WO2023005413A1 - 全正压条件下六氟化硫气体回收处理装置及气体回收系统 - Google Patents

全正压条件下六氟化硫气体回收处理装置及气体回收系统 Download PDF

Info

Publication number
WO2023005413A1
WO2023005413A1 PCT/CN2022/096560 CN2022096560W WO2023005413A1 WO 2023005413 A1 WO2023005413 A1 WO 2023005413A1 CN 2022096560 W CN2022096560 W CN 2022096560W WO 2023005413 A1 WO2023005413 A1 WO 2023005413A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
solenoid valve
storage unit
unit
sulfur hexafluoride
Prior art date
Application number
PCT/CN2022/096560
Other languages
English (en)
French (fr)
Inventor
王小岭
孙豪
魏金林
孙小伟
陈文�
赵伟杰
陈图腾
柳坤
胡梦霖
禹晋云
任君
Original Assignee
中国南方电网有限责任公司超高压输电公司昆明局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司昆明局 filed Critical 中国南方电网有限责任公司超高压输电公司昆明局
Priority to DE112022000037.6T priority Critical patent/DE112022000037T5/de
Publication of WO2023005413A1 publication Critical patent/WO2023005413A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/45Compounds containing sulfur and halogen, with or without oxygen
    • C01B17/4507Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only
    • C01B17/4515Compounds containing sulfur and halogen, with or without oxygen containing sulfur and halogen only containing sulfur and fluorine only
    • C01B17/453Sulfur hexafluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the application relates to the technical field of gas recovery, in particular to a sulfur hexafluoride gas recovery and treatment device and a gas recovery system under full positive pressure conditions.
  • Sulfur hexafluoride gas is widely used in the power field due to its excellent arc extinguishing performance.
  • GIS and GIL equipment are used in various power plants, substations, and converter stations.
  • the inventors found at least the following problems in the traditional technology: the recovery rate of the traditional sulfur hexafluoride gas recovery and treatment device is low.
  • a recovery and treatment device for sulfur hexafluoride gas under full positive pressure conditions including: a vacuum pumping circuit, a primary positive pressure recovery circuit, a nitrogen generating and inflating circuit, a secondary positive pressure recovery circuit, a first gas storage unit and a second gas storage unit; the second gas storage unit is used to connect electrical equipment;
  • the vacuum circuit includes a vacuum unit; the vacuum unit is connected to the second gas storage unit; the vacuum unit is also used to connect electrical equipment;
  • the primary positive pressure recovery circuit includes a gas processing unit; the gas processing unit is connected to the first gas storage unit and the vacuum unit; the gas processing unit is also used to connect electrical equipment;
  • the nitrogen gas filling circuit includes a nitrogen production unit; the nitrogen production unit is connected with the second gas storage unit;
  • the secondary positive pressure recovery circuit includes a gas separation unit; the gas separation unit is respectively connected to the second gas storage unit and the gas processing unit; the second gas storage unit is connected to the gas processing unit;
  • the vacuuming unit performs vacuuming action, so that the sulfur hexafluoride gas in the electrical equipment enters the gas processing unit, and the first gas storage unit stores the sulfur hexafluoride gas processed by the gas processing unit; the nitrogen production unit is in the electrical equipment
  • the pressure of the remaining sulfur hexafluoride gas in the electrical equipment is lower than the first preset pressure, fill the electrical equipment with nitrogen gas, so that the remaining sulfur hexafluoride gas and nitrogen gas in the electrical equipment form a mixed gas; the gas processing unit will mix The gas is input into the second gas storage unit; when the pressure of the mixed gas in the second gas storage unit returns to the second preset pressure, the gas separation unit separates the mixed gas to recover the remaining sulfur hexafluoride in the mixed gas gas.
  • the gas processing unit includes a first compressor, a second compressor, a cooler, and a filter drier;
  • the cooler is respectively connected to the first compressor, the second compressor and the dry filter
  • the first compressor is respectively connected to the electrical equipment and the first gas storage unit;
  • the second compressor is respectively connected to the electrical equipment, the gas separation unit and the first gas storage unit.
  • the gas separation unit comprises a first membrane separator and a second membrane separator
  • the first membrane separator is respectively connected with the second gas storage unit and the second compressor;
  • the second membrane separator is respectively connected with the second gas storage unit and the second compressor.
  • the vacuum circuit also includes a first filter and a pressure regulating valve; the first filter is respectively connected to the vacuum unit, the electrical equipment and the pressure regulating valve;
  • the nitrogen gas filling circuit also includes a second filter and a third compressor; the second filter is respectively connected to the second gas storage unit and the third compressor; the third compressor is connected to the nitrogen production unit;
  • the secondary positive pressure recovery loop also includes a pressure stabilizing valve and a flow controller; the stabilizing valve is respectively connected with the second gas storage unit and the flow controller; the flow controller is respectively connected with the first membrane separator and the second membrane separator.
  • the primary positive pressure recovery circuit also includes a first solenoid valve;
  • the vacuum pumping circuit also includes a second solenoid valve, a third solenoid valve, a fourth solenoid valve, a fifth solenoid valve, a sixth solenoid valve, a The seventh solenoid valve, the eighth solenoid valve, the ninth solenoid valve, the tenth solenoid valve, the eleventh solenoid valve, the twelfth solenoid valve, the thirteenth solenoid valve and the sixteenth solenoid valve;
  • the secondary positive pressure recovery circuit also includes the fourteenth solenoid valve, the eighteenth solenoid valve, the nineteenth solenoid valve, the twentieth solenoid valve, the twenty-first solenoid valve, The twenty-second solenoid valve and the twenty-third solenoid valve;
  • One end of the first solenoid valve is connected to electrical equipment, and the other end of the first solenoid valve is respectively connected to one end of the second solenoid valve, one end of the third solenoid valve, one end of the sixteenth solenoid valve and one end of the seventeenth solenoid valve;
  • the other end of the second solenoid valve is connected to the vacuum unit;
  • the other end of the third solenoid valve is connected to the first filter;
  • the other end of the seventeenth solenoid valve is connected to the second gas storage unit;
  • the pressure regulating valve is respectively connected to one end of the fourth solenoid valve, one end of the fifth solenoid valve and one end of the sixth solenoid valve; the other end of the fifth solenoid valve is connected to the first compressor; one end of the seventh solenoid valve is connected to the first compressor , the other end of the seventh solenoid valve is connected to the cooler; the other end of the sixth solenoid valve is connected to the second compressor; the second compressor is respectively connected to one end of the eighth solenoid valve and one end of the ninth solenoid valve; The other end is connected to the cooler; one end of the tenth solenoid valve is connected to the dry filter, the other end of the tenth solenoid valve and one end of the eleventh solenoid valve are connected to one end of the twelfth solenoid valve; the other end of the twelfth solenoid valve , the other end of the fourth solenoid valve and the other end of the ninth solenoid valve are connected to one end of the thirteenth solenoid valve; the other end
  • One end of the fifteenth solenoid valve is connected to the second gas storage unit, the other end of the fifteenth solenoid valve is connected to the second filter; one end of the fourteenth solenoid valve is connected to the second gas storage unit, and the other end of the fourteenth solenoid valve Connect the cooler and filter drier separately;
  • One end of the eighteenth solenoid valve and one end of the nineteenth solenoid valve are connected to the flow controller; the other end of the eighteenth solenoid valve and one end of the twentieth solenoid valve are connected to the first membrane separator; the nineteenth solenoid valve The other end of the 21st solenoid valve and the other end of the 21st solenoid valve are connected to the second membrane separator; the other end of the 20th solenoid valve and the other end of the 21st solenoid valve are respectively connected to the other end of the 6th solenoid valve and the Two compressors; one end of the twenty-second electromagnetic valve is connected to the first membrane separator; one end of the twenty-third electromagnetic valve is connected to the second membrane separator.
  • a vacuum gauge and a gas sensor are also included;
  • the vacuum gauge is connected to the other end of the sixteenth solenoid valve; the gas sensor is respectively connected to the other end of the twenty-second solenoid valve and the other end of the twenty-third solenoid valve.
  • it further includes a first pressure sensor, a second pressure sensor, a third pressure sensor and a fourth pressure sensor;
  • the first pressure sensor is set on the recovery pipeline between the second solenoid valve and the sixteenth solenoid valve; the second pressure sensor is set on the recovery pipeline between the pressure regulating valve and the gas processing unit; the third pressure sensor is set on the first On the first gas storage unit; the fourth pressure sensor is arranged on the second gas storage unit.
  • it also includes a purity detection module, a liquid filling machine, a first ball valve, a second ball valve, and a third gas storage unit;
  • the purity detection module is connected to the first gas storage unit; one end of the first ball valve is connected to the first gas storage unit; the other end of the first ball valve is connected to the liquid filling machine; one end of the second ball valve is respectively connected to the other end of the twelfth solenoid valve, The other end of the fourth solenoid valve, the other end of the ninth solenoid valve and one end of the thirteenth solenoid valve, and the other end of the second ball valve are connected to the third gas storage unit.
  • it also includes a first weighing module, a second weighing module and a heater;
  • the first weighing module is arranged at the bottom of the first gas storage unit; the second weighing module is arranged at the bottom of the second gas storage unit; the heater is connected with the first gas storage unit.
  • a gas recovery system comprising a controller and the above-mentioned sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions; the controller is respectively connected to a vacuum pumping unit, a gas processing unit, a nitrogen manufacturing unit and a gas separation unit;
  • the controller controls the gas processing unit to process the sulfur hexafluoride gas in the electrical equipment and recover it to the first gas storage unit when the vacuum unit completes the vacuuming of the device body;
  • the controller controls the gas processing unit to close and controls the nitrogen production unit to start; the nitrogen produced by the nitrogen production unit is input to the second storage in the air unit;
  • the controller controls the nitrogen production unit to close; the nitrogen in the second gas storage unit is filled into the electrical equipment and mixed with the remaining sulfur hexafluoride gas in the electrical equipment to form mixed composition;
  • the controller controls the vacuum unit to vacuumize the second gas storage unit; the controller completes the pumping of the second gas storage unit in the vacuum unit After vacuum treatment, the control gas processing unit recovers the mixed gas into the second gas storage unit;
  • the controller controls the gas separation unit to separate the mixed gas, and controls the gas processing unit to separate the remaining sulfur hexafluoride from the mixed gas The gas is recycled to the first gas storage unit.
  • the vacuum unit is used to evacuate the device body so that the sulfur hexafluoride gas in the electrical equipment enters the gas processing unit.
  • the gas processing unit processes the sulfur hexafluoride gas and recycles it into the first gas storage unit.
  • the nitrogen production unit when the pressure of the remaining sulfur hexafluoride gas in the electrical equipment is lower than the first preset pressure, the electrical equipment is filled with nitrogen, so that the mixed gas formed by the remaining sulfur hexafluoride gas and nitrogen in the electrical equipment When the pressure returns to the second preset pressure, the gas separation unit separates the mixed gas to recover the remaining sulfur hexafluoride gas in the mixed gas.
  • This application realizes the recovery of sulfur hexafluoride gas under full positive pressure conditions, effectively improves the recovery rate of sulfur hexafluoride gas, and the gas recovery efficiency is also greatly improved, and can meet the requirements of various enterprises and environmental protection in terms of timeliness and index rate Require.
  • Fig. 1 is a schematic structural view of a sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions in an embodiment
  • Fig. 2 is a schematic diagram of the vacuum state of the device body in one embodiment
  • Fig. 3 is a schematic diagram of the state of vacuuming the external electrical equipment in one embodiment
  • Fig. 4 is a schematic diagram of the state of a positive pressure recovery of dual compressors in one embodiment
  • Fig. 5 is a schematic diagram of the state of a positive pressure recovery of a single compressor in one embodiment
  • Fig. 6 is a schematic diagram of the state of a positive pressure recovery of a single compressor in another embodiment
  • Fig. 7 is a schematic diagram of the state in which the sulfur hexafluoride gas storage tank is emptied in one embodiment
  • Fig. 8 is a schematic diagram of the state of sulfur hexafluoride gas canned in a gas cylinder in one embodiment
  • Fig. 9 is a schematic diagram of the state of nitrogen production and storage in an embodiment
  • Fig. 10 is a schematic diagram of the state of nitrogen charging of external electrical equipment in one embodiment
  • Fig. 11 is a schematic diagram of the state in which the nitrogen storage tank is evacuated into a mixed gas buffer tank in one embodiment
  • Figure 12 is a schematic diagram of the state of sulfur hexafluoride gas and nitrogen separation and purification to the sulfur hexafluoride gas storage tank for secondary positive pressure recovery in an embodiment
  • Figure 13 is a schematic diagram of the state of sulfur hexafluoride gas and nitrogen separation and purification to the gas cylinder for secondary positive pressure recovery in an embodiment
  • Fig. 14 is a structural block diagram of the gas recovery system in one embodiment.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection” and the like if there is transmission of electrical signals or data between the connected objects.
  • the recovery and treatment device for sulfur hexafluoride gas in the prior art has the problem of low recovery rate.
  • the inventors have found that the root cause of the low recovery rate and recovery efficiency of sulfur hexafluoride gas is that In the presence of atmospheric pressure, when the device recovers sulfur hexafluoride gas in the electrical equipment below the standard atmospheric pressure ( ⁇ 0.1MPa), it will enter the negative pressure recovery mode. As the internal pressure of the electrical equipment becomes lower and lower, the recovery rate of the general device Also slower.
  • the present invention provides a scheme for recovering and treating sulfur hexafluoride gas with high efficiency and low consumption under full positive pressure conditions.
  • a device for recovering and treating sulfur hexafluoride gas under full positive pressure conditions may include: a vacuum pumping circuit, a primary positive pressure recovery circuit, a nitrogen generating and inflating circuit, a secondary positive pressure recovery circuit, and a second positive pressure recovery circuit.
  • the vacuum circuit includes a vacuum unit; the vacuum unit is connected to the second gas storage unit; the vacuum unit is also used to connect electrical equipment;
  • the primary positive pressure recovery circuit includes a gas processing unit; the gas processing unit is connected to the first gas storage unit and the vacuum unit; the gas processing unit is also used to connect electrical equipment;
