WO2012102241A1 - ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ - Google Patents

ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ Download PDF

Info

Publication number
WO2012102241A1
WO2012102241A1 PCT/JP2012/051363 JP2012051363W WO2012102241A1 WO 2012102241 A1 WO2012102241 A1 WO 2012102241A1 JP 2012051363 W JP2012051363 W JP 2012051363W WO 2012102241 A1 WO2012102241 A1 WO 2012102241A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
polyolefin resin
resin
film
stretching
Prior art date
Application number
PCT/JP2012/051363
Other languages
English (en)
French (fr)
Inventor
寺川徹
山田剛幹
宇佐見康
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to JP2012527536A priority Critical patent/JP5092072B2/ja
Priority to EP12739529.1A priority patent/EP2669322A4/en
Priority to KR1020127017648A priority patent/KR101271299B1/ko
Priority to CN2012800010981A priority patent/CN102858858A/zh
Priority to US13/979,933 priority patent/US9419266B2/en
Publication of WO2012102241A1 publication Critical patent/WO2012102241A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous film mainly composed of a polyolefin resin, and can be used as packaging, sanitary, livestock, agricultural, architectural, medical, separation membrane, light diffusion plate, battery separator,
  • the separator is suitably used as a separator for a non-aqueous electrolyte battery such as a lithium ion secondary battery used as a power source for an electronic device or the like.
  • the polymer porous film with many fine communication holes is a separation membrane used for production of ultrapure water, purification of chemicals, water treatment, etc., a waterproof and moisture permeable film used for clothing and sanitary materials, or a battery separator. It is used in various fields.
  • Secondary batteries that can be repeatedly charged and discharged are widely used as power sources for portable devices such as OA, FA, household electric appliances, and communication devices.
  • portable devices using lithium ion secondary batteries are increasing because they have a high volumetric efficiency when mounted on devices, leading to a reduction in size and weight of the devices.
  • large-sized secondary batteries are being researched and developed in many fields related to energy / environmental issues, including road leveling, UPS, and electric vehicles, and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, the use of lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary battery, is expanding.
  • the working voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1V to 4.2V.
  • the aqueous solution causes electrolysis and cannot be used as an electrolyte. Therefore, so-called non-aqueous electrolytes using organic solvents are used as electrolytes that can withstand high voltages.
  • the solvent for the non-aqueous electrolyte a high dielectric constant organic solvent capable of causing more lithium ions to be present is used, and organic carbonate compounds such as propylene carbonate and ethylene carbonate are mainly used as the high dielectric constant organic solvent. Is used.
  • a highly reactive electrolyte such as lithium hexafluorophosphate is dissolved in the solvent and used.
  • a separator is interposed between the positive electrode and the negative electrode from the viewpoint of preventing an internal short circuit.
  • the separator is required to have insulating properties due to its role. Furthermore, it must be stable even in an organic electrolyte. In addition, it must have a microporous structure for the purpose of holding the electrolyte solution and securing a passage for lithium ions to pass between the electrodes during charge and discharge.
  • a porous film composed mainly of an insulating material such as polyolefin is used as the separator. Since the pore structure of the separator has a great influence on the output of the lithium ion secondary battery, characteristics are discussed using various parameters for evaluating the pore structure.
  • the wet process means mixing a polyethylene resin and an additive component such as a plasticizer to form a sheet, then extracting the additive component with a solvent and then stretching, or extracting the additive component with a solvent after stretching.
  • an additive component such as a plasticizer
  • This is a technique for forming a hole structure, and a three-dimensional network structure can be formed.
  • the dry process is to form a pore structure by stretching in the machine direction a highly anisotropic sheet produced by melt-extruding a crystalline polyolefin resin and cooling and solidifying it into a sheet with a high draft ratio. It is a technique, and a two-dimensional porous structure that is long in the machine direction can be formed.
  • Patent Document 1 shows that cycle characteristics are improved by reducing the air permeability.
  • Patent Document 2 shows that the discharge characteristics and the battery output are evaluated by the ratio between the moisture permeation amount and the air permeation amount. Further, it is shown that the cycle characteristics are excellent when the average flow diameter pressure is low, that is, when the pore diameter is large.
  • Patent Document 3 proposes a dry separator having a low air permeability using a resin having a low melting point.
  • Patent Documents 1 and 2 the large pore diameter increases the risk of short circuit when lithium dendrites are deposited, and the safety of the battery decreases.
  • the separator with low air permeability is shown, since it extends
  • the internal resistance of the battery may increase and the output may decrease.
  • the present invention has been made in view of the above problems. That is, to provide a porous film capable of exhibiting high output as a battery while having a pore diameter capable of suppressing short circuit and clogging due to lithium dendrite precipitation as a charge when used as a separator for a nonaqueous electrolyte battery. Is an issue.
  • the present invention is a porous film mainly composed of a polyolefin resin, and has an average flow diameter pressure (P AP ) of 1500 to 2500 kPa and a bubble point pressure (P BP ) of 300 to 1500 kPa.
  • P AP average flow diameter pressure
  • P BP bubble point pressure
  • the porous polyolefin resin wherein the ratio of the air permeability (Pa) bubble point pressure (P BP) (Pa / P BP) is 0.35sec / (100ml ⁇ kPa) or less film Is provided.
  • the air permeability (Pa) of the polyolefin resin porous film of the present invention is 2000 sec / 100 ml or less.
  • the air permeability (Pa) and the average flow ⁇ force of the present invention the ratio of (P AP) (Pa / P AP) is 0.18sec / (100ml ⁇ kPa) or less.
  • polypropylene resin is contained in an amount of 30% by mass or more of the polyolefin resin of the polyolefin resin porous film of the present invention.
  • the polypropylene resin of the polyolefin resin porous film of the present invention has ⁇ crystal activity.
  • the polyolefin resin porous film of the present invention preferably has an electric resistance of 0.85 ⁇ or less.
  • the polyolefin resin porous film of the present invention preferably has a porosity of 20 to 80%.
  • the polyolefin resin porous film of the present invention preferably has a thickness of 3 to 100 ⁇ m.
  • the polyolefin resin porous film of the present invention can be easily produced, and can exhibit high output as a battery while having a pore diameter capable of suppressing short circuit and clogging due to lithium dendrite precipitation as a charge. Therefore, it can be suitably used as a separator for non-aqueous electrolyte batteries that require high output.
  • the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified.
  • the main component includes 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) in the composition. is there.
  • “X to Y” (X and Y are arbitrary numbers) is described, “X to Y” is intended unless otherwise specified.
  • the porous film of the present embodiment is a polyolefin resin porous film mainly composed of a polyolefin resin, but may contain a plurality of polyolefin resins having different structures.
  • resin components other than polyolefin, oligomers, and low molecular weight compounds may be included.
  • a plurality of types of resins or other components may be used in a laminated structure, and various methods such as co-extrusion, lamination, and coating can be used as the lamination method.
  • Polyolefin resins include polyethylene, polypropylene, poly (1-butene), poly (1-pentene), poly (1-methylpentene), poly (1-hexene), poly (1-heptene), poly (1 -Octene), poly (1-nonene), poly (1-decene) and the like.
  • the polyolefin resin may be a homopolymer or copolymer of an olefin monomer, and may be copolymerized with a monomer other than olefin.
  • a polypropylene resin is preferably used from the viewpoints of material cost, workability, mechanical strength, heat resistance, and the like.
  • a polyethylene resin when used as a battery, a polyethylene resin is also preferably used from the viewpoint of ensuring the safety of the battery.
  • One indicator of battery safety is a shutdown characteristic (hereinafter referred to as “SD characteristic”) that shuts off current when the porous structure of the separator is closed when abnormal heat is generated due to an external short circuit of the battery.
  • the SD characteristic is often expressed by melting at least one of the separator compositions when exothermic.
  • the melting point of polyethylene resin is often used as the temperature at which the SD characteristics are manifested.
  • the polypropylene resin is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. By containing 30% by mass or more of the polypropylene resin, it can have sufficient mechanical strength or heat resistance as a porous film.
  • the polypropylene resin is homopolypropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-methylpentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or 1 -Random copolymers or block copolymers with ⁇ -olefins such as decene.
  • homopolypropylene is more preferably used from the viewpoint of the mechanical strength of the porous film.
  • the polypropylene resin preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%. More preferably, it is 83 to 99%, and still more preferably 85 to 99%. If the isotactic pentad fraction is lower than 80%, the mechanical strength of the film may be lowered.
  • the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
  • the isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. Zambelli et al. (Macromolecules 8, 687 (1975)).
  • the polypropylene resin has a polydispersity (ratio of weight average molecular weight Mw to number average molecular weight Mn, expressed as Mw / Mn), which is a parameter indicating a molecular weight distribution, of 1.5 to 10.0. preferable. More preferred is 2.0 to 8.0, and still more preferred is 2.0 to 6.0. This means that the smaller the Mw / Mn, the narrower the molecular weight distribution. However, when the Mw / Mn is 1.5 or more, sufficient extrudability can be secured, and industrially stable productivity can be obtained. . On the other hand, when Mw / Mn is 10.0 or less, sufficient mechanical strength can be obtained. Mw / Mn is obtained by GPC (gel permeation chromatography) method.
  • the melt flow rate (MFR) of the polypropylene resin is not particularly limited, but the MFR is preferably 0.1 to 15 g / 10 minutes, more preferably 0.5 to 10 g / 10 minutes.
  • MFR melt flow rate
  • the MFR is measured in accordance with JIS K7210 under conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • polypropylene resin is easily deteriorated because it has tertiary carbon in the resin skeleton, and an antioxidant and a heat stabilizer are often added.
  • an antioxidant hindered phenols and hindered amines are known.
  • heat stabilizers phosphorus heat stabilizers and sulfur heat stabilizers are known.
  • a compound F that becomes a starting point of porosity to a polypropylene resin.
  • the compound F include filler compounds that are incompatible with the polypropylene resin, such as polymer fillers, organic fillers, and inorganic fillers, and ⁇ crystal nucleating agents in which the polypropylene resin forms ⁇ crystals when cooled from a molten state. . When the filler compound is stretched, it peels off at the interface with the polypropylene resin to form pores.
  • a ⁇ -crystal nucleating agent When a ⁇ -crystal nucleating agent is used, a ⁇ -crystal is formed by cooling and solidifying a polypropylene resin under a specific condition from a molten state, and when stretched, the ⁇ -crystal is destroyed to form pores. Therefore, it is preferable to use a ⁇ -crystal nucleating agent from the viewpoint of pore connectivity and mechanical strength.
  • the ratio of the ⁇ crystal nucleating agent added to the polypropylene resin needs to be adjusted as appropriate depending on the type of the ⁇ crystal nucleating agent or the composition of the resin composition containing the polypropylene resin as a main component.
  • the ⁇ crystal nucleating agent is preferably 0.0001 to 5.0 parts by mass with respect to 100 parts by mass of the resin composition as the main component. 0.001 to 3.0 parts by mass is more preferable, and 0.01 to 1.0 part by mass is still more preferable. If it is 0.0001 part by mass or more, ⁇ crystals of the resin composition mainly composed of the polypropylene resin can be generated and grown at the time of production, and sufficient ⁇ crystals can be obtained even when a porous film is formed.
  • the activity can be ensured and the desired air permeability can be obtained.
  • Addition of 5.0 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the ⁇ crystal nucleating agent on the surface of the polyolefin resin porous film.
  • the amount of ⁇ -crystal nucleating agent added in each layer may be the same. May be different.
  • the porous structure of each layer can be appropriately adjusted by changing the addition amount of the ⁇ crystal nucleating agent.
  • the polyolefin resin porous film preferably has the ⁇ crystal activity.
  • the ⁇ crystal activity can be regarded as an index indicating that the resin composition containing the polypropylene resin as a main component has formed ⁇ crystals in the film-like material before stretching. If the resin composition in the film-like material before stretching produces ⁇ crystals, fine pores are formed by subsequent stretching, so that a polyolefin resin porous film having air permeability characteristics can be obtained. it can.
  • the ⁇ crystal activity is the state of the entire polyolefin resin porous film, regardless of whether the polyolefin resin porous film has a single layer structure or other porous layers are laminated. Measuring.
  • the presence or absence of “ ⁇ crystal activity” is determined when the crystal melting peak temperature derived from the ⁇ crystal is detected by a differential scanning calorimeter described later and / or the wide angle X described later.
  • a diffraction peak derived from ⁇ crystal is detected by measurement using a line diffractometer, it is determined to have “ ⁇ crystal activity”.
  • the polyolefin resin porous film is heated at a heating rate of 10 ° C./min from 25 ° C. to 240 ° C. for 1 minute with a differential scanning calorimeter, and then cooled at a cooling rate of 10 ° C. from 240 ° C. to 25 ° C.
  • melting peak temperature (Tm ⁇ ) it is determined that the crystal has ⁇ crystal activity.
  • the amount of heat of crystal melting derived from the ⁇ crystal ( ⁇ Hm ⁇ ) detected mainly in the range of 145 ° C. or higher and lower than 160 ° C., and mainly detected at 160 ° C. or higher and 170 ° C. or lower.
  • the amount of heat of crystal melting ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected mainly in the range of 120 ° C. or more and less than 140 ° C. It can be calculated from the crystal melting calorie ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected in the range of from 0 ° C. to 165 ° C.
  • the polyolefin resin porous film preferably has a high ⁇ crystal activity, and the ⁇ crystal activity is preferably 20% or more. More preferably, it is 40% or more, and particularly preferably 60% or more. If the porous film has a ⁇ crystal activity of 20% or more, it indicates that many ⁇ crystals of polypropylene resin can be formed even in the film-like material before stretching, and many fine and uniform pores are formed by stretching. As a result, the polyolefin resin porous film having high mechanical strength and excellent air permeability can be obtained, in particular, a battery separator.
  • the upper limit value of the ⁇ crystal activity is not particularly limited, but the higher the ⁇ crystal activity, the more effective the effect is obtained, so the closer it is to 100%, the better.
  • the presence or absence of the ⁇ crystal activity can also be determined by a diffraction profile obtained by wide-angle X-ray diffraction measurement of a porous film subjected to a specific heat treatment.
  • the wide-angle X is about a porous film in which a heat treatment at 170 ° C. to 190 ° C., which is a temperature exceeding the melting point of the resin composition containing the polypropylene resin as a main component, is performed and slowly cooled to form and grow ⁇ crystals.
  • polyethylene resin examples include not only ultra-low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, or ultra high density polyethylene, but also ethylene-propylene copolymers. Copolymers of Among these, polyethylene resin alone is preferable.
