WO2012099219A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012099219A1
WO2012099219A1 PCT/JP2012/051123 JP2012051123W WO2012099219A1 WO 2012099219 A1 WO2012099219 A1 WO 2012099219A1 JP 2012051123 W JP2012051123 W JP 2012051123W WO 2012099219 A1 WO2012099219 A1 WO 2012099219A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
host material
egs
compound
equation
Prior art date
Application number
PCT/JP2012/051123
Other languages
English (en)
French (fr)
Inventor
俊成 荻原
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2012553772A priority Critical patent/JPWO2012099219A1/ja
Priority to KR1020137021595A priority patent/KR101831015B1/ko
Publication of WO2012099219A1 publication Critical patent/WO2012099219A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present invention relates to an organic electroluminescence element.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element)
  • holes from the anode and electrons from the cathode are injected into the light emitting layer.
  • the injected holes and electrons are recombined to form excitons.
  • singlet excitons and triplet excitons are generated at a ratio of 25%: 75% according to the statistical rule of electron spin.
  • the fluorescence type uses light emitted from singlet excitons, and therefore the internal quantum efficiency of the organic EL element is said to be limited to 25%.
  • the phosphorescent type uses light emission by triplet excitons, so that it is known that the internal quantum efficiency is increased to 100% when intersystem crossing is efficiently performed from singlet excitons.
  • an optimal element design has been made according to a light emission mechanism of a fluorescent type and a phosphorescent type.
  • phosphorescent organic EL elements cannot obtain high-performance elements by simple diversion of fluorescent element technology because of their light emission characteristics.
  • the reason is generally considered as follows.
  • the energy gap of the compound used in the light emitting layer must be large. This is because the value of the energy gap (hereinafter also referred to as singlet energy) of a compound usually refers to the triplet energy of the compound (in the present invention, the energy difference between the lowest excited triplet state and the ground state). This is because it is larger than the value of).
  • a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must be used for the light emitting layer. Don't be.
  • an electron transport layer and a hole transport layer adjacent to the light emitting layer are provided, and a compound having a triplet energy higher than that of the phosphorescent dopant material must be used for the electron transport layer and the hole transport layer.
  • a compound having a larger energy gap than the compound used for the fluorescent organic EL element is used for the phosphorescent organic EL element.
  • the drive voltage of the entire element increases.
  • hydrocarbon compounds with high oxidation resistance and reduction resistance which are useful in fluorescent elements, have a large energy gap due to a large spread of ⁇ electron clouds. Therefore, in the phosphorescent organic EL element, such a hydrocarbon compound is difficult to select, and an organic compound containing a hetero atom such as oxygen or nitrogen is selected. As a result, the phosphorescent organic EL element is There is a problem that the lifetime is shorter than that of a fluorescent organic EL element. Furthermore, the fact that the exciton relaxation rate of the triplet exciton of the phosphorescent dopant material is much longer than that of the singlet exciton also greatly affects the device performance.
  • Patent Document 1 discloses that a specific compound having an indolocarbazole skeleton is used as a host material and a phosphorescent compound ( An organic EL element having a phosphorescent light emitting layer using Ir (ppy) 3 ) is disclosed.
  • Patent Document 1 by configuring the light emitting layer in this way, light emission from the dopant material occurs more efficiently than when Alq 3 is used as the host material, and the light emission efficiency as the organic EL element is improved. It is said.
  • Patent Document 1 if a specific compound having an indolocarbazole skeleton is used as the host material of the phosphorescent light-emitting layer as in Patent Document 1, the light emission of the organic EL element is limited as compared with the case where Alq 3 is used as the host material. Although the efficiency is improved, the luminous efficiency is not sufficient practically, and further improvement of the luminous efficiency is desired. In Patent Document 1, it stops the electron mobility in the electron transport layer are considered organic EL device using Alq 3 is not sufficiently large. Therefore, in considering the adoption of a light emitting layer system that exhibits high light emission efficiency, it is desired to use an electron transport layer that has a high electron injection property into the light emitting layer.
  • the present inventor has found that the use of a compound that satisfies a specific condition for the host material of the light emitting layer improves the light emission efficiency of the phosphorescent organic EL device, The present invention has been completed.
  • the organic EL element of the present invention is An organic EL device comprising an organic compound layer between a pair of electrodes,
  • the organic compound layer has a light emitting layer containing a host material and a phosphorescent dopant material,
  • the difference ⁇ ST between the singlet energy EgS and the energy gap Eg 77K at 77 [K] satisfies the relationship of the following formula (1), and the singlet energy EgS is expressed by the following formula (2). It is selected from compounds that satisfy the above relationship.
  • the organic EL element of the present invention is An organic EL device comprising an organic compound layer between a pair of electrodes,
  • the organic compound layer has a light emitting layer containing a host material and a phosphorescent dopant material,
  • the difference ⁇ ST between the singlet energy EgS and the energy gap Eg 77K at 77 [K] satisfies the relationship of the following formula (3), and the energy gap Eg 77K is expressed by the following formula (4). It is selected from compounds that satisfy the above relationship.
  • the organic EL element of the present invention is An organic EL device comprising an organic compound layer between a pair of electrodes,
  • the organic compound layer has a light emitting layer containing a host material and a phosphorescent dopant material,
  • the refractive index n Z in the direction perpendicular to the silicon substrate surface and the refractive index n X in the direction parallel to the silicon substrate surface satisfy the relationship of the following formula (5) in spectroscopic ellipsometry:
  • the singlet energy EgS is selected from compounds satisfying the relationship of the following mathematical formula (6).
