WO2012103675A1 - 六氟化硫气体分离净化装置及其六氟化硫净化方法 - Google Patents

六氟化硫气体分离净化装置及其六氟化硫净化方法 Download PDF

Info

Publication number
WO2012103675A1
WO2012103675A1 PCT/CN2011/002030 CN2011002030W WO2012103675A1 WO 2012103675 A1 WO2012103675 A1 WO 2012103675A1 CN 2011002030 W CN2011002030 W CN 2011002030W WO 2012103675 A1 WO2012103675 A1 WO 2012103675A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
container
separation
control system
separation container
Prior art date
Application number
PCT/CN2011/002030
Other languages
English (en)
French (fr)
Inventor
李春明
魏光林
李文海
靳国豪
Original Assignee
平高集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44516700&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012103675(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 平高集团有限公司 filed Critical 平高集团有限公司
Publication of WO2012103675A1 publication Critical patent/WO2012103675A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/45Compounds containing sulfur and halogen, with or without oxygen
    • C01B17/4507Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only
    • C01B17/4515Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only containing sulfur and fluorine only
    • C01B17/453Sulfur hexafluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a device for separating and purifying sulfur hexafluoride gas, and the present invention also relates to a sulfur hexafluoride purification method based on the sulfur hexafluoride gas separation and purification device.
  • the safety of sulfur hexafluoride electrical equipment has increased.
  • the domestic sulphur hexafluoride gas used in the production of switch products is about 0000 tons.
  • the current maintenance period is calculated in 10 years.
  • One-tenth of the sulphur hexafluoride gas needs to be replaced every year.
  • the annual replacement is about 1,000 tons, about 140,000 yuan per ton, and the average annual cost is about 140 million yuan.
  • sulfur hexafluoride gas has also been designated as a greenhouse gas by the United Nations Environment Agency. Its greenhouse effect is 23,500 times that of the same amount of carbon dioxide gas.
  • An object of the present invention is to provide a sulfur hexafluoride gas separation and purification apparatus for solving the problem of low purity of sulfur hexafluoride gas which is incompletely separated and separated in the prior art. Meanwhile, the present invention also relates to a sulfur hexafluoride purification method based on the sulfur hexafluoride gas separation and purification apparatus.
  • the sulfur hexafluoride gas separation and purification device of the present invention adopts the following technical solution: a sulfur hexafluoride gas separation and purification device, the device comprising a first separation container and a second separation container, both of which have a heat exchange cooling medium passage and a sulfur hexafluoride chamber, the first separation container has an air inlet, an air outlet, a liquid inlet and a liquid outlet respectively communicating with the sulfur hexafluoride chamber, and the second separation container has The air inlet, the air outlet and the liquid outlet respectively communicating with the sulphur hexafluoride chamber, the air inlet of the first separation container is connected to the sulphur hexafluoride gas source through the first compressor, and the first separation container is discharged
  • the air port is connected to the air inlet of the second separating container through the buffer container and the second compressor, and the ninth switching valve is disposed between the second compressor and the second separating container, and the working pressure of the second compressor
  • the outlet port of the liquid storage container is connected to the air inlet of the buffer container through the third switching valve, and the air outlet of the buffer container communicates with the air inlet of the first compressor through the fourth switching valve, and the air outlet of the second separation container
  • the outlet port of the second separation container is connected to the inlet port of the first separation container through the sixth switching valve through the pressure reducing valve and the fifth switching valve communicating with the atmosphere.
  • the first separation container is provided with a first pressure gauge for testing the gas pressure in the sulfur hexafluoride chamber
  • the second separation container is provided with a gas pressure for testing the sulfur sulphide chamber. Two pressure gauges.
  • the two ports of the cooling medium passage of the first separation container are respectively connected to the refrigerant outlet and the refrigerant inlet of a refrigeration unit, and the two ports of the refrigerant medium passage of the second separation container are respectively associated with the refrigeration unit
  • the outlet of the refrigerant medium is connected to the inlet of the refrigerant medium.
  • a drying filter, a low fluoride filter and a particulate filter are sequentially arranged in series between the air inlet of the first separation container and the sulfur hexafluoride gas source.
  • the liquid outlet of the liquid storage container is connected to the liquid storage cylinder through the liquid injection port, and the seventh on-off valve is disposed between the liquid injection pump and the liquid storage cylinder.
  • the outlet of the liquid injection pump is two paths, one is connected to the liquid storage cylinder through the seventh on-off valve, and the other is connected to the air outlet of the liquid storage container through the eighth switch.
  • the cooling medium passage of the first separation container and the second separation container is a pipe disposed in the inner cavity of the container,
  • the sulphur hexafluoride chamber of the first separation vessel and the second separation vessel is the inner chamber of the vessel.
  • the SF6 purification method of the present invention adopts the following technical solutions:
  • a sulphur hexafluoride purification method the purification device of the sulphur hexafluoride purification method comprises a first separation container and a second separation container, both of which have a heat transferable cooling medium passage and a sulphur hexafluoride chamber.
  • the first separation container has an air inlet, an air outlet, a liquid inlet and a liquid outlet respectively communicating with the sulphur hexafluoride chamber
  • the second separation container has an air inlet and a gas outlet respectively communicating with the sulphur hexafluoride chamber a gas port and a liquid outlet
  • the air inlet of the first separation container is connected to the sulfur sulphur hexafluoride gas source through the first compressor
  • the air outlet of the first separation container passes through the buffer container and the second compressor and the second separation container
  • the gas port is connected
  • a ninth switch valve is disposed between the second compressor and the second separation container, and the working pressure of the second compressor is greater than the working pressure of the first compressor, and between the gas outlet of the first separation container and the buffer container
  • the first switching valve is provided, and the liquid outlet of the first separation container is connected to the liquid storage container through the second switching valve, and the air outlet of the liquid storage container is connected to the air inlet of the buffer container through the third switching valve
  • the fourth on-off valve is opened, and the first compressor is started to be started, after the liquid in the first separation container is exhausted, the control system controls the first on-off valve, the second on-off valve, the third on-off valve and the fourth on-off valve to be closed And controlling the first compressor to stop, the second separation container is provided with a second pressure sensor, and the second pressure sensor transmits the measured pressure value to the control system, and the control system will transmit the pressure value and the control system preset Comparing the two pressure values, when the value measured by the second pressure sensor is greater than the preset larger second pressure value, the control system controls the fifth switching valve to open, and the gas in the second separation container is discharged into the atmosphere, when the second When the value measured by the pressure sensor is smaller than the second second pressure value preset in the control system, the control system controls the fifth on-off valve to be closed, and the second separation device is further provided with a second weight measuring device, the second weight - the measuring device transmits the measured weight value to the control system, and the control system compares the transmitted weight value
  • the invention cools the sulfur hexafluoride gas injected into the sulphur hexafluoride chamber of the first separation container by the first compressor by introducing a lower temperature cooling medium into the cooling medium passage of the first separation container. , the sulphur hexafluoride gas is liquefied under pressure.