  • the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 15 g / 10 minutes, and preferably 0.3 to 10 g / 10 minutes. Is more preferable.
  • MFR melt flow rate
  • the MFR is preferably 0.03 to 15 g / 10 minutes, and preferably 0.3 to 10 g / 10 minutes. Is more preferable.
  • the production method of the polyethylene resin is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst, for example, a multi-site catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst. And a polymerization method using a single site catalyst.
  • a known polymerization method using a known olefin polymerization catalyst for example, a multi-site catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst.
  • a polymerization method using a single site catalyst for example, a multi-site catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst.
  • a substance that promotes porosity to the polyethylene resin.
  • at least one compound X selected from a modified polyolefin resin, an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax is included.
  • the modified polyolefin resin in the present invention refers to a resin mainly composed of an unsaturated carboxylic acid or its anhydride, or a polyolefin modified with a silane coupling agent.
  • unsaturated carboxylic acids or anhydrides thereof include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, citraconic acid, citraconic anhydride, itaconic acid, itaconic anhydride, or monoepoxy compounds of these derivatives and the aforementioned acids.
  • Examples include ester compounds, reaction products of a polymer having a group capable of reacting with these acids in the molecule and an acid. These metal salts can also be used.
  • maleic anhydride is more preferably used.
  • these copolymers can be used individually or in mixture of 2 or more types, respectively.
  • silane coupling agent examples include vinyltriethoxysilane, methacryloyloxytrimethoxysilane, and ⁇ -methacryloyloxypropyltriacetyloxysilane.
  • these modified monomers can be copolymerized in the stage of polymerizing the polymer in advance, or these modified monomers can be graft copolymerized with the polymer once polymerized.
  • these modified monomers are used alone or in combination, and those having a content in the range of 0.1% by mass or more and 5% by mass or less are preferably used. Of these, those that have been graft-modified are preferably used.
  • modified polyolefin resins examples include “Admer” (Mitsui Chemicals) and “Modic” (Mitsubishi Chemical).
  • Examples of alicyclic saturated hydrocarbon resins and modified products thereof include petroleum resins, rosin resins, terpene resins, coumarone resins, indene resins, coumarone-indene resins, and modified products thereof.
  • the petroleum resin in the present invention is a C4 to C10 aliphatic olefin or diolefin obtained from a by-product such as by thermal decomposition of naphtha, or a C8 or more aromatic compound having an olefinically unsaturated bond.
  • An aliphatic, aromatic, and copolymerized petroleum resin obtained by singly or copolymerizing one or more of the compounds contained in the above.
  • Examples of petroleum resins include aliphatic petroleum resins mainly containing C5 fraction, aromatic petroleum resins mainly containing C9 fraction, copolymer petroleum resins thereof, and alicyclic petroleum resins.
  • Examples of the terpene resin include terpene resins and terpene-phenol resins from ⁇ -pinene
  • examples of the rosin resin include rosin resins such as gum rosin and utudrodin, and esterified rosin resins modified with glycerin and pentaerythritol.
  • the ethylene copolymer in the present invention is a compound obtained by copolymerizing ethylene and one or more of vinyl acetate, unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, or carboxylic acid ester. It is.
  • the ethylene copolymer preferably has an ethylene monomer unit content of 50% by mass or more, more preferably 60% by mass or more, and still more preferably 65% by mass or more.
  • the content of ethylene monomer units is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less. If the content of the ethylene monomer unit is within a predetermined range, a porous structure can be formed more efficiently.
  • ethylene copolymer those having an MFR of 0.1 g / 10 min to 10 g / 10 min are preferably used.
  • MFR 0.1 g / 10 min or more, the extrudability can be maintained satisfactorily.
  • MFR 10 g / 10 min or less, sufficient mechanical strength can be ensured.
  • the ethylene-based copolymer includes “EVAFLEX” (manufactured by Mitsui DuPont Polychemical Co., Ltd.), “Novatech EVA” (manufactured by Nippon Polyethylene Co., Ltd.) as an ethylene-vinyl acetate copolymer, and “NUC as an ethylene-acrylic acid copolymer.
  • the wax in the present invention is an organic compound that satisfies the following properties (a) and (b).
  • the melting point is 40 ° C to 200 ° C.
  • the melt viscosity at a temperature 10 ° C. higher than the melting point is 50 Pa ⁇ s or less.
  • ⁇ For wax including polar or nonpolar wax, polypropylene wax, polyethylene wax and wax modifier.
  • paraffin wax, polyethylene wax, and microcrystalline wax are preferable from the viewpoint of efficiently forming a porous structure, and microcrystalline wax that can further reduce the pore diameter is more preferable from the viewpoint of SD characteristics.
  • examples of commercially available polyethylene wax include “FT-115” (manufactured by Nippon Seiwa), and examples of microcrystalline wax include “HiMic” (manufactured by Nippon Seiwa).
  • an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax is more preferable as the SD property works more effectively.
  • a wax is more preferable from the viewpoint of moldability.
  • the compounding amount of the compound X is preferably 1 part by mass or more, and more preferably 5 parts by mass or more as a lower limit with respect to 100 parts by mass of the polyethylene resin, when the interface between the polyethylene resin and the compound X is peeled to form micropores.
  • 10 parts by mass or more is more preferable.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less.
  • an additive or other component that is generally blended in the resin composition may be included.
  • the additive include recycling resin, silica, talc, kaolin, calcium carbonate, and the like, which are added for the purpose of improving and adjusting molding processability, productivity, and various physical properties of the porous film.
  • Inorganic particles such as, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinking agents, lubricants, nucleating agents, plasticizers, anti-aging agents, Examples thereof include additives such as antioxidants, light stabilizers, ultraviolet absorbers, neutralizers, antifogging agents, antiblocking agents, slip agents, and coloring agents.
  • the nucleating agent is preferable because it has an effect of controlling the crystal structure of the polyethylene resin and reducing the porous structure at the time of stretching and opening.
  • “Gelall D” (manufactured by Shin Nippon Chemical Co., Ltd.), “Adeka Stub” (manufactured by Asahi Denka Kogyo Co., Ltd.), “Hyperform” (manufactured by Milliken Chemical Co., Ltd.), or “IRGACLEAR D” (Ciba Specialty D) Chemicals).
  • “Rike Master” (manufactured by Riken Vitamin Co., Ltd.) and the like are commercially available.
  • the polyolefin resin porous film of the present invention preferably has a layer (hereinafter referred to as “I layer”) composed of a resin composition containing the polypropylene resin as a main component.
  • I layer a layer composed of a resin composition containing the polypropylene resin as a main component.
  • a laminated structure may be used.
  • II layer a layer containing polyethylene resin as a main component
  • a layer having another function different from those of the I layer and the II layer can be laminated as long as the function of the polyolefin resin porous film of the present invention is not hindered.
  • Specific examples include a strength retention layer and a heat resistant layer.
  • the laminated structure include a two-layer structure in which I layers / II layers are laminated, a three-layer structure in which I layers / II layers / I layers, or II layers / I layers / II layers are laminated.
  • the order of stacking with layers having other functions is not particularly limited.
  • the number of layers may be increased as necessary to 4 layers, 5 layers, 6 layers, and 7 layers.
  • the content of each component may be the same or different.
  • the two-layer / three-layer configuration of I layer / II layer / I layer is preferable because the degree of curling and surface smoothness of the resulting polyolefin resin porous film are improved.
  • the following average flow diameter pressure (P AP ), bubble point pressure (P BP ), air permeability (Pa), electrical resistance, and other physical properties of the polyolefin resin porous film of the present invention are determined by the lamination configuration, lamination ratio, It can be freely adjusted according to the composition and production method.
  • the average flow diameter pressure (P AP ) is important to be 1500 to 2500 kPa, and preferably 1600 to 2200 kPa.
  • P AP average flow diameter pressure
  • the average flow diameter pressure (P AP ) is 1500 kPa or more, sufficient liquid retention can be ensured when injecting the electrolytic solution in the assembly of the battery when used as a separator for a nonaqueous electrolyte battery.
  • precipitation of lithium dendrite can be suppressed, a short circuit between the positive electrode and the negative electrode due to dentite can be suppressed.
  • the electrolyte when used as a separator for a non-aqueous electrolyte battery. Moreover, the clogging which generate
  • the bubble point pressure (P BP ) is 300 to 1500 kPa, preferably 500 to 1200 kPa, more preferably 700 to 1000 kPa.
  • the bubble point pressure (P BP ) is 300 kPa or higher, even when lithium dendrite is deposited, the risk of short-circuiting is suppressed and the battery reaction occurs unevenly when used as a non-aqueous electrolyte battery. It is preferable because it can be suppressed.
  • the bubble point pressure (P BP ) is 1500 kPa or less, the wettability of the electrolytic solution can be sufficiently maintained.
  • the separator for a non-aqueous electrolyte battery when used as a non-aqueous electrolyte battery, the separator for a non-aqueous electrolyte battery This is preferable because clogging can be suppressed and sufficient cycle characteristics can be obtained.
  • P BP bubble point pressure
  • the air permeability (Pa) is preferably 5 to 2000 sec / 100 ml, more preferably 10 to 1000 sec / 100 ml.
  • the air permeability (Pa) is preferably 2000 sec / 100 ml or less because a sufficient battery output can be ensured regardless of the average flow diameter pressure (P AP ).
  • P AP average flow diameter pressure
  • the air permeability (Pa) is 5 sec / 100 ml or more, not only sufficient mechanical strength is secured, but also when used as a non-aqueous electrolyte battery, there is a risk of short circuit due to precipitation of lithium dendrite. This is preferable because it can be reduced.
  • the electrical resistance of a separator for a nonaqueous electrolyte battery when impregnated with an electrolytic solution is often evaluated in proportion to the air permeability, but is not actually accurate. For example, if one pinhole having a diameter of about 0.5 mm is formed in a non-porous film having a porosity of 0%, the air permeability is less than 500 sec / 100 ml, but the electric resistance is the same air permeability and the porosity is 50. % Of the microporous membrane is several times higher. There is also a method for estimating the electrical resistance from the thickness and porosity of the nonaqueous electrolyte battery separator.
  • the electrolytic solution does not permeate, and the electrical resistance becomes high. That is, the shorter the average length of the total communication holes in the thickness direction of the non-aqueous electrolyte battery separator, or the larger the total cross-sectional area of the total communication holes of the non-aqueous electrolyte battery separator, the more it relates to the non-aqueous electrolyte battery separator. The internal resistance of the battery is reduced. However, if the length of the communication hole is locally short and the number of holes having a large hole diameter exists in the separator for a nonaqueous electrolyte battery, the air permeability becomes a remarkably small value.
  • the ratio of the air permeability (Pa) and the bubble point pressure (P BP ) is a certain value or less. And found that it is necessary.
  • the ratio (Pa / P BP ) between the air permeability (Pa) and the bubble point pressure (P BP ) is 0.35 sec / (100 ml ⁇ kPa) or less. It is.
  • the ratio (Pa / P BP ) is more preferably 0.32 sec / (100 ml ⁇ kPa) or less.
  • the melt flow rate (MFR) of the polyolefin resin used in the porous film it is preferable to adjust the melt flow rate (MFR) of the polyolefin resin used in the porous film to 0.1 to 15 g / 10 minutes.
  • MFR melt flow rate
  • the adjustment of the MFR is preferable because the air permeability is improved and the value of the air permeability is reduced, so that the value of the Pa / P BP is also reduced and the prescribed range can be satisfied.
  • the ratio (Pa / P AP ) between the air permeability (Pa) and the average flow diameter pressure (P AP ) of the polyolefin resin porous film of the present invention is preferably 0.18 sec / (100 ml ⁇ kPa) or less, It is preferably 0.15 sec / (100 ml ⁇ kPa) or less.
  • the lower limit of Pa / P AP is not particularly limited, but 0.03 sec / (100 ml ⁇ kPa) or more is preferable in consideration of the balance of physical properties.
  • the electrical resistance of the polyolefin resin porous film of the present invention is preferably 0.85 ⁇ or less, more preferably 0.80 ⁇ or less. If the electric resistance is 0.85 ⁇ or less, it means that the charge transfer is easy when using the separator for a nonaqueous electrolyte battery, and it is preferable because the battery performance is excellent.
  • the lower limit is not particularly limited, but is preferably 0.10 ⁇ or more, more preferably 0.15 ⁇ or more, and further preferably 0.20 ⁇ or more. When the electrical resistance is 0.10 ⁇ or more, troubles such as internal short circuit can be sufficiently avoided when used as a separator for a nonaqueous electrolyte battery.
  • the lower limit of the porosity of the polyolefin resin porous film of the present invention is preferably 20% or more, and more preferably 30% or more. If the porosity is 20% or more, sufficient connectivity can be obtained in the polyolefin resin porous film. In addition, when used as a separator for a nonaqueous electrolyte battery, a sufficient amount of electrolyte can be retained, and a sufficient battery output can be obtained.
  • the upper limit of the porosity is preferably 80% or less.
  • the porosity is 80% or less, sufficient mechanical strength can be secured, and when used as a separator for a non-aqueous electrolyte battery, deformation due to tension during winding of the cylindrical battery, The risk of internal short-circuiting of the nonaqueous electrolyte battery due to perforation by a rough surface or film breakage due to precipitation of lithium dendrites can be suppressed.
  • the lower limit of the thickness of the polyolefin resin porous film of the present invention is preferably 3 ⁇ m or more, and more preferably 5 ⁇ m or more. If the thickness is 3 ⁇ m or more, the polyolefin resin porous film can have sufficient strength, and therefore, when used as a separator for a nonaqueous electrolyte battery, the risk of an internal short circuit of the nonaqueous electrolyte battery can be suppressed. .
  • the upper limit of the thickness is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 60 ⁇ m or less.
  • the thickness is 100 ⁇ m or less, it is possible to suppress a decrease in battery output due to the distance between the electrodes and a decrease in battery capacity due to a relative decrease in the volume occupied by the electrodes when used as a non-aqueous electrolyte battery separator.
  • the manufacturing method of the polyolefin resin porous film of this invention is demonstrated, this invention is not limited only to the polyolefin resin porous film manufactured by this manufacturing method.
  • a known method such as a stretching method, an extraction method, a chemical treatment method, a foaming method, or a combination of these techniques can be used.
  • the stretching method is preferably used in the present invention.
  • a non-porous film-like material is formed using a composition in which an incompatible component is mixed with a resin component, and the interface between the resin component and the incompatible component is peeled off by stretching.
  • a method for forming pores, a method for forming pores by adding a specific crystal nucleating agent to a resin component to form a nonporous film-like material so as to form spherulites, and stretching are known. .
  • an additive that can be removed in a subsequent step is mixed with a resin composition to form a nonporous film-like material, and then the additive is extracted with a chemical or the like to form pores.