  • the nitrogen gas filling circuit can include a nitrogen production unit; the nitrogen production unit is connected with the second gas storage unit;
  • the secondary positive pressure recovery circuit may include a gas separation unit; the gas separation unit is respectively connected to the second gas storage unit and the gas processing unit; the second gas storage unit is connected to the gas processing unit;
  • the vacuuming unit performs vacuuming action, so that the sulfur hexafluoride gas in the electrical equipment enters the gas processing unit, and the first gas storage unit stores the sulfur hexafluoride gas processed by the gas processing unit; the nitrogen production unit is in the electrical equipment
  • the pressure of the remaining sulfur hexafluoride gas in the electrical equipment is lower than the first preset pressure, fill the electrical equipment with nitrogen gas, so that the remaining sulfur hexafluoride gas and nitrogen gas in the electrical equipment form a mixed gas; the gas processing unit will mix The gas is input into the second gas storage unit; when the pressure of the mixed gas in the second gas storage unit returns to the second preset pressure, the gas separation unit separates the mixed gas to recover the remaining sulfur hexafluoride in the mixed gas gas.
  • the vacuum unit can be a vacuum pump; the gas manufacturing unit can be used to manufacture nitrogen; the first gas storage unit can be a gas storage tank for storing sulfur hexafluoride gas; the second gas storage unit can also be a gas storage tank, It is used to store nitrogen, and can also be used as a mixed gas buffer tank; the first preset pressure can be standard atmospheric pressure (0.1MPa); the second preset pressure can be greater than 0.35MPa; the flow of gas between components can be through the recovery pipe Road to achieve.
  • the first gas storage unit can be a gas storage tank for storing sulfur hexafluoride gas
  • the second gas storage unit can also be a gas storage tank, It is used to store nitrogen, and can also be used as a mixed gas buffer tank
  • the first preset pressure can be standard atmospheric pressure (0.1MPa); the second preset pressure can be greater than 0.35MPa; the flow of gas between components can be through the recovery pipe Road to achieve.
  • the vacuum unit can vacuum the device body, and the sulfur hexafluoride gas in the electrical equipment is compressed and cooled by the gas processing unit and then directly input into the first gas storage unit, thereby completing a positive pressure recovery. This process can Most of the sulfur hexafluoride gas is recovered.
  • the nitrogen production unit starts to produce nitrogen in the second gas storage unit, and the nitrogen production volume can be controlled according to the demanded weight of nitrogen,
  • the preset production volume is reached, the production of nitrogen gas is stopped, and the production and storage of nitrogen gas are completed;
  • the nitrogen gas in the second gas storage unit is charged into the electrical equipment, so that the remaining sulfur hexafluoride gas and nitrogen gas in the electrical equipment form a mixture Gas, when the filling amount of nitrogen in the electrical equipment reaches the preset filling amount, stop inputting nitrogen into the electrical equipment; after a sufficient amount of nitrogen is filled in the electrical equipment, it needs a period of standing process to make the remaining hexafluoro
  • the sulfur gas and nitrogen are fully mixed;
  • the second gas storage unit is evacuated through the vacuum unit, and the gas processing unit compresses and cools the mixed gas and then inputs it into the second gas storage unit.
  • the gas separation unit is activated to quickly separate the mixed gas, and the remaining sulfur hexafluoride gas after filtering out nitrogen is pressed in through the gas processing unit In the first gas storage unit, until the pressure of the remaining mixed gas of the electrical equipment is lower than the third preset pressure (for example, 0.1MPa), the secondary positive pressure recovery is completed, so that the whole process is carried out under full positive pressure,
  • the overall recovery rate can reach more than 97%.
  • the sulfur hexafluoride gas in the electrical equipment is directly recycled to the first gas storage unit.
  • nitrogen gas is charged to form a mixed gas and then input Vacuumized second gas storage unit, when the pressure of the mixed gas in the second gas storage unit returns to the second preset pressure, the mixed gas is separated, and the remaining sulfur hexafluoride gas is recovered for the second time , so as to realize the recovery of sulfur hexafluoride gas under full positive pressure conditions, and both the recovery efficiency and recovery rate of sulfur hexafluoride gas have been greatly improved.
  • the gas processing unit may include a first compressor, a second compressor, a cooler, and a filter drier;
  • the cooler is respectively connected to the first compressor, the second compressor and the dry filter
  • the first compressor is respectively connected to the electrical equipment and the first gas storage unit;
  • the second compressor is respectively connected to the electrical equipment, the gas separation unit and the first gas storage unit.
  • both the first compressor and the second compressor can upgrade the low-pressure gas to high-pressure gas, and the cooler can cool down the gas; the dry filter can dry and filter the gas to improve the purity of the sulfur hexafluoride gas;
  • single-unit recovery can be performed through the first compressor or the second compressor, or dual-compressor recovery can be performed simultaneously through the first compressor and the second compressor.
  • the gas separation unit may comprise a first membrane separator and a second membrane separator
  • the first membrane separator is respectively connected with the second gas storage unit and the second compressor;
  • the second membrane separator is respectively connected with the second gas storage unit and the second compressor.
  • the membrane separator can separate the mixed gas; the first membrane separator and the second membrane separator are alternately operated and regenerated to realize the rapid separation of the mixed gas; the remaining sulfur hexafluoride gas after separation can be compressed by the second compressor into the first gas storage unit.
  • the vacuum circuit may also include a first filter and a pressure regulating valve; the first filter is respectively connected to the vacuum unit, the electrical equipment and the pressure regulating valve;
  • the nitrogen gas filling circuit can also include a second filter and a third compressor; the second filter is respectively connected to the second gas storage unit and the third compressor; the third compressor is connected to the nitrogen production unit;
  • the secondary positive pressure recovery circuit can also include a pressure stabilizing valve and a flow controller; the stabilizing valve is connected to the second gas storage unit and the flow controller respectively; the flow controller is connected to the first membrane separator and the second membrane separator respectively .
  • the pressure regulating valve is only tested and set at the factory, and no operation is required for normal use;
  • the third compressor can press the nitrogen produced by the nitrogen production unit into the second gas storage unit;
  • the outlet pressure of the mixed gas in the unit is stable;
  • the flow controller can control the flow of the mixed gas in the second gas storage unit to the first membrane separator or the second membrane separator, so as to ensure the stability of the gas and the device during the gas recovery process sex.
  • the primary positive pressure recovery circuit may also include a first solenoid valve; the vacuum pumping circuit may also include a second solenoid valve, a third solenoid valve, a fourth solenoid valve, a fifth solenoid valve, and a sixth solenoid valve.
  • One end of the first solenoid valve is connected to electrical equipment, and the other end of the first solenoid valve is respectively connected to one end of the second solenoid valve, one end of the third solenoid valve, one end of the sixteenth solenoid valve and one end of the seventeenth solenoid valve;
  • the other end of the second solenoid valve is connected to the vacuum unit;
  • the other end of the third solenoid valve is connected to the first filter;
  • the other end of the seventeenth solenoid valve is connected to the second gas storage unit;
  • the pressure regulating valve is respectively connected to one end of the fourth solenoid valve, one end of the fifth solenoid valve and one end of the sixth solenoid valve; the other end of the fifth solenoid valve is connected to the first compressor; one end of the seventh solenoid valve is connected to the first compressor , the other end of the seventh solenoid valve is connected to the cooler; the other end of the sixth solenoid valve is connected to the second compressor; the second compressor is respectively connected to one end of the eighth solenoid valve and one end of the ninth solenoid valve; The other end is connected to the cooler; one end of the tenth solenoid valve is connected to the dry filter, the other end of the tenth solenoid valve and one end of the eleventh solenoid valve are connected to one end of the twelfth solenoid valve; the other end of the twelfth solenoid valve , the other end of the fourth solenoid valve and the other end of the ninth solenoid valve are connected to one end of the thirteenth solenoid valve; the other end
  • One end of the fifteenth solenoid valve is connected to the second gas storage unit, the other end of the fifteenth solenoid valve is connected to the second filter; one end of the fourteenth solenoid valve is connected to the second gas storage unit, and the other end of the fourteenth solenoid valve Connect the cooler and filter drier separately;
  • One end of the eighteenth solenoid valve and one end of the nineteenth solenoid valve are connected to the flow controller; the other end of the eighteenth solenoid valve and one end of the twentieth solenoid valve are connected to the first membrane separator; the nineteenth solenoid valve The other end of the 21st solenoid valve and the other end of the 21st solenoid valve are connected to the second membrane separator; the other end of the 20th solenoid valve and the other end of the 21st solenoid valve are respectively connected to the other end of the 6th solenoid valve and the Two compressors; one end of the twenty-second electromagnetic valve is connected to the first membrane separator; one end of the twenty-third electromagnetic valve is connected to the second membrane separator.
  • the first solenoid valve, the fifteenth solenoid valve, the eighteenth solenoid valve, the nineteenth solenoid valve, the twenty-second solenoid valve and the twenty-third solenoid valve must be kept closed. state, other solenoid valves remain open, after the vacuum unit is turned on, the second solenoid valve is opened to start vacuuming the device body, after the vacuuming process is completed, the second solenoid valve is closed, and the vacuum unit stops vacuuming.
  • the third solenoid valve, the seventeenth solenoid valve, the eighteenth solenoid valve, the nineteenth solenoid valve, the twenty-second solenoid valve and the twenty-third solenoid valve must be kept in the closed state , the first solenoid valve and the second solenoid valve are in the closed state initially, after the vacuum pumping solenoid valve is opened, the second solenoid valve, the first solenoid valve and the sixteenth solenoid valve are opened in turn, and the vacuum pumping unit stops.
  • the gas intake port of the external electrical equipment is connected to the front interface of the first solenoid valve through the recovery management, and the third solenoid valve, the fifth solenoid valve, the sixth solenoid valve, and the seventh solenoid valve are opened.
  • the first electromagnetic valve is closed, and the first compressor, the second compressor and cooler, and then simultaneously close the fifth solenoid valve, the sixth solenoid valve, the seventh solenoid valve and the eighth solenoid valve to complete a positive pressure recovery of sulfur hexafluoride gas.
  • a positive pressure recovery can use dual compressors, that is, the first compressor and the second compressor to run simultaneously for recovery, or use a single compressor for stand-alone recovery.
  • the first compressor operates alone, the sixth solenoid valve and the eighth solenoid valve must be in the closed state, and when the second compressor is running alone, the fifth solenoid valve and the seventh solenoid valve must be in the closed state.
  • the main working process of the nitrogen gas filling circuit can be divided into three steps: nitrogen production and storage, nitrogen filling of electrical equipment, and vacuuming of the second gas storage unit.
  • the nitrogen production and storage process includes: keeping the seventeenth solenoid valve, the fourteenth solenoid valve, the eighteenth solenoid valve, the nineteenth solenoid valve, the twenty-second solenoid valve and the twenty-third solenoid valve in a closed state;
  • the nitrogen production unit opens the third compressor and the fifteenth solenoid valve to compress the produced high-purity nitrogen into the second gas storage unit, and automatically closes the fifteenth solenoid valve and the fifteenth solenoid valve in sequence when the required preset production volume is reached
  • Three compressors and a nitrogen production unit complete the production and storage of nitrogen for backup.
  • the process of filling the electrical equipment with nitrogen includes: connecting the gas inlet of the external electrical equipment with the front interface of the first solenoid valve through the recovery pipeline, keeping the second solenoid valve, the third solenoid valve, the fourteenth solenoid valve, and the fifteenth solenoid valve valve, the sixteenth solenoid valve, the eighteenth solenoid valve, the nineteenth solenoid valve, the twenty-second solenoid valve and the twenty-third solenoid valve are in the closed state; the seventeenth solenoid valve and the first solenoid valve are opened in turn, Fill the high-purity nitrogen in the second gas storage unit into the external electrical equipment; when the set filling volume is reached, the seventeenth solenoid valve and the first solenoid valve will be automatically closed in sequence; If the gas pressure in the unit is insufficient, the seventeenth electromagnetic valve will be automatically closed, and the nitrogen production unit, the third compressor and the fifteenth electromagnetic valve will be turned on to produce nitrogen again until the process of charging the external electrical equipment with nitrogen is completed.
  • the vacuuming process of the second gas storage unit includes: after the external electrical equipment is filled with a sufficient amount of nitrogen, it needs to stand still for a long time to make the remaining sulfur hexafluoride gas and nitrogen mix, and the second gas storage unit should be pumped at this time.
  • Vacuum treatment open the vacuum unit, and then open the second solenoid valve, the sixteenth solenoid valve and the seventeenth solenoid valve in sequence, after completing the vacuuming requirements of the second gas storage unit, close the second solenoid valve, the sixteenth solenoid valve
  • the solenoid valve and the seventeenth solenoid valve stop the vacuum unit, and the second gas storage unit after vacuum pumping can be used as a mixed buffer gas tank in the subsequent separation and purification process of the mixed gas.
  • the external electrical equipment After the external electrical equipment is filled with nitrogen and left to stand still, it enters the second positive pressure recovery of the remaining sulfur hexafluoride gas, connects the used recovery pipeline of the gas intake port of the external electrical equipment to the front interface of the first solenoid valve, and closes the second Solenoid valve, fourth solenoid valve, sixth solenoid valve, eighth solenoid valve, tenth solenoid valve, eleventh solenoid valve, twelfth solenoid valve, fifteenth solenoid valve, sixteenth solenoid valve, seventeenth solenoid valve Solenoid valve, 19th solenoid valve, 21st solenoid valve, 23rd solenoid valve, open cooler, 1st solenoid valve, 3rd solenoid valve, 5th solenoid valve, 7th solenoid valve, 14th solenoid valve
  • the solenoid valve and the first compressor recycle the mixed gas in the external electrical equipment to the second gas storage unit; when the sub-green of the mixed gas in the second gas storage unit reaches
  • This application sets corresponding solenoid valves to perform corresponding actions in the corresponding gas recovery stage, thereby ensuring a more stable and rigorous gas recovery process, ensuring the gas recovery process under full positive pressure conditions, and effectively improving the gas recovery rate .