  • the organic EL element of the present invention is An organic EL device comprising an organic compound layer between a pair of electrodes,
  • the organic compound layer has a light emitting layer containing a host material and a phosphorescent dopant material,
  • the refractive index n Z in the direction perpendicular to the silicon substrate surface and the refractive index n X in the direction parallel to the silicon substrate surface satisfy the relationship of the following formula (7) in spectroscopic ellipsometry, and , 77 [K], the energy gap Eg 77K is selected from compounds satisfying the relationship of the following mathematical formula (8).
  • the organic EL element of the present invention is An organic EL device comprising an organic compound layer between a pair of electrodes,
  • the organic compound layer has a light emitting layer containing a host material and a phosphorescent dopant material,
  • the host material is characterized in that the half width of the photoluminescence spectrum is larger than 75 nm and the singlet energy EgS is selected from compounds satisfying the relationship of the following mathematical formula (9).
  • the organic EL element of the present invention is An organic EL device comprising an organic compound layer between a pair of electrodes,
  • the organic compound layer has a light emitting layer containing a host material and a phosphorescent dopant material,
  • the host material is characterized in that the half width of the photoluminescence spectrum is larger than 75 nm and the energy gap Eg 77K at 77 [K] is selected from compounds satisfying the relationship of the following formula (10).
  • the host material is preferably selected from compounds having a half-value width of photoluminescence spectrum larger than 75 nm.
  • the difference ⁇ ST satisfies the relationship of the following mathematical formula (11).
  • the pair of electrodes is an anode and a cathode
  • An electron transport layer is provided between the organic compound layer and the cathode
  • the electron mobility of the electron transport layer is preferably 5 ⁇ 10 ⁇ 6 cm 2 / Vs or more at an electric field strength of 500 (V / cm) 1/2 .
  • the host material has at least one of the skeletons represented by the following chemical formulas (1) to (8).
  • a phosphorescent organic EL device with improved luminous efficiency can be provided.
  • a compound satisfying the specific conditions as described above is used as a host material, so that a compound that satisfies the above specific conditions is used as the host material, so that the luminous efficiency of the phosphorescent organic EL element is improved. Can be improved.
  • FIG. 4A It is a figure which shows schematic structure of an example of the organic electroluminescent element which concerns on 1st embodiment of this invention. It is a figure which shows an example of the physical model by aggregate formation. It is a figure which shows the relationship of the energy level of the host material in a light emitting layer, and dopant material. It is a figure which shows an example of a spectroscopic ellipsometry measurement. It is sectional drawing of the organic thin film on the silicon substrate used as the measuring object in the spectroscopic ellipsometry measurement of FIG. 4A.
  • the organic EL device of the present invention includes an organic compound layer between a pair of electrodes.
  • This organic compound layer has at least one layer composed of an organic compound.
  • the organic compound layer may contain an inorganic compound.
  • at least one of the organic compound layers has a light emitting layer. Therefore, the organic compound layer may be composed of, for example, a single light emitting layer, such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a hole barrier layer, an electron barrier layer, etc. You may have the layer employ
  • the configuration (d) is preferably used, but it is of course not limited thereto.
  • the “light emitting layer” is an organic layer that generally employs a doping system and includes a host material and a dopant material.
  • the host material generally promotes recombination of electrons and holes, and transmits excitation energy generated by the recombination to the dopant material.
  • As the dopant material a compound having a high quantum yield is preferred, and the dopant material that has received excitation energy from the host material exhibits high light emission performance.
  • the above “hole injection / transport layer” means “at least one of a hole injection layer and a hole transport layer”, and “electron injection / transport layer” means “an electron injection layer and an electron transport layer”. "At least one of them”.
  • the positive hole injection layer when it has a positive hole injection layer and a positive hole transport layer, it is preferable that the positive hole injection layer is provided in the anode side. Moreover, when it has an electron injection layer and an electron carrying layer, it is preferable that the electron injection layer is provided in the cathode side.
  • the electron transport layer refers to an organic layer having the highest electron mobility among the organic layers in the electron transport region existing between the light emitting layer and the cathode. When the electron transport region is composed of one layer, the layer is an electron transport layer.
  • a barrier layer that does not necessarily have high electron mobility is used between the light emitting layer and the electron transport layer in order to prevent diffusion of excitation energy generated in the light emitting layer.
  • the organic layer adjacent to the light emitting layer does not necessarily correspond to the electron transport layer.
  • the organic EL element 1 includes a light-transmitting substrate 2, an anode 3, a cathode 4, and an organic compound layer 10 disposed between the anode 3 and the cathode 4.
  • the organic compound layer 10 has a light emitting layer 5 containing a host material and a dopant material, and has a hole injection / transport layer 6 between the light emitting layer 5 and the anode 3, and between the light emitting layer 5 and the cathode 4.
  • Light emitting layer In the present invention, as described above, a compound that satisfies a specific condition is used for the host material of the light emitting layer. This specific condition will be described in the following [1] to [3].