  • the additive include a polymer additive, an organic additive, and an inorganic additive.
  • the chemical treatment method is a method of forming micropores by chemically cleaving the bond of the polymer substrate or conversely performing a bonding reaction. More specifically, a method of forming micropores by chemical treatment such as redox agent treatment, alkali treatment, acid treatment, and the like can be mentioned.
  • the production method is roughly classified into the following four types depending on the order of the porous formation and the lamination.
  • (I) A method in which each layer is made porous, and then the layers made porous are laminated or bonded with an adhesive or the like.
  • (II) A method of laminating each layer to produce a laminated nonporous film-like material, and then making the nonporous film-like material porous.
  • (III) A method in which one of the layers is made porous and then laminated with another layer of a nonporous film to make it porous.
  • (IV) A method of forming a laminated porous film by preparing a porous layer and then applying a coating such as inorganic / organic particles or depositing metal particles.
  • a coating such as inorganic / organic particles or depositing metal particles.
  • a method of making a porous product after producing the product is particularly preferable.
  • the method for producing the non-porous film is not particularly limited, and a known method may be used.
  • the resin composition is melted using an extruder, coextruded from a T die, and cooled and solidified with a cast roll. Can be mentioned.
  • the method of cutting open the film manufactured by the tubular method and making it flat is also applicable.
  • biaxial stretching is more preferable from the viewpoint of controlling the porous structure.
  • two layers comprising a front and back layer composed of a resin composition mainly composed of a polypropylene resin having ⁇ crystal activity, and an intermediate layer composed of a resin composition containing a polyethylene resin and compound X are included.
  • a method for producing a laminated porous film in which a seeded three-layer laminated nonporous film-like material is produced by coextrusion from a T die and made porous by biaxial stretching will be described below.
  • the resin composition constituting the front and back layers preferably contains at least a polypropylene resin and a ⁇ crystal nucleating agent.
  • These raw materials are preferably mixed using a Henschel mixer, a super mixer, a tumbler type mixer or the like, or mixed by hand blending with all ingredients in a bag, and then preferably a single screw or twin screw extruder, a kneader, etc. Is melt-kneaded with a twin-screw extruder and then pelletized.
  • the resin composition constituting the intermediate layer is made by mixing raw materials such as polyethylene resin, compound X and other additives as necessary using a Henschel mixer, a super mixer, a tumbler mixer, etc., and then a single-screw or twin-screw extruder, After melt-kneading with a kneader or the like, preferably a twin-screw extruder, the mixture is pelletized.
  • the pellets of the resin composition for front and back layers and the pellet of the resin composition for intermediate layers are put into separate extruders and extruded from a die for T-die coextrusion.
  • the type of T-die may be a multi-manifold type for two or three layers, or a feed block type for two or three layers.
  • the gap of the T die to be used is determined from the final required film thickness, stretching conditions, draft ratio, various conditions, etc., but is generally about 0.1 to 3.0 mm, preferably 0.5. -1.0 mm. If it is less than 0.1 mm, it is not preferable from the viewpoint of production speed, and if it is more than 3.0 mm, it is not preferable from the viewpoint of production stability because the draft rate increases.
  • the extrusion processing temperature is appropriately adjusted depending on the flow characteristics and moldability of the resin composition, but is preferably about 150 to 300 ° C, more preferably 180 to 280 ° C.
  • the temperature is 150 ° C. or higher, the viscosity of the molten resin is preferably sufficiently low and excellent in moldability.
  • the deterioration of the resin composition can be suppressed.
  • the cooling and solidification temperature by the cast roll is very important in the present invention, and ⁇ crystals in the film-like material before stretching can be generated and grown, and the ⁇ -crystal ratio in the film-like material can be adjusted.
  • the cooling and solidifying temperature of the cast roll is preferably 80 to 150 ° C, more preferably 90 to 140 ° C, and still more preferably 100 to 130 ° C.
  • the cooling and solidification temperature is preferably 80 ° C. or higher, the ⁇ crystal ratio in the film-like material cooled and solidified can be sufficiently increased, which is preferable.
  • the ⁇ crystal ratio of the obtained film-like material before stretching is adjusted to 30 to 100% by setting a cast roll in the temperature range. It is more preferably 40 to 100%, further preferably 50 to 100%, and particularly preferably 60 to 100%.
  • the ⁇ crystal ratio is a crystal derived from the ⁇ crystal of the polypropylene resin detected when the film is heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter.
  • the obtained nonporous film-like material may be uniaxially stretched in the longitudinal direction or the transverse direction, or may be biaxially stretched.
  • simultaneous biaxial stretching may be sufficient and sequential biaxial stretching may be sufficient.
  • sequential biaxial stretching is more preferred because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled.
  • stretching to the take-up (flow) direction (MD) of a film-like thing is called “longitudinal stretching”
  • vertical to MD is called “lateral stretching.”
  • the longitudinal stretching ratio is preferably 2 to 10 times, more preferably 3 to 8 times.
  • an appropriate vacancy starting point can be generated.
  • an appropriate pore starting point can be expressed.
  • the stretching temperature needs to be appropriately selected depending on the composition of the resin composition to be used, the crystal melting peak temperature, the crystallinity, etc., but the stretching temperature in the longitudinal stretching is generally 20 to 160 ° C., preferably 30 to 150 ° C. Be controlled. If it is the said temperature range, control of a porous structure will be easy and it will be easy to balance various physical properties, such as mechanical strength and a shrinkage
  • the temperature is lower than 20 ° C.
  • the stretching stress becomes very strong, so that it is easy to break.
  • the load on the equipment is large, and the adhesion between the roll and the film-like material before stretching deteriorates. There arises a problem that stretching unevenness is likely to occur.
  • the temperature exceeds 160 ° C., the film-like material tends to adhere to the roll, and stable stretching becomes difficult.
  • the draw ratio in the transverse drawing is preferably 2.0 to 10 times, more preferably 2.2 to 7 times.
  • the stretching temperature in the transverse stretching is generally 50 to 130 ° C.
  • the stretching speed in the stretching step is preferably 50 to 1200% / min, more preferably 150 to 1000% / min, and further preferably 250 to 900% / min.
  • the longitudinal stretching temperature is 70 ° C. or more, or the transverse stretching ratio is 2.2 times or more.
  • the longitudinal stretching temperature is less than 70 ° C., fibrillation is severe in the generation of crazes due to longitudinal stretching, and the pores are particularly refined. If the pores are fine, it is advantageous if the separator has SD characteristics because it is easy to close the holes at high temperatures, but it is not preferable from the viewpoint of increasing the output. Therefore, when the longitudinal stretching temperature is 20 to 70 ° C., a high output can be achieved by setting the transverse stretching ratio to 2.2 times or more and widening the craze generated by the longitudinal stretching.
  • the polyolefin resin porous film thus obtained is preferably heat-treated at a temperature of about 100 to 140 ° C., more preferably about 110 to 135 ° C. for the purpose of improving dimensional stability. Further, 1 to 25% relaxation treatment may be performed as necessary.
  • the polyolefin resin porous film of the present invention can be obtained by uniformly cooling and winding after the heat treatment.
  • both electrodes of the positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape so as to overlap each other via the battery separator 10, and the outside is stopped with a winding tape to form a wound body.
  • the battery separator 10 preferably has a thickness of 3 to 100 ⁇ m, particularly preferably 5 to 80 ⁇ m. By making the thickness 3 ⁇ m or more, the battery separator is difficult to break, and by making the thickness 100 ⁇ m or less, it is possible to increase the battery area when wound in a predetermined battery can and thus increase the battery capacity. it can.
  • the wound body in which the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 are integrally wound is accommodated in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25.
  • the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed.
  • a cylindrical non-aqueous electrolyte battery is manufactured.
  • an electrolytic solution in which a lithium salt is used as an electrolytic solution and is dissolved in an organic solvent is used.
  • the organic solvent is not particularly limited.
  • esters such as propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile.
  • ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 4-methyl-1,3-dioxolane, or sulfolane.
  • LiPF 6 lithium hexafluorophosphate
  • an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used.
  • the alkali metal include lithium, sodium, and potassium.
  • the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like.
  • the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.
  • a carbon material having an average particle size of 10 ⁇ m is mixed with a solution in which vinylidene fluoride is dissolved in N-methylpyrrolidone to form a slurry, and this negative electrode mixture slurry is passed through a 70-mesh net. After removing the large particles, uniformly apply to both sides of the negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m and dry, and then compression-molded with a roll press machine, cut, strip-shaped negative electrode plate and We use what we did.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials.
  • These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.
  • a strip-like positive electrode plate produced as follows is used as the positive electrode. That is, lithium graphite oxide (LiCoO 2 ) is added with phosphorous graphite as a conductive additive at a mass ratio of 90: 5 (lithium cobalt oxide: phosphorous graphite) and mixed, and this mixture and polyvinylidene fluoride are mixed with N Mix with a solution in methylpyrrolidone to make a slurry.
  • This positive electrode mixture slurry is passed through a 70-mesh net to remove large particles, and then uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press. After forming, it is cut into a strip-like positive electrode plate.
  • Example 1 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2 as a ⁇ crystal nucleating agent with respect to 100 parts by mass of a polypropylene resin (Prime Polymer Co., Ltd., Prime Polypro F300SV, MFR: 3 g / 10 min) , 4,8,10-tetraoxaspiro [5,5] undecane: 0.2 parts by mass, 0.2 parts by mass of an antioxidant (IRGANOX-B225, manufactured by Ciba Specialty Chemicals) was added, and two in the same direction.
  • a polypropylene resin Principal Polymer Co., Ltd., Prime Polypro F300SV, MFR: 3 g / 10 min
  • 4,8,10-tetraoxaspiro [5,5] undecane 0.2 parts by mass
  • 0.2 parts by mass of an antioxidant IRGANOX-B225, manufactured by Ciba Specialty Chemicals
  • a resin composition P1 melted and kneaded at 270 ° C. and processed into pellets was obtained.
  • the resin composition P1 was extruded from a T-die at 200 ° C. with a single screw extruder, cooled and solidified on a casting roll at 125 ° C. for 15 seconds, and wound up with a winder to obtain a nonporous film-like material S1.
  • the non-porous membrane S1 was stretched 7.0 times to MD at 120 ° C., then biaxially stretched 6.6 times to TD at 120 ° C., and then thermally relaxed 14% to TD at 115 ° C. As a result, a porous film was obtained.
  • Example 2 The non-porous membrane S1 produced in Example 1 was stretched to MD at 5.0 times at 120 ° C., then biaxially stretched to 5.0 times at TD at 120 ° C., and then at TD at 115 ° C. The film was heat relaxed 14% to obtain a porous film.
  • the film was laminated on the casting roll at 130 ° C. and cooled for 15 seconds.
  • the laminate was wound up with a winder to obtain a laminated non-porous film S2.
  • the non-porous membrane S2 was stretched 2.5 times to MD at 50 ° C., further 3.8 times to MD at 120 ° C., and then sequentially biaxially stretched 2.3 times to TD at 100 ° C.
  • the film was heat-fixed at 125 ° C., and heat-relaxed to 115% by TD at 115 ° C. to obtain a porous film.
  • the nonporous membrane S3 was stretched 3.6 times to MD at 98 ° C., then biaxially stretched 2.4 times to TD at 109 ° C., then heat-set at 125 ° C., and 125 ° C.
  • a porous film was obtained by heat-relaxing to TD for 12%.
  • Example 1 The non-porous membrane S1 produced in Example 1 was stretched 1.7 times to MD at 40 ° C. and 2.7 times to MD at 120 ° C., and then successively 1.9 times to TD at 98 ° C. After axial stretching, the film was heat relaxed to 136% at TD to obtain a porous film.
  • the non-porous film-like material S5 was stretched 2.5 times to MD at 40 ° C. and then sequentially biaxially stretched 6.0 times to TD at 110 ° C. and then immersed in isopropanol at 65 ° C. Then, the paraffin wax was extracted and removed. The obtained film was heat-set at a temperature of 115 ° C. using a roll stretching machine. In heat setting, the roll speed ratio was adjusted so that the MD draw ratio was 1.2 times to obtain a porous film.
  • the non-porous film-like material S6 was heat-treated by being left for 24 hours in a hot air circulating oven heated to 120 ° C. Subsequently, the heat-treated nonporous membrane S6 was stretched 1.7 times to MD at 25 ° C. by a roll stretching machine, and further stretched 2.0 times to MD at 100 ° C. to form a porous film. Obtained.
  • Air permeability (sec / 100 ml) was measured according to JIS P8117 in an air atmosphere at 25 ° C.
  • a digital type Oken type air permeability dedicated machine (Asahi Seiko Co., Ltd.) was used.
  • a 100 g stainless steel weight having a bottom surface of ⁇ 30 mm was slowly placed, a terminal was connected to the petri dish and the weight, and the electrical resistance was measured using a HIOKI LCR HiTESTER (manufactured by Hioki Electric Co., Ltd., model number 3522-50).
  • glycerin manufactured by Nacalai Tesque, grade 1
  • the film in the state was immersed and heated for 5 seconds. Immediately after heating, it is immersed in a separately prepared cooling bath filled with 25 ° C. glycerin and cooled for 5 minutes, and then washed with 2-propanol (manufactured by Nacalai Tesque, special grade) and acetone (manufactured by Nacalai Tesque, special grade). And dried in an air atmosphere at 25 ° C. for 15 minutes.
  • the air permeability of the film after drying was measured according to the method of (2) above, and the measurement results were classified as follows.
  • Tm ⁇ crystal melting peak temperature
  • XMP18A X-ray source CuK ⁇ ray, output: 40 kV, 200 mA Scanning method: 2 ⁇ / ⁇ scan, 2 ⁇ range: 5 to 25 °, scanning interval: 0.05 °, scanning speed: 5 ° / min
  • Scanning method 2 ⁇ / ⁇ scan, 2 ⁇ range: 5 to 25 °, scanning interval: 0.05 °, scanning speed: 5 ° / min
  • the presence or absence of ⁇ crystal activity was evaluated from the peak derived from the (300) plane of ⁇ crystal of polypropylene resin as follows.
  • the sample may be prepared by adjusting the film so that the film is placed in a circular hole having a central portion of ⁇ 40 mm.
  • Wetting rate (%) 100 ⁇ (Wb ⁇ Wa) / Wb Wetting ratios were classified as follows, and “ ⁇ ” or higher was regarded as acceptable. However, P shows the porosity of a sample. ⁇ : 1.20 ⁇ P or more, less than 1.35 ⁇ P ⁇ : 1.00 ⁇ P or more, less than 1.20 ⁇ P ⁇ : less than 1.00 ⁇ P
  • a polyolefin resin porous film capable of exhibiting high output when used as a separator in a non-aqueous electrolyte battery could be obtained. Furthermore, in Examples 3 and 4, SD characteristics could be imparted by laminating layers composed of a resin composition containing polyethylene resin as a main component. On the other hand, for the comparative example, the P AP , the P BP , and the Pa / P BP , Pa / P AP are out of a predetermined range, the electrical resistance is high, and the wettability of the electrolyte is insufficient. there were.
  • the polyolefin resin porous film of the present invention can be applied to various uses that require air permeability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 本発明のポリオレフィン樹脂多孔性フィルムは、簡便に製造でき、非水電解質電池用セパレータとして使用時に、目詰まりを抑制でき、かつ電池として高出力を発揮できるポリオレフィン樹脂多孔性フィルムである。本発明は、ポリオレフィン樹脂を主成分とする多孔性フィルムであって、平均流量径圧力(PAP)が1500~2500kPa、バブルポイント圧力(PBP)が300~1500kPaであり、かつ、透気度(Pa)とバブルポイント圧力(PBP)との比(Pa/PAP)が0.35sec/(100ml・kPa)以下であることを特徴とするポリオレフィン樹脂多孔性フィルムである。