  • the liquid is stored in a certain amount, the liquid is discharged into the liquid storage container, the gas pressure of the liquid storage container is small, and a certain amount of gas is volatilized in the liquid, which will volatilize
  • the gas that has exited is pressed into the first separation vessel through the first compressor for secondary cooling and purification, thereby ensuring the purity of the liquid in the liquid storage container.
  • the second compressor is started to draw the gas in the first separation container into the second separation container for cooling, and the gas is liquefied at a higher pressure.
  • the non-liquefied gas is discharged into the atmosphere through a pressure reducing valve.
  • the invention purifies the purity of the liquid in the liquid storage container by two cooling and purifying, and simultaneously reduces the impurity content in the sulfur hexafluoride by discharging the low purity gas which is not liquefied after two times of pressurized cooling into the air.
  • the liquid outlet of the second separation container is connected to the liquid inlet of the first separation container through the sixth switching valve, and the body in the sulphur hexafluoride chamber of the second separation container can be introduced into the first separation container to continue to be circulated and purified. Improve the separation rate of sulfur hexafluoride, reduce the waste of sulfur hexafluoride, and increase the recovery rate of sulfur hexafluoride.
  • a first pressure gauge for measuring the gas pressure in the sulphur hexafluoride chamber is disposed on the first separation container, and the second separation container is provided with a gas pressure in the sulphur hexafluoride chamber.
  • the second pressure gauge can accurately determine the pressure in the two separation containers by the first pressure gauge and the second pressure gauge, and accurately grasp the timing of pressing the gas in the first separation container into the second separation container, and The timing at which the gas in the separation vessel is discharged.
  • the liquid outlet of the liquid storage container of the present invention is connected with a liquid storage cylinder through a liquid injection pump, and a seventh shut-off valve is disposed between the liquid injection pump and the liquid storage cylinder, and the liquid in the liquid storage container can be introduced by opening the on-off valve.
  • the storage cylinders are stored in reserve, and at the same time, the purification device is continuously operated.
  • the outlet of the infusion pump of the present invention has two paths 'one way through the seventh switch valve and the liquid storage cylinder, and the other way is connected to the air outlet of the liquid storage container through the eighth on-off valve, and the seventh on-off valve is opened to the storage Before injecting liquid in the liquid steel bottle, the eighth on-off valve can be opened to circulate the medium in the pipeline under the action of the liquid injection pump to make the pipeline full of liquid, and to ensure that all the liquid in the liquid storage cylinder is filled.
  • Figure 1 is a schematic diagram of an embodiment of the present invention.
  • FIG. 1 An embodiment of a sulfur hexafluoride gas separation and purification apparatus, in FIG. 1, the apparatus includes a first separation container 2, and a cooling medium passage 82 is disposed in a cavity of the first separation container 22, 'the first separation container 22
  • the two ports of the cooling medium passage 82 are respectively communicated with the refrigerant outlet and the refrigerant inlet of the refrigeration unit 80, and the first port of the coolant chamber of the first separation container 22 is disposed first with the outlet of the refrigerant unit 80.
  • the air inlet of the first separating container 22 is in communication with the air outlet of the first compressor 8, and the air inlet of the first compressor 8 is connected to the sulfur hexafluoride gas source, where the sulfur hexafluoride gas source can be installed
  • a low fluoride filter 13 and a particulate filter 14 are sequentially arranged between the first compressor 8 and the first separation container 22, and the inlet of the first compressor 8 is arranged in series.
  • the air outlet of the first separation container 22 communicates with the buffer container 21 through the first shut-off valve 19, and the air outlet of the buffer container 21 communicates with the air inlet of the second compressor 44, and the working pressure of the second compressor is greater than the first compression.
  • the air outlet of the second compressor 44 is connected to the air inlet of the second separating container 58 through the ninth switching valve 49.
  • the inner space of the second separating container 58 is provided with a cooling medium passage, and the cooling medium passage of the second separating container 58
  • the two ports are respectively connected to the refrigerant outlet and the refrigerant inlet of the refrigeration unit 80, and the second shutoff valve is disposed between the port of the coolant passage of the second separation tank 58 and the refrigerant inlet of the refrigeration unit 80.
  • the air outlet of the second separating container 58 communicates with the inlet of the pressure reducing valve 78, and the outlet of the pressure reducing valve 78 communicates with the atmosphere through the fifth opening and closing valve 59.
  • the air outlet of the second separating container 58 is divided into two paths, one is connected to the pressure reducing valve 78, and the other is connected to the liquid outlet of the first separating container 22 through the sixth switching valve 38.
  • the liquid outlet of the first separation container 22 is divided into two paths, one is connected to the sixth on-off valve 38, and the other is passed through the second.
  • the switch width 36 is in communication with the liquid inlet of the liquid storage container 23, and the liquid inlet of the liquid storage container 23 is divided into two paths, one of which is in communication with the second on-off valve 36, and the other of which is connected to the liquid storage cylinder 81 through the infusion pump 35.
  • a seventh switch valve 29 is disposed between the liquid storage cylinder 81 and the liquid injection pump 35.
  • the outlet of the liquid injection pump 35 is divided into two paths, one of which is connected to the seventh on-off valve 29, and the other of which is connected to the eighth on-off valve 32.
  • the air outlet of the liquid storage container 23 is connected, and the air outlet of the liquid storage container 23 is divided into two paths, one of which is in communication with the eighth on-off valve 32, and the other of which is connected to the inlet of the low-fluoride filter 13 through the third on-off valve 12 and passes through
  • the particulate filter 14 is connected to the air outlet and the air inlet of the buffer container via the air inlet of the first separation container 22.
  • a port communicating with the first compressor 8 through the fourth switching valve 65 is provided between the air outlet of the buffer container and the second compressor.
  • the first pressure separation port of the first separation container 22 is provided with a first pressure gauge 18 for testing the gas pressure in the sulfur hexafluoride chamber
  • the second separation container 58 is provided with a test sulphur hexafluoride chamber on the side wall of the container.
  • the second pressure gauge 50 of the gas pressure is provided with a first pressure gauge 18 for testing the gas pressure in the sulfur hexafluoride chamber
  • the second pressure gauge 50 of the gas pressure is provided with a test sulphur hexafluoride chamber on the side wall of the container.
  • the port between the seventh on-off valve 29 and the liquid storage cylinder and the port between the eighth switch width 32 and the air outlet of the liquid storage container 23 are connected by a pipe, and the seventh on-off valve 29 and the liquid storage A tenth on-off valve 31 is disposed between the port between the cylinders and the liquid storage cylinder, and a port between the liquid outlet of the liquid storage container and the first compressor and the sulfur sulphur hexafluoride gas source is connected through the eleventh on-off valve 63.
  • a port between the first compressor and the sulfur hexafluoride gas source is connected to a vacuum pump 70 through a pipe between the first compressor and the sulfur hexafluoride gas source, and the vacuum pump 70 is provided with a tenth inlet Two switching valves 69.
  • a thirteenth switching valve 62 is provided between the first compressor 8 and the low-fluoride filter 13.
  • the inlet of the liquid storage cylinder 81 passes through the tenth switching valve 31 and the port connecting the port between the seventh switching valve 29 and the liquid storage cylinder and the port between the eighth switching valve 32 and the air outlet of the liquid storage container 23 and the tenth
  • An on-off valve 63 is connected to the vacuum pump 70.