  • the sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions may also include a vacuum gauge and a gas sensor;
  • the vacuum gauge is connected to the other end of the sixteenth solenoid valve; the gas sensor is respectively connected to the other end of the twenty-second solenoid valve and the other end of the twenty-third solenoid valve.
  • the vacuum gauge can measure the degree of vacuum. When vacuuming the device body or electrical equipment and the second gas storage unit, the vacuum degree can be observed through the vacuum gauge to meet the vacuum degree requirement. , you can stop the operation of the vacuum unit.
  • the gas sensor is used to detect the content of sulfur hexafluoride gas in the mixed gas; when the first membrane separator and the second membrane separator separate the remaining sulfur hexafluoride gas in the mixed gas, the gas sensor monitors the mixed gas When the remaining sulfur hexafluoride gas content in the nitrogen gas is lower than the discharge requirements specified in the relevant standards, the nitrogen in the first membrane separator or the second membrane separator is discharged to the atmosphere by opening the fifth solenoid valve or the sixth solenoid valve.
  • the sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions may further include a first pressure sensor, a second pressure sensor, a third pressure sensor and a fourth pressure sensor;
  • the first pressure sensor is set on the recovery pipeline between the second solenoid valve and the sixteenth solenoid valve; the second pressure sensor is set on the recovery pipeline between the pressure regulating valve and the gas processing unit; the third pressure sensor is set on the first On the first gas storage unit; the fourth pressure sensor is arranged on the second gas storage unit.
  • the first pressure sensor, the second pressure sensor, the third pressure sensor and the fourth pressure sensor can all be used to detect the gas pressure in the recovery pipeline. For example, during a positive pressure recovery, when the first pressure sensor detects that the gas pressure in the pipeline is lower than the first preset pressure, the first solenoid valve is closed, and the first compressor, the second compressor and the cooler are sequentially shut down , and then close the fifth solenoid valve, the sixth solenoid valve, the seventh solenoid valve and the eighth solenoid valve at the same time to complete a positive pressure recovery of sulfur hexafluoride gas; when the third pressure sensor detects the When the pressure is greater than the maximum storage pressure, the sulfur hexafluoride gas recovery and treatment device cannot be started under full positive pressure conditions, and the first gas storage unit needs to be emptied before it can be resumed.
  • the sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions may also include a purity detection module, a liquid filling machine, a first ball valve, a second ball valve, and a third gas storage unit;
  • the purity detection module is connected to the first gas storage unit; one end of the first ball valve is connected to the first gas storage unit; the other end of the first ball valve is connected to the liquid filling machine; one end of the second ball valve is respectively connected to the other end of the twelfth solenoid valve, The other end of the fourth solenoid valve, the other end of the ninth solenoid valve and one end of the thirteenth solenoid valve, and the other end of the second ball valve are connected to the third gas storage unit.
  • the purity detection module can detect the purity of the sulfur hexafluoride gas in the first gas storage unit; the purity detection module can also be arranged inside the first gas storage unit.
  • the sulfur hexafluoride gas can be directly recovered to the third gas storage unit.
  • first ball valve and the second ball valve it is also necessary to keep the first ball valve and the second ball valve in a closed state when evacuating the device body, external electrical equipment, and sequential positive pressure recovery; during the process of nitrogen production and storage and the second During the vacuuming process of the gas storage unit, it is also necessary to keep the first ball valve and the second ball valve in a closed state.
  • the sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions may also include a first weighing module, a second weighing module and a heater;
  • the first weighing module is arranged at the bottom of the first gas storage unit; the second weighing module is arranged at the bottom of the second gas storage unit; the heater is connected with the first gas storage unit.
  • the first weighing module is provided at the bottom of the first gas storage unit, which can automatically detect, calculate, store and recover the gas volume of sulfur hexafluoride gas;
  • the nitrogen production volume can be controlled according to the nitrogen demand weight, and the nitrogen production volume can be measured through the second weighing module.
  • the fifteenth solenoid valve, the third compressor and the nitrogen production volume will be automatically closed in sequence.
  • the manufacturing unit completes the manufacture and storage of nitrogen for backup.
  • the sulfur hexafluoride gas in the device can be directly recharged to external electrical equipment. A large amount of heat absorbed during the recharging process will cause the first gas storage unit to freeze, so a heater is configured to compensate for the heat generated during gas recharging.
  • a device for recovering and treating sulfur hexafluoride gas under full positive pressure conditions is provided, and the comparison table of the device components is shown in Table 1.
  • V1 ⁇ V17 are the first solenoid valve to the seventeenth solenoid valve
  • VF1 ⁇ VF6 are the eighteenth solenoid valve to the twenty-third solenoid valve
  • V19 is the first ball valve
  • V20 is the second ball valve
  • vacuumize The unit is a vacuum pump
  • M2-M4 are the first compressor to the third compressor
  • P1-P4 are the first pressure sensor to the fourth pressure sensor
  • the gas sensor is a sulfur hexafluoride sensor
  • the second gas storage unit is nitrogen
  • the gas storage tank can also be used as a mixed gas buffer tank
  • the first gas storage unit is a sulfur hexafluoride gas storage tank
  • G1 is the first filter
  • G2 is the second filter
  • the nitrogen production unit is a nitrogen production device
  • ZS1 is a The first membrane separator
  • the vacuum circuit the device body is vacuumed by a vacuum pump, and external electrical equipment can also be vacuumed; when vacuuming the device body, the solenoid valves V1, V15, VF1, VF2, VF5, VF6 must be kept And ball valves V19, V20 are closed, other solenoid valves V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V16, V17 remain open, after turning on the vacuum pump M1, turn on the solenoid Valve V2 starts vacuuming the device body, and observes the vacuum degree through the vacuum gauge ZK1. After reaching the vacuum degree requirement, close the solenoid valve V2 and stop the vacuum pump M1 (as shown in Figure 2).
  • Primary positive pressure recovery circuit It is mainly used when the sulfur hexafluoride gas in the external electrical equipment is under positive pressure.
  • the gas inlet of the external electrical equipment is passed through the recovery pipeline and the solenoid valve is installed.
  • a positive pressure recovery can be performed simultaneously with dual compressors M3 and M4, or with a single compressor M3 or M4.
  • the solenoid valves V6 and V8 must be closed (as shown in Figure 5 Shown)
  • the solenoid valves V5 and V7 must be closed (as shown in Figure 6).
  • the pressure regulating valve TY is only tested and set at the factory, and no operation is required for normal use; when the pressure sensor P3 of the device detects that the pressure in the sulfur hexafluoride gas storage tank C1 is greater than the maximum storage pressure, the device cannot be started, and the hexafluoride must be emptied.
  • the sulfur gas storage tank C1 can be restored to use.
  • the liquid filling machine M4 is needed to vacate the sulfur hexafluoride gas storage tank C1. Connect the external storage container to the outlet of the liquid filling machine M4, open the ball valve V19, and start the liquid filling machine M4. That is, the sulfur hexafluoride gas in the sulfur hexafluoride gas storage tank C1 can be transferred to an external storage container (as shown in FIG. 7 ).
  • the nitrogen-generating charging circuit mainly includes nitrogen-generating device ZN1, compressor M2, filter G2, nitrogen storage tank C2, and solenoid valves V15 and V17.
  • the working process is divided into three steps: nitrogen production storage, external nitrogen filling, and nitrogen gas storage tank C2 vacuuming.
  • the storage process of nitrogen production is as follows: keep the solenoid valves V17, V14, VF1, VF2, VF5, VF6 and ball valves V19 and V20 in the closed position, open the nitrogen production device ZN1, open the compressor M2 and the solenoid valve V15 to compress the produced high-purity nitrogen
  • the nitrogen gas storage tank C2 is equipped with a weighing device CZ1, which can control the amount of nitrogen production according to the demanded weight of nitrogen.
  • the solenoid valve V15, compressor M2 and nitrogen production volume will be automatically closed in sequence.
  • the device ZN1 completes the production and storage of nitrogen for standby use (as shown in Figure 9).
  • Nitrogen charging process of external electrical equipment is as follows: connect the air inlet of external electrical equipment to the front interface of solenoid valve V1 of the device through the recovery pipeline, and keep solenoid valves V2, V3, V14, V15, V16, VF1, VF2, VF5, and VF6 in the closed state , open the solenoid valves V17 and V1 in turn to charge the high-purity nitrogen in the nitrogen storage tank C2 into the external electrical equipment. If the pressure of the nitrogen storage tank C2 is insufficient, the solenoid valve V17 is automatically closed, the nitrogen generator ZN1 is turned on, the compressor M2 and the solenoid valve V15 are turned on to produce nitrogen again, until the nitrogen filling process of the external electrical equipment is completed (as shown in Figure 10).
  • Nitrogen storage tank C2 vacuuming process After the external electrical equipment is filled with enough nitrogen, it needs to stand for a period of time to mix the remaining sulfur hexafluoride gas with nitrogen. At this time, the nitrogen storage tank C2 should be vacuumed Processing, close the solenoid valves V1, V3, V14, V15, VF1, VF2, VF5, VF6, keep the ball valves V19, V20 closed, turn on the vacuum pump M1, then turn on the solenoid valves V2, V16, V17 in turn, and observe the vacuum through the vacuum gauge ZK1 After reaching the vacuum degree requirements, close the solenoid valves V2, V16, V17, stop the vacuum pump M1, and the nitrogen storage tank C2 after vacuuming is used as a mixed gas buffer tank in the subsequent mixed gas purification operation (as shown in Figure 11) .
  • Secondary positive pressure recovery circuit After the external electrical equipment is flushed with nitrogen and left to stand still, it enters the secondary positive pressure recovery and purification process of sulfur hexafluoride gas, and the gas intake port of the external electrical equipment is connected to the front interface of the solenoid valve V1 of the device through the recovery pipeline Connect, close solenoid valves V2, V4, V6, V8, V10, V11, V12, V15, V16, V17, VF2, VF4, VF6, open cooler ZL1, open solenoid valves V1, V3, V5, V7, V14, open
  • the compressor M3 recycles the remaining sulfur hexafluoride gas and nitrogen mixed gas in the external electrical equipment to the mixed gas buffer tank C2.
  • the mixed gas in the mixed gas buffer tank C2 reaches the second preset pressure (greater than 0.35MPa)
  • it will automatically Adjust the pressure stabilizing valve VY1 to stabilize the outlet pressure at 0.3MPa, and then control the flow to the membrane separator ZS1 or ZS2 through the flow controller FL1, and the membrane separator ZS1 and ZS2 will automatically regenerate alternately to realize the rapid separation of the mixed gas.
  • the sulfur sensor SFN1 detects that the remaining sulfur hexafluoride gas content in the nitrogen is lower than the emission requirements specified in the relevant standards
  • the nitrogen in the membrane separator ZS1 or ZS2 is discharged to the atmosphere by opening VF5 or VF6, and after the nitrogen is filtered
  • the remaining high-purity sulfur hexafluoride gas is sent to the compressor M4 through the solenoid valve VF3 or VF4.
  • the solenoid valves V9 and V13 are opened to press the purified remaining sulfur hexafluoride gas into the sulfur hexafluoride storage tank. Gas tank C1 until the pressure of the external electrical equipment recovers to 0.1MPa (as shown in Figure 12).
  • the mixed gas After the mixed gas is purified, it can also be directly recovered to the gas cylinder (the third gas storage unit), just connect the gas cylinder to the ball valve V20 through the recovery pipeline, close the solenoid valve V13 under the same working conditions, open the ball valve V20, and put the six Sulfur fluoride gas is directly recovered to the cylinder (as shown in Figure 13).
  • Sulfur hexafluoride gas in the device can be directly recharged to external electrical equipment. A large amount of heat absorbed during the recharging process will cause the sulfur hexafluoride gas storage tank C1 to freeze. Therefore, the device is equipped with a heater JZ1 to compensate for the heat generated during gas recharging.
  • this application carries out primary recovery of sulfur hexafluoride gas in electrical equipment, flushing into high-purity nitrogen, and secondary recovery and purification.
  • the whole process is carried out under positive pressure (above 0.1MPa).
  • the overall theoretical recovery rate is above 97%.
  • the parallel recovery method of double compressors is adopted simultaneously, and the overall recovery efficiency is greatly improved. Both the recovery efficiency of sulfur hexafluoride gas and the recovery rate of sulfur hexafluoride gas are greatly improved.
  • a gas recovery system which may include a controller and the above-mentioned sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions; the controller is respectively connected to the vacuum unit, gas processing unit, nitrogen production unit and gas separation unit;
  • the controller controls the gas processing unit to process the sulfur hexafluoride gas in the electrical equipment and recover it to the first gas storage unit when the vacuum unit completes the vacuuming of the device body;
  • the controller controls the gas processing unit to close and controls the nitrogen production unit to start; the nitrogen produced by the nitrogen production unit is input into the second storage in the air unit;
  • the controller controls the nitrogen production unit to close; the nitrogen in the second gas storage unit is filled into the electrical equipment and mixed with the remaining sulfur hexafluoride gas in the electrical equipment to form mixed composition;
  • the controller controls the vacuum unit to vacuumize the second gas storage unit; the controller completes the pumping of the second gas storage unit in the vacuum unit After vacuum treatment, the control gas processing unit recovers the mixed gas into the second gas storage unit;
  • the controller controls the gas separation unit to separate the mixed gas, and controls the gas processing unit to separate the remaining sulfur hexafluoride from the mixed gas The gas is recycled to the first gas storage unit.
  • the controller of this application performs automatic control of each unit module in the sulfur hexafluoride gas recovery and treatment device under full positive pressure conditions, which improves the portability and high efficiency of the sulfur hexafluoride gas recovery process, and realizes the sulfur hexafluoride gas recovery process.
  • the gas is recovered under full positive pressure conditions, the recovery efficiency and recovery rate of sulfur hexafluoride gas have been greatly improved, and the high-efficiency and low-consumption recovery of sulfur hexafluoride gas has also been realized, which meets the requirements for recovery rate at home. It also meets the timeliness requirements of on-site operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种全正压条件下六氟化硫气体回收处理装置及气体回收系统,通过抽真空单元进行抽真空动作,以使电气设备内的六氟化硫气体进入气体处理单元,第一储气单元储存气体处理单元处理后的六氟化硫气体;氮气制造单元在电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,向电气设备中充入氮气,使电气设备中剩余六氟化硫气体和氮气形成混合气体;气体处理单元将混合气体输入第二储气单元内;气体分离单元在第二储气单元内混合气体的压力恢复至第二预设压力的情况下,将混合气体分离,以回收混合气体中的剩余六氟化硫气体。该装置及系统实现了六氟化硫气体在全正压条件下进行回收,有效提高了六氟化硫气体回收率,气体回收效率也大幅提升。