Description

ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ
 本発明はポリオレフィン樹脂を主成分とする多孔性フィルムに関し、包装用、衛生用、畜産用、農業用、建築用、医療用、分離膜、光拡散板、電池用セパレータとして利用でき、特に、各種電子機器等の電源として利用されるリチウムイオン二次電池等の非水電解質電池用セパレータとして好適に用いられるものである。
 多数の微細連通孔を有する高分子多孔性フィルムは、超純水の製造、薬液の精製、水処理などに使用する分離膜、衣類・衛生材料などに使用する防水透湿性フィルム、あるいは電池用セパレータなど各種の分野で利用されている。
 繰り返し充放電可能な二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。
 一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。
 リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。
 非水電解液用の溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒として炭酸プロピレンや炭酸エチレン等の有機炭酸エステル化合物が主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶解させて使用している。
 リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。該セパレータにはその役割から当然絶縁性が要求される。さらに有機電解液中でも安定である必要がある。また、電解液の保持、ならびに充放電に際してリチウムイオンが電極間を往来するための通路の確保を目的として、微細孔構造を有していなければならない。これらの要求を満たすため、セパレータとしてはポリオレフィンなどの絶縁性材料を主成分とした多孔性フィルムが使用されている。セパレータの孔構造はリチウムイオン二次電池の出力に大きな影響を与えるため、孔構造を評価するさまざまなパラメータを用いて特性が議論されている。
 セパレータの製造方法としては、湿式と乾式との二種類に大別されるが、製造方法により孔構造は大きく異なる。
 湿式の製法とは、ポリエチレン樹脂と可塑剤等の添加成分とを混合してシート状に成形した後に、溶剤により当該添加成分を抽出した後に延伸、または延伸した後に溶剤により当該添加成分を抽出することで、孔構造を形成する手法であり、三次元的な網目構造を形成することができる。
 乾式の製法とは、結晶性のポリオレフィン樹脂を溶融押出し、高ドラフト比でシート状に冷却固化させることで製造した異方性の高いシートを、機械方向に延伸することで、孔構造を形成する手法であり、機械方向に長い二次元的な多孔構造が形成することができる。
 このように孔構造を制御したセパレータが種々提案されており、孔構造によってさまざまな電池特性が発揮されることが示されている。
 特許4098401号公報(特許文献1)では、透気度を低くすることで、サイクル特性が改善されることが示されている。特許4220329号公報(特許文献2)では、透湿量と透気量との比により放電特性と電池出力が評価されている。また、平均流量径圧力が低い、すなわち孔径が大きいとサイクル特性が優れることが示されている。特開2000-348703号公報(特許文献3)では、低融点の樹脂を用いて透気度が低い乾式セパレータが提案されている。
特許4098401号公報 特許4220329号公報 特開2000-348703号公報
 しかしながら、前記特許文献1,2では、孔径が大きいことで逆にリチウムのデンドライトが析出した際に短絡の危険が大きくなり、電池の安全性が低下する。また、前記特許文献3では、透気度の低いセパレータが提示されているが、機械方向にしか延伸されないため孔径が小さくなり、セパレータの目が詰まりやすくなってサイクル特性が低下するおそれがある。また、電池の内部抵抗が高くなり出力が低下するおそれがある。
 本発明は前記問題に鑑みてなされたものである。すなわち、非水電解質電池用セパレータとして使用時に、電荷であるリチウムのデンドライト析出による短絡、目詰まりを抑制できるような孔径を有していながら、電池として高出力を発揮できる多孔性フィルムを提供することを課題としている。
 前記課題を解決するため、 本発明は、ポリオレフィン樹脂を主成分とする多孔性フィルムであって、平均流量径圧力(PAP)が1500~2500kPa、バブルポイント圧力(PBP)が300~1500kPaであり、かつ、透気度(Pa)とバブルポイント圧力(PBP)との比(Pa/PBP)が0.35sec/(100ml・kPa)以下であることを特徴とするポリオレフィン樹脂多孔性フィルムを提供している。
 前記本発明のポリオレフィン樹脂多孔性フィルムの前記透気度(Pa)が2000sec/100ml以下であることが好ましい。
 また、前記本発明の透気度(Pa)と前記平均流量径圧力(PAP)の比(Pa/PAP)が0.18sec/(100ml・kPa)以下であることが好ましい。
 また、 前記本発明のポリオレフィン樹脂多孔性フィルムのポリオレフィン樹脂のうち、ポリプロピレン樹脂が30質量%以上含まれていることが好ましい。
 また、 前記本発明のポリオレフィン樹脂多孔性フィルムのポリプロピレン樹脂がβ晶活性を有することが好ましい。
 また、前記本発明のポリオレフィン樹脂多孔性フィルムは、電気抵抗が0.85Ω以下であることが好ましい。
 また、前記本発明のポリオレフィン樹脂多孔性フィルムは、空孔率が20~80%であることが好ましい。
 また、前記本発明のポリオレフィン樹脂多孔性フィルムは、厚みが3~100μmであることが好ましい。
 本発明のポリオレフィン樹脂多孔性フィルムは、簡便に製造でき、かつ、電荷であるリチウムのデンドライト析出による短絡、目詰まりを抑制できるような孔径を有していながら電池として高出力を発揮できる。よって、高出力が要求される非水電解質電池用セパレータとして好適に使用することができる。
本発明のポリオレフィン樹脂多孔性フィルムを収容している電池の概略的断面図である。 シャットダウン特性(SD特性)、耐熱性、X線回折測定におけるポリオレフィン樹脂多孔性フィルムの固定方法を説明する図である。
 以下、本発明のポリオレフィン樹脂多孔性フィルムの実施形態について詳細に説明する。
 なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
 また、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」を意図する。
 本実施形態の多孔性フィルムは、ポリオレフィン樹脂を主成分とするポリオレフィン樹脂多孔性フィルムであるが、異なる構造のポリオレフィン樹脂を複数含んでいてもよい。その他成分としてポリオレフィン以外の樹脂成分や、オリゴマー、低分子量化合物を含んでいてもよい。また、複数の種類の樹脂またはその他成分を用いる場合、互いに相溶していても、層分離していてもよく、分散状態を問わない。また、複数の種類の樹脂またはその他成分が積層構造で用いられていてもよく、積層方法としては共押出、ラミネート、コーティングなど各種手法を用いることができる。
 以下に、本発明のポリオレフィン樹脂多孔性フィルムを構成するポリオレフィン樹脂の詳細について説明するが、必ずしもこれらに限定されるものではない。
 ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリ(1-ブテン)、ポリ(1-ペンテン)、ポリ(1-メチルペンテン)、ポリ(1-へキセン)、ポリ(1-へプテン)、ポリ(1-オクテン)、ポリ(1-ノネン)、ポリ(1-デセン)などの樹脂が挙げられる。該ポリオレフィン樹脂は、オレフィンモノマーの単独重合体でも共重合体でもよく、オレフィン以外のモノマーと共重合されていてもよい。
 中でも、材料コスト、加工性、機械的強度、耐熱性などの観点から、ポリプロピレン樹脂が好適に用いられる。また、電池として使用時において、電池の安全性確保の観点からポリエチレン樹脂も好適に使用される。電池の安全性の指標のひとつとして、電池の外部短絡などの原因による異常発熱時に、セパレータの多孔構造が閉塞することで電流を遮断するシャットダウン特性(以後、「SD特性」と称す)が挙げられる。前記SD特性は、セパレータの組成物の少なくともひとつが発熱時に融解することで発現されることが多い。前記SD特性が発現する温度として、特にポリエチレン樹脂の融点はしばしば好適に利用されている。
 ポリプロピレン樹脂、もしくはポリエチレン樹脂を用いる場合、該ポリプロピレン樹脂と該ポリエチレン樹脂の片方だけを用いても、必要に応じて両方ともを用いてもよい。この時、前記ポリオレフィン樹脂のうち、前記ポリプロピレン樹脂は30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が更に好ましい。前記ポリプロピレン樹脂は30質量%以上含まれていることで、多孔性フィルムとして、十分な機械的強度もしくは耐熱性を有することができる。
 ポリプロピレン樹脂としてはホモポリプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1-ブテン、1-ペンテン、1-メチルペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネンもしくは1-デセンなどα-オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、多孔性フィルムの機械的強度の観点からはホモポリプロピレンがより好適に使用される。
 また、ポリプロピレン樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80~99%であることが好ましい。より好ましくは83~99%、更に好ましくは85~99%である。アイソタクチックペンタッド分率が80%より低いとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al.(Macromolecules 8, 687(1975))に準拠している。
 また、ポリプロピレン樹脂は、分子量分布を示すパラメータである多分散度(重量平均分子量Mwと数平均分子量Mnとの比、Mw/Mnで表される)が1.5~10.0であることが好ましい。より好ましくは2.0~8.0、更に好ましくは2.0~6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが1.5以上とすると十分な押出成形性を確保することができ、工業的に安定した生産性を得ることができる。一方、Mw/Mnが10.0以下とすることで、十分な機械的強度を得ることができる。
 Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。
 ポリプロピレン樹脂のメルトフローレート(MFR)は特に制限されるものではないが、MFRは0.1~15g/10分であることが好ましく、0.5~10g/10分であることがより好ましい。MFRが0.1g/10分以上とすることで、成形加工時において十分な樹脂の溶融粘度を得ることでき、十分な生産性を確保することができる。一方、15g/10分以下とすることで、十分な機械的強度を得ることができる。
 MFRはJIS K7210に従い、温度190℃、荷重2.16kgの条件で測定している。
 また、ポリプロピレン樹脂の改質や熱安定化などを目的として、その他の樹脂や各種添加剤を混合して用いてもよい。特に、ポリプロピレン樹脂は樹脂骨格中に第三級炭素を有するため劣化しやすく、酸化防止剤や熱安定剤がしばしば添加される。該酸化防止剤としては、ヒンダードフェノール類、ヒンダードアミン類が知られている。熱安定剤としては、リン系熱安定剤、硫黄系熱安定剤が知られている。
 また、非水電解質電池用セパレータとして必要な多孔構造を得るために、ポリプロピレン樹脂に多孔化の起点となる化合物Fを添加することが好ましい。前記化合物Fとしては、高分子フィラー、有機フィラー、無機フィラーなど、前記ポリプロピレン樹脂と相溶しないフィラー化合物、および溶融状態からの冷却時にポリプロピレン樹脂がβ晶を形成するβ晶核剤などが挙げられる。前記フィラー化合物は、延伸するとポリプロピレン樹脂との界面で剥離して細孔を形成するものである。β晶核剤を用いると、ポリプロピレン樹脂を溶融状態から特定の条件で冷却固化することでβ晶が形成され、延伸するとβ晶が破壊されて細孔が形成される。よって、細孔の連通性および機械的強度の観点からβ晶核剤を用いることが好ましい。
 前記ポリプロピレン樹脂に添加するβ晶核剤の割合は、β晶核剤の種類または前記ポリプロピレン樹脂を主成分とする樹脂組成物の組成などにより適宜調整することが必要であるが、前記ポリプロピレン樹脂を主成分とする樹脂組成物100質量部に対しβ晶核剤0.0001~5.0質量部が好ましい。0.001~3.0質量部がより好ましく、0.01~1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分に前記ポリプロピレン樹脂を主成分とする樹脂組成物のβ晶を生成・成長させることができ、多孔性フィルムとした際にも十分なβ晶活性が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、ポリオレフィン樹脂多孔性フィルム表面へのβ晶核剤のブリードなどがなく好ましい。
 また、仮に前記ポリプロピレン樹脂を主成分とする樹脂組成物からなる層以外に、前記ポリプロピレン樹脂を含有する層などを積層させる場合には、各層のβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
 ポリオレフィン樹脂多孔性フィルムは、前記β晶活性を有することが好ましい。β晶活性は、延伸前の膜状物において、前記ポリプロピレン樹脂を主成分とする樹脂組成物がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の膜状物中の前記樹脂組成物がβ晶を生成していれば、その後延伸を施すことで微細孔が形成されるため、透気特性を有するポリオレフィン樹脂多孔性フィルムを得ることができる。
 また、前記β晶活性は、ポリオレフィン樹脂多孔性フィルムが単層構造である場合であっても、他の多孔性層が積層される場合のいずれにおいても、ポリオレフィン樹脂多孔性フィルム全層の状態で測定している。
 本発明のポリオレフィン樹脂多孔性フィルムにおいて、「β晶活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合か、及び/又は後述する広角X線回折装置を用いた測定により、β晶に由来する回折ピークが検出された場合、「β晶活性」を有すると判断している。
 具体的には、示差走査型熱量計でポリオレフィン樹脂多孔性フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、前記ポリプロピレン樹脂を主成分とする樹脂組成物のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β晶活性を有すると判断している。
 また、前記ポリオレフィン樹脂多孔性フィルムのβ晶活性度は、検出される前記ポリプロピレン樹脂を主成分とする樹脂組成物のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