  • ⁇ ST the energy difference between the singlet energy EgS and the triplet energy EgT is small and the singlet energy EgS is equal to or larger than a predetermined magnitude, or ⁇ ST is small. It has also been found that when a compound having a triplet energy EgT of a predetermined magnitude or more is used as a host material, the luminous efficiency of a phosphorescent organic EL device is improved. In order to reduce ⁇ ST which is equivalent to the difference between the singlet energy EgS and the triplet energy EgT, quantum exchange is realized by a small exchange interaction between the singlet energy EgS and the triplet energy EgT.
  • ⁇ ST energy difference
  • the aggregate does not reflect a simple electronic state of only one molecule, but a few molecules are physically close to each other.
  • the electronic state between the plurality of molecules is mixed, the energy level changes due to the change of the electronic state, and the value of singlet energy mainly decreases, thereby reducing the value of ⁇ ST. It is considered to be.
  • Such a decrease in the value of ⁇ ST due to the formation of aggregates can also be explained by a Davydov splitting model in which the electronic state changes as two molecules approach (see FIG. 2).
  • the aggregate in the present invention means that single molecules form an arbitrary aggregate. That is, it does not indicate a specific meeting state.
  • the association state of organic molecules allows a variety of states in the thin film to be stochastically different from that of inorganic molecules.
  • the compound used for the host material needs to be a compound having a singlet energy EgS or a triplet energy EgT of a predetermined magnitude or more in addition to the condition regarding ⁇ ST.
  • EgS and EgT will be described.
  • FIG. 3 is a diagram showing the relationship between the energy levels of the host material and the dopant material in the light emitting layer.
  • S0 represents the ground state
  • S1 H represents the lowest excited singlet state of the host material
  • T1 H represents the lowest excited triplet state of the host material
  • T1 D represents the lowest excited material of the dopant material. Represents an excited triplet state.
  • FIG. 3 is a diagram showing the relationship between the energy levels of the host material and the dopant material in the light emitting layer.
  • S0 represents the ground state
  • S1 H represents the lowest excited singlet state of the host material
  • T1 H represents the lowest excited triplet state of the host material
  • T1 D represents the lowest excited material of the dopant material. Represents
  • the difference between S1 H and T1 H corresponds to ⁇ ST
  • the difference between T1 H and T1 D corresponds to ⁇ T.
  • Broken line arrows in FIG. 3 represent energy transfer between the respective excited states.
  • a compound having a small ⁇ ST is selected as a compound used for the host material of the present invention.
  • the energy difference between the lowest excited triplet state T1 D of the lowest excited triplet state T1 H and a dopant material of the host material is small, triplet triplet excitons move from phosphorescent dopant material to the host material There is a possibility that the confinement efficiency of the term exciton may be lowered.
  • the lowest excited triplet state T1 H of the host material and the lowest excited triplet state of the dopant material are used.
  • the energy difference from T1 D needs to be large.
  • the excited level splits due to the formation of the aggregate, so there is also a T1-m ⁇ excited state with a low energy level. Yes.
  • the energy difference between the lowest excited triplet state T1 H of the host material and the lowest excited triplet state T1 D of the dopant material is reduced, and the triplet exciton moves from the phosphorescent dopant material to the host material.
  • the confinement efficiency of excitons may be reduced.
  • a compound that easily forms an aggregate in an organic thin film layer may be considered to be able to confine triplet excitons of a dopant material with a high probability if it is a monomer (single molecule). .
  • the energy level of the lowest excited triplet state of the host material is actually lowered due to the formation of the associated body.
  • the compound used for the host material of the present invention is selected from compounds in which ⁇ ST is smaller than a predetermined value, and at least one of singlet energy EgS and triplet energy EgT is a predetermined magnitude or more. . By using such a compound, a decrease in the confinement efficiency of triplet excitons is prevented.
  • triplet energy is obtained by measuring a phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) of a sample in which a compound to be measured is dissolved in a solvent at a low temperature (77 [K]). A tangent line is drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis.
  • the compound used for the host material of the present invention has a small ⁇ ST as described above.
  • ⁇ ST is small, intersystem crossing and reverse intersystem crossing easily occur even in a low temperature (77 [K]) state, and an excited singlet state and an excited triplet state are mixed.
  • the spectrum measured in the same manner as described above includes light emission from both the excited singlet state and the excited triplet state, and it is difficult to distinguish from which state the light is emitted.
  • the normal triplet energy EgT and the measurement method are the same, but in order to distinguish the difference in the strict meaning, a low temperature (77 [77 [ K]), the phosphorescence spectrum (vertical axis: phosphorescence emission intensity, horizontal axis: wavelength) is measured, a tangent line is drawn with respect to the short wavelength side rise of this phosphorescence spectrum, and the intersection of the tangent line and the horizontal axis based on the wavelength values, and the energy gap Eg 77K energy amount calculated from a predetermined conversion equation, defines the ⁇ ST as the difference between the singlet energy EgS and energy gap Eg 77K.
  • the measurement of triplet energy in a solution state may include an error in triplet energy due to the interaction between the target molecule and the solvent. Therefore, as an ideal condition, measurement in a thin film state is desired in order to eliminate the interaction between the target molecule and the solvent.
  • the molecule of the compound used for the host material in the present invention shows a photoluminescence spectrum having a wide half-value width in the solution state, it is strongly suggested that an association state is formed even in the solution state. Since it is considered that the conditions are equivalent to those in the thin film state, in the present invention, the value measured for the triplet energy under the solution conditions is used.