Description

全正压条件下六氟化硫气体回收处理装置及气体回收系统 技术领域
本申请涉及气体回收技术领域,特别是涉及一种全正压条件下六氟化硫气体回收处理装置及气体回收系统。
背景技术
六氟化硫气体以其优良的灭弧性能在电力领域普遍应用,随着国家对用地面积的管控日益严格,各电厂、变电站、换流站大量的使用GIS和GIL设备,随之而来的是六氟化硫气体的大量使用。提供了便利的同时,六氟化硫这种强温室气体的危害也不容忽视,其温室效应是等量二氧化碳气体的23900倍,在自然条件下需要大约3000年左右才能自然分解,少量的六氟化硫气体也会造成非常大的温室效应,但当前现有的回收方法无论从时效性还是指标率都难以满足企业和环保的要求。
为提高回收效率,一些专业回收机构采用增加回收装置数量的方式开展回收作业,可以起到一定的增速效果,但对整体气体的回收率起效甚微;为了提高回收率,一些机构采用加大回收装置功率的方式,但这种方式起到的作用也不甚理想,六氟化硫气体的回收技术进入“瓶颈期”。
在实现过程中,发明人发现传统技术中至少存在如下问题:传统的六氟化硫气体回收处理装置的回收率低。
发明内容
基于此,有必要针对上述技术问题,提供一种全正压条件下六氟化硫气体回收处理装置及气体回收系统。
一种全正压条件下六氟化硫气体回收处理装置,包括:抽真空回路、一次正压回收回路、制氮充气回路、二次正压回收回路、第一储气单元以及第二储气单元;第二储气单元用于连接电气设备;
抽真空回路包括抽真空单元;抽真空单元连接第二储气单元;抽真空单元 还用于连接电气设备;
一次正压回收回路包括气体处理单元;气体处理单元与第一储气单元和抽真空单元相连接;气体处理单元还用于连接电气设备;
制氮充气回路包括氮气制造单元;氮气制造单元与第二储气单元相连接;
二次正压回收回路包括气体分离单元;气体分离单元分别连接第二储气单元和气体处理单元;第二储气单元与气体处理单元相连接;
其中,抽真空单元进行抽真空动作,以使电气设备内的六氟化硫气体进入气体处理单元,第一储气单元储存气体处理单元处理后的六氟化硫气体;氮气制造单元在电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,向电气设备中充入氮气,使电气设备中剩余六氟化硫气体和氮气形成混合气体;气体处理单元将混合气体输入第二储气单元内;气体分离单元在第二储气单元内混合气体的压力恢复至第二预设压力的情况下,将混合气体分离,以回收混合气体中的剩余六氟化硫气体。
在其中一个实施例中,气体处理单元包括第一压缩机、第二压缩机、冷却器以及干燥过滤器;
冷却器分别连接第一压缩机、第二压缩机以及干燥过滤器;
第一压缩机分别连接电气设备和第一储气单元;
第二压缩机分别连接电气设备、气体分离单元以及第一储气单元。
在其中一个实施例中,气体分离单元包括第一膜分离器和第二膜分离器;
第一膜分离器分别与第二储气单元和第二压缩机相连接;
第二膜分离器分别与第二储气单元和第二压缩机相连接。
在其中一个实施例中,
抽真空回路还包括第一过滤器和调压阀;第一过滤器分别连接抽真空单元、电气设备以及调压阀;
制氮充气回路还包括第二过滤器和第三压缩机;第二过滤器分别连接第二储气单元和第三压缩机;第三压缩机连接氮气制造单元;
二次正压回收回路还包括稳压阀和流量控制器;稳压阀分别与第二储气单元和流量控制器相连接;流量控制器分别连接第一膜分离器和第二膜分离器。
在其中一个实施例中,一次正压回收回路还包括第一电磁阀;抽真空回路还包括第二电磁阀、第三电磁阀、第四电磁阀、第五电磁阀、第六电磁阀、第七电磁阀、第八电磁阀、第九电磁阀、第十电磁阀、第十一电磁阀、第十二电磁阀、第十三电磁阀和第十六电磁阀;制氮充气回路还包括第十五电磁阀和第十七电磁阀;二次正压回收回路还包括第十四电磁阀、第十八电磁阀、第十九电磁阀、第二十电磁阀、第二十一电磁阀、第二十二电磁阀和第二十三电磁阀;
第一电磁阀的一端连接电气设备,第一电磁阀的另一端分别连接第二电磁阀的一端、第三电磁阀的一端、第十六电磁阀的一端以及第十七电磁阀的一端;第二电磁阀的另一端连接抽真空单元;第三电磁阀的另一端连接第一过滤器;第十七电磁阀的另一端连接第二储气单元;
调压阀分别连接第四电磁阀的一端、第五电磁阀的一端以及第六电磁阀的一端;第五电磁阀的另一端连接第一压缩机;第七电磁阀的一端连接第一压缩机,第七电磁阀的另一端连接冷却器;第六电磁阀的另一端连接第二压缩机;第二压缩机分别连接第八电磁阀的一端和第九电磁阀的一端;第八电磁阀的另一端连接冷却器;第十电磁阀的一端连接干燥过滤器,第十电磁阀的另一端和第十一电磁阀的一端均连接第十二电磁阀的一端;第十二电磁阀的另一端、第四电磁阀的另一端以及第九电磁阀的另一端均连接第十三电磁阀的一端;第十一电磁阀的另一端和第十三电磁阀的另一端均连接第一储气单元;
第十五电磁阀的一端连接第二储气单元,第十五电磁阀的另一端连接第二过滤器;第十四电磁阀的一端连接第二储气单元,第十四电磁阀的另一端分别连接冷却器和干燥过滤器;
第十八电磁阀的一端和第十九电磁阀的一端均连接流量控制器;第十八电磁阀的另一端和第二十电磁阀的一端均连接第一膜分离器;第十九电磁阀的另一端和第二十一电磁阀的一端均连接第二膜分离器;第二十电磁阀的另一端和第二十一电磁阀的另一端均分别连接第六电磁阀的另一端和第二压缩机;第二十二电磁阀的一端连接第一膜分离器;第二十三电磁阀的一端连接第二膜分离器。
在其中一个实施例中,还包括真空计和气体传感器;
真空计连接第十六电磁阀的另一端;气体传感器分别连接第二十二电磁阀的另一端和第二十三电磁阀的另一端。
在其中一个实施例中,还包括第一压力传感器、第二压力传感器、第三压力传感器和第四压力传感器;
第一压力传感器设于第二电磁阀和第十六电磁阀之间的回收管路上;第二压力传感器设于调压阀和气体处理单元之间的回收管路上;第三压力传感器设于第一储气单元上;第四压力传感器设于第二储气单元上。
在其中一个实施例中,还包括纯度检测模块、液态灌装机、第一球阀、第二球阀以及第三储气单元;
纯度检测模块连接第一储气单元;第一球阀的一端连接第一储气单元;第一球阀的另一端连接液态灌装机;第二球阀的一端分别连接第十二电磁阀的另一端、第四电磁阀的另一端、第九电磁阀的另一端以及第十三电磁阀的一端,第二球阀的另一端连接第三储气单元。
在其中一个实施例中,还包括第一称重模块、第二称重模块以及加热器;
第一称重模块设于第一储气单元底部;第二称重模块设于第二储气单元底部;加热器与第一储气单元相连接。
一种气体回收系统,包括控制器和上述的全正压条件下六氟化硫气体回收处理装置;控制器分别连接抽真空单元、气体处理单元、氮气制造单元以及气体分离单元;
控制器在抽真空单元完成对装置本体抽真空的情况下,控制气体处理单元将电气设备中的六氟化硫气体处理后回收至第一储气单元中;
控制器在电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,控制气体处理单元关闭、以及控制氮气制造单元启动;氮气制造单元制造的氮气输入至第二储气单元中;
控制器在氮气的制造量达到预设制造量的情况下,控制氮气制造单元关闭;第二储气单元中的氮气填充至电气设备中、与电气设备中的剩余六氟化硫气体混合,形成混合气体;
控制器在电气设备中的氮气的填充量达到预设填充量的情况下,控制抽真 空单元对第二储气单元进行抽真空处理;控制器在抽真空单元完成对第二储气单元的抽真空处理后,控制气体处理单元将混合气体回收至第二储气单元内;
控制器在第二储气单元内的混合气体的压力达到第二预设压力的情况下,控制气体分离单元将混合气体分离、以及控制气体处理单元将混合气体中分离得到的剩余六氟化硫气体回收至第一储气单元中。
上述技术方案中的一个技术方案至少具有如下优点和有益效果:
本申请通过抽真空单元对装置本体抽真空,以使电气设备内六氟化硫气体进入气体处理单元,气体处理单元将六氟化硫气体处理后回收至第一储气单元内,氮气制造单元则在电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,向电气设备中充入氮气,使电气设备中剩余六氟化硫气体和氮气形成的混合气体的压力恢复至第二预设压力时,气体分离单元将混合气体分离,以回收混合气体中的剩余六氟化硫气体。本申请实现了六氟化硫气体在全正压条件下进行回收,有效提高了六氟化硫气体回收率,气体回收效率也大幅提升,从时效性和指标率都可以满足各企业和环保的要求。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中全正压条件下六氟化硫气体回收处理装置的结构示意图;
图2为一个实施例中装置本体抽真空的状态示意图;
图3为一个实施例中外接电气设备抽真空的状态示意图;
图4为一个实施例中双压缩机一次正压回收的状态示意图;
图5为一个实施例中单压缩机一次正压回收的状态示意图;
图6为另一个实施例中单压缩机一次正压回收的状态示意图;
图7为一个实施例中六氟化硫储气罐腾空的状态示意图;
图8为一个实施例中六氟化硫气体罐装于气瓶的状态示意图;
图9为一个实施例中制氮存储的状态示意图;
图10为一个实施例中外接电气设备充氮的状态示意图;
图11为一个实施例中氮气储气罐抽真空转为混气缓冲罐的状态示意图;
图12为一个实施例中六氟化硫气体和氮气分离提纯二次正压回收至六氟化硫储气罐的状态示意图;
图13为一个实施例中六氟化硫气体和氮气分离提纯二次正压回收至气瓶的状态示意图;
图14为一个实施例中气体回收系统的结构框图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述 语相应地被解释。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。此外,以下实施例中的“连接”,如果被连接的对象之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。
正如背景技术所述,现有技术中的六氟化硫气体回收处理装置出现回收率低的问题,经发明人研究发现,造成六氟化硫气体回收率和回收效率都较低的根本原因在于大气压力的存在,当装置回收电气设备内六氟化硫气体到标准大气压(≈0.1MPa)以下时,便进入负压回收模式,随着电气设备内压力越来越低,一般装置的回收速率也就越慢。受制于进入负压回收模式后,即使增加回收装置的数量或加大回收装置的功率,也基本无法实现六氟化硫气体的高效低耗回收,基本无法达到国家对96.5%回收率的要求,更难以满足现场作业的时效性需求。
基于以上原因,本发明提供了一种在全正压条件下对六氟化硫气体进行高效低耗回收处理的方案。
在一个实施例中,提供了一种全正压条件下六氟化硫气体回收处理装置,可以包括:抽真空回路、一次正压回收回路、制氮充气回路、二次正压回收回路、第一储气单元以及第二储气单元;第二储气单元用于连接电气设备;
抽真空回路包括抽真空单元;抽真空单元连接第二储气单元;抽真空单元还用于连接电气设备;
一次正压回收回路包括气体处理单元;气体处理单元与第一储气单元和抽真空单元相连接;气体处理单元还用于连接电气设备;
制氮充气回路可以包括氮气制造单元;氮气制造单元与第二储气单元相连接;