  β晶活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 例えば、前記ポリプロピレン樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上170℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1~4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
 前記ポリオレフィン樹脂多孔性フィルムのβ晶活性度は大きい方が好ましく、β晶活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。多孔性フィルムが20%以上のβ晶活性度を有すれば、延伸前の膜状物中においてもポリプロピレン樹脂のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れたポリオレフィン樹脂多孔性フィルム、特に、電池用セパレータとすることができる。
 β晶活性度の上限値は特に限定されないが、β晶活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
 また前記β晶活性の有無は、特定の熱処理を施した多孔性フィルムの広角X線回折測定により得られる回折プロファイルでも判断できる。
 詳細には、前記ポリプロピレン樹脂を主成分とする樹脂組成物の融点を超える温度である170℃~190℃の熱処理を施し、徐冷してβ晶を生成・成長させた多孔性フィルムについて広角X線測定を行い、前記樹脂組成物のβ晶の(300)面に由来する回折ピークが2θ=16.0°~16.5°の範囲に検出された場合、β晶生成力が有ると判断している。
 ポリプロピレン樹脂のβ晶構造と広角X線回折測定に関する詳細は、Macromol.Chem.187,643-652(1986)、Prog.Polym.Sci.Vol.16,361-404(1991)、Macromol.Symp.89,499-511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。
 ポリエチレン樹脂としては、超低密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、または超高密度ポリエチレンのようなポリエチレン樹脂単独だけでなく、エチレン-プロピレン共重合体などの共重合体でもよい。中でも、ポリエチレン樹脂単独が好ましい。
 また、前記ポリエチレン樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03~15g/10分であることが好ましく、0.3~10g/10分であることがより好ましい。MFRが0.03g/10分以上とすることで、成形加工時において十分な樹脂の溶融粘度を得ることでき、十分な生産性を確保することができる。一方、15g/10分以下とすることで、十分な機械的強度を得ることができる。
 なお、ポリエチレン樹脂の製造方法は特に限定されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
 ポリオレフィン樹脂多孔性フィルムの製造に際し、多孔化を促進させる物質をポリエチレン樹脂に添加することが好ましい。中でも、変性ポリオレフィン樹脂、脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスから選ばれる化合物Xのうち少なくとも1種が含まれていることがより好ましい。前記化合物Xを添加することにより、より効率的に多孔構造を得ることができ、孔の形状や孔径を制御しやすくなる。
 本発明における変性ポリオレフィン樹脂とは、不飽和カルボン酸又はその無水物、あるいはシラン系カップリング剤で変性されたポリオレフィンを主成分とする樹脂をいう。不飽和カルボン酸又はその無水物としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、シトラコン酸、無水シトラコン酸、イタコン酸、無水イタコン酸あるいはこれらの誘導体のモノエポキシ化合物と前記酸とのエステル化合物、分子内にこれらの酸と反応し得る基を有する重合体と酸との反応生成物などが挙げられる。また、これらの金属塩も使用することができる。これらの中でも、無水マレイン酸がより好ましく用いられる。また、これらの共重合体は、各々単独に、又は2種以上を混合して使用することができる。
 また、シラン系カップリング剤としては、ビニルトリエトキシシラン、メタクロイルオキシトリメトキシシラン、γ-メタクリロイルオキシプロピルトリアセチルオキシシランなどを挙げることができる。
 変性ポリオレフィン樹脂を製造するには、例えば、予めポリマーを重合する段階でこれらの変性モノマーを共重合させることもできるし、一旦重合したポリマーにこれらの変性モノマーをグラフト共重合させることもできる。また変性はこれらの変性モノマーを単独で又は複数を併用し、その含有率が0.1質量%以上5質量%以下の範囲のものが好適に使用される。この中でもグラフト変性したものが好適に用いられる。
 市販されている変性ポリオレフィン樹脂を例示すれば、例えば「アドマー」(三井化学社製)、「モディック」(三菱化学社製)などが挙げられる。
 脂環族飽和炭化水素樹脂及びその変性体について、石油樹脂、ロジン樹脂、テルペン樹脂、クマロン樹脂、インデン樹脂、クマロン-インデン樹脂、及びそれらの変性体等が挙げられる。
 本発明における石油樹脂とは、ナフサの熱分解などによる副生物から得られるC4~C10の脂肪族オレフィン類やジオレフィン類、オレフィン性不飽和結合を有するC8以上の芳香族化合物で、それらの中に含まれる化合物の一種又は二種以上を単独若しくは共重合することにより得られる脂肪族系、 芳香族系及び共重合系石油樹脂を言う。
 石油樹脂としては、例えばC5留分を主原料とする脂肪族系石油樹脂、C9留分を主原料とする芳香族系石油樹脂、それらの共重合系石油樹脂、脂環族系石油樹脂がある。テルペン樹脂としてはβ-ピネンからのテルペン樹脂やテルペン-フェノール樹脂が、またロジン系樹脂としては、ガムロジン、ウツドロジンなどのロジン樹脂、グリセリンやペンタエリスリトールで変性したエステル化ロジン樹脂などが例示できる。
 本発明におけるエチレン系共重合体とは、エチレンと、酢酸ビニル、不飽和カルボン酸、不飽和カルボン酸無水物、またはカルボン酸エステル等の中から1種類以上とを共重合させることにより得られる化合物である。
 エチレン系共重合体は、エチレン単量体単位の含有率が好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上である。一方、上限については、エチレン単量体単位の含有率が好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下であることが望ましい。エチレン単量体単位の含有率が所定の範囲内であれば、より効率的に多孔構造を形成することができる。
 前記エチレン系共重合体は、MFRが0.1g/10分以上10g/10分以下のものが好適に用いられる。MFRが0.1g/10分以上とすることで、押出加工性を良好に維持でき、一方、MFRが10g/10分以下とすることで、十分な機械的強度を確保することができる。
 前記エチレン系共重合体は、エチレン-酢酸ビニル共重合体として「EVAFLEX」(三井・デュポン ポリケミカル社製)、「ノバテックEVA」(日本ポリエチレン社製)、エチレン-アクリル酸共重合体として「NUCコポリマー」 (日本ユニカー社製)、「エバフレックス-EAA 」(三井・デュポンポリケミカル社製)、「REXPEARL EAA」(日本エチレン社製)、エチレン-(メタ)アクリル酸共重合体として「ELVALOY」(三井・デュポンポリケミカル社製)、「REXPEARL EMA」(日本エチレン社製)、エチレン-アクリル酸エチル共重合体として「REXPEARL EEA」(日本エチレン社製)、エチレン-メチル(メタ)アクリル酸共重合体として「アクリフト」(住友化学社製)、エチレン-酢酸ビニル-無水マレイン酸三元共重合体として「ボンダイン」(住友化学社製)、エチレン-メタクリル酸グリシジル共重合体、エチレン-酢酸ビニル-メタクリル酸グリシジル三元共重合体、エチレン-アクリル酸エチル-メタクリル酸グリシジル三元共重合体として「ボンドファースト」(住友化学社製)などが商業的に入手できる。
 本発明におけるワックスとは、以下の(ア)および(イ)の性質を満たす有機化合物のことである。
(ア)融点が40℃~200℃である。
(イ)融点より10℃高い温度での溶融粘度が50Pa・s以下である。
 ワックスについて、極性または非極性ワックス、ポリプロピレンワックス、ポリエチレンワックス及びワックス改質剤を含む。具体的には、極性ワックス、非極性ワックス、フィッシャー-トロプシュワックス、酸化フィッシャー-トロプシュワックス、ヒドロキシステアロマイドワックス、機能化ワックス、ポリプロピレンワックス、ポリエチレンワックス、ワックス改質剤、アモルファスワックス、カルナウバワックス、キャスター・オイルワックス、マイクロクリスタリンワックス、蜜蝋、カルナウバ蝋、キャスターワックス、植物蝋、カンデリラ蝋、日本蝋、ouricuryワックス、ダグラスファーバーク・ワックス、米ぬかワックス、ホホバワックス、ヤマモモワックス、モンタンワックス、オゾケライトワックス、セレシンワックス、石油蝋、パラフィンワックス、化学変性炭化水素ワックス、置換アミドワックス、及びこれらの組み合わせ及び誘導体が挙げられる。中でも多孔構造を効率的に形成できる点から、パラフィンワックス、ポリエチレンワックス、マイクロクリスタリンワックスが好ましく、SD特性の観点より孔径をより微小化できるマイクロクリスタリンワックスが更に好ましい。市販されているポリエチレンワックスとしては「FT-115」(日本精蝋社製)、マイクロクリスタリンワックスとしては「HiMic」(日本精蝋社製)などが挙げられる。
 前記化合物Xのうち、非水電解質電池用セパレータとして用いる場合、SD特性がより効果的に働くものとして脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスがより好ましく、成形性の観点からワックスが更に好ましい。
 前記化合物Xの配合量は、ポリエチレン樹脂と化合物Xとの界面を剥離させて微細孔を形成させる場合、ポリエチレン樹脂100質量部に対し、下限として1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が更に好ましい。一方、上限として50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下が更に好ましい。前記化合物Xの配合量がポリエチレン樹脂100質量部に対し、1質量部以上とすることで、目的とする良好な多孔構造が発現する効果が十分に得られる。また、化合物Xの配合量が50質量部以下とすることで、より安定した成形性を確保することができる。
 ポリエチレン樹脂や多孔化を促進させる前記化合物X以外に、一般に樹脂組成物に配合される添加剤または他の成分を含んでいてもよい。前記添加剤としては、成形加工性、生産性および多孔性フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
 中でも、核剤はポリエチレン樹脂の結晶構造を制御し、延伸開孔時の多孔構造を細かくするという効果があるため好ましい。市販されているものとして、「ゲルオールD」(新日本理化社製)、「アデカスタブ」(旭電化工業社製)、「Hyperform」(ミリケンケミカル社製)、または「IRGACLEAR D」(チバ・スペシャルティ・ケミカルズ社製)等が挙げられる。また、核剤の添加されたポリエチレン樹脂の具体例としては、「リケマスター」(理研ビタミン社製)等が商業的に入手できる。
[多孔性フィルムの構成の説明]
 本発明のポリオレフィン樹脂多孔性フィルムの構成は、前記ポリプロピレン樹脂を主成分とする樹脂組成物からなる層(以後「I層」と称す)を有することがこのましく、単層構造であっても積層構造であってもよい。積層構造とする場合、前記I層と、ポリエチレン樹脂を主成分とする層(以後「II層」と称す)とを積層させることがより好ましい。また、本発明のポリオレフィン樹脂多孔性フィルムの機能を妨げない範囲で、前記I層、II層とは異なる他の機能を持つ層を積層することもできる。具体的には、強度保持層、耐熱層が挙げられる。
 積層構成について、具体的にはI層/II層を積層した2層構造、I層/II層/I層、若しくは、II層/I層/II層として積層した3層構造などが例示できる。また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、他の機能を持つ層との積層順序は特に問わない。更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。なお、I層が2つ以上ある場合、それぞれの成分含有量が同じであってもよいし、異なっていても良い。
 中でも、I層/II層/I層の2種3層構成は、得られるポリオレフィン樹脂多孔性フィルムのカール度合いや表面平滑性が良好となるため好ましい。
 本発明のポリオレフィン樹脂多孔性フィルムの下記の平均流量径圧力(PAP)、バブルポイント圧力(PBP)、透気度(Pa)、電気抵抗等の物性は、積層構成や積層比、各層の組成、製造方法によって自由に調整できる。
 平均流量径圧力(PAP)は、1500~2500kPaであることが重要であり、好ましくは1600~2200kPaである。
 前記平均流量径圧力(PAP)が1500kPa以上とすることで、非水電解質電池用セパレータとして使用時に、電池の組立てにおいて電解液を注入するにあたり、十分な保液性を確保することができる。また、リチウムのデンドライトの析出を抑えられることから、デントライトによる正極と負極との間での短絡を抑えることができる。
 一方、前記平均流量径圧力(PAP)が2500kPa以下とすることで、非水電解質電池用セパレータとして使用時に、電解液がポリオレフィン樹脂多孔性フィルムの内部にまで十分に浸透することができる。また充放電を繰り返すうちにポリオレフィン樹脂多孔性フィルムに発生する目詰まりを抑制させ、十分なサイクル特性が確保することができる。
 バブルポイント圧力(PBP)は、300~1500kPaであることが重要であり、好ましくは500~1200kPa、より好ましくは700~1000kPaである。
 前記バブルポイント圧力(PBP)が300kPa以上であることによって、非水電解質電池として用いた場合に、リチウムのデンドライトが析出しても、短絡のリスクを抑制させ、電池の反応が不均一に発生することを抑えることができるために好ましい。
 一方、前記バブルポイント圧力(PBP)が1500kPa以下であることによって、電解液の濡れ性を十分に保持することができるために、非水電解質電池として用いた場合に、非水電解質電池用セパレータの目詰まりを抑え、十分なサイクル特性を得ることができるために好ましい。
 バブルポイント圧力(PBP)が規定された範囲を満たすためには、多孔性フィルムで用いるポリオレフィン系樹脂のうち、ポリプロピレン樹脂が30質量%以上含まれていることが好ましく、当該ポリプロピレン樹脂にβ晶活性を有することがより好ましい。
 透気度(Pa)は、5~2000sec/100mlが好ましく、10~1000sec/100mlがより好ましい。
