部の輪郭から算出されるバスバー面積の55%であった。
 まず、15cm角、厚さ250μm、比抵抗2.0Ω・cmの、ホウ素ドープ{100}p型アズカットシリコン基板(100)を用意し、濃水酸化カリウム水溶液によりダメージ層を除去し、テクスチャを形成し、オキシ塩化リン雰囲気下850℃で熱処理したエミッタ層101を形成し、フッ酸にてリンガラスを除去し、洗浄、乾燥させた。次にプラズマCVD装置を用い、SiNx膜102を製膜し、裏面に、銀粉末とガラスフリットを有機物バインダで混合したペーストをバスバー状にスクリーン印刷した後(106)、アルミニウム粉末を有機物バインダで混合したペーストをバスバー以外の領域にスクリーン印刷した(104)。有機溶媒を乾燥して裏面電極を形成した半導体基板を作製した。
 次に、この半導体基板上に、銀粉末と、ガラスフリットと、有機ビヒクルと、有機溶媒とを主成分とし、添加物として金属酸化物を含有した導電性ペーストを、上記印刷パターンを有するスクリーン製版を用いて、スキージ硬度70度、スキージ角度70度、印圧0.3MPa、印刷速度50mm/secで半導体基板上に形成された反射防止膜上に塗布した。印刷後、150℃のクリーンオーブンで有機溶媒の乾燥を行った後、800℃の空気雰囲気下で焼成した。
 このように作製した太陽電池30枚について、光学顕微鏡による電極観察とソーラーシュミレーター(25℃の雰囲気の中、照射強度:1kW/m2、スペクトル:AM1.5グローバル)による評価を行った。また、光学顕微鏡にて印刷後のフィンガー幅と接続部の幅を観察し、断線の有無を確認した。実施例、比較例の結果平均を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 標準条件Aで、バスバー電極とフィンガー電極の接続部の断線が確認されたが、本発明に係る方法では確認されず、また、開口幅が大きい水準Cでも確認されなかった。
 短絡電流はフィンガー電極幅が大きいCでは減少した。これは幅増加によるシャドーロスが原因である。一方、曲線因子は、断線が起きたAに比べて、断線していない水準Bのほうが約1.5%高い75.1%を示した。
 従来法ではバスバー電極とフィンガー電極の接続部の断線が発生したが、本発明のスクリーン製版を用いれば工程数を増やすことなく、高アスペクト比の電極を断線なく形成することができる。
 以上のように、本発明によれば、バスバー電極とフィンガー電極の接続部を断線することなく電極を形成することによって、変換効率の高い太陽電池を、歩留りよく製造することができる。
1 スクリーン製版
2 フィンガー電極開口部
3 バスバー電極開口部
4 バスバー電極開口部内の閉口部
5 閉口部
12 フィンガー電極
13 表面バスバー電極
100 p型半導体基板
101 n型拡散層
102 反射防止膜(SiNx膜)
103 BSF層
104 アルミニウム電極
105 表面バスバー電極
106 裏面バスバー電極
107 フィンガー電極
110 メッシュ材
111 乳剤
112 スキージ
113 凹み部分
114 断線部

Claims (4)