  • the inlet of the first compressor 8 is turned on, and the switch of the gas source is turned on, and the sulfur hexafluoride gas passes through the drying filter 5 and the low fluoride filter under the action of the first compressor 8. 13 and the particulate filter 14 is pressed into the first separation vessel 22, at which time the refrigeration unit begins to operate, the sulfur hexafluoride gas is cooled in the first separation vessel and compressed by the first compressor 8, when When the temperature drops to a certain extent, the sulfur hexafluoride gas is liquefied. Since the sulfur hexafluoride gas contains impurities such as air, there will be a non-liquefied gas. When the pressure in the first separation vessel 22 reaches a set value, the first is opened.
  • the switching valve 19 and the ninth switching valve 49 simultaneously activate the second compressor 44 to press the gas in the first separation container 22 into the second separation container 58 via the buffer container 21, since the working pressure of the second compressor is greater than the first The compressor, the impurity-containing sulfur hexafluoride gas continues to be liquefied in the second separation container 58, and when the pressure reaches the set value, the fifth on-off valve 59 is opened, and the low-purity gas that is still not liquefied is discharged through the pressure reducing valve 78. Into the atmosphere When the pressure in the first separation vessel 22 drops to the set value, the second compressor 44 can be stopped and the ninth switching valve 49 can be closed.
  • the second on-off valve 36 is opened, and the liquid flows into the liquid storage container 23 from the first separation container 22, and at the same time, the sulfur hexafluoride gas source is The switch is closed, and the third switching valve 12 is opened at the same time, in the low pressure environment of the liquid storage container 23. In the middle, the liquid will volatilize a part of the gas, and then the gas will enter the first separation container 22 through the buffer container 21 under the action of the first compressor 8 for the second cooling and purification, and the liquid storage container 23 will be filled after the liquid is finished.
  • the third switching valve 12 is closed.
  • the sixth on-off valve 38 is opened to introduce the liquid into the first separation container to continue the circulation. It should be noted that: when the second on-off valve 36 is opened, the sixth valve cannot be opened. The switching valve is opened to prevent liquid in the second separation container from being mistakenly inserted into the liquid storage container.
  • the tenth switch valve 31, the eleventh switch width 63 and the twelfth switch valve 69 can be opened, and at the same time, the gas source switch valve, the thirteenth switch valve 62, The seventh on-off valve 29, the third on-off valve 12, the second on-off valve 36, and the eighth on-off valve 32 are in a closed state, and then the vacuum pump 70 is opened to evacuate the liquid storage cylinder 81, and when the liquid storage switch valve is in a vacuum state
  • the tenth on-off valve 31, the eleventh on-off valve 63 and the twelfth on-off valve 69 are closed, the eighth on-off valve 32 is opened, and the infusion pump 35 is activated to close the eighth on-off valve 32 after the liquid is circulated.
  • the seventh switch wide 29 and the tenth open switch valve 31 are opened to inject the liquid storage cylinder.
  • the liquid outlet and the liquid inlet of the first separation container 22 in this embodiment are one port, and the pipelines between the circulation loops also have a certain overlap.
  • two ports can also be provided. , separate the inlet port from the reservoir, and the corresponding circulation line can also be separated.
  • the air outlet and the liquid outlet of the second separation container 58 in this embodiment are also the same port.
  • it can also be set as two ports, and the corresponding circulation lines can also be separately provided.
  • the air outlet of the liquid storage container in this embodiment is first connected to the air inlet of the first separation container through the third switching valve and then connected to the buffer container through the air outlet of the first separation container.
  • a circulation tube may be further provided.
  • the road allows the liquid storage container to be directly connected to the air inlet of the buffer container through the third switching valve.
  • the on-off valves in this embodiment can be arranged as solenoid valves, and each of the on-off valves and the two compressors are programmed to realize automatic control of the entire device.
  • a safety valve is disposed on the pressure element and the pressure pipe in this embodiment.
  • the purification device of the sulphur hexafluoride purification method comprises a first separation vessel 22 and a second separation vessel 58, both of which have heat exchangeable cooling medium a passage and a sulfur hexafluoride chamber, the first separation vessel 22 has an inlet, an outlet, a liquid inlet and a liquid outlet respectively communicating with the sulfur hexafluoride chamber, and the second separation container 58 has a hexafluoride
  • the air inlet, the air outlet and the liquid outlet of the first separation container 22 are connected to the air source of the sulfur hexafluoride gas through the first compressor 8, and the air outlet of the first separation container 22 passes through
  • the buffer container and the second compressor 44 are connected to the intake port of the second separation container 58, and the second compressor 44 and the second separation container 58
  • a ninth opening and closing valve 49 is disposed, and a working pressure of the second compressor 44 is greater than a working pressure
  • the outlet port of a separation container 22 is connected to the liquid storage container through the second switching valve 36.
  • the air outlet of the liquid storage container is connected to the air inlet of the buffer container through the third switching valve 12, and the air outlet of the buffer container passes through the fourth switch.
  • the valve 65 communicates with the intake port of the first compressor 8, the air outlet of the second separating container 58 communicates with the atmosphere through the pressure reducing valve and the fifth switching valve 59, and the liquid outlet of the second separating container 5 ⁇ passes through the sixth switching valve.
  • the ninth on-off valve 49 is electromagnetic wide, and the first separation container 22 is provided with a first pressure sensor, and the first pressure sensor transmits the measured pressure value to the control system, and the control system transmits the pressure value and the control system preset.
  • the control system controls the first on-off valve 19 and the ninth switch to open 49 while controlling the second compressor 44 to start, and the first separation container
  • the gas in 22 is drawn into the second separation container 58 through the buffer container.
  • the control system controls the first on-off valve 19 and the first The nine-switch valve 49 is closed, and the second compressor 44 is controlled to stop.
  • the first separating container 22 is further provided with a first weight measuring device. The first weight measuring device transmits the measured weight value to the control system, and the control system transmits The weight value is compared with a preset first weight value.
  • the control system controls the second switching valve 36 to open.
  • the control system controls the first on-off valve 19, the third on-off valve 12 and the fourth on-off valve 65 to open, and controls the first compressor 8 to start, after the liquid in the first separation container 22 is exhausted.
  • the control system controls the first on-off valve 19, the second on-off valve 36, the third on-off valve 12 and the fourth on-off valve 65 to be closed, and controls the first compressor 8 to stop, and the second separation container 58 is provided with a second pressure sensor.
  • the second pressure sensor transmits the measured pressure value to the control system, and the control system compares the transmitted pressure value with a second pressure value preset by the control system, and the value measured by the second pressure sensor is greater than a preset larger value.
  • the control system controls the fifth on-off valve 59 to open, the gas in the second separation vessel 58 is vented to the atmosphere, and the value measured by the second pressure sensor is less than the second, lower pressure preset in the control system.
  • the control system controls the fifth on-off valve 59 to be closed, and the second separation container 58 is further provided with a second weight measuring device, and the second weight measuring device transmits the measured weight value to the control system, and the control system will transmit the
  • the weight value is compared with the preset second weight value, and when the weight value measured by the second weight measuring device is greater than or equal to the second weight value preset by the control system, the control system controls The switching valve 38 is opened, the liquid in the second separation vessel 58 charged sulfur hexafluoride into the first separation vessel 22, a second purification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