 前記透気度(Pa)が2000sec/100ml以下であることによって、前記平均流量径圧力(PAP)に関わらず、十分な電池出力を確保することができるために好ましい。一方、前記透気度(Pa)が5sec/100ml以上であることによって、十分な機械的強度を確保するだけでなく、非水電解質電池として用いた場合、リチウムのデンドライトの析出による短絡のリスクを軽減することができるために好ましい。
 電解液を含浸させたときの非水電解質電池用セパレータの電気抵抗は、しばしば透気度に比例させて評価されるが、実際には正確ではない。例えば、空孔率0%の無孔フィルムに直径0.5mm程度のピンホールを1つ開ければ、透気度は500sec/100mlを下回るが、電気抵抗は同じ透気度で空孔率が50%の微多孔膜に比べて数倍高い。また、非水電解質電池用セパレータの厚みと空孔率とから電気抵抗を見積もる方法もある。しかし、連通していない独立気泡がある場合、電解液は浸透しないために電気抵抗は高くなる。
 すなわち、非水電解質電池用セパレータの厚み方向における総連通孔の平均長さが短いほど、もしくは、非水電解質電池用セパレータの総連通孔の総断面積が大きいほど、非水電解質電池用セパレータに関する電池の内部抵抗は小さくなる。しかし、非水電解質電池用セパレータに局所的に連通孔の長さが短くて孔径の大きな空孔の数が存在すると、透気度は著しく小さい値となる。これは総連通孔を反映した数値ではないため、実際の電池の内部抵抗を低くすることはできない。よって、透気度と、最大孔径を評価するバブルポイント圧力との比率を改善する必要があるといえる。
 そこで本発明では、非水電解質電池用セパレータとして使用時に、ポリオレフィン樹脂多孔性フィルムの電気抵抗を低くするために、透気度(Pa)とバブルポイント圧力(PBP)との比を一定値以下とすることが必要であることを見出した。
 本発明のポリオレフィン樹脂多孔性フィルムにおいて、透気度(Pa)とバブルポイント圧力(PBP)との比(Pa/PBP)が前記0.35sec/(100ml・kPa)以下であることが重要である。該比(Pa/PBP)は、0.32sec/(100ml・kPa)以下であることがより好ましい。
 Pa/PBPの値を0.35sec/(100ml・kPa)以下とすることで、非水電解質電池用セパレータとして使用時に、電池の内部抵抗は十分に低くなり、高い電池出力を有することができる。なお、Pa/PBPの下限については特に限定しないが、物性のバランスを考慮すると、0.03sec/(100ml・kPa)以上が好ましい。
 前記Pa/PBPが規定された範囲を満たすためには、多孔性フィルムで用いるポリオレフィン系樹脂のメルトフローレート(MFR)を0.1~15g/10分に調整することが好ましい。前記MFRの調整によって、通気性が改善されて透気度の値が小さくなるために、前記Pa/PBPの値も小さくなり、規定された範囲を満たすことが可能となるために好ましい。
 また、本発明のポリオレフィン樹脂多孔性フィルムの透気度(Pa)と平均流量径圧力(PAP)との比(Pa/PAP)は、0.18sec/(100ml・kPa)以下が好ましく、0.15sec/(100ml・kPa)以下であることが好ましい。Pa/PAPの値が0.18sec/(100ml・kPa)以下とすることで、非水電解質電池用セパレータとして使用時に、電池の内部抵抗は十分に低くなり、高い電池出力を有することができる。なお、Pa/PAPの下限については特に限定しないが、物性のバランスを考慮すると、0.03sec/(100ml・kPa)以上が好ましい。
 さらに、本発明のポリオレフィン樹脂多孔性フィルムの電気抵抗は0.85Ω以下が好ましく、0.80Ω以下がより好ましい。電気抵抗が0.85Ω以下であれば、非水電解質電池用セパレータと使用時に電荷の移動が容易であることを意味し、電池性能に優れるため好ましい。
 一方、下限については特に限定しないが、0.10Ω以上が好ましく、0.15Ω以上がより好ましく、0.20Ω以上が更に好ましい。電気抵抗が0.10Ω以上であれば、非水電解質電池用セパレータとして使用時に内部短絡等のトラブルを十分に回避することができる。
 本発明のポリオレフィン樹脂多孔性フィルムの空孔率の下限は20%以上であることが好ましく、30%以上がより好ましい。空孔率が20%以上であれば、ポリオレフィン樹脂多孔性フィルムに十分な連通性を出すことができる。また、非水電解質電池用セパレータとして使用時に、十分な電解液の保液量を確保することができ、十分な電池出力を得ることができる。
 一方、空孔率の上限は80%以下であることが好ましい。空孔率が80%以下とすることで、十分な機械的強度を確保することができ、非水電解質電池用セパレータとして使用時に、円筒型電池の捲回時の張力による変形、隣接する電極の粗面による穿孔、または、リチウムのデンドライトの析出による破膜等による非水電解質電池の内部短絡の危険性を抑えることができる。
 本発明のポリオレフィン樹脂多孔性フィルムの厚みの下限は3μm以上であることが好ましく、5μm以上であることがより好ましい。厚みが3μm以上であれば、ポリオレフィン樹脂多孔性フィルムの十分な強度を有することができるため、非水電解質電池用セパレータとして使用時に、非水電解質電池の内部短絡の危険性を抑制することができる。
 一方、厚みの上限は100μm以下であることが好ましく、80μm以下であることがより好ましく、60μm以下であることがさらに好ましい。厚みが100μm以下とすることで、非水電解質電池用セパレータとして使用時に、電極間の距離による電池出力の低下、および電極の占める体積の相対的低下による電池容量の減少を抑えることができる。
(製造方法)
 次に本発明のポリオレフィン樹脂多孔性フィルムの製造方法について説明するが、本発明はかかる製造方法により製造されるポリオレフィン樹脂多孔性フィルムのみに限定されるものではない。
 ポリオレフィン樹脂多孔性フィルムの製造方法としては、延伸法、抽出法、化学処理法、発泡法、またはこれらの技術の組み合わせなど公知の方法を用いることができる。なかでも本発明においては延伸法を用いることが好ましい。
 前記延伸法としては、樹脂成分に非相溶成分を混合した組成物を用いて無孔膜状物を形成し、延伸することにより該樹脂成分と該非相溶成分との界面を剥離させ、細孔を形成する方法、樹脂成分に特定の結晶核剤を添加して球晶を形成するように無孔膜状物を形成し、延伸することにより細孔を形成する方法などが知られている。
 前記抽出法では、後工程で除去可能な添加剤を樹脂組成物に混合し、無孔膜状物を形成したのち前記添加剤を薬品などで抽出して細孔を形成する方法である。添加剤としては高分子添加剤、有機物添加剤、無機物添加剤などが挙げられる。
 前記化学処理法は、高分子基体の結合を化学的に切断したり、逆に結合反応を行ったりすることにより、微細孔を形成する方法である。より具体的には、酸化還元剤処理、アルカリ処理、酸処理などの薬品処理により微細孔を形成する方法が挙げられる。
 また、本発明において、ポリオレフィン樹脂多孔フィルムを積層にする場合、製造方法は、多孔化と積層の順序等によって以下の4つに大別される。
(I)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
(II)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
(III)各層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
(IV)多孔層を作製した後、無機・有機粒子などのコーティング塗布や、金属粒子の蒸着などを行うことにより積層多孔フィルムとする方法。
 本発明においては、その工程の簡略さ、生産性の観点から前記(II)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するために、共押出で積層無孔膜状物を作製した後、多孔化する方法が特に好ましい。
 無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて樹脂組成物を溶融し、Tダイから共押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造したフィルムを切り開いて平面状とする方法も適用できる。
 無孔膜状物の延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて少なくとも一軸方向に延伸を行うことが好ましい。中でも、多孔構造制御の観点から二軸延伸がより好ましい。
 例として、β晶活性を有するポリプロピレン樹脂を主成分とする樹脂組成物から構成される表裏層と、ポリエチレン樹脂と化合物Xとが含まれている樹脂組成物から構成される中間層とからなる二種三層の積層無孔膜状物を、Tダイから共押出により作製し、二軸延伸することにより多孔化する積層多孔性フィルムの製造方法を以下に説明する。
 表裏層を構成する樹脂組成物は、少なくともポリプロピレン樹脂およびβ晶核剤を含有することが好ましい。これらの原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練した後、ペレット化する。
 中間層を構成する樹脂組成物は、ポリエチレン樹脂、化合物Xおよび必要によりその他添加物等の原材料を、ヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練した後、ペレット化する。
 前記表裏層用樹脂組成物のペレットと前記中間層用樹脂組成物のペレットを、別々の押出機に投入し、Tダイ共押出用口金から押出する。Tダイの種類としては、二種三層用マルチマニホールドタイプでも構わないし、二種三層用フィードブロックタイプでも構わない。
 使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1~3.0mm程度、好ましくは0.5~1.0mmである。0.1mm未満では生産速度という観点から好ましくなく、また3.0mmより大きければ、ドラフト率が大きくなるので生産安定性の観点から好ましくない。
 押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね150~300℃が好ましく、180~280℃の範囲であることが更に好ましい。150℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れて好ましい。一方、300℃以下では樹脂組成物の劣化を抑制できる。
 キャストロールによる冷却固化温度は、本発明において非常に重要であり、延伸前の膜状物中のβ晶を生成・成長させ、膜状物中のβ晶比率を調整することができる。キャストロールの冷却固化温度は好ましくは80~150℃、より好ましくは90~140℃、更に好ましくは100~130℃である。冷却固化温度を80℃以上とすることで冷却固化させた膜状物中のβ晶比率を十分に増加させることができ好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。
 前記温度範囲にキャストロールを設定することで、得られる延伸前の膜状物のβ晶比率は30~100%に調整することが好ましい。40~100%がより好ましく、50~100%が更に好ましく、60~100%が特に好ましい。延伸前の膜状物のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の優れたポリオレフィン樹脂多孔性フィルムを得ることができる。
 β晶比率は、示差走査型熱量計を用いて、該膜状物を25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
  β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 ついで、得られた無孔膜状物は縦方向又は横方向に一軸延伸してもよいし、二軸延伸であってもよい。また、二軸延伸を行う場合は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。本発明のポリオレフィン樹脂多孔性フィルムを作製する場合には、各延伸工程で延伸条件を選択でき、かつ多孔構造を制御し易い逐次二軸延伸がより好ましい。なお、膜状物の引き取り(流れ)方向(MD)への延伸を「縦延伸」といい、MDに対して垂直な方向(TD)への延伸を「横延伸」という。
 逐次二軸延伸を用いる場合、縦延伸倍率は好ましくは2~10倍、より好ましくは3~8倍である。規定した縦延伸倍率にすることで、適度な空孔起点を発生させることができる。10倍以下で縦延伸を行うことで、適度な空孔起点を発現させることができる。
 延伸温度は、用いる樹脂組成物の組成、結晶融解ピーク温度、結晶化度等によって適時選択する必要があるが、縦延伸での延伸温度は概ね20~160℃、好ましくは30℃~150℃で制御される。前記温度範囲であれば多孔構造の制御が容易であり、機械強度や収縮率などの諸物性のバランスがとりやすい。
 さらに、20℃を下回ると延伸応力が非常に強くなるため延伸破断をしやすく、またロールで延伸する場合、設備への負荷が大きい、ロールと延伸前膜状物との密着性が悪くなるため延伸ムラが発生しやすいといった問題が生じる。一方、160℃を越えるとロールに膜状物が粘着しやすく安定的な延伸が難しくなる。
 横延伸での延伸倍率は好ましくは2.0~10倍、より好ましくは2.2~7倍である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができるとともに、物性のバランスをとりやすくなる。
 横延伸での延伸温度は概ね50~130℃である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができる。また、前記延伸工程の延伸速度としては、50~1200%/分が好ましく、150~1000%/分がより好ましく、250~900%/分であることが更に好ましい。
 本発明を満足する平均流量径圧力、バブルポイント圧力、および、透気度を有するポリオレフィン樹脂多孔性フィルムを得るには、延伸温度や延伸倍率を調整することによって達成することが可能である。縦延伸温度を70℃以上とするか、もしくは横延伸倍率を2.2倍以上とすることが好ましい。
 縦延伸温度を70℃未満とする場合、縦延伸によるクレーズ発生においてフィブリル化が激しく、孔が特に微細化する。微細な孔であれば、セパレータにSD特性を持たせる場合には高温時に閉孔させやすく有利であるが、高出力化の観点からは好ましくない。
 したがって縦延伸温度を20~70℃とする場合は、横延伸倍率を2.2倍以上とし、縦延伸で発生させたクレーズを大きく目開きさせることで、高出力を達成することができる。
 このようにして得られたポリオレフィン樹脂多孔性フィルムは、寸法安定性の改良等を目的として好ましくは100~140℃程度、より好ましくは110~135℃程度の温度で熱処理を行う。また、必要に応じて1~25%の弛緩処理を施しても良い。この熱処理後均一に冷却して巻き取ることにより、本発明のポリオレフィン樹脂多孔性フィルムが得られる。
(電池用セパレータの説明)
 次に、本発明の前記ポリオレフィン樹脂多孔性フィルムを非水電解質電池用セパレータとして収容している非水電解液電池について、図1を参照して説明する。
 正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。この渦巻き状に巻回する際、電池用セパレータ10は厚みが3~100μmであることが好ましく、5~80μmであることが特に好ましい。厚みを3μm以上にすることにより電池用セパレータが破れにくくなり、100μm以下にすることにより所定の電池缶に捲回して収納する際電池面積を大きくとることができ、ひいては電池容量を大きくすることができる。