  1.  導電性ペーストを用いて、バスバー電極とフィンガー電極を同時に印刷する太陽電池用のスクリーン製版であって、上記スクリーン製版のフィンガー電極開口部の開口幅が80μm未満であって、該スクリーン製版のバスバー電極開口部が閉口部を有することを特徴とするスクリーン製版。
  2.  上記スクリーン製版のバスバー電極開口部の輪郭から算出されるバスバー面積のうち、60%以下を閉口部とすることを特徴とする請求項1記載のスクリーン製版。
  3.  上記バスバー電極開口部の中の閉口部と、フィンガー電極開口部とバスバー電極開口部が接する辺との間は50μm以上700μm以下の間隔があることを特徴とする請求項1又は2記載のスクリーン製版。
  4.  請求項1~3のいずれか1項記載のスクリーン製版を用い、バスバー電極の長手方向に対してスキージの進行方向が垂直方向となるように導電性ペーストを印刷することを特徴とする太陽電池の電極の印刷方法。
PCT/JP2012/051488 2011-01-31 2012-01-25 太陽電池用スクリーン製版及び太陽電池の電極の印刷方法 WO2012105381A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES12742616T ES2547680T5 (es) 2011-01-31 2012-01-25 Placa serigráfica para panel solar y método para imprimir un electrodo de panel solar
EP12742616.1A EP2672523B2 (en) 2011-01-31 2012-01-25 Screen printing plate for solar cell and method for printing solar cell electrode
SG2013057864A SG192214A1 (en) 2011-01-31 2012-01-25 Screen printing plate for solar cell and method for printing solar cell electrode
CA2825141A CA2825141A1 (en) 2011-01-31 2012-01-25 Screen printing plate for solar cell and method for printing solar cell electrode
RU2013140396/12A RU2597573C2 (ru) 2011-01-31 2012-01-25 Трафаретная печатная форма для солнечного элемента и способ печати электрода солнечного элемента
CN201280007073.2A CN103339739B (zh) 2011-01-31 2012-01-25 太阳能电池的丝网印刷板及印刷太阳能电池的电极的方法
US13/980,902 US9216607B2 (en) 2011-01-31 2012-01-25 Screen printing plate for solar cell and method for printing solar cell electrode
JP2012555815A JP5761208B2 (ja) 2011-01-31 2012-01-25 太陽電池用スクリーン製版及び太陽電池の電極の印刷方法
KR1020137021706A KR101685669B1 (ko) 2011-01-31 2012-01-25 태양전지용 스크린 제판 및 태양전지의 전극의 인쇄 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-017886 2011-01-31
JP2011017886 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105381A1 true WO2012105381A1 (ja) 2012-08-09

Family

ID=46602599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051488 WO2012105381A1 (ja) 2011-01-31 2012-01-25 太陽電池用スクリーン製版及び太陽電池の電極の印刷方法

Country Status (12)