六氟化硫气体分离净化装置及其六氟化硫净化方法 技术领域
本发明涉及一种将六氟化硫气体分离净化的装置, 同时本发明还涉及基于该六氟化硫气 体分离净化装置的六氟化硫净化方法。
背景技术
在目前的电网中六氟化硫电气设备円益增多, 据国内有关权威资料数据统计, 国内在生 产开关产品时一年使用的六氟化硫气体共 ] 0000吨左右。 目前的检修周期按 10年计算, 每 年需要更换六氟化硫气体十分之一, 一年的更换量在 1000吨左右, 每吨约 14万元, 平均每 年耗资 1.4亿元左右。 另外, 六氟化硫气体也被联合国环境署定为温室气体, 它的温室效应 是等量二氧化碳气体的 23500倍, 目前地球气候正经历一次全球变暖, 减少温室气体的排放 具有重大的战略意义, 因此, 研发循环净化六氟化硫气体的装置具有深远的意义。 目前国内 外的处理设备主要以回收装置为主, 此种装置对回收后的气体无法再利用, 导致气体浪费, 气体的大量废弃严重恶化了人类的生存环境。 气体的净化处理设备有着巨大的市场, 在未来 将成为回收装置的替代产品, 目前国内外的六氟化硫的分离技术水平不高, 研发高品质的净 化分离装置将成为行业的发展趋势。
目前国内的六氟化硫净化分离设备存在着二次污染与气体分离不彻底以及排放超标问 题。 国外设备的分离纯度低, 不能满足国内的实际使用要求。
发明内容
本发明的目的在于提供一种六氟化硫气体分离净化装置, 以解决现有技术中气体分离不 彻底、 分离出来的六氟化硫气体的纯度低的问题。 同时, 本发明还涉及基于该六氟化硫气体 分离净化装置的六氟化硫净化方法。
为实现上述目的, 本发明的六氟化硫气体分离净化装置采用如下技术方案: 一种六氟化 硫气体分离净化装置, 该装置包括第一分离容器和第二分离容器, 两分离容器均具有可换热 的冷却介质通道和六氟化硫容腔, 第一分离容器具有分别与六氟化硫容腔连通的进气口、 出 气口、 进液口和出液口, 第二分离容器具有分别与六氟化硫容腔连通的进气口、, 出气口和出 液口, 第一分离容器的进气口通过第一压缩机与六氟化硫气源相连, 第一分离容器的出气口 通过缓冲容器和第二压缩机与第二分离容器的进气口相连, 第二压缩机与第二分离容器之间 设置有第九开关阀, 第二压缩机的工作压力大于第一压缩机的工作压力, 第一分离容器的出 气口与缓冲容器之间设有第一开关阀, 第一分离容器的出液口通过第二开关阀与储液容器相
1
确认本 连, 储液容器的出气口通过第三开关阀与缓冲容器的进气口相连, 缓冲容器的出气口通过第 四开关阀与第一压缩机的进气口连通, 第二分离容器的出气口通过减压阀与第五开关阀与大 气连通, 第二分离容器的出液口通过第六开关阀与第一分离容器的进液口相连。
所述的第一分离容器上设置有测试六氟化硫容腔内的气压力的第一压力表, 所述的第二 分离容器上设置有测试六氟化硫容腔内的气压力的第二压力表。
所述第一分离容器的冷却介质通道的两个端口分别与一制冷机组的制冷介质出口和制冷 介质进口相连, 所述第二分离容器的制冷介质通道的两个端口分别与所述制冷机组的制冷介 质出口和制冷介质进口相连。
所述第一分离容器的进气口与六氟化硫气源之间依次串设有干燥过滤器、 低氟化物过滤 器和颗粒过滤器。
所述的储液容器的出液口通过注液衮连通有储液钢瓶, 注液泵与储液钢瓶之间设置有第 七开关阀。
所述的注液泵的出口处为两路, 一路通过第七开关阀与储液钢瓶连通, 另一路通过第八 开关阔与储液容器的出气口相连。
― -所述 β ½液钢瓶的进口 ϋ过第十开关阀连通有真空泵—— ― ― ' 所述第一分离容器和第二分离容器的冷却介质通道为设置在容器内腔中管道, 所述第一 分离容器和第二分离容器的六氟化硫容腔为容器的内腔。
本发明的六氟化硫净化方法采用如下技术方案:
一种六氟化硫净化方法, 该六氟化硫净化方法的净化装置包括第一分离容器和第二分离容 器, 两分离容器均具有可换热的冷却介质通道和六氟化硫容腔, 第一分离容器具有分别与六 氟化硫容腔连通的进气口、 出气口、 进液口和出液口, 第二分离容器具有分别与六氟化硫容 腔连通的进气口、 出气口和出液口, 第一分离容器的进气口通过第一压缩机与六氟化硫气源 相连, 第一分离容器的出气口通过缓冲容器和第二压缩机与第二分离容器的进气口相连, 第 二压缩机与第二分离容器之间设置有第九开关阀, 第二压缩机的工作压力大于第一压缩机的 工作压力, 第一分离容器的出气口与缓冲容器之间设有第一开关阀, 第一分离容器的出液口 通过第二开关阀与储液容器相连, 储液容器的出气口通过第三开关阀与缓冲容器的进气口相 连, 缓冲容器的出气口通过第四开关阀与第一压缩机的进气口连通, 第二分离容器的出气口 通过减压陶与第五开关阔与大气连通, 第二分离容器的出液口通过第六开关阁与第一分离容 器的进液口相连, 第一开关阔、 第二开关阀、 第三开关阀、 第四开关阀、 第五开关阀、 第六 开关阀以及第九开关阀均为电磁阀, 第一分离容器内设置有第一压力传感器, 第一压力传感 器将测得的压力值传递给控制系统, 控制系统将传来压力值与控制系统预设的第一压力值比 较, 当第一压力传感器测得的数值大于预设的较大的第一压力值时, 控制系统控制第一开关 阀与第九开关阀打开, 同时控制第二压缩机启动, 将第一分离容器内的气体通过缓冲容器吸 入到第二分离容器, 当第一压力传感器测得的数值小于控制系统中预设的较小的第一压力值 时, 控制系统控制第一开关阀与第九开关阀关闭, 同时控制第二压缩机停机, 第一分离容器 内还设置有第一重量测定装置, 第一重量测定装置将测得的重量值传递给控制系统, 控制系 统将传来的重量值与预设的第一重量值进行比对, 当第一重量测定装置测得的童量值大于等 于控制系统预设的第一重量值时, 控制系统控制第二开关阔打开, 同时控制系统控制第一开 关阔、 第三开关阀与第四开关阀打开, 并控制第一压縮机启动, 第一分离容器内的液体流尽 后, 控制系统控制第一开关阀、 第二开关阀、 第三开关阀与第四开关阀关闭, 并控制第一压 缩机停机, 第二分离容器内设置有第二压力传感器, 第二压力传感器将测得的压力值传递给 控制系统, 控制系统将传来压力值与控制系统预设的第二压力值比较, 当第二压力传感器测 得的数值大于预设的较大的第二压力值时, 控制系统控制第五开关阀打开, 第二分离容器内 的气体排入大气, 当第二压力传感器测得的数值小于控制系统中预设的较小的第二压力值 时, 控制系统控制第五开关阀关闭, 第二分离容—器内还设置有第二重量测定装置, 第二重量 - 测定装置将测得的重量值传递给控制系统, 控制系统将传来的重量值与预设的第二重量值进 行比对, 当第二重量测定装置测得的重量值大于等于控制系统预设的第二重量值时, 控制系 - 统控制第六开关阀打开, 第二分离容器内的液态六氟化硫充入到第一分离容器, 进行第二次 提纯。