  • the singlet energy EgS is also defined in the present invention as calculated in the same manner as a normal method. That is, a sample to be measured is deposited on a quartz substrate to prepare a sample, and the absorption spectrum (vertical axis: absorbance, horizontal axis: wavelength) of this sample is measured at room temperature (300 K). A tangent line is drawn with respect to the rising edge of the absorption spectrum on the long wavelength side, and is calculated from a predetermined conversion formula based on the wavelength value at the intersection of the tangent line and the horizontal axis. Further, EgS in the case of forming an aggregate corresponds to the energy gap between S1-m ⁇ and the ground state S0 in the Davydov splitting model. The specific calculation of the singlet energy EgS and the energy gap Eg 77K will be described later.
  • ⁇ ST is smaller than the value defined by the above formula (1) or (3), preferably smaller than the value defined by the formula (11), in addition to the singlet energy EgS. Is 2.90 eV or more, or when a compound having an energy gap Eg 77K of 2.85 eV or more is used, energy transfer from the phosphorescent dopant material is prevented, so that the light emission efficiency of the organic EL element is improved.
  • the present inventor has determined that the difference ⁇ n between the refractive index n Z in the direction perpendicular to the silicon substrate surface and the refractive index n X in the direction parallel to the silicon substrate surface in the spectroscopic ellipsometry is a predetermined magnitude.
  • a compound having a singlet energy EgS of a predetermined magnitude or more, or a difference ⁇ n in refractive index is a predetermined magnitude, and a triplet energy EgT is a predetermined magnitude or more. It has been found that when a certain compound is used, the luminous efficiency of the phosphorescent organic EL element is improved.
  • ⁇ n is the refractive index n Z in the direction perpendicular to the silicon substrate surface in the region where the extinction coefficient is 0.001 or less in the spectroscopic ellipsometry measurement (measurement range: 200 nm to 1000 nm), and the silicon substrate With respect to the refractive index n X in the parallel direction.
  • the spectroscopic ellipsometry measurement range is preferably a wavelength range of 600 nm to 800 nm.
  • ⁇ n is a value at a wavelength of 700 nm.
  • the present inventor has found that a compound that forms an association is used as one of means for reducing ⁇ ST, and that a compound having a large ⁇ n easily forms an association in the film of the compound.
  • the relationship between the magnitude of ⁇ n and the ease of forming aggregates is presumed as follows.
  • a large difference in the refractive index n between the vertical direction z and the parallel direction x with respect to the silicon substrate surface means that the molecules are present in a state having a certain degree of regularity in the thin film state. it is conceivable that. That is, the compound used for the host material of the present invention is a compound having a predetermined ⁇ n, forms an aggregate in a thin film state, and is presumed to exist with a certain degree of regularity.
  • a compound having a very small ⁇ n exists in an amorphous state where the molecules have no regularity in the thin film state.
  • Reference 6 D. Yokoyama et al., Org. Electron. 10, 127-137 (2009)
  • Reference 7 D. Yokoyama et al., Appl. Phys. Lett. 93, 173302 (2008)
  • Reference 8 D. Yokoyama et al., Appl. Phys. Lett. 95, 243303 (2009), In the literature.
  • a compound having a ⁇ n larger than 0.04 easily forms an association in the film, and ⁇ ST is reduced by the formation of the association.
  • ⁇ ST is reduced, the energy difference between the host material and the adjacent electron transport layer is reduced. As a result, electrons are easily injected into the light emitting layer, and the driving voltage of the organic EL element can be reduced.
  • the compound used for the host material satisfies the same conditions as those described in [1] above for the singlet energy EgS and the triplet energy EgT in addition to the condition for ⁇ n. Therefore, when a compound having a singlet energy EgS of 2.90 eV or more or an energy gap Eg 77K of 2.85 eV or more is used as the host material of the present invention, in addition to ⁇ n being larger than 0.04, Since energy transfer from the luminescent dopant material is prevented, the luminous efficiency of the organic EL element is improved.
  • the present inventor uses, as the host material, a compound in which the half-value width of the photoluminescence spectrum is a predetermined size and the singlet energy EgS is a predetermined size or more, or photoluminescence It has been found that the use of a compound having a spectrum half-width of a predetermined magnitude and a triplet energy EgT greater than or equal to a predetermined magnitude improves the luminous efficiency of the phosphorescent organic EL device. The present inventor has found that a compound that forms an association is used as one means for reducing ⁇ ST, and a compound having a large half-value width of the photoluminescence spectrum is likely to form an association in the film of the compound. I found.
  • the relationship between the magnitude of the half-value width of the photoluminescence spectrum and the ease of formation of the aggregate is estimated as follows.
  • the vibration level in the excited singlet state is small, and as a result, the half width of the photoluminescence spectrum is observed to be narrow.
  • CBP has a property that exists mainly in a single molecule state, and the half-value width of the photoluminescence spectrum is relatively narrow at about 50 nm.
  • a plurality of vibration levels exist in the excited singlet state due to the electronic influence of a plurality of molecules. As a result, since the number of states that relax from each vibration level to the ground state increases, the half-value width of the photoluminescence spectrum increases.
  • a compound having a large half width of the photoluminescence spectrum easily forms an aggregate, it is a compound having a small ⁇ ST as in the above [1].