二次正压回收回路可以包括气体分离单元;气体分离单元分别连接第二储气单元和气体处理单元;第二储气单元与气体处理单元相连接;
其中,抽真空单元进行抽真空动作,以使电气设备内的六氟化硫气体进入气体处理单元,第一储气单元储存气体处理单元处理后的六氟化硫气体;氮气制造单元在电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,向电气设备中充入氮气,使电气设备中剩余六氟化硫气体和氮气形成混合气体;气体处理单元将混合气体输入第二储气单元内;气体分离单元在第二储气单元内混合气体的压力恢复至第二预设压力的情况下,将混合气体分离,以回收混合气体中的剩余六氟化硫气体。
其中,抽真空单元可以为真空泵;气体制造单元可以用于制造氮气;第一储气单元可以为储气罐,用来储存六氟化硫气体;第二储气单元也可以为储气罐,用来储存氮气,也可以作为混合气体缓冲罐;第一预设压力可以为标准大气压(0.1MPa);第二预设压力可以大于0.35MPa;气体在各元器件之间的流动可以通过回收管路实现。
具体地,抽真空单元可以将装置本体进行抽真空,电气设备内的六氟化硫气体通过气体处理单元压缩冷却处理后直接输入第一储气单元内,从而完成一次正压回收,这个过程可以回收大部分六氟化硫气体。
在电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,氮气制造单元开始向第二储气单元中制造氮气,可以根据氮气的需求重量进行氮气制造量控制,当达到预设制造量的情况下,停止制造氮气,完成氮气的制造和存储备用;第二储气单元中的氮气充入电气设备中,使电气设备中剩余六氟化硫气体和氮气形成混合气体,当电气设备内的氮气的填充量达到预设填充量的情况下,停止向电气设备内输入氮气;电气设备中充入足量的氮气后需要一段时间的静置过程以使剩余六氟化硫气体和氮气充分混合;通过抽真空单元将第二储气单元抽真空,气体处理单元再将混合气体压缩冷却处理后输入至第二储气单元内。
当第二储气单元内混合气体的压力达到第二预设压力的情况下,气体分离单元启动,对混合气体进行快速分离,滤除氮气后的剩余六氟化硫气体通过气体处理单元压入第一储气单元中,直至电气设备的剩余混合气体的压力低于第三预设压力(例如0.1MPa),则完成了二次正压回收,从而整个过程在全正压的情况下开展,整体回收率可达97%以上。
本申请通过将电气设备内的六氟化硫气体直接回收第一储气单元,当电气设备内剩余六氟化硫气体的压力达到第一预设压力时,充入氮气,形成混合气体后输入抽真空的第二储气单元,在第二储气单元中的混合气体的压力恢复至第二预设压力的情况下,再对混合气体进行分离,将剩余六氟化硫气体进行二次回收,从而实现了六氟化硫气体在全正压条件下进行回收,无论是六氟化硫气体的回收效率还是回收率都有了飞跃性提升。
在其中一个实施例中,气体处理单元可以包括第一压缩机、第二压缩机、冷却器以及干燥过滤器;
冷却器分别连接第一压缩机、第二压缩机以及干燥过滤器;
第一压缩机分别连接电气设备和第一储气单元;
第二压缩机分别连接电气设备、气体分离单元以及第一储气单元。
具体地,第一压缩机和第二压缩机均可以将低压气体提升为高压气体,冷却器可以将气体冷却降温;干燥过滤器可以将气体干燥过滤,提高六氟化硫气体的纯度;一次正压回收时可以通过第一压缩机或第二压缩机进行单机回收,也可以通过第一压缩机和第二压缩机双压缩机同时运行回收。
在其中一个实施例中,气体分离单元可以包括第一膜分离器和第二膜分离器;
第一膜分离器分别与第二储气单元和第二压缩机相连接;
第二膜分离器分别与第二储气单元和第二压缩机相连接。
具体地,膜分离器可以将混合气体进行分离;第一膜分离器和第二膜分离器交替运行再生实现混合气体的快速分离;分离后的剩余六氟化硫气体可以通过第二压缩机压入第一储气单元内。
在其中一个实施例中,
抽真空回路还可以包括第一过滤器和调压阀;第一过滤器分别连接抽真空单元、电气设备以及调压阀;
制氮充气回路还可以包括第二过滤器和第三压缩机;第二过滤器分别连接第二储气单元和第三压缩机;第三压缩机连接氮气制造单元;
二次正压回收回路还可以包括稳压阀和流量控制器;稳压阀分别与第二储气单元和流量控制器相连接;流量控制器分别连接第一膜分离器和第二膜分离器。
具体地,调压阀仅在出厂时进行检测设定,正常使用无需操作;第三压缩机可以将氮气制造单元制造的氮气压入第二储气单元中;稳压阀可以将第二储气单元中的混合气体的出气压力稳定;流量控制器可以控制第二储气单元中混合气体通向第一膜分离器或第二膜分离器的流量,从而保证气体回收过程中气体和装置的稳定性。
在其中一个实施例中,一次正压回收回路还可以包括第一电磁阀;抽真空回路还可以包括第二电磁阀、第三电磁阀、第四电磁阀、第五电磁阀、第六电磁阀、第七电磁阀、第八电磁阀、第九电磁阀、第十电磁阀、第十一电磁阀、第十二电磁阀、第十三电磁阀和第十六电磁阀;制氮充气回路还可以包括第十五电磁阀和第十七电磁阀;二次正压回收回路还可以包括第十四电磁阀、第十八电磁阀、第十九电磁阀、第二十电磁阀、第二十一电磁阀、第二十二电磁阀和第二十三电磁阀;
第一电磁阀的一端连接电气设备,第一电磁阀的另一端分别连接第二电磁阀的一端、第三电磁阀的一端、第十六电磁阀的一端以及第十七电磁阀的一端;第二电磁阀的另一端连接抽真空单元;第三电磁阀的另一端连接第一过滤器;第十七电磁阀的另一端连接第二储气单元;
调压阀分别连接第四电磁阀的一端、第五电磁阀的一端以及第六电磁阀的一端;第五电磁阀的另一端连接第一压缩机;第七电磁阀的一端连接第一压缩机,第七电磁阀的另一端连接冷却器;第六电磁阀的另一端连接第二压缩机;第二压缩机分别连接第八电磁阀的一端和第九电磁阀的一端;第八电磁阀的另一端连接冷却器;第十电磁阀的一端连接干燥过滤器,第十电磁阀的另一端和 第十一电磁阀的一端均连接第十二电磁阀的一端;第十二电磁阀的另一端、第四电磁阀的另一端以及第九电磁阀的另一端均连接第十三电磁阀的一端;第十一电磁阀的另一端和第十三电磁阀的另一端均连接第一储气单元;
第十五电磁阀的一端连接第二储气单元,第十五电磁阀的另一端连接第二过滤器;第十四电磁阀的一端连接第二储气单元,第十四电磁阀的另一端分别连接冷却器和干燥过滤器;
第十八电磁阀的一端和第十九电磁阀的一端均连接流量控制器;第十八电磁阀的另一端和第二十电磁阀的一端均连接第一膜分离器;第十九电磁阀的另一端和第二十一电磁阀的一端均连接第二膜分离器;第二十电磁阀的另一端和第二十一电磁阀的另一端均分别连接第六电磁阀的另一端和第二压缩机;第二十二电磁阀的一端连接第一膜分离器;第二十三电磁阀的一端连接第二膜分离器。
具体地,在对装置本体抽真空时必须保持第一电磁阀、第十五电磁阀、第十八电磁阀、第十九电磁阀、第二十二电磁阀以及第二十三电磁阀在关闭状态,其他电磁阀保持开启状态,开启抽真空单元后,开启第二电磁阀,开始对装置本体进行抽真空处理,完成抽真空处理后关闭第二电磁阀,抽真空单元停止抽真空。
对外接电气设备进行抽真空处理时须保持第三电磁阀、第十七电磁阀、第十八电磁阀、第十九电磁阀、第二十二电磁阀以及第二十三电磁阀在关闭状态,第一电磁阀和第二电磁阀初始处于关闭状态,开启抽真空电磁阀后,依次打开第二电磁阀、第一电磁阀以及第十六电磁阀,抽真空单元停止。
在对六氟化硫气体进行一次正压回收时,外接电气设备的取气口通过回收管理与第一电磁阀前接口连接,开启第三电磁阀、第五电磁阀、第六电磁阀、第七电磁阀、第八电磁阀、第十电磁阀以及第十一电磁阀;第二电磁阀、第四电磁阀、第九电磁阀、第十二电磁阀、第十三电磁阀、第十四电磁阀、第十五电磁阀、第十六电磁阀以及第十七电磁阀保持关闭状态;依次开启冷却器、第一压缩机和第二压缩机、干燥过滤器以及第一电磁阀,将六氟化硫气体回收至第一储气单元中,当电气设备中的剩余六氟化硫气体的压力低于第一预设压力 时,关闭第一电磁阀,依次停运第一压缩机、第二压缩机以及冷却器,然后同时关闭第五电磁阀、第六电磁阀、第七电磁阀和第八电磁阀,完成对六氟化硫气体的一次正压回收。一次正压回收可以使用双压缩机即第一压缩机和第二压缩机同时运行回收,也可以使用单压缩机单机回收,当第一压缩机单独运行时,第六电磁阀和第八电磁阀须在关闭状态,当第二压缩机单独运行时,第五电磁阀和第七电磁阀须在关闭状态。
制氮充气回路主要工作过程可以分为氮气制造和储存、电气设备充入氮气以及第二储气单元抽真空三个步骤。氮气制造和储存过程包括:保持第十七电磁阀、第十四电磁阀、第十八电磁阀、第十九电磁阀、第二十二电磁阀以及第二十三电磁阀在关闭状态;开启氮气制造单元,开启第三压缩机以及第十五电磁阀将制造的高纯度的氮气压缩至第二储气单元中,当达到要求的预设制造量后自动依次关闭第十五电磁阀、第三压缩机以及氮气制造单元,完成氮气的制造和存储备用。
电气设备充入氮气的过程包括:将外接电气设备的取气口通过回收管路与第一电磁阀前接口连接,保持第二电磁阀、第三电磁阀、第十四电磁阀、第十五电磁阀、第十六电磁阀、第十八电磁阀、第十九电磁阀、第二十二电磁阀以及第二十三电磁阀在关闭状态;依次开启第十七电磁阀和第一电磁阀,将第二储气单元中的高纯度氮气充入外接电气设备中;当达到设定填充量后,自动依次关闭第十七电磁阀和第一电磁阀;如果充气过程中,因第二储气单元中气体压力不足,则自动关闭第十七电磁阀,开启氮气制造单元、第三压缩机以及第十五电磁阀再次制造氮气,直至完外接电气设备充入氮气的过程。
第二储气单元抽真空的过程包括:外接电气设备充入足量氮气后需要一端时间的静置过程以使剩余六氟化硫气体与氮气进行混合,此时应对第二储气单元进行抽真空处理,开启抽真空单元,然后依次打开第二电磁阀、第十六电磁阀和第十七电磁阀,在完成第二储气单元的抽真空需求后,关闭第二电磁阀、第十六电磁阀以及第十七电磁阀,抽真空单元停止,完成抽真空后的第二储气单元在后续混合气体分离提纯的过程中可以作为混合缓气罐。
在完成外接电气设备充入氮气静置后,则进入对剩余六氟化硫气体进行二 次正压回收,将外界电气设备取气口用过回收管道与第一电磁阀前接口连接,关闭第二电磁阀、第四电磁阀、第六电磁阀、第八电磁阀、第十电磁阀、第十一电磁阀、第十二电磁阀、第十五电磁阀、第十六电磁阀、第十七电磁阀、第十九电磁阀、第二十一电磁阀、第二十三电磁阀,开启冷却器、第一电磁阀、第三电磁阀、第五电磁阀、第七电磁阀、第十四电磁阀以及第一压缩机,将外接电气设备中的混合气体回收至第二储气单元中;当第二储气单元中得到混合气体的亚青达到第二预设压力时,自动调节稳压阀使出气压力稳定在第四预设压力,再通过流量控制器控制通往第一膜分离器或第二膜分离器的气体流量,滤除氮气后的剩余六氟化硫气体经第二十电磁阀或第二十一电磁阀送至第二压缩机,启动第二压缩机后开启第九电磁阀和第十三电磁阀,将提纯后的剩余六氟化硫气体压到第一储气单元内,直至外接电气设备内剩余混合气体的压力回收至第三预设压力,从而完成了整个气体回收过程。
本申请通过设置相应的电磁阀,在相应的气体回收阶段进行相应的动作,从而保证了气体回收过程更稳定、严谨,保证了在全正压条件进行气体回收的过程,有效提高了气体回收率。
在其中一个实施例中,全正压条件下六氟化硫气体回收处理装置还可以包括真空计和气体传感器;
真空计连接第十六电磁阀的另一端;气体传感器分别连接第二十二电磁阀的另一端和第二十三电磁阀的另一端。