本发明通过向第一分离容器的冷却介质通道内通入温度较低的冷却介质对通过第一压縮 机压入第一分离容器的六氟化硫容腔内的六氟化硫气体进行冷却, 使得六氟化硫气体在压力 下液化, 当液体存到一定的量后, 将液体排入储液容器中, 储液容器的气压较小, 液体中会 挥发出一定量的气体, 将挥发出来的气体通过第一压缩机压入第一分离容器中进行二次冷却 提纯, 保证储液容器内的液体纯度。 当第一分离容器内的气压达到一定的大小后, 启动第二 压缩机将第一分离容器内的气体抽入第二离容器内进行冷却, 并让这部分气体在更高的压力 下液化, 并将不液化的气体通过减压阀排入大气中。 本发明经过两次冷却提纯保证储液容器 内的液体的纯度, 同时通过将经过两次加压冷却仍不液化的纯度很低的气体排入空气中, 减 小六氟化硫中的杂质含量, 第二分离容器的出液口通过第六开关阀与第一分离容器的进液口 相连, 可以将第二分离容器的六氟化硫容腔中的 体导入第一分离容器继续循环提纯, 提高 六氟化硫的分离率, 减少六氟化硫的浪费, 提高六氟化硫的回收率。 本发明的第一分离容器上坟置 测¾ 、—亂化愉容股内的气压力的第一压力表, 所述的第 二分离容器上设置有测试六氟化硫容腔内的气压力的第二压力表, 通过第一压力表与第二^ 力表可以准确的确定两分离容器内的压力, 准确把握将第一分离容器内的气体压入第二分离 容器内的时刻, 与将第二分离容器内的气体排出的时刻。
本发明的储液容器的出液口通过注液泵连通有储液钢瓶, 注液泵与储液钢瓶之间设置有 第七幵关阀, 通过开启开关阀可以将储液容器中的液体导入储液钢瓶中存储备用, 同时, 也 使得净化装置得以持续工作。
本发明的注液泵的出口处为两路' 一路通过第七开关阀与储液钢瓶连通, 另一路通过第 八开关阀与储液容器的出气口相连, 在将第七开关阀打开向储液钢瓶中注液之前可以先打开 第八开关阀使管道内的介质在注液泵的作用下循环' 使管道内充满液体, 保证注入储液钢瓶 内的都是液体。
附图说明
图 1是本发明实施例的原理图。
具体实施方式
一种六氟化硫气体分离净化装置的实施例, 在图 1 中, 该装置包括第一分离容器 2, 第一分离容器 22的内腔中设置有冷却介质通道 82,'第一分离容器 22的冷却介质通道 82的 两个端口分别与制冷机组 80的制冷介质出口和制冷介质进口连通, 第一分离容器 22的冷却 介质通道的端口与制冷机组 80的冷介质出 Π之间设置有第一截止阀。 第一分离容器 22的进 气口与第一压缩机 8的出气口连通, 第一压缩机 8的进气口用于六氟化硫气源连通, 这里的 六氟化硫气源可以是装在储液钢瓶中的气体, 在第一压缩机 8与第一分离容器 22之间依次 串设有低氟化物过滤器 13 和颗粒过滤器 14, 第一压缩机 8 的进气口处串设有干燥过滤器 5。 第一分离容器 22的出气口通过第一幵关阀 19与缓冲容器 21连通, 缓冲容器 21 的出气 口与第二压缩机 44 的进气口连通, 第二压缩机的工作压力大于第一压缩机的工作压力。 第 二压缩机 44的出气口通过第九开关阀 49与第二分离容器 58的进气口相连, 第二分离容器 58的内腔中设置有冷却介质通道, 第二分离容器 58的冷却介质通道的两个端口分别与制冷 机组 80的制冷介质出口和制冷介质进口连通, 第二分离容器 58的冷却介质通道的端口与制 冷机组 80的冷介质进口之间设置有第二截止阀。 第二分离容器 58的出气口与减压阀 78的 进口连通, 减压阀 78的出口通过第五.开关阀 59与大气连通。 第二分离容器 58的出气口处 分为了两路, 一路与减压阀 78相连, 另一路通过第六开关阀 38与第一分离容器 22的出液 口相连。 第一分离容器 22的出液口分为两路, 一路与第六开关阀 38相连, 另一路通过第二 开关阔 36与储液容器 23的进液口连通, 储液容器 23的进液口分为两路, 其中一路与第二 开关阀 36连通, 另一路通过注液泵 35与储液钢瓶 81连通, 储液钢瓶 81与注液泵 35之间 设置有第七开关阀 29, 注液泵 35 的出口处分为了两路, 其中一路与第七开关阀 29连通, 另一路通过第八开关阀 32与储液容器 23的出气口连通, 储液容器 23的出气口处分为了两 路, 一路与第八开关阀 32连通, 另一路通过第三开关阀 12与低氟化物过滤器 13的进口连 通并通过颗粒过滤器 14经第一分离容器 22的进气口与出气口和缓冲容器的进气口相连。 缓 冲容器的出气口与第二压缩机之间具有通过第四开关阀 65与第一压縮机 8连通的端口。 · 第一分离容器 22的出气口处设置有测试六氟化硫容腔内的气压力的第一压力表 18, 第 二分离容器 58的容器侧壁上设置有测试六氟化硫容腔内的气压力的第二压力表 50。
作为以上技术方案的改进, 第七开关阀 29与储液钢瓶之间的端口和第八开关阔 32与储 液容器 23的出气口之间的端口通过管道相连, 第七开关阀 29与储液钢瓶之间的端口和储液 钢瓶之间设置有第十开关阀 31, 储液容器的出液口与第一压缩机和六氟化硫气源之间的端 口通过第十一开关阀 63 连通, 第一压缩机和六氟化硫气源之间的端口经过一段第一压缩机 和六氟化硫气源之间的管道连接有一个真空泵 70, 真空泵 70的进气口处设置有第十二开关 阀 69。 为了管路的独立性, 在第一压缩机 8与低氟化物过滤器 13之间设置了第十三开关阀 62。 储液钢瓶 81 的进口通过第十开关阀 31 与连通第七开关阀 29和储液钢瓶之间的端口与 第八开关阀 32与储液容器 23的出气口之间的端口的管道及第十一开关阀 63和真空泵 70相 连。