  • ⁇ ST becomes small, the energy difference between the host material and the adjacent electron transport layer becomes small. As a result, electrons can be easily injected into the light emitting layer, and the driving voltage of the organic EL element can be lowered.
  • the compound used for the host material has a singlet energy EgS of 2.90 eV or more, or an energy gap Eg 77K of 2.85 eV or more, as in [1] above, in addition to the conditions relating to the half width, phosphorescence Energy transfer from the dopant material is prevented, and luminous efficiency is improved.
  • the compound used for the host material of the present invention is not limited to a compound in which all molecules form an aggregate in the light emitting layer. For example, some molecules may exist alone without forming an aggregate, or may exist in the light emitting layer in a state where aggregates and non-aggregates are mixed. Further, a compound having a small ⁇ ST can be used as the host material of the present invention without forming an aggregate in the light emitting layer.
  • the compound used for the host material of the present invention preferably has at least one of the skeletons represented by the chemical formulas (1) to (8) in addition to satisfying the above specific conditions.
  • An example of a compound having a small ⁇ ST used for the host material of the present invention is a compound in which a donor element and an acceptor element are bonded in the molecule, and further, in consideration of electrochemical stability (redox stability), ⁇ ST In the range of 0.3 eV to 0.4 eV.
  • Preferred donor elements are carbazole structures, arylamine structures and the like.
  • Preferred acceptor elements are azine ring moieties, azaaromatic rings, azaoxygen rings, CN-substituted aromatic rings, ketone-containing rings and the like. Bonding a donor element and an acceptor element means bonding with various linking groups.
  • Preferred linking groups are a single bond, a phenylene structure, and a metabiphenylene structure. Based on the disclosure of the present invention, by adding quantum chemical considerations and further optimization, a compound having a ⁇ ST smaller than 0.3 eV can be sufficiently used as the host material of the present invention.
  • a more preferable compound is a compound that forms an aggregate in which dipoles formed in an excited state of a molecule interact with each other and exchange exchange energy becomes small. According to the study of the present inventor, such a compound has approximately the same dipole direction, and ⁇ ST can be further reduced by molecular interaction. In such a case, ⁇ ST can be as small as 0 to 0.3 eV.
  • a phosphorescent dopant material is used as the dopant material of the light emitting layer.
  • Equation (12) above when ⁇ T is greater than 0.20 eV, the confinement efficiency of triplet excitons is improved.
  • the mass ratio of the host material to the phosphorescent dopant material is preferably 99: 1 or more and 50:50 or less.
  • the phosphorescent dopant material preferably contains a metal complex.
  • the metal complex has a metal atom selected from iridium (Ir), platinum (Pt), osmium (Os), gold (Au), rhenium (Re), and ruthenium (Ru) and a ligand. Is preferred. In particular, it is preferable that the ligand and the metal atom form an ortho metal bond.
  • a metal selected from iridium (Ir), osmium (Os) and platinum (Pt) in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved.
  • metal complexes such as iridium complexes, osmium complexes, and platinum complexes are more preferable. Among them, iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are most preferable. From the viewpoint of luminous efficiency, an organometallic complex composed of a ligand selected from phenylquinoline, phenylisoquinoline, phenylpyridine, phenylpyrimidine, phenylpyrazine and phenylimidazole is preferable. Specific examples of the phosphorescent dopant material are shown below, but are not limited thereto.
  • the thickness dimension of the light emitting layer is preferably 5 nm to 50 nm, more preferably 7 nm to 50 nm, and most preferably 10 nm to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer and the adjustment of chromaticity may be difficult, and if it exceeds 50 nm, the driving voltage may increase.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • This translucent substrate is a substrate that supports an anode, an organic compound layer, a cathode, and the like constituting the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • the translucent substrate include a glass plate and a polymer plate.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, and copper.
  • ITO indium tin oxide alloy
  • NESA tin oxide
  • the light transmittance in the visible region of the anode be greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ ( ⁇ / sq. Ohm per square) or less.
  • the thickness dimension of the anode is selected in the range of usually 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm, although it depends on the material.
  • the cathode a material having a small work function is preferable for the purpose of injecting electrons into the light emitting layer.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be formed, for example, on the electron transport layer or the electron injection layer by a method such as vapor deposition.
  • the aspect which takes out light emission from a light emitting layer from a cathode side is also employable.
  • the light transmittance in the visible region of the cathode be greater than 10%.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less.
  • the thickness of the cathode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 50 nm to 200 nm.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and a compound having a high hole mobility and a low ionization energy is used.
  • a material for forming the hole injecting / transporting layer a material that transports holes to the light emitting layer with lower electric field strength is preferable.
  • an aromatic amine compound is preferably used.
  • the electron injection / transport layer is a layer that assists injection of electrons into the light emitting layer and transports it to the light emitting region, and a compound having a high electron mobility is used.
  • a compound used in the electron injecting / transporting layer for example, an aromatic heterocyclic compound containing one or more hetero atoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • a nitrogen-containing ring derivative a heterocyclic compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton is preferable.
  • the electron mobility of the electron transport layer is 5 ⁇ 10 ⁇ 6 cm 2 / Vs or more at an electric field strength of 500 (V / cm) 1/2 . It is preferable. With such electron mobility, electron injection into the light emitting layer is promoted, and the driving voltage of the organic EL element is lowered.