 前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液電池を作製している。
 電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジメトキシメタン、ジメトキシプロパン、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフランもしくは4-メチル-1,3-ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.0mol/Lの割合で溶解した電解質が好ましい。
 負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
 負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
 本実施形態では、負極として、フッ化ビニリデンをN-メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。
 正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
 本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。
[実施例1]
 ポリプロピレン樹脂(プライムポリマー社製、プライムポリプロF300SV、MFR:3g/10分)を100質量部に対し、β晶核剤として、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン:0.2質量部、酸化防止剤(チバ・スペシャルティ・ケミカルズ社製、IRGANOX-B225)を0.2質量部加え、同方向二軸押出機(東芝機械社製、口径φ40mm、スクリュ有効長L/D=32)を用いて270℃にて溶融混練してペレット状に加工した樹脂組成物P1を得た。
 樹脂組成物P1を一軸押出機にて200℃でTダイより押出し、125℃のキャスティングロール上で15秒間冷却固化させて、ワインダーにて巻き取り、無孔膜状物S1を得た。
 前記無孔膜状物S1を120℃でMDに7.0倍に延伸し、次いで120℃でTDに6.6倍に逐次二軸延伸をした後、115℃でTDに14%熱弛緩させて多孔性フィルムを得た。
[実施例2]
 実施例1で製造した無孔膜状物S1を120℃でMDに5.0倍に延伸し、次いで120℃でTDに5.0倍に逐次二軸延伸をした後、115℃でTDに14%熱弛緩させて多孔性フィルムを得た。
[実施例3]
 高密度ポリエチレン(プライムポリマー社製、HiZex-3300F、MFR:1.1g/10分)を90質量部に対し、マイクロクリスタリングワックス(日本精鑞社製、HiMic-1090)を10質量部加え、同方向二軸押出機(東芝機械社製、口径φ35mm、スクリュ有効長L/D=32)を用いて200℃にて溶融混練してペレット状に加工した樹脂組成物E1を得た。
 前記樹脂組成物P1およびE1を別々の押出機にて、2種3層のフィードブロックを通じて多層成型用のTダイより200℃で押出し、層比がP1/E1/P1=3/1/3となるように積層させて130℃のキャスティングロール上に落として15秒間冷却した。ワインダーにて巻き取り、積層無孔膜状物S2を得た。
 前記無孔膜状物S2を50℃でMDに2.5倍、さらに120℃でMDに3.8倍に延伸し、次いで100℃でTDに2.3倍に逐次二軸延伸をした後、125℃で熱固定し、115℃でTDに17%熱弛緩させて多孔性フィルムを得た。
[実施例4]
 前記樹脂組成物P1およびE1を別々の押出機にて、2種3層のフィードブロックを通じて多層成型用のTダイより200℃で押出し、層比がP1/E1/P1=3/1/3となるように積層させて130℃のキャスティングロール上に落として15秒間冷却した。ワインダーにて巻き取り、積層無孔膜状物S3を得た。
 前記無孔膜状物S3を98℃でMDに3.6倍に延伸し、次いで109℃でTDに2.4倍に逐次二軸延伸をした後、125℃で熱固定し、125℃でTDに12%熱弛緩させて多孔性フィルムを得た。
[実施例5]
 ポリプロピレン樹脂(日本ポリプロ社製、ノバテックPP SA4L、MFR:5g/10分)を100質量部に対し、β晶核剤として、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン:0.1質量部、酸化防止剤(チバ・スペシャルティ・ケミカルズ社製、IRGASTAB FS-301)を0.2質量部加え、同方向二軸押出機(東芝機械社製、口径φ40mm、スクリュ有効長L/D=32)を用いて270℃にて溶融混練してペレット状に加工した樹脂組成物P2を得た。また、高密度ポリエチレン(プライムポリマー社製、HiZex-3600F、MFR:1g/10分)を97質量部に対し、ポリプロピレンワックス(三洋化成工業社製、ビスコール330P)を3質量部加え、同方向二軸押出機(東芝機械社製、口径φ35mm、スクリュ有効長L/D=32)を用いて220℃にて溶融混練してペレット状に加工した樹脂組成物E2を得た。 前記樹脂組成物P2およびE2を別々の押出機にて、2種3層のマルチマニホールドTダイより200℃で押出し、層比がP2/E2/P2=1/1/1となるように積層させて123℃のキャスティングロール上に落として15秒間冷却した。ワインダーにて巻き取り、積層無孔膜状物S4を得た。 前記無孔膜状物S4を115℃でMDに4.0倍に延伸し、次いで100℃でTDに2.0倍に逐次二軸延伸をした後、135℃で熱固定し、105℃でTDに5%熱弛緩させて多孔性フィルムを得た。
[比較例1]
 実施例1で製造した無孔膜状物S1を40℃でMDに1.7倍、さらに120℃でMDに2.7倍に延伸した後、98℃でTDに1.9倍に逐次二軸延伸をした後、136℃でTDに4%熱弛緩して多孔性フィルムを得た。
[比較例2]
 超高分子量ポリエチレン(Ticona社製、GHR8110、粘度平均分子量:50万)を8質量部、超高分子量ポリエチレン(三井化学社製、ハイゼックス145M、粘度平均分子量:100万)を16質量部、パラフィンワックス(日本精蝋社製、130)を76質量部の割合でブレンドした樹脂組成物を、同方向二軸押出機にて170℃でTダイより押出して無孔膜状物S5を得た。
 次に前記無孔膜状物S5を40℃でMDに2.5倍に延伸し、次いで110℃でTDに6.0倍に逐次二軸延伸をした後に、65℃のイソプロパノール中に浸漬して、パラフィンワックスを抽出除去した。得られたフィルムはロール延伸機を用い、115℃の温度で熱固定を行った。熱固定に際しては、ロール速比を調整し、MDの延伸倍率が1.2倍となるようにして、多孔性フィルムを得た。
[比較例3]
 ポリプロピレン樹脂(プライムポリマー社製、プライムポリプロF300SV、MFR:3g/10分、PP)および高密度ポリエチレン(プライムポリマー社製、HiZex-2200J、MFR:5.2g/10分、PE)を別々の押出機にて、2種3層のフィードブロックを通じて、リップギャップが4mmのTダイより200℃で押出し、層比がPP/PE/PP=1/1/1となるように積層させて90℃のキャスティングロール上に落としてワインダーにて巻き取り、積層無孔膜状物S6を得た。
 前記無孔膜状物S6は、120℃に加熱された熱風循環オ-ブン中で24時間放置して熱処理された。続いて、熱処理した無孔膜状物S6は、ロール延伸機にて25℃でMDに1.7倍に延伸して、さらに100℃でMDに2.0倍に延伸して多孔性フィルムを得た。
(1)平均流量径圧力(PAP)およびバブルポイント圧力(PBP)の測定
 パームポロメーター(Porous Materials社製)を用いて測定した。試液としてポリヘキサフルオロプロペン系液体「GALWICK」(Porous Materials社製、表面張力:15.6dynes/cm)を使用し、ASTM F316-86に準拠して測定した。
(2)透気度(Pa)の測定
 25℃の空気雰囲気下にて、JIS P8117に準拠して透気度(sec/100ml)を測定した。測定には、デジタル型王研式透気度専用機(旭精工社製)を用いた。
(3)厚みの測定
 1/1000mmのダイアルゲージにて、面内の厚みを不特定に30箇所測定しその平均を厚みとした。
(4)空孔率の測定
 ポリオレフィン樹脂多孔性フィルムの実質量W1を測定し、樹脂組成物の密度と厚みから空孔率0%の場合の質量W0を計算し、それらの値から下記式に基づき算出した。
  空孔率(%)={(W0-W1)/W0}×100
(5)電気抵抗の測定
 25℃の空気雰囲気下にてポリオレフィン樹脂多孔性フィルムを3.5cm×3.5cm角に切ってガラスシャーレに入れ、1Mの過塩素酸リチウムを含むプロピレンカーボネート:エチルメチルカーボネート=1:1(v/v)溶液(キシダ化学社製)を前記多孔フィルムが浸る程度入れ、溶液を染込ませた。前記多孔フィルムを取り出し、余分な電解液を拭い、φ60mmのステンレス製シャーレの中央に置いた。底面がφ30mmの100gステンレス製分銅をゆっくり乗せ、シャーレと分銅に端子を接続し、HIOKI LCR HiTESTER(日置電機社製、型番3522-50)を用いて電気抵抗を測定した。
(6)SD特性
 ポリオレフィン樹脂多孔性フィルムを縦60mm×横60mm角に切り出し、図2(A)に示すように中央部にφ40mmの円状の穴を空けたアルミ板(材質:JIS A5052、サイズ:縦60mm、横60mm、厚さ1mm)2枚の間にはさみ、図2(B)に示すように周囲をクリップ(コクヨ社製、ダブルクリップ「クリ-J35」)で固定した。次に、グリセリン(ナカライテスク社製、1級)を底面から100mmとなるまで満たした、135℃のオイルバス(アズワン社製、OB-200A)の中央部に、アルミ板2枚で固定された状態のフィルムを浸漬し、5秒間加熱した。加熱後直ちに、別途用意した25℃のグリセリンを満たした冷却槽に浸漬して5分間冷却した後、2-プロパノール(ナカライテスク社製、特級)、アセトン(ナカライテスク社製、特級)で洗浄し、25℃の空気雰囲気下にて15分間乾燥した。この乾燥後のフィルムの透気度を前記(2)の方法に従い測定し、測定結果を下記のように分類して、「○」以上を合格とした。
  ◎:80000sec/100ml以上
  ○:40000sec/100ml以上、80000sec/100ml未満
  △:10000sec/100ml以上、40000sec/100ml未満
  ×:10000sec/100ml未満
(7)示差走査型熱量計(DSC)によるβ晶活性の測定
 ポリオレフィン樹脂多孔性フィルムをパーキンエルマー社製の示差走査型熱量計(DSC-7)を用いて、25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温した。再昇温時にポリプロピレン樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)である145℃~160℃にピークが検出されるか否かにより、以下のようにβ晶活性の有無を評価した。
  ○:Tmβ が145℃~160℃の範囲内に検出された場合(β晶活性あり)
  ×:Tmβ が145℃~160℃の範囲内に検出されなかった場合(β晶活性なし)
 なお、β晶活性の測定は、試料量10mgで、窒素雰囲気下にて行った。
(8)広角X線回折装置(XRD)によるβ晶活性の測定
 ポリオレフィン樹脂多孔性フィルムを縦60mm×横60mm角に切り出し、図2(A)(B)に示すように固定した。
 アルミ板2枚に拘束した状態のサンプルを設定温度180℃、表示温度180℃である送風定温恒温器(ヤマト科学社製、DKN602)に入れ3分間保持した後、設定温度を100℃に変更し、10分以上の時間をかけて100℃まで徐冷を行った。表示温度が100℃になった時点でサンプルを取り出し、アルミ板2枚に拘束した状態のまま25℃の雰囲気下で5分間冷却して得られたサンプルについて、以下の測定条件で、中央部がφ40mmの円状の部分について広角X線回折測定を行った。
  ・広角X線回折測定装置:マックサイエンス社製 型番XMP18A
  ・X線源:CuKα 線、出力:40kV、200mA
  ・走査方法:2θ/θスキャン、2θ 範囲:5~25°、走査間隔:0.05°、走査速度:5°/min
 得られた回折プロファイルについて、ポリプロピレン樹脂のβ晶の(300)面に由来するピークより、β晶活性の有無を以下のように評価した。
  ○:ピークが2θ=16.0~16.5°の範囲に検出された場合(β晶活性あり)
  ×:ピークが2θ=16.0~16.5°の範囲に検出されなかった場合(β晶活性なし)
 なお、フィルム片が60mm×60mm角に切り出せない場合は、中央部がφ40mmの円状の穴にフィルムが設置されるように調整し、試料を作成しても構わない。
(9)濡れ性
 電解液として1Mの過塩素酸リチウムを含むプロピレンカーボネート:エチルメチルカーボネート=1:1(v/v)溶液(キシダ化学社製)を用いた。
 ポリオレフィン樹脂多孔性フィルムを20mm四方のサンプルに切り出し、質量(Wa)を測った。サンプルを10mLの電解液中に全て浸るように5秒間浸漬した。サンプルを電解液から取り出し、表面についた電解液をエアスプレーで吹き飛ばした後、速やかに質量(Wb)を測った。以上の数値から、濡れ率を下記式に基づき算出した。
  濡れ率(%)=100×(Wb-Wa)/Wb
 濡れ率を以下のように分類し、「○」以上を合格とした。ただし、Pはサンプルの空孔率を示す。
  ◎:1.20×P以上、1.35×P未満
  ○:1.00×P以上、1.20×P未満
  ×:1.00×P未満
Figure JPOXMLDOC01-appb-T000001
 実施例1~5は、平均流量径圧力(PAP)を1500~2500kPaの所定の範囲内であったため電解液の濡れ性が優れていた。また、透気度(Pa)とバブルポイント圧力(PBP)との比(Pa/PBP)が0.03~0.35sec/(100ml・kPa)の所定の範囲内であり、電気抵抗が0.85Ω以下と低く、透気度(Pa)と平均流量径圧力(PAP)の比(Pa/PAP)が0.03~0.18sec/(100ml・kPa)の所定の範囲内であった。前記物性を有するため、非水電解質電池にセパレータとして使用すると高出力を発揮できるポリオレフィン樹脂多孔性フィルムを得ることができた。更に、実施例3、4においては、ポリエチレン樹脂を主成分とした樹脂組成物からなる層を積層することで、SD特性を付与することができた。
 一方、比較例について、前記PAP、前記PBP、および、前記Pa/PBP、Pa/PAPが、所定の範囲から外れ、電気抵抗が高く、また、電解液の濡れ性も不十分であった。
 本発明のポリオレフィン樹脂多孔性フィルムは、透気特性が要求される種々の用途に応用することができる。リチウム電池用セパレータ;使い捨て紙オムツ、生理用品等の体液吸収用パットもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に使用できる。
 10 電池用セパレータ
 20 二次電池
 21 正極板
 22 負極板
 24 正極リード体
 25 負極リード体
 26 ガスケット
 27 正極蓋
 31 アルミ板
 32 ポリオレフィン樹脂多孔性フィルム
 33 クリップ
 34 フィルム縦方向
 35 フィルム横方向