在工作时将第一压缩机 8的进口接通气源, 并将气源的开关打开, 六氟化硫气体在第一 压缩机 8的作用的下经过干燥过滤器 5、 低氟化物过滤器 13和颗粒过滤器 14被压入第一分 离容器 22 中, 这时制冷机组开始工作, 六氟化硫气体在第一分离容器中被冷却并在第一压 缩机 8的作用下被压缩, 当温度降到一定程度, 六氟化硫气体液化, 由于六氟化硫气体中含 有空气等杂质, 会存在不液化的气体, 当第一分离容器 22 中的压力达到设定值后, 打开第 一开关阀 19和第九开关阀 49, 同时启动第二压缩机 44将第一分离容器 22中的气体经缓冲 容器 21压入第二分离容器 58中, 由于第二压缩机的工作压力大于第一压缩机, 含杂质的六 氟化硫气体在第二分离容器 58中继续液化, 当压力达到设定值之后开启第五开关阀 59将仍 然没有液化的纯度很低的气体经减压阀 78排入大气中。 当第一分离容器 22中的压力下降到 设定值后, 可以停止第二压縮机 44并将第九开关阀 49关上。 当第一分离容器 22中液面达 到设定值后, 打开第二开关阀 36, 液体会由第一分离容器 22 中流入储液容器 23 中, 于此 同时, 将六氟化硫气源的开关关上, 同时将第三开关阀 12打开, 在储液容器 23的低压环境 中, 液体会挥发出一部分气体, 这时气体会经过缓冲容器 21 在第一压縮机 8的作用下进入 第一分离容器 22进行第二次冷却提纯, 储液容器 23的进液结束后将第三开关阀 12关上。 当第二分离容器内的液体积聚到一定程度, 打开第六开关阀 38 将液体导入第一分离容器中 继续循环提出, 需要注意的是: 在将第二开关阀 36 打开时, 不可将第六开关阀打开, 以防 止第二分离容器内的液体误入储液容器中。
当储液容器内的液体达到一定的量后, 可以将第十开关阀 31、 第十一开关阔 63与第十 二开关阀 69 打开, 同时保证气源开关阀、 第十三开关阀 62、 第七开关阀 29、 第三开关阀 12、 第二开关阀 36和第八开关阀 32处于关闭的状态, 然后将真空泵 70打开, 对储液钢瓶 81抽真空, 当储液开关阀处于真空状态后, 关闭第十开关阀 31、 第十一开关阀 63与第十二 幵关阀 69, 打开第八开关阀 32 同时启动注液泵 35 , 使液体循环开后, 关闭第八开关阀 32, 打开第七开关阔 29与第十开关阀 31, 对储液钢瓶进行注液。
为了方便安装与方便设备的制造, 本实施例中的第一分离容器 22 的出液口和进液口为 一个端口, 循环回路之间的管路也有一定的重合, 当然也可以设置两个端口, 将进液口与储 液口分开, 相应的循环管路也可以分开。 同样, 本实施例中的第二分离容器 58 也的出气口 和出液口也为同一个端口, 当然也可以设置为两个端口, 相应的循环线路也可以分开设置。
本实施例中的储液容器的出气口先通过第三开关阀与第一分离容器的进气口连通然后再 通过第一分离容器的出气口与缓冲容器相连, 当然, 也可以另设一循环管路使储液容器通过 第三开关阀直接与缓冲容器的进气口相连, 以上不同形式的管路连接对本领域的技术人员的 来说属于为节省管路而进行的常规改变, 不经过创造性劳动就可以作出。
本实施例中的开关阀可以都设置成电磁阀, 编程控制各开关阀与两个压缩机, 实现整个 装置的自动化控制。
为保证系统的压力安全, 本实施例中压力元件和压力管道上均设置有安全阀。
由于本实施例中的有些管路是重合的, 为了保证各管路的独立性, 在管路上增设了一些 开关阀, 这对本领域的技术人员来说是显而易见的。
一种六氟化硫净化方法的实施例, 结合图 1, 该六氟化硫净化方法的净化装置包括第一 分离容器 22 和第二分离容器 58, 两分离容器均具有可换热的冷却介质通道和六氟化硫容 腔, 第一分离容器 22 具有分别与六氟化硫容腔连通的进气口、 出气口、 进液口和出液口, 第二分离容器 58 具有分别与六氟化硫容腔连通的进气口、 出气口和出液口, 第一分离容器 22的进气口通过第一压缩机 8与六氟化硫气源相连, 第一分离容器 22的出气口通过缓冲容 器和第二压缩机 44与第二分离容器 58的进气口相连, 第二压缩机 44与第二分离容器 58之 间设置有第九开关阀 49, 第二压缩机 44的工作压力大于第一压缩机 8的工作压力, 第一分 离容器 22 的出气口与缓冲容器之间设有第一丌关阔 19, 第一分离容器 22 的出液口通过第 二开关阀 36与储液容器相连, 储液容器的出气口通过第三开关阀 12与缓冲容器的进气口相 连, 缓冲容器的出气口通过第四开关阀 65与第一压缩机 8的进气口连通, 第二分离容器 58 的出气口通过减压阀与第五开关阀 59与大气连通, 第二分离容器 5δ的出液口通过第六开关 阀 38与第一分离容器 22的进液口相连, 第一开关阀 19、 第二开关阀 36、 第三开关阀 12、 第四开关阀 65、 第五开关阀 59、 第六丌关阀 38以及第九开关阀 49均为电磁阔, 第一分离 容器 22 内设置有第一压力传感器, 第一压力传感器将测得的压力值传递给控制系统, 控制 系统将传来压力值与控制系统预设的第一压力值比较, 当第一压力传感器测得的数值大于预 设的较大的第一压力值时, 控制系统控制第一开关阀 19与第九开关阔 49打开, 同时控制第 二压缩机 44启动, 将第一分离容器 22 内的气体通过缓冲容器吸入到第二分离容器 58, 当 第一压力传感器测得的数值小于控制系统中预设的较小的第一压力值时, 控制系统控制第一 开关阀 19与第九开关阀 49关闭, 同时控制第二压缩机 44停机, 第一分离容器 22内还设置 有第一重量测定装置, 第一重量测定装置将测得的重量值传递给控制系统, 控制系统将传来 的重量值与预设的第一重量值进行比对, 当第一重量测定装置测得的重量值大于等于控制系 统预设的第一重量值时, 控制系统控制第二开关阀 36 打开, 同时控制系统控制第一开关阀 19、 第三开关阀 12与第四开关阀 65打开, 并控制第一压缩机 8启动, 第一分离容器 22内 的液体流尽后, 控制系统控制第一开关阀 19、 第二开关阀 36、 第三开关阀 12与第四开关阀 65关闭, 并控制第一压缩机 8停机, 第二分离容器 58内设置有第二压力传感器, 第二压力 传感器将测得的压力值传递给控制系统, 控制系统将传来压力值与控制系统预设的第二压力 值比较, 当第二压力传感器测得的数值大于预设的较大的第二压力值时, 控制系统控制第五 开关阀 59打开, 第二分离容器 58内的气体排入大气, 当第二压力传感器测得的数值小于控 制系统中预设的较小的第二压力值时, 控制系统控制第五开关阀 59关闭, 第二分离容器 58 内还设置有第二重量测定装置, 第二重量测定装置将测得的重量值传递给控制系统, 控制系 统将传来的重量值与预设的第二重量值进行比对, 当第二重量测定装置测得的重量值大于等 于控制系统预设的第二重量值时, 控制系统控制第六开关阀 38打开, 第二分离容器 58内的 液态六氟化硫充入到第一分离容器 22, 进行第二次提纯。