具体地,真空计可以测量真空度,在对装置本体抽真空或对电气设备抽真空以及对第二储气单元进行抽真空处理时,可以通过真空计观察真空度,达到真空度需求的情况下,可以停止抽真空单元运作。气体传感器用于检测混合气体中六氟化硫气体的含量;在第一膜分离器和第二膜分离器将混合气体中的剩余六氟化硫气体进行分离时,气体传感器在监测到混合气体中剩余六氟化硫气体含量低于相关标准规定的排放要求时,第一膜分离器或第二膜分离器中的氮气通过开启第五电磁阀或第六电磁阀排至大气。
在其中一个实施例中,全正压条件下六氟化硫气体回收处理装置还可以包括第一压力传感器、第二压力传感器、第三压力传感器和第四压力传感器;
第一压力传感器设于第二电磁阀和第十六电磁阀之间的回收管路上;第二压力传感器设于调压阀和气体处理单元之间的回收管路上;第三压力传感器设于第一储气单元上;第四压力传感器设于第二储气单元上。
具体地,第一压力传感器、第二压力传感器、第三压力传感器和第四压力传感器均可以用于检测回收管道内的气体压力。例如在一次正压回收时,当第一压力传感器检测到管道内的气体压力低于第一预设压力时,关闭第一电磁阀,依次停运第一压缩机、第二压缩机以及冷却器,然后同时关闭第五电磁阀、第六电磁阀、第七电磁阀和第八电磁阀,完成对六氟化硫气体的一次正压回收;当第三压力传感器检测到第一储气单元内压力大于最大存储压力时,全正压条件下六氟化硫气体回收处理装置不可启动,需腾空第一储气单元才可以恢复使用。
在其中一个实施例中,全正压条件下六氟化硫气体回收处理装置还可以包括纯度检测模块、液态灌装机、第一球阀、第二球阀以及第三储气单元;
纯度检测模块连接第一储气单元;第一球阀的一端连接第一储气单元;第一球阀的另一端连接液态灌装机;第二球阀的一端分别连接第十二电磁阀的另一端、第四电磁阀的另一端、第九电磁阀的另一端以及第十三电磁阀的一端,第二球阀的另一端连接第三储气单元。
具体地,纯度检测模块可以检测第一储气单元中六氟化硫气体的纯度;纯度检测模块也可以设于第一储气单元内部。腾空第一储气单元需要借助液态灌装机,将外部存储容器与液态灌装机出口连接,开启第一球阀,启动液态灌装机即可将第一储气单元内的六氟化硫气体转移到外部存储容器。如需直接将回收地六氟化硫气体罐装于第三储气单元,只需要将第三储气单元通过回收管路与第二球阀相连接,在同样工况下关闭第十一电磁阀,打开第十二电磁阀和第二球阀,即可将六氟化硫气体直接回收至第三储气单元中。
进一步地,在对装置本体抽真空、对外接电气设备进行抽真空以及进行依次正压回收时,也都需要保持第一球阀和第二球阀在关闭状态;氮气制造和储存的过程中和第二储气单元抽真空的过程中,也需要保持第一球阀和第二球阀在关闭状态。
在其中一个实施例中,全正压条件下六氟化硫气体回收处理装置还可以包括第一称重模块、第二称重模块以及加热器;
第一称重模块设于第一储气单元底部;第二称重模块设于第二储气单元底部;加热器与第一储气单元相连接。
具体地,第一储气单元底部设有第一称重模块,可以自动检测计算存储回收六氟化硫气体的气体量;第二储气单元底部设有第二称重模块,在氮气制造和储存的过程中,可以根据氮气需求重量进行氮气制造量控制,通过第二称重模块测量氮气制造量,当达到预设制造量时,自动依次关闭第十五电磁阀、第三压缩机以及氮气制造单元,完成氮气的制造和存储备用。装置内的六氟化硫气体可以直接回充至外接电气设备,回充过程大量吸热会导致第一储气单元结冰,故配置加热器以补偿气体回充时的热量。
在一个具体的示例中,如图1所示,提供了一种全正压条件下六氟化硫气体回收处理装置,该装置部件对照表如表1所示。其中,V1~V17分别为第一电磁阀~第十七电磁阀;VF1~VF6分别为第十八电磁阀~第二十三电磁阀;V19为第一球阀;V20为第二球阀;抽真空单元为真空泵;M2~M4分别为第一压缩机~第三压缩机;P1~P4分别为第一压力传感器~第四压力传感器;气体传感器为六氟化硫传感器;第二储气单元为氮气储气罐,也可作为混气缓冲罐;第一储气单元为六氟化硫储气罐;G1为第一过滤器;G2为第二过滤器;氮气制造单元为制氮装置;ZS1为第一膜分离器;ZS2为第二膜分离器;CZ1为第一称重模块;CZ2为第二称重模块;GIS为电气设备的取气口。
表1
Figure PCTCN2022096560-appb-000001
具体而言,抽真空回路:通过真空泵对装置本体进行抽真空,也可以实现对外接电气设备进行抽真空处理;对装置本体抽真空时须保持电磁阀V1、V15、VF1、VF2、VF5、VF6及球阀V19、V20在关闭状态,其他电磁阀V3、V4、V5、V6、V7、V8、V9、V10、V11、V12、V13、V14、V16、V17保持开启状态,开启真空泵M1后,开启电磁阀V2,开始对装置本体进行抽真空处理,通过真空计ZK1观察真空度,达到真空度需求后,关闭电磁阀V2,停止真空泵M1(如图2所示)。若需对外接电气设备进行抽真空处理,则须保持电磁阀V3、V17、VF1、VF2、VF5、VF6及球阀V19、V20在关闭状态,电磁阀V1、V2初始处于关闭位置,开启真空泵M1后,依次打开电磁阀V2、V1、V16,通过 真空计ZK1观察真空度,达到真空度需求后,关闭电磁阀V2、V1、V16,停止真空泵M1(如图3所示)。
一次正压回收回路:主要在外接电气设备内的六氟化硫气体处于正压时使用,开展六氟化硫气体一次正压回收时,将外接电气设备取气口通过回收管路与装置电磁阀V1前接口连接,开启电磁阀V3、V5、V6、V7、V8、V10、V11,电磁阀V2、V4、V9、V12、V13、V14、V15、V16、V17以及球阀V19、V20保持关闭状态,依次开启冷却器ZL1、压缩机M3和M4、干燥过滤器GH1及电磁阀V1,将气体回收至六氟化硫储气罐C1;当装置压力传感器P1检测到回收压力低于第一预设压力,例如标准大气压(0.1MPa)时,关闭电磁阀V1,依次停运压缩机M3和M4、冷却器ZL1,然后同时关闭电磁阀V5、V6、V7、V8,完成六氟化硫气体第一次正压回收(如图4所示)。一次正压回收可使用双压缩机M3、M4同时运行回收,也可使用单压缩机M3或M4单机回收,当压缩机M3单独运行时,电磁阀V6和V8须在关闭状态(如图5所示),当压缩机M4单独运行时,电磁阀V5和V7须在关闭状态(如图6所示)。
调压阀TY仅在出厂时进行检测设定,正常使用无需操作;当装置压力传感器P3检测到六氟化硫储气罐C1内压力大于最大存储压力时,装置不可启动,须腾空六氟化硫储气罐C1才可恢复使用,六氟化硫储气罐C1腾空需借助液态灌装机M4,将外存储容器与液态灌装机M4出口连接,开启球阀V19,启动液态灌装机M4即可将六氟化硫储气罐C1内的六氟化硫气体转移到外部存储容器(如图7所示)。
如需直接将回收的六氟化硫气体罐装于气瓶(第三储气单元),只需将气瓶通过回收管路与球阀V20连接,在同样工况下关闭电磁阀V11,打开电磁阀V12和球阀V20,将六氟化硫气体直接回收至气瓶(如图8所示)。
制氮充气回路:制氮充气回路主要包括制氮装置ZN1,压缩机M2,过滤器G2,氮气储气罐C2以及电磁阀V15、V17等。工作过程分为制氮存储、外接充氮以及氮气储气罐C2抽真空三个步骤。制氮存储过程为:保持电磁阀V17、V14、VF1、VF2、VF5、VF6以及球阀V19、V20在关闭位置,开启制氮装置ZN1,开启压缩机M2及电磁阀V15将制作的高纯氮气压缩至氮气储气罐C2,氮气储 气罐C2装有称重装置CZ1,可根据氮气需求重量进行制氮量控制,当达到要求制氮量后自动依次关闭电磁阀V15、压缩机M2及制氮装置ZN1,完成氮气的制作与存储备用(如图9所示)。外接电气设备充氮过程为:将外接电气设备取气口通过回收管路与装置电磁阀V1前接口连接,保持电磁阀V2、V3、V14、V15、V16、VF1、VF2、VF5、VF6在关闭状态,依次开启电磁阀V17、V1将氮气储气罐C2内的高纯氮气充入外接电气设备,当装置计算达到设定充氮量后,自动依次关闭电磁阀V17、V1,如在充气过程因氮气储气罐C2压力不足,则自动关闭电磁阀V17,开启制氮装置ZN1,开启压缩机M2及电磁阀V15再次制氮,直至完成外接电气设备充氮过程(如图10所示)。氮气储气罐C2抽真空过程:外接电气设备充入足量氮气后需要一段时间的静置过程以使剩余的六氟化硫气体与氮气进行混合,此时应对氮气储气罐C2进行抽真空处理,关闭电磁阀V1、V3、V14、V15、VF1、VF2、VF5、VF6,保持球阀V19、V20关闭状态,开启真空泵M1,然后依次打开电磁阀V2、V16、V17,通过真空计ZK1观察真空度,达到真空度需求后,关闭电磁阀V2、V16、V17,停止真空泵M1,完成抽真空后的氮气储气罐C2在后续混合气体提纯作业中作为混气缓冲罐(如图11所示)。
二次正压回收回路:在完成外接电气设备冲氮气静置后,则进入六氟化硫气体二次正压回收提纯流程,将外接电气设备取气口通过回收管路与装置电磁阀V1前接口连接,关闭电磁阀V2、V4、V6、V8、V10、V11、V12、V15、V16、V17、VF2、VF4、VF6,开启冷却器ZL1,开启电磁阀V1、V3、V5、V7、V14,开启压缩机M3将外接电气设备中的剩余的六氟化硫气体和氮气混合气体回收至混气缓冲罐C2,当混气缓冲罐C2中混合气体达到第二预设压力(大于0.35MPa),自动调节稳压阀VY1使出气压力稳定在0.3MPa,再通过流量控制器FL1控制通往膜分离器ZS1或ZS2的流量,膜分离器ZS1和ZS2自动交替运行再生实现混合气体的快速分离,六氟化硫传感器SFN1监测到氮气中的剩余的六氟化硫气体含量低于相关标准规定的排放要求时,膜分离器ZS1或ZS2中的氮气通过开启VF5或VF6排至大气,而滤除氮气后的剩余高纯六氟化硫气体经电磁阀VF3或VF4送至压缩机M4,启动压缩机M4后开启电磁阀V9、V13, 将提纯后的剩余六氟化硫气体压到六氟化硫储气罐C1,直至外接电气设备压力回收至0.1MPa(如图12所示)。
混合气体提纯后,也可直接回收至气瓶(第三储气单元),只需将气瓶通过回收管路与球阀V20连接,在同样工况下关闭电磁阀V13,打开球阀V20,将六氟化硫气体直接回收至气瓶(如图13所示)。装置内六氟化硫气体可以直接回充至外接电气设备,回充过程大量吸热会导致六氟化硫储气罐C1结冰,故装置配置加热器JZ1以补偿气体回充时的热量。
以上,本申请通过对电气设备中的六氟化硫气体进行一次回收、冲入高纯氮气以及二次回收提纯,全过程均在正压下(0.1MPa以上)开展,六氟化硫气体的总体理论回收率在97%以上,同步采用双压缩机并联回收方式,总体回收效率大幅度提升,无论是六氟化硫气体回收效率还是六氟化硫气体回收率都大大提高。
在一个实施例中,如图14所示,提供了一种气体回收系统,可以包括控制器和上述的全正压条件下六氟化硫气体回收处理装置;控制器分别连接抽真空单元、气体处理单元、氮气制造单元以及气体分离单元;
控制器在抽真空单元完成对装置本体抽真空的情况下,控制气体处理单元将电气设备中的六氟化硫气体处理后回收至第一储气单元中;
控制器在电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,控制气体处理单元关闭、以及控制氮气制造单元启动;氮气制造单元制造的氮气输入至第二储气单元中;