Country Link
US (1) US9216607B2 (ja)
EP (1) EP2672523B2 (ja)
JP (1) JP5761208B2 (ja)
KR (1) KR101685669B1 (ja)
CN (1) CN103339739B (ja)
CA (1) CA2825141A1 (ja)
ES (1) ES2547680T5 (ja)
MY (1) MY160871A (ja)
RU (1) RU2597573C2 (ja)
SG (1) SG192214A1 (ja)
TW (1) TWI600171B (ja)
WO (1) WO2012105381A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012766B2 (en) 2009-11-12 2015-04-21 Silevo, Inc. Aluminum grid as backside conductor on epitaxial silicon thin film solar cells
US9214576B2 (en) 2010-06-09 2015-12-15 Solarcity Corporation Transparent conducting oxide for photovoltaic devices
US9773928B2 (en) 2010-09-10 2017-09-26 Tesla, Inc. Solar cell with electroplated metal grid
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
US9865754B2 (en) 2012-10-10 2018-01-09 Tesla, Inc. Hole collectors for silicon photovoltaic cells
USD1009775S1 (en) 2014-10-15 2024-01-02 Maxeon Solar Pte. Ltd. Solar panel
USD933584S1 (en) 2012-11-08 2021-10-19 Sunpower Corporation Solar panel
US9412884B2 (en) 2013-01-11 2016-08-09 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
US10074755B2 (en) 2013-01-11 2018-09-11 Tesla, Inc. High efficiency solar panel
US9219174B2 (en) 2013-01-11 2015-12-22 Solarcity Corporation Module fabrication of solar cells with low resistivity electrodes
TWI511307B (zh) * 2013-04-11 2015-12-01 Darfon Materials Corp 元件上之電極結構及其製造方法
TWI456782B (zh) * 2013-06-05 2014-10-11 Motech Ind Inc 印刷用網版及應用該印刷用網版之太陽能電池的製造方法
US9054238B1 (en) 2014-02-26 2015-06-09 Gtat Corporation Semiconductor with silver patterns having pattern segments
US10309012B2 (en) 2014-07-03 2019-06-04 Tesla, Inc. Wafer carrier for reducing contamination from carbon particles and outgassing
USD933585S1 (en) 2014-10-15 2021-10-19 Sunpower Corporation Solar panel
USD999723S1 (en) 2014-10-15 2023-09-26 Sunpower Corporation Solar panel
USD913210S1 (en) 2014-10-15 2021-03-16 Sunpower Corporation Solar panel
USD896747S1 (en) 2014-10-15 2020-09-22 Sunpower Corporation Solar panel
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
US9947822B2 (en) 2015-02-02 2018-04-17 Tesla, Inc. Bifacial photovoltaic module using heterojunction solar cells
TWI550888B (zh) * 2015-02-17 2016-09-21 太極能源科技股份有限公司 太陽能電池
TWI554838B (zh) * 2015-07-21 2016-10-21 茂迪股份有限公司 具有良好漿料印刷性之網版
US9761744B2 (en) 2015-10-22 2017-09-12 Tesla, Inc. System and method for manufacturing photovoltaic structures with a metal seed layer
US9842956B2 (en) 2015-12-21 2017-12-12 Tesla, Inc. System and method for mass-production of high-efficiency photovoltaic structures
US10115838B2 (en) 2016-04-19 2018-10-30 Tesla, Inc. Photovoltaic structures with interlocking busbars
US10672919B2 (en) 2017-09-19 2020-06-02 Tesla, Inc. Moisture-resistant solar cells for solar roof tiles
US11190128B2 (en) 2018-02-27 2021-11-30 Tesla, Inc. Parallel-connected solar roof tile modules
CN109016807B (zh) * 2018-07-24 2023-12-01 浙江爱旭太阳能科技有限公司 用于正电极镂空成型的晶硅太阳能电池网版
HUE052108T2 (hu) * 2018-08-24 2021-04-28 Rogers Bv Elektromos energiatároló eszköz
KR102486697B1 (ko) * 2020-06-09 2023-01-11 한빅솔라(주) 태양전지의 전면전극용 스텐실 마스크
CN212967720U (zh) * 2020-09-08 2021-04-13 东方日升(常州)新能源有限公司 一种太阳能电池金属电极结构及电池组件
WO2022138824A1 (ja) * 2020-12-24 2022-06-30 京セラ株式会社 スクリーン印刷製版およびスクリーン印刷装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101426A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 太陽電池装置および太陽電池モジュール
JP2005116559A (ja) * 2003-10-02 2005-04-28 Sharp Corp 太陽電池の製造方法
WO2005109524A1 (ja) * 2004-05-07 2005-11-17 Mitsubishi Denki Kabushiki Kaisha 太陽電池及びその製造方法
JP2006054374A (ja) 2004-08-13 2006-02-23 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
JP2009016713A (ja) * 2007-07-09 2009-01-22 Sharp Corp 太陽電池の製造方法および太陽電池ならびに印刷用スクリーン
JP2009272405A (ja) 2008-05-02 2009-11-19 Mitsubishi Electric Corp 太陽電池素子およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151377A (en) 1991-03-07 1992-09-29 Mobil Solar Energy Corporation Method for forming contacts
US5543333A (en) 1993-09-30 1996-08-06 Siemens Solar Gmbh Method for manufacturing a solar cell having combined metallization
EP0729189A1 (en) 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
JP2002026345A (ja) 2000-07-10 2002-01-25 Hitachi Ltd 太陽電池
JP2004247596A (ja) 2003-02-14 2004-09-02 Kyocera Corp 太陽電池素子およびその製造方法およびその太陽電池素子を用いた太陽電池モジュール
US20070295381A1 (en) 2004-03-29 2007-12-27 Kyocera Corporation Solar Cell Module and Photovoltaic Power Generator Using This
JP4425246B2 (ja) * 2005-08-31 2010-03-03 三洋電機株式会社 光起電力装置および光起電力装置の製造方法
EP1936699A1 (en) 2005-10-14 2008-06-25 Sharp Kabushiki Kaisha Solar cell, solar cell provided with interconnector, solar cell string and solar cell module
JP4893056B2 (ja) * 2006-03-28 2012-03-07 株式会社日立プラントテクノロジー スクリーン印刷装置
WO2007119365A1 (ja) 2006-04-14 2007-10-25 Sharp Kabushiki Kaisha 太陽電池、太陽電池ストリングおよび太陽電池モジュール
WO2008001430A1 (en) * 2006-06-27 2008-01-03 Mitsubishi Electric Corporation Screen printing machine and solar battery cell
JP4174545B1 (ja) 2007-05-10 2008-11-05 シャープ株式会社 太陽電池、太陽電池の製造方法、太陽電池ストリングおよび太陽電池モジュール
DE102007041057A1 (de) * 2007-08-29 2009-03-05 Manz Automation Ag Verfahren zum Herstellen einer Solarzelle
JP5368022B2 (ja) 2008-07-17 2013-12-18 信越化学工業株式会社 太陽電池
KR20100069950A (ko) * 2008-12-17 2010-06-25 에스에스씨피 주식회사 태양전지용 전극, 그 제조방법 및 태양전지
CN101609848B (zh) * 2009-07-13 2010-12-01 江苏林洋新能源有限公司 丝网印刷晶体硅太阳能电池的正背面电极及其制造方法
US9390829B2 (en) * 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
WO2012165590A1 (ja) * 2011-05-31 2012-12-06 京セラ株式会社 太陽電池およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101426A (ja) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd 太陽電池装置および太陽電池モジュール
JP2005116559A (ja) * 2003-10-02 2005-04-28 Sharp Corp 太陽電池の製造方法
WO2005109524A1 (ja) * 2004-05-07 2005-11-17 Mitsubishi Denki Kabushiki Kaisha 太陽電池及びその製造方法
JP2006054374A (ja) 2004-08-13 2006-02-23 Shin Etsu Handotai Co Ltd 太陽電池の製造方法および太陽電池
JP2009016713A (ja) * 2007-07-09 2009-01-22 Sharp Corp 太陽電池の製造方法および太陽電池ならびに印刷用スクリーン
JP2009272405A (ja) 2008-05-02 2009-11-19 Mitsubishi Electric Corp 太陽電池素子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2672523A4