Claims

1. 一种六氟化硫气体分离净化装置, 其特征在于: 该装置包括第一分离容器和第二分离容 器, 两分离容器均具有可换热的冷却介质通道和六氟化硫容腔, 第一分离容器具有分别与六 氟化硫容腔连通的进气口、 出气口、 进液口和出液口, 第二分离容器具有分别与六氟化硫容 腔连通的进气口、 出气口和出液口, 第一分离容器的进气口通过第一压缩机与六氟化硫气源 相连, 第一分离容器的出气口通过缓冲容器和第二压缩机与第二分离容器的进气口相连, 第 二压缩机与第二分离容器之间设置有第九开关阀, 第二压缩机的工作压力大于第一压缩机的 工作压力, 第一分离容器的出气口与缓冲容器之间设有第一开关阀, 第一分离容器的出液口 通过第二开关阔与储液容器相连, 储液容器的出气口通过第三开关阔与缓冲容器的进气口相 连, 缓冲容器的出气口通过第四开关阀与第一压缩机的进气口连通, 第二分离容器的出气口 通过减压阀与第五开关阀与大气连通, 第二分离容器的出液口通过第六开关阀与第一分离容 器的进液口相连。
2. 根据权利要求 1 所述的六氟化硫气体分离净化装置, 其特征在于: 所述的第一分离容器 上设置有测试六氟化硫容腔内的气压力的第一压力表, 所述的第二分离容器上设置有测试六 氟化硫容腔内的气压力的第二压力表。
3. 根据权利要求 1 所述的六氟化硫气体分离净化装置, 其特征在于: 所述的第一开关阀、 第二开关阀、 第三开关阔、 第四开关阀、 第五开关阀、 第六开关阀以及第九开关阀均为电磁 阀, 第一分离容器内设置有第一压力传感器, 第一压传感器的输出端与一控制系统的第一压 力信号输入端相连, 控制系统的与第一压力信号输入端相对应的信号输出端与第一幵关阀、 第九开关阀以及第二压縮机控制相连, 第一分离容器内还设置有第一重量测定装置, 第一重 量测定装置的输出端与控制系统的第一重量信号输入端相连, 控制系统的与第一重量信号输 入端相对应的信号输出端与第一开关阀、 第二开关阀、 第三开关阀、 第四开关阀以及第一压 缩机控制相连, 第二分离容器内设置有第二压力传感器, 第二压传感器的输出端与控制系统 的第二压力信号输入端相连, 控制系统的与第二压力信号输入端相对应的信号输出端与第五 开关阀控制相连, 第二分离容器内还设置有第二重量测定装置, 第二重量测定装置的输出端 与控制系统的第二重量信号输入端相连, 控制系统的与第二重量信号输入端相对应的信号输 出端与第六开关阀控制相连。
4. 根据权利要求 1 所述的六氟化硫气体分离净化装置, 其特征在于: 所述第一分离容器的 冷却介质通道的两个端口分别与一制冷机组的制冷介质出口和制冷介质进口相连, 所述第二 分离容器的制冷介质通道的两个端口分别与所述制冷机组的制冷介质出口和制冷介质进口相 连, 所述制冷机组的制冷介质出口与第一分离容器的冷却介质通道端口之间设置有第一截止 阀, 制冷机组的制冷介质出口与第二分离容器的冷却介质通道端口之间设置有第二截止阀。
5. 根据权利要求 1 所述的六氟化硫气体分离净化装置, 其特征在于: 所述第一分离容器的 进气口与六氟化硫气源之间依次串设有干燥过滤器、 低氟化物过滤器和颗粒过滤器。
6. 根据权利要求 1 所述的六氟化硫气体分离净化装置, 其特征在于: 所述的储液容器的出 液口通过注液泵连通有储液钢瓶, 注液泵与储液钢瓶之间设置有第七开关阀。
7. 根据权利要求 6 所述的六氟化硫气体分离净化装置, 其特征在于: 所述的注液泵的出口 处为两路, 一路通过第七开关阀与储液钢瓶连通, 另一路通过第八开关阀与储液容器的出气 口相连。
8. 根据权利要求 Ί 所述的六氟化硫气体分离净化装置, 其特征在于: 所述的储液钢瓶的进 口通过第十开关阀连通有真空泵。 '
9. 根据权利要求 1 所述的六氟化硫气体分离净化装置, 其特征在于: 所述第一分离容器和 第二分离容器的冷却介质通道为设置在容器内腔中管道, 所述第一分离容器和第二分离容器 的六氟化硫容腔为容器的内腔。
10. —种六氟化硫净化方法, 其特征在于: 该六氟化硫净化方法的净化装置包括第一分 离容器和第二分离容器, 两分离容器均具有可换热的冷却介质通道和六氟化硫容腔, 第一分 离容器具有分别与六氟化硫容腔连通的进气口、 出气口、 进液口和出液口, 第二分离容器具 有分别与六氟化硫容腔连通的进气口、 出气口和出液口, 第一分离容器的进气口通过第一压 缩机与六氟化硫气源相连, 第一分离容器的出气口通过缓冲容器和第二压縮机与第二分离容 器的进气口相连, 第二压缩机与第二分离容器之间设置有第九开关阀, 第二压缩机的工作压 力大于第一压缩机的工作压力, 第一分离容器的出气口与缓冲容器之间设有第一开关阀, 第 一分离容器的出液口通过第二开关阀与储液容器相连, 储液容器的出气口通过第三开关阀与 缓冲容器的进气口相连, 缓冲容器的出气口通过第四幵关阀与第一压缩机的进气口连通, 第 二分离容器的出气口通过减压阀与第五开关阀与大气连通, 第二分离容器的出液口通过第六 开关阔与第」分离容器的进液口相连, 第一开关阀、 第二开关阀、 第三开关阀、 第四开关 阀、 第五开关阀、 第六开关阀以及第九开关阀均为电磁阀, 第一分离容器内设置有第一压力 传感器, 第一压力传感器将测得的压力值传递给控制系统, 控制系统将传来压力值与控制系 统预设的第一压力值比较, 当第一压力传感器测得的数值大于预设的较大的第一压力值时, 控制系统控制第一开关阀与第九开关阀打丌, 同时控制第二压缩机启动, 将第一分离容器内 的气体通过缓冲容器吸入到第二分离容器, 当第一压力传感器测得的数值小于控制系统中预 设的较小的第一压力值时, 控制系统控制第一开关阀与第九开关阀关闭, 同时控制第二压缩 机停机, 第一分离容器内还设置有第一重量测定装置, 第一重量测定装置将测得的重量值传 递给控制系统, 控制系统将传来的重量值与预设的第一重量值进行比对, 当第一重量测定装 置测得的重量值大于等于控制系统预设的第一重量值时, 控制系统控制第二开关阀打开, 同 时控制系统控制第一开关阀、 第三幵关阀与第四丌关阀打幵, 并控制第一压缩机启动, 第一 分离容器内的液体流尽后, 控制系统控制第一开关阀、 第二开关阀、 第三开关阀与第四开关 阀关闭, 并控制第一压缩机停机, 第二分离容器内设置有第二压力传感器, 第二压力传感器 将测得的压力值传递给控制系统, 控制系统将传来压力值与控制系统预设的第二压力值比 较, 当第二压力传感器测得的数值大于预设的较大的第二压力值时, 控制系统控制第五开关 阀打开, 第二分离容器内的气体排入大气, 当第二压力传感器测得的数值小于控制系统中预 设的较小的第二压力值时, 控制系统控制第五开关阀关闭, 第二分离容器内还设置有第二重 量测定装置, 第二重量测定装置将测得的重量值传递给控制系统, 控制系统将传来的重量值 与预设的第二重量值进行比对, 当第二重量测定装置测得的重量值大于等于控制系统预设的 第二重量值时, 控制系统控制第六开关阀打开, 第二分离容器内的液态六氟化硫充入到第一 分离容器, 进行第二次提纯。
PCT/CN2011/002030 2011-01-31 2011-12-05 六氟化硫气体分离净化装置及其六氟化硫净化方法 WO2012103675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100331797A CN102173392B (zh) 2011-01-31 2011-01-31 六氟化硫气体分离净化装置及其六氟化硫净化方法
CN201110033179.7 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012103675A1 true WO2012103675A1 (zh) 2012-08-09