  • an organic compound layer other than the light-emitting layer may be used by selecting an arbitrary compound from known compounds used in conventional organic EL devices in addition to the compounds exemplified above. it can.
  • each layer of the organic EL element of the present invention is not limited except as specifically mentioned above, but is a dry film forming method such as vacuum deposition, sputtering, plasma, ion plating, spin coating, dipping, flow.
  • a known method such as a wet film forming method such as coating or ink jetting can be employed.
  • each organic layer of the organic EL element of the present invention is not limited except as specifically mentioned above. In general, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if it is too thick, it is high. Since an applied voltage is required and the efficiency is deteriorated, the range of several nm to 1 ⁇ m is usually preferable.
  • an electron barrier layer may be provided on the anode side of the light emitting layer, and a hole barrier layer may be provided on the cathode side of the light emitting layer.
  • the light emitting layer is not limited to one layer, and a plurality of light emitting layers may be stacked.
  • the organic EL element has a plurality of light-emitting layers, it is sufficient that at least one light-emitting layer contains the host material and the phosphorescent dopant material defined in the present invention, and the other light-emitting layers emit fluorescent light. It may be a layer or a phosphorescent light emitting layer. Further, when the organic EL element has a plurality of light emitting layers, these light emitting layers may be provided adjacent to each other, or may be laminated via other layers (for example, charge generation layers). .
  • the compounds used are as follows.
  • EgS Singlet energy EgS was determined by the following method.
  • the sample to be measured was deposited on a quartz substrate to prepare a sample, and the absorption spectrum of this sample was measured at room temperature (300K).
  • the vertical axis represents absorbance and the horizontal axis represents wavelength.
  • a tangent line was drawn with respect to the rise of the absorption spectrum on the long wavelength side, and a wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
  • a value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as EgS.
  • EgS [eV] 1239.85 / ⁇ edge A spectrophotometer (Hitachi, U3310) was used for the measurement of the absorption spectrum.
  • the measured compounds are GH-1, GH-2, GH-3, and CBP.
  • the measurement results of EgS of each compound are shown in Table 1.
  • the phosphorescence measurement sample placed in the quartz cell was cooled to 77 [K], the excitation light was irradiated onto the phosphorescence measurement sample, and the phosphorescence intensity was measured while changing the wavelength. Is the phosphorescence intensity, and the horizontal axis is the wavelength. A tangent line was drawn with respect to the rising edge of the phosphorescence spectrum on the short wavelength side, and a wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained. The value converted to the energy value conversion equation shown below this wavelength value was Eg 77K or EgT D.
  • the compounds for which Eg 77K was measured are GH-1, GH-2, GH-3, and CBP. Table 1 shows the measurement results of Eg 77K of each compound.
  • EgT D is, Ir (ppy) 3, and a Ir (Ph-ppy) 3. Measurement results of EgT D of each compound are as follows. Ir (ppy) 3 : 2.62 [eV] Ir (Ph-ppy) 3 : 2.54 [eV]
  • ⁇ n ⁇ n was calculated based on the refractive index of each compound measured by spectroscopic ellipsometry.
  • Spectroscopic ellipsometry is a method for measuring the optical constant (refractive index n and extinction coefficient k) and film thickness of a thin film.
  • a multi-angle high-speed spectroscopic ellipsometer manufactured by JA Woollam, M-2000D was used.
  • FIG. 4 shows an example of spectroscopic ellipsometry measurement.
  • FIG. 4A shows an incident angle of incident light from a light source
  • FIG. 4B shows a cross-sectional view of an organic thin film on a silicon substrate to be measured.
  • Each compound was deposited on a silicon substrate (Si (100)) to form an organic thin film having a thickness of 100 nm.
  • Ellipso parameters are applied to the organic thin film on the silicon substrate by changing the incident angle of the incident light from the light source from 45 degrees to 80 degrees at intervals of 5 degrees and further changing the wavelength from 245 nm to 1000 nm at intervals of 1.6 nm. ⁇ and ⁇ were measured.
  • the optical anisotropy of the film was examined by performing batch analysis on the obtained parameters using analysis software WVASE32 (manufactured by JA Woollam).
  • the anisotropy of the optical constant (refractive index n and extinction coefficient k) of the film reflects the anisotropy of molecular orientation in the film.
  • ⁇ n was determined as the difference between the refractive index n in the vertical direction z and the parallel direction x with respect to the silicon substrate surface (see the above formulas (5) and (7)).
  • the vertical direction z and the parallel direction x with respect to the silicon substrate surface are shown in FIG.
  • the compounds for which ⁇ n was measured were GH-1, GH-2, and GH-3, and CBP was cited from Reference 9 below.
  • Reference 9 Daisuke Yokoyama et al., Proceedings of the 6th Regular Meeting of Organic EL, S2-2, p5-6
  • Table 1 The results of ⁇ n for each compound are shown in Table 1.
  • the half width of the photoluminescence spectrum was determined as follows. Each compound was dissolved in a solvent (dichloromethane) (sample 10 [ ⁇ mol / liter]) to prepare a sample for fluorescence measurement. The fluorescence measurement sample placed in the quartz cell was irradiated with excitation light at room temperature (300 [K]), and the fluorescence intensity was measured while changing the wavelength. In the photoluminescence spectrum, the vertical axis represents fluorescence intensity and the horizontal axis represents wavelength.