Also Published As

Publication number Publication date
US9216607B2 (en) 2015-12-22
EP2672523A1 (en) 2013-12-11
CN103339739B (zh) 2015-11-25
TWI600171B (zh) 2017-09-21
KR20140014137A (ko) 2014-02-05
KR101685669B1 (ko) 2016-12-12
CA2825141A1 (en) 2012-08-09
RU2013140396A (ru) 2015-03-10
SG192214A1 (en) 2013-09-30
RU2597573C2 (ru) 2016-09-10
EP2672523A4 (en) 2014-07-09
ES2547680T3 (es) 2015-10-08
EP2672523B1 (en) 2015-07-22
JP5761208B2 (ja) 2015-08-12
ES2547680T5 (es) 2019-06-26
CN103339739A (zh) 2013-10-02
US20130291743A1 (en) 2013-11-07
MY160871A (en) 2017-03-31
TW201248872A (en) 2012-12-01
JPWO2012105381A1 (ja) 2014-07-03
EP2672523B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP5761208B2 (ja) 太陽電池用スクリーン製版及び太陽電池の電極の印刷方法
US8253011B2 (en) Semiconductor substrate, electrode forming method, and solar cell fabricating method
JP5172480B2 (ja) 光電変換装置およびその製造方法
EP2355167A2 (en) Method for manufacturing electrode for solar cell, substrate for solar cell manufactured by the same, and solar cell manufactured by the same
MX2015004291A (es) Dispositivos fotovoltaicos con rejillas metalicas galvanizadas.
TW201924073A (zh) 具p-型導電性的指叉式背接觸式太陽能電池
JP2007521668A (ja) バックコンタクト型太陽電池とその製造法
WO2012075394A1 (en) Nanoparticle inks for solar cells
CN102484148B (zh) 太阳能电池单元及其制造方法
US20110201196A1 (en) Method for producing a metal contact on a semiconductor substrate provided with a coating
JP2012054442A (ja) 太陽電池の製造方法及びこれに用いるスクリーン製版
JP2007134387A (ja) 光電変換素子およびその電極形成方法
JP5991945B2 (ja) 太陽電池および太陽電池モジュール
JP2005191107A (ja) 太陽電池素子の製造方法
JP5693503B2 (ja) 太陽電池およびその製造方法
JP2017139351A (ja) 太陽電池素子の製造方法および太陽電池素子
JP5477233B2 (ja) 太陽電池の製造方法
JP6125417B2 (ja) スクリーン印刷用メタルマスク及び太陽電池の製造方法
JP5920130B2 (ja) 太陽電池の製造方法
JP5858025B2 (ja) 太陽電池の製造方法
JP2011138922A (ja) 太陽電池及び太陽電池製造用スクリーン製版
JP2017147266A (ja) 太陽電池の集電電極の形成方法
JP5760956B2 (ja) フィンガー電極の形成方法
WO2009150741A1 (ja) 光起電力装置の製造方法
JP2014220462A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555815

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2825141

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13980902

Country of ref document: US

Ref document number: 2012742616

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12013501609

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20137021706

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013140396

Country of ref document: RU

Kind code of ref document: A