Family

ID=44516700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/002030 WO2012103675A1 (zh) 2011-01-31 2011-12-05 六氟化硫气体分离净化装置及其六氟化硫净化方法

Country Status (2)

Country Link
CN (1) CN102173392B (zh)
WO (1) WO2012103675A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198637A (zh) * 2021-11-17 2022-03-18 广西电网有限责任公司桂林供电局 一种sf6气体防过充充气及抽真空装置
CN115751168A (zh) * 2022-11-22 2023-03-07 广东电网有限责任公司 六氟化硫回收装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173392B (zh) * 2011-01-31 2012-11-28 平高集团有限公司 六氟化硫气体分离净化装置及其六氟化硫净化方法
EP2699858B1 (en) * 2011-04-21 2018-05-30 ABB Schweiz AG A plant and method for recovering sulphur hexafluoride for reuse
CN102765701B (zh) * 2012-08-10 2014-08-06 江苏海立普电力科技有限公司 一种六氟化硫气体净化提纯方法及其净化提纯固化罐
CN103213952B (zh) * 2013-04-26 2014-12-31 河南省日立信股份有限公司 六氟化硫和四氟化碳分离提纯系统
CN104174250B (zh) * 2014-08-15 2015-12-09 国家电网公司 一种六氟化硫和四氟化碳混合气体预分离的方法
CN104638557B (zh) * 2015-03-06 2017-03-22 西安北鱼智能科技有限公司 一种气体净化方法
CN105129743B (zh) * 2015-09-14 2018-04-20 河南平高电气股份有限公司 一种用于sf6气体回收装置的除水装置
CN105864632B (zh) * 2016-05-20 2018-09-21 国家电网公司 移动式六氟化硫和四氟化碳混合气体快速回收补气装置
CN113074320B (zh) * 2021-03-19 2022-06-14 国网新疆电力有限公司检修公司 一种sf6/cf4混合气体的高纯度分离回收装置及方法
CN113353892A (zh) * 2021-05-28 2021-09-07 南通虹登机械设备有限公司 一种sf6气站用气体提纯系统及其提纯方法
CN113877228B (zh) * 2021-09-30 2023-04-18 河南平高电气股份有限公司 一种六氟化硫回收气体精馏提纯系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924485A1 (en) * 1997-12-22 1999-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for separating and puryfying fluorine compounds, and installation thereof
CN1243022A (zh) * 1998-07-27 2000-02-02 三菱电机株式会社 从混合气体中回收冷凝性气体的回收方法及其回收装置
CN201369283Y (zh) * 2009-02-27 2009-12-23 平高集团有限公司 六氟化硫气体回收回充装置
CN102173392A (zh) * 2011-01-31 2011-09-07 平高集团有限公司 六氟化硫气体分离净化装置及其六氟化硫净化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201647993U (zh) * 2010-03-11 2010-11-24 辽宁省电力有限公司鞍山超高压分公司 一种六氟化硫气体回收净化装置
CN101857202B (zh) * 2010-06-04 2012-01-25 黎明化工研究院 一种六氟化硫的提纯方法及其设备
CN202131091U (zh) * 2011-01-31 2012-02-01 平高集团有限公司 六氟化硫气体分离净化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924485A1 (en) * 1997-12-22 1999-06-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for separating and puryfying fluorine compounds, and installation thereof
CN1243022A (zh) * 1998-07-27 2000-02-02 三菱电机株式会社 从混合气体中回收冷凝性气体的回收方法及其回收装置
CN201369283Y (zh) * 2009-02-27 2009-12-23 平高集团有限公司 六氟化硫气体回收回充装置
CN102173392A (zh) * 2011-01-31 2011-09-07 平高集团有限公司 六氟化硫气体分离净化装置及其六氟化硫净化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198637A (zh) * 2021-11-17 2022-03-18 广西电网有限责任公司桂林供电局 一种sf6气体防过充充气及抽真空装置
CN114198637B (zh) * 2021-11-17 2023-08-11 广西电网有限责任公司桂林供电局 一种sf6气体防过充充气及抽真空装置
CN115751168A (zh) * 2022-11-22 2023-03-07 广东电网有限责任公司 六氟化硫回收装置
CN115751168B (zh) * 2022-11-22 2024-03-22 广东电网有限责任公司 六氟化硫回收装置

Also Published As

Publication number Publication date
CN102173392B (zh) 2012-11-28
CN102173392A (zh) 2011-09-07

Similar Documents

Publication Publication Date Title
WO2012103675A1 (zh) 六氟化硫气体分离净化装置及其六氟化硫净化方法
CN104697861B (zh) 一种低能耗的多级自增压高压容器气体循环试验系统
CN108355461B (zh) 六氟化硫和氮气混合气体净化分离提纯装置及其回收净化提纯六氟化硫方法
CN203403030U (zh) 一种环氧丙烷的回收处理装置
CN107588325B (zh) 一种六氟化硫气体回收充气装置
CN108176389B (zh) Sf6净化处理装置的吸附剂在线再生方法
CN206985717U (zh) 一种氦气纯化回收系统
CN207334236U (zh) 六氟化硫混合气体净化回收配气补气装置
WO2023005413A1 (zh) 全正压条件下六氟化硫气体回收处理装置及气体回收系统
CN109404728A (zh) 一种能够回收气体的充气装置
CN113294969B (zh) 一种全氟异丁腈和二氧化碳混合气体分离装置和方法
CN105371103B (zh) 一种组合式天然气回收系统及方法
CN102767987B (zh) 一种解决主换热器堵塞的方法
CN202884466U (zh) 超纯液氨充装设备
CN203703604U (zh) 具有气体成分分析功能的sf6气体回收装置
CN210874699U (zh) 一种含三罐两级吸附的有机废气治理系统
CN105126533A (zh) 天然气吸附塔控制方法、装置、系统及净化系统
CN105126532B (zh) 天然气吸附塔控制方法、装置及系统
CN212644225U (zh) 一种应用于输气系统的充气装置
CN219674594U (zh) 一种小型液氧制备与储藏装置
CN110385012A (zh) 一种含三罐两级吸附的有机废气治理系统
CN105032120A (zh) 天然气吸附塔控制方法、装置及系统
CN216320972U (zh) 一种分离ch4/n2混合气的双塔变压吸附装置
CN214437735U (zh) 一种废气中六氟化硫收集提纯、零排放设备
CN114590786B (zh) 全自动高效纯化装置及纯化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857507

Country of ref document: EP

Kind code of ref document: A1