  • the apparatus used for the fluorescence measurement is an F-4500 type spectrofluorometer manufactured by Hitachi High-Technology Corporation. The full width at half maximum (unit: nm) was measured from this photoluminescence spectrum.
  • the compounds whose half widths are measured are GH-1, GH-2, GH-3, and CBP. The measurement results of the half width of each compound are shown in Table 1.
  • CBP which is known as a compound which hardly forms an aggregate does not satisfy the relationship of the above formula (1) or (3) with respect to ⁇ ST, does not satisfy the relationship of the above formula (5) or (7) with respect to ⁇ n, and photoluminescence It was found that the half width of the spectrum was smaller than 75 nm.
  • Electron mobility was evaluated using impedance spectroscopy.
  • An electron-only device is fabricated by laminating Al as an anode on the substrate, a material used for the electron transport layer thereon, LiF on the substrate, and subsequently Al as the cathode, and applying a DC voltage with an AC voltage of 100 mV applied.
  • the complex modulus was measured.
  • the frequency at which the imaginary part of the modulus is maximum is f max (Hz)
  • the measurement results of the electron mobility when the electric field strength is 500 (V / cm) 1/2 are as follows. ET-1: 1 ⁇ 10 ⁇ 5 cm 2 / Vs Alq 3 : 3 ⁇ 10 ⁇ 6 cm 2 / Vs
  • Example 1 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum vapor deposition apparatus, and first, compound HI-1 is vapor-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed.
  • a compound HI-1 film having a thickness of 5 nm was formed. This HI-1 film functions as a hole injection layer.
  • the compound HT-1 is vapor-deposited, an HT-1 film having a thickness of 120 nm is formed on the HI-1 film, and the compound HT-2 is vapor-deposited.
  • These HT-1 film and HT-2 film function as a hole transport layer.
  • a compound GH-1 (host material) and a compound Ir (ppy) 3 (phosphorescent dopant material) were co-evaporated to form a light-emitting layer having a thickness of 40 nm.
  • the dopant material concentration was 10% by mass.
  • An electron transporting layer having a thickness of 20 nm was formed by co-evaporating ET-1 and Liq, which are electron transporting compounds, on the light emitting layer.
  • the Liq concentration was 50% by mass.
  • Liq was deposited on the electron transport layer to form a Liq film having a thickness of 1 nm.
  • Metal Al was vapor-deposited on this Liq film to form a metal cathode having a thickness of 80 nm.
  • a device arrangement of the organic EL device of Example 1 is schematically shown as follows.
  • the numbers in parentheses indicate the film thickness (unit: nm). Similarly, in the parentheses, the number expressed as a percentage indicates the ratio (mass%) of a component to be added, such as a phosphorescent dopant material in the light emitting layer.
  • Example 2 to 4 and Comparative Examples 1 to 2 The organic EL devices of Examples 2 to 4 and Comparative Examples 1 to 2 were prepared in the same manner as the organic EL device of Example 1 except that the light emitting layer compound was changed as shown in Table 2. In Table 2, some of the measurement results shown in Table 1 are shown again for comparison.
  • Luminous efficiency current efficiency
  • CS-1000 spectral radiance meter
  • the host material used for the light emitting layer is ⁇ ST, ⁇ n, or the half width of the photoluminescence spectrum, such as GH-1 or GH-2. It has been found that it is important not only to satisfy the conditions, but also to select from compounds having larger EgS and Eg 77K .
  • an electron transport layer using ET-1 having an electron mobility higher than that of Alq 3 is adjacent to a light emitting layer using such a compound as a host material, high luminous efficiency is exhibited. I understood.
  • Example 5 The organic EL element of Example 5 was produced as follows. A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. A glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum vapor deposition apparatus, and first, compound HI-1 is vapor-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. A compound HI-1 film having a thickness of 5 nm was formed. This HI-1 film functions as a hole injection layer.
  • ITO transparent electrode anode
  • UV ozone cleaning was performed for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum vapor deposition apparatus, and first, compound HI-1 is vapor-deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed
  • the compound HT-1 is vapor-deposited, an HT-1 film having a thickness of 90 nm is formed on the HI-1 film, and the compound HT-2 is vapor-deposited.
  • These HT-1 film and HT-2 film function as a hole transport layer.
  • Compound PBH-1 (host material) and compound PBD-1 (phosphorescent dopant material) were co-evaporated on this HT-2 film to form a light-emitting layer having a thickness of 30 nm.
  • the dopant material concentration was 20% by mass.
  • a compound PBH-1 was vapor-deposited on the light emitting layer to form a PBH-1 film having a thickness of 5 nm.
  • the compound ET-1 and Liq were co-evaporated on the PBH-1 film to form an electron transport layer having a thickness of 30 nm.
  • the Liq concentration was 50% by mass.
  • Liq was deposited on the electron transport layer to form a Liq film having a thickness of 1 nm.
  • Metal Al was vapor-deposited on this Liq film to form a metal cathode having a thickness of 80 nm.
  • a device arrangement of the organic EL device of Example 5 is schematically shown as follows.
  • Example 5 in addition to the compounds already shown, the following compounds were used.
  • V voltage (unit: V) when electricity was supplied between ITO (anode) and Al (cathode) so that a current density might be 10 mA / cm ⁇ 2 > was measured.