控制器在氮气的制造量达到预设制造量的情况下,控制氮气制造单元关闭;第二储气单元中的氮气填充至电气设备中、与电气设备中的剩余六氟化硫气体混合,形成混合气体;
控制器在电气设备中的氮气的填充量达到预设填充量的情况下,控制抽真空单元对第二储气单元进行抽真空处理;控制器在抽真空单元完成对第二储气单元的抽真空处理后,控制气体处理单元将混合气体回收至第二储气单元内;
控制器在第二储气单元内的混合气体的压力达到第二预设压力的情况下, 控制气体分离单元将混合气体分离、以及控制气体处理单元将混合气体中分离得到的剩余六氟化硫气体回收至第一储气单元中。
具体地,整个全正压条件下六氟化硫气体回收处理装置的所有电磁阀、球阀、压力传感器、气体传感器、真空泵、压缩机、制氮装置、干燥过滤器、冷却器、加热器、纯度检测模块、过滤器、膜分离器、称重模块以及液态灌装机均可以由控制器中的PLC程序实现状态自动控制。
以上,本申请控制器对全正压条件下六氟化硫气体回收处理装置中各单元模块进行全自动控制,提高了六氟化硫气体回收过程的便携、高效性,实现了六氟化硫气体在全正压条件下进行回收,六氟化硫气体的回收效率和回收率均得到大幅度提升,也实现了六氟化硫气体的高效低耗回收,满足回家对回收率的要求,更满足了现场作业的时效性需求。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种全正压条件下六氟化硫气体回收处理装置,其特征在于,包括:抽真空回路、一次正压回收回路、制氮充气回路、二次正压回收回路、第一储气单元以及第二储气单元;所述第二储气单元用于连接电气设备;
    所述抽真空回路包括抽真空单元;所述抽真空单元连接所述第二储气单元;所述抽真空单元还用于连接所述电气设备;
    所述一次正压回收回路包括气体处理单元;所述气体处理单元与所述第一储气单元和所述抽真空单元相连接;所述气体处理单元还用于连接所述电气设备;
    所述制氮充气回路包括氮气制造单元;所述氮气制造单元与所述第二储气单元相连接;
    所述二次正压回收回路包括气体分离单元;所述气体分离单元分别连接所述第二储气单元和所述气体处理单元;所述第二储气单元与所述气体处理单元相连接;
    其中,所述抽真空单元进行抽真空动作,以使所述电气设备内的六氟化硫气体进入所述气体处理单元,所述第一储气单元储存所述气体处理单元处理后的所述六氟化硫气体;所述氮气制造单元在所述电气设备内的剩余六氟化硫气体的压力低于第一预设压力的情况下,向所述电气设备中充入氮气,使所述电气设备中所述剩余六氟化硫气体和所述氮气形成混合气体;所述气体处理单元将所述混合气体输入所述第二储气单元内;所述气体分离单元在所述第二储气单元内所述混合气体的压力恢复至第二预设压力的情况下,将所述混合气体分离,以回收所述混合气体中的所述剩余六氟化硫气体。
  2. 根据权利要求1所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,所述气体处理单元包括第一压缩机、第二压缩机、冷却器以及干燥过滤器;
    所述冷却器分别连接所述第一压缩机、所述第二压缩机以及所述干燥过滤器;
    所述第一压缩机分别连接所述电气设备和所述第一储气单元;
    所述第二压缩机分别连接所述电气设备、所述气体分离单元以及所述第一 储气单元。
  3. 根据权利要求2所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,所述气体分离单元包括第一膜分离器和第二膜分离器;
    所述第一膜分离器分别与所述第二储气单元和所述第二压缩机相连接;
    所述第二膜分离器分别与所述第二储气单元和所述第二压缩机相连接。
  4. 根据权利要求3所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,
    所述抽真空回路还包括第一过滤器和调压阀;所述第一过滤器分别连接所述抽真空单元、所述电气设备以及所述调压阀;
    所述制氮充气回路还包括第二过滤器和第三压缩机;所述第二过滤器分别连接所述第二储气单元和所述第三压缩机;所述第三压缩机连接所述氮气制造单元;
    所述二次正压回收回路还包括稳压阀和流量控制器;所述稳压阀分别与所述第二储气单元和所述流量控制器相连接;所述流量控制器分别连接所述第一膜分离器和所述第二膜分离器。
  5. 根据权利要求4所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,所述一次正压回收回路还包括第一电磁阀;所述抽真空回路还包括第二电磁阀、第三电磁阀、第四电磁阀、第五电磁阀、第六电磁阀、第七电磁阀、第八电磁阀、第九电磁阀、第十电磁阀、第十一电磁阀、第十二电磁阀、第十三电磁阀和第十六电磁阀;所述制氮充气回路还包括第十五电磁阀和第十七电磁阀;所述二次正压回收回路还包括第十四电磁阀、第十八电磁阀、第十九电磁阀、第二十电磁阀、第二十一电磁阀、第二十二电磁阀和第二十三电磁阀;
    所述第一电磁阀的一端连接所述电气设备,所述第一电磁阀的另一端分别连接所述第二电磁阀的一端、所述第三电磁阀的一端、第十六电磁阀的一端以及所述第十七电磁阀的一端;所述第二电磁阀的另一端连接所述抽真空单元;所述第三电磁阀的另一端连接所述第一过滤器;所述第十七电磁阀的另一端连接所述第二储气单元;
    所述调压阀分别连接所述第四电磁阀的一端、所述第五电磁阀的一端以及 所述第六电磁阀的一端;所述第五电磁阀的另一端连接所述第一压缩机;所述第七电磁阀的一端连接所述第一压缩机,所述第七电磁阀的另一端连接所述冷却器;所述第六电磁阀的另一端连接所述第二压缩机;所述第二压缩机分别连接所述第八电磁阀的一端和所述第九电磁阀的一端;所述第八电磁阀的另一端连接所述冷却器;第十电磁阀的一端连接所述干燥过滤器,第十电磁阀的另一端和所述第十一电磁阀的一端均连接所述第十二电磁阀的一端;所述第十二电磁阀的另一端、所述第四电磁阀的另一端以及所述第九电磁阀的另一端均连接所述第十三电磁阀的一端;第十一电磁阀的另一端和第十三电磁阀的另一端均连接所述第一储气单元;
    所述第十五电磁阀的一端连接所述第二储气单元,所述第十五电磁阀的另一端连接所述第二过滤器;所述第十四电磁阀的一端连接所述第二储气单元,所述第十四电磁阀的另一端分别连接所述冷却器和所述干燥过滤器;
    所述第十八电磁阀的一端和所述第十九电磁阀的一端均连接所述流量控制器;所述第十八电磁阀的另一端和所述第二十电磁阀的一端均连接所述第一膜分离器;所述第十九电磁阀的另一端和所述第二十一电磁阀的一端均连接所述第二膜分离器;所述第二十电磁阀的另一端和所述第二十一电磁阀的另一端均分别连接所述第六电磁阀的另一端和所述第二压缩机;所述第二十二电磁阀的一端连接所述第一膜分离器;所述第二十三电磁阀的一端连接所述第二膜分离器。
  6. 根据权利要求5所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,还包括真空计和气体传感器;
    所述真空计连接所述第十六电磁阀的另一端;所述气体传感器分别连接所述第二十二电磁阀的另一端和所述第二十三电磁阀的另一端。
  7. 根据权利要求5所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,还包括第一压力传感器、第二压力传感器、第三压力传感器和第四压力传感器;
    所述第一压力传感器设于所述第二电磁阀和所述第十六电磁阀之间的回收管路上;所述第二压力传感器设于所述调压阀和所述气体处理单元之间的回收 管路上;所述第三压力传感器设于所述第一储气单元上;所述第四压力传感器设于所述第二储气单元上。
  8. 根据权利要求5所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,还包括纯度检测模块、液态灌装机、第一球阀、第二球阀以及第三储气单元;
    所述纯度检测模块连接所述第一储气单元;所述第一球阀的一端连接所述第一储气单元;所述第一球阀的另一端连接所述液态灌装机;所述第二球阀的一端分别连接所述第十二电磁阀的另一端、所述第四电磁阀的另一端、所述第九电磁阀的另一端以及所述第十三电磁阀的一端,所述第二球阀的另一端连接所述第三储气单元。
  9. 根据权利要求1所述的全正压条件下六氟化硫气体回收处理装置,其特征在于,还包括第一称重模块、第二称重模块以及加热器;
    所述第一称重模块设于所述第一储气单元底部;所述第二称重模块设于所述第二储气单元底部;所述加热器与所述第一储气单元相连接。
  10. 一种气体回收系统,其特征在于,包括控制器和权利要求1至9任一项所述的全正压条件下六氟化硫气体回收处理装置;所述控制器分别连接所述抽真空单元、所述气体处理单元、所述氮气制造单元以及所述气体分离单元;
    所述控制器在所述抽真空单元完成对装置本体抽真空的情况下,控制所述气体处理单元将所述电气设备中的所述六氟化硫气体处理后回收至所述第一储气单元中;
    所述控制器在所述电气设备内的所述剩余六氟化硫气体的压力低于所述第一预设压力的情况下,控制所述气体处理单元关闭、以及控制所述氮气制造单元启动;所述氮气制造单元制造的所述氮气输入至所述第二储气单元中;
    所述控制器在所述氮气的制造量达到预设制造量的情况下,控制所述氮气制造单元关闭;所述第二储气单元中的所述氮气填充至所述电气设备中、与所述电气设备中的所述剩余六氟化硫气体混合,形成混合气体;
    所述控制器在所述电气设备中的所述氮气的填充量达到预设填充量的情况下,控制所述抽真空单元对所述第二储气单元进行抽真空处理;所述控制器在 所述抽真空单元完成对所述第二储气单元的所述抽真空处理后,控制所述气体处理单元将所述混合气体回收至所述第二储气单元内;
    所述控制器在所述第二储气单元内的所述混合气体的压力达到所述第二预设压力的情况下,控制所述气体分离单元将所述混合气体分离、以及控制所述气体处理单元将所述混合气体中分离得到的所述剩余六氟化硫气体回收至所述第一储气单元中。
PCT/CN2022/096560 2021-07-27 2022-06-01 全正压条件下六氟化硫气体回收处理装置及气体回收系统 WO2023005413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022000037.6T DE112022000037T5 (de) 2021-07-27 2022-06-01 Vorrichtung zur Rückgewinnung und Behandlung von Schwefelhexafluoridgas unter vollen Überdruckbedingungen und Gasrückgewinnungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110852683.3 2021-07-27
CN202110852683.3A CN113499662B (zh) 2021-07-27 2021-07-27 全正压条件下六氟化硫气体回收处理装置及气体回收系统