Claims (9)

  1.  ポリオレフィン樹脂を主成分とする多孔性フィルムであって、平均流量径圧力(PAP)が1500~2500kPa、バブルポイント圧力(PBP)が300~1500kPaであり、かつ、透気度(Pa)とバブルポイント圧力(PBP)との比(Pa/PBP)が0.35sec/(100ml・kPa)以下であることを特徴とするポリオレフィン樹脂多孔性フィルム。
  2.  前記透気度(Pa)が2000sec/100ml以下である請求項1に記載のポリオレフィン樹脂多孔性フィルム。
  3.  前記透気度(Pa)と前記平均流量径圧力(PAP)の比(Pa/PAP)が0.18sec/(100ml・kPa)以下である請求項1または請求項2に記載のポリオレフィン樹脂多孔性フィルム。
  4.  前記ポリオレフィン樹脂のうち、ポリプロピレン樹脂が30質量%以上含まれている請求項1乃至請求項3のいずれか1項に記載のポリオレフィン樹脂多孔性フィルム。
  5.  前記ポリプロピレン樹脂がβ晶活性を有する請求項1乃至請求項4のいずれか1項に記載のポリオレフィン樹脂多孔性フィルム。
  6.  電気抵抗が0.85Ω以下である請求項1乃至請求項5のいずれか1項に記載のポリオレフィン樹脂多孔性フィルム。
  7.  空孔率が20~80%である請求項1乃至請求項6のいずれか1項に記載のポリオレフィン樹脂多孔性フィルム。
  8.  厚みが3~100μmである請求項1乃至請求項7のいずれか1項に記載のポリオレフィン樹脂多孔性フィルム。
  9.  請求項1乃至請求項8のいずれか1項に記載のポリオレフィン樹脂多孔性フィルムからなる非水電解質電池用セパレータ。
PCT/JP2012/051363 2011-01-27 2012-01-23 ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ WO2012102241A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012527536A JP5092072B2 (ja) 2011-01-27 2012-01-23 ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ
EP12739529.1A EP2669322A4 (en) 2011-01-27 2012-01-23 POROUS POLYOLEFIN RESIN FILM AND CELL SEPARATOR WITH NON-ACID ELECTROLYTE THEREOF
KR1020127017648A KR101271299B1 (ko) 2011-01-27 2012-01-23 폴리올레핀 수지 다공성 필름, 및 그것을 사용한 비수 전해질 전지용 세퍼레이터
CN2012800010981A CN102858858A (zh) 2011-01-27 2012-01-23 聚烯烃树脂多孔膜、以及使用其的非水电解质电池用隔板
US13/979,933 US9419266B2 (en) 2011-01-27 2012-01-23 Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-014977 2011-01-27
JP2011014977 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102241A1 true WO2012102241A1 (ja) 2012-08-02

Family

ID=46580808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051363 WO2012102241A1 (ja) 2011-01-27 2012-01-23 ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ

Country Status (6)

Country Link
US (1) US9419266B2 (ja)
EP (1) EP2669322A4 (ja)
JP (1) JP5092072B2 (ja)
KR (1) KR101271299B1 (ja)
CN (1) CN102858858A (ja)
WO (1) WO2012102241A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091071A (ja) * 2012-11-01 2014-05-19 Mitsubishi Plastics Inc 積層多孔フィルムの製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2015044980A (ja) * 2013-07-23 2015-03-12 東洋紡株式会社 二軸延伸ポリプロピレンフィルム
JP2018147684A (ja) * 2017-03-03 2018-09-20 住友化学株式会社 非水電解液二次電池用セパレータ
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
US11694854B2 (en) 2017-11-10 2023-07-04 Sumitomo Chemical Company, Limited Separator for power storage device and power storage device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504436B1 (ko) * 2013-11-29 2015-03-19 롯데케미칼 주식회사 이차전지 분리막용 폴리프로필렌 수지 조성물
US20170047581A1 (en) * 2014-02-11 2017-02-16 Batelle Memorial Institute Additives to enhance electrode wetting and performance and methods of making electrodes comprising the same
KR101918448B1 (ko) 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 절연성 다공질층
WO2019176743A1 (ja) * 2018-03-13 2019-09-19 三井化学株式会社 通気性シート、積層体および複合体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (ja) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp ポリエチレン多孔膜
JP2000348703A (ja) 1999-06-01 2000-12-15 Ube Ind Ltd 電池用セパレータ及びそれを用いたリチウム電池
WO2002066233A1 (en) * 2001-02-21 2002-08-29 New Japan Chemical Co., Ltd. Successively biaxial-oriented porous polypropylene film and process for production thereof
WO2004020511A1 (ja) * 2002-08-28 2004-03-11 Asahi Kasei Chemicals Corporation ポリオレフィン製微多孔膜及びその評価方法
JP4098401B2 (ja) 1998-05-19 2008-06-11 旭化成ケミカルズ株式会社 ポリオレフィン製の電池セパレーター用微多孔膜
JP4220329B2 (ja) 2003-04-11 2009-02-04 旭化成ケミカルズ株式会社 ポリオレフィン微多孔膜及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368742B2 (en) 1998-06-26 2002-04-09 Celgard, Inc. Polypropylene microporous membrane for battery separator
JP5070660B2 (ja) * 2000-10-30 2012-11-14 住友化学株式会社 多孔性フィルム、電池用セパレータおよび電池
CN100354109C (zh) * 2001-02-21 2007-12-12 新日本理化株式会社 连续双轴拉伸聚丙烯多孔膜及其制备方法
JP2002284918A (ja) 2001-03-23 2002-10-03 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法並びに用途
DE602005026121D1 (de) * 2004-04-22 2011-03-10 Toray Industries Mikroporöse polypropylenfolie und herstellungsverfahren dafür
JP5144987B2 (ja) 2007-08-07 2013-02-13 三菱樹脂株式会社 リチウムイオン電池用セパレータの製造方法
KR101310541B1 (ko) * 2008-12-24 2013-09-23 미쓰비시 가가꾸 가부시키가이샤 전지용 세퍼레이터 및 비수계 리튬 전지
EP2444453A4 (en) 2009-06-19 2012-12-12 Mitsubishi Plastics Inc POROUS POLYPROPYLENE FILM
JP2011194650A (ja) 2010-03-18 2011-10-06 Mitsubishi Plastics Inc ポリオレフィン樹脂多孔性フィルム、および電池用セパレータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (ja) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp ポリエチレン多孔膜
JP4098401B2 (ja) 1998-05-19 2008-06-11 旭化成ケミカルズ株式会社 ポリオレフィン製の電池セパレーター用微多孔膜
JP2000348703A (ja) 1999-06-01 2000-12-15 Ube Ind Ltd 電池用セパレータ及びそれを用いたリチウム電池
WO2002066233A1 (en) * 2001-02-21 2002-08-29 New Japan Chemical Co., Ltd. Successively biaxial-oriented porous polypropylene film and process for production thereof
WO2004020511A1 (ja) * 2002-08-28 2004-03-11 Asahi Kasei Chemicals Corporation ポリオレフィン製微多孔膜及びその評価方法
JP4220329B2 (ja) 2003-04-11 2009-02-04 旭化成ケミカルズ株式会社 ポリオレフィン微多孔膜及びその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MACROMOL. CHEM., vol. 187, 1986, pages 643 - 652
MACROMOL. CHEM., vol. 75, 1964, pages 134
MACROMOL. SYMP., vol. 89, 1995, pages 499 - 511
PROG. POLYM. SCI., vol. 16, 1991, pages 361 - 404
See also references of EP2669322A1
ZAMBELLI ET AL., MACROMOLECULES, vol. 8, 1975, pages 687

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014091071A (ja) * 2012-11-01 2014-05-19 Mitsubishi Plastics Inc 積層多孔フィルムの製造方法、積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2015044980A (ja) * 2013-07-23 2015-03-12 東洋紡株式会社 二軸延伸ポリプロピレンフィルム
JP2018147684A (ja) * 2017-03-03 2018-09-20 住友化学株式会社 非水電解液二次電池用セパレータ
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
US11694854B2 (en) 2017-11-10 2023-07-04 Sumitomo Chemical Company, Limited Separator for power storage device and power storage device

Also Published As

Publication number Publication date
JP5092072B2 (ja) 2012-12-05
US9419266B2 (en) 2016-08-16
US20130288132A1 (en) 2013-10-31
CN102858858A (zh) 2013-01-02
JPWO2012102241A1 (ja) 2014-06-30
EP2669322A1 (en) 2013-12-04
KR20120093420A (ko) 2012-08-22
KR101271299B1 (ko) 2013-06-04
EP2669322A4 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5676577B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5419817B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5298247B2 (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP5092072B2 (ja) ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ
JP5502707B2 (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP4734397B2 (ja) 積層多孔性フィルム、それを利用したリチウムイオン電池用セパレータ、および電池
WO2010026954A1 (ja) セパレータ用積層多孔性フィルム
JP5685039B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5690832B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
WO2010053172A1 (ja) 積層多孔性フィルム、リチウム電池用セパレータおよび電池
WO2011115117A1 (ja) ポリオレフィン樹脂多孔性フィルムおよび電池用セパレータ
JP5699212B2 (ja) 多孔性フィルム、電池用セパレータ、および電池
JP4734396B2 (ja) 積層多孔性フィルム、それを利用したリチウム電池用セパレータおよび電池
JP6154585B2 (ja) 積層多孔性フィルム
JP5620467B2 (ja) 多孔性ポリプロピレンフィルム
JP4801706B2 (ja) セパレータ用積層多孔性フィルム、およびその製造方法
JP6117493B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP4801705B2 (ja) セパレータ用積層多孔性フィルム、およびその製造方法
JP5603410B2 (ja) ポリプロピレン系樹脂多孔フィルム、電池用セパレータおよび電池
JP6103921B2 (ja) 積層多孔性フィルム、電池用セパレータ、および電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001098.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012527536

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127017648

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13979933

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012739529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012739529

Country of ref document: EP