Publications (1)

Publication Number Publication Date
WO2023005413A1 true WO2023005413A1 (zh) 2023-02-02

Family

ID=78014369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096560 WO2023005413A1 (zh) 2021-07-27 2022-06-01 全正压条件下六氟化硫气体回收处理装置及气体回收系统

Country Status (3)

Country Link
CN (1) CN113499662B (zh)
DE (1) DE112022000037T5 (zh)
WO (1) WO2023005413A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113499662B (zh) * 2021-07-27 2022-08-30 中国南方电网有限责任公司超高压输电公司昆明局 全正压条件下六氟化硫气体回收处理装置及气体回收系统
CN116422098A (zh) * 2023-03-31 2023-07-14 国网江苏省电力有限公司电力科学研究院 一种多功能气体回收及再利用装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213952A (zh) * 2013-04-26 2013-07-24 河南省日立信股份有限公司 六氟化硫和四氟化碳分离提纯系统
CN105084325A (zh) * 2015-07-23 2015-11-25 刘静涛 一种六氟化硫回收装置以及六氟化硫回收车
CN107588322A (zh) * 2017-09-19 2018-01-16 国网安徽省电力公司电力科学研究院 六氟化硫混合气体净化回收配气补气装置及其操作方法
CN209438316U (zh) * 2018-11-19 2019-09-27 河南省日立信股份有限公司 从六氟化硫混合气体中提纯六氟化硫气体的装置
CN113499662A (zh) * 2021-07-27 2021-10-15 中国南方电网有限责任公司超高压输电公司昆明局 全正压条件下六氟化硫气体回收处理装置及气体回收系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855647A (en) * 1997-05-15 1999-01-05 American Air Liquide, Inc. Process for recovering SF6 from a gas
US20080034970A1 (en) * 2006-08-10 2008-02-14 Frank Jansen Sulfur hexafluoride recycling system and method for recycling sulfur hexafluoride
CN2938373Y (zh) * 2006-08-22 2007-08-22 上海雷格仪器有限公司 Sf6充气及回收装置
CN107485978A (zh) * 2017-07-11 2017-12-19 河南省日立信股份有限公司 六氟化硫和氮气混合气体回收分离提纯装置及方法
CN109432947A (zh) * 2018-11-19 2019-03-08 河南省日立信股份有限公司 从六氟化硫混合气体中提纯六氟化硫气体的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213952A (zh) * 2013-04-26 2013-07-24 河南省日立信股份有限公司 六氟化硫和四氟化碳分离提纯系统
CN105084325A (zh) * 2015-07-23 2015-11-25 刘静涛 一种六氟化硫回收装置以及六氟化硫回收车
CN107588322A (zh) * 2017-09-19 2018-01-16 国网安徽省电力公司电力科学研究院 六氟化硫混合气体净化回收配气补气装置及其操作方法
CN209438316U (zh) * 2018-11-19 2019-09-27 河南省日立信股份有限公司 从六氟化硫混合气体中提纯六氟化硫气体的装置
CN113499662A (zh) * 2021-07-27 2021-10-15 中国南方电网有限责任公司超高压输电公司昆明局 全正压条件下六氟化硫气体回收处理装置及气体回收系统

Also Published As

Publication number Publication date
CN113499662B (zh) 2022-08-30
DE112022000037T5 (de) 2023-03-16
CN113499662A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2023005413A1 (zh) 全正压条件下六氟化硫气体回收处理装置及气体回收系统
CN103343882B (zh) 一种液化天然气bog回收装置及回收方法
CN102173392B (zh) 六氟化硫气体分离净化装置及其六氟化硫净化方法
CN206985717U (zh) 一种氦气纯化回收系统
CN207227013U (zh) 一种一体化氦气纯化回收系统
CN205156507U (zh) 一种bog再液化设备
CN105953071A (zh) 一种氖氦分离过程中液氮自动回收装置及回收方法
CN204879428U (zh) 一种具有集成化的进口缓冲罐和回收罐的天然气压缩机
CN205586791U (zh) 硫酸法烷基化工艺中酸性放空气回收系统
CN104613312A (zh) 处理bog成套设备及采用该设备处理bog的方法
CN103673505A (zh) 一种led生产中排放废氨气现场回收再利用的方法
CN218295340U (zh) 一种sf6充气管道
CN207391582U (zh) 一种金属钠电解槽氯气回收处理系统
CN207893412U (zh) 一种绝缘气体处理装置
CN205842203U (zh) 一种氖氦分离过程中液氮自动回收装置
CN204151077U (zh) 一种分离回收二硫化碳和氮气的装置
CN204477687U (zh) 处理bog成套设备
CN108043062A (zh) 一种储罐呼吸排放挥发性气体的处理系统
CN206973261U (zh) Lng储罐中bog的回收利用系统
CN202265411U (zh) 浮空器内囊氦气在线回收和纯化的装置
CN209857443U (zh) 二氧化碳制冷系统氨液分离处理设备
CN208240834U (zh) 一种锂电池生产用负压化成装置
CN208135905U (zh) 冰机液氨分离系统
CN108355461B (zh) 六氟化硫和氮气混合气体净化分离提纯装置及其回收净化提纯六氟化硫方法
CN206724573U (zh) 一种从真空烘箱尾气中回收氮气的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848023

Country of ref document: EP

Kind code of ref document: A1