  • Luminous efficiency (current efficiency) A voltage was applied to the device so that the current density was 10 mA / cm 2, and the spectral radiance spectrum at that time was measured with a spectral radiance meter (CS-1000, manufactured by Comica Minolta). Luminous efficiency (unit: cd / A) was calculated from the obtained spectral radiance spectrum.
  • the organic EL element of the present invention can be used as a light emitting element in a display device or a lighting device.
  • SYMBOLS 1 Organic EL element, 2 ... Substrate, 3 ... Anode, 4 ... Cathode, 5 ... Light emitting layer, 6 ... Hole injection / transport layer, 7 ... Electron injection / transport layer, 10 ... Organic compound layer.

Abstract

 一対の電極間に有機化合物層を備える有機エレクトロルミネッセンス素子であって、前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、前記ホスト材料は、一重項エネルギーEgSと、77[K]におけるエネルギーギャップEg77Kとの差ΔSTが、下記数式(1)の関係を満たし、かつ、前記一重項エネルギーEgSが、下記数式(2)の関係を満たす化合物から選択されることを特徴とする。 [数1] ΔST=EgS-Eg77K<0.4[eV]…(1) [数2] EgS≧2.90[eV] …(2)

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、有機EL素子という。)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子、及び三重項励起子が25%:75%の割合で生成する。発光原理に従って分類した場合、蛍光型では、一重項励起子による発光を用いるため、有機EL素子の内部量子効率は25%が限界といわれている。一方、燐光型では、三重項励起子による発光を用いるため、一重項励起子から項間交差が効率的に行われた場合には内部量子効率が100%まで高められることが知られている。
 従来、有機EL素子においては、蛍光型、及び燐光型の発光メカニズムに応じ、最適な素子設計がなされてきた。特に燐光型の有機EL素子については、その発光特性から、蛍光素子技術の単純な転用では高性能な素子が得られないことが知られている。その理由は、一般的に以下のように考えられている。
 まず、燐光発光は、三重項励起子を利用した発光であるため、発光層に用いる化合物のエネルギーギャップが大きくなくてはならない。何故なら、ある化合物のエネルギーギャップ(以下、一重項エネルギーともいう。)の値は、通常、その化合物の三重項エネルギー(本発明では、最低励起三重項状態と基底状態とのエネルギー差をいう。)の値よりも大きいからである。
 従って、燐光発光性ドーパント材料の三重項エネルギーを効率的に素子内に閉じ込めるためには、まず、燐光発光性ドーパント材料の三重項エネルギーよりも大きい三重項エネルギーのホスト材料を発光層に用いなければならない。さらに、発光層に隣接する電子輸送層、及び正孔輸送層を設け、電子輸送層、及び正孔輸送層に燐光発光性ドーパント材料の三重項エネルギーよりも大きい化合物を用いなければならない。
 このように、従来の有機EL素子の素子設計思想に基づく場合、蛍光型の有機EL素子に用いる化合物と比べて大きなエネルギーギャップを有する化合物を燐光型の有機EL素子に用いることにつながり、有機EL素子全体の駆動電圧が上昇する。
 また、蛍光素子で有用であった酸化耐性や還元耐性の高い炭化水素系の化合物はπ電子雲の広がりが大きいため、エネルギーギャップが小さい。そのため、燐光型の有機EL素子では、このような炭化水素系の化合物が選択され難く、酸素や窒素などのヘテロ原子を含んだ有機化合物が選択され、その結果、燐光型の有機EL素子は、蛍光型の有機EL素子と比較して寿命が短いという問題を有する。
 さらに、燐光発光性ドーパント材料の三重項励起子の励起子緩和速度が一重項励起子と比較して非常に長いことも素子性能に大きな影響を与える。即ち、一重項励起子からの発光は、発光に繋がる緩和速度が速いため、発光層の周辺層(例えば、正孔輸送層や電子輸送層)への励起子の拡散が起きにくく、効率的な発光が期待される。一方、三重項励起子からの発光は、スピン禁制であり緩和速度が遅いため、周辺層への励起子の拡散が起きやすく、特定の燐光発光性化合物以外からは熱的なエネルギー失活が起きてしまう。つまり、電子、及び正孔の再結合領域のコントロールが蛍光型の有機EL素子よりも重要である。
 以上のような理由から燐光型の有機EL素子の高性能化には、蛍光型の有機EL素子と異なる材料選択、及び素子設計が必要になっている。
 高発光効率の燐光型有機EL素子を実現するための発光材料の適用例として、特許文献1には、ホスト材料にインドロカルバゾール骨格を有する特定の化合物を用い、ドーパント材料として燐光発光性化合物(Ir(ppy))を用いた燐光型の発光層を有する有機EL素子が開示されている。特許文献1では、発光層をこのように構成することで、ホスト材料としてAlqを用いた場合と比べて、ドーパント材料からの発光が効率的に起こり、有機EL素子としての発光効率が向上するとしている。
国際公開第2008/056746号
 しかしながら、特許文献1のように燐光型の発光層のホスト材料としてインドロカルバゾール骨格を有する特定の化合物を用いれば、ホスト材料としてAlqを用いた場合と比べる限りにおいては、有機EL素子の発光効率が向上するものの、実用的には発光効率が充分でなく、さらなる発光効率の向上が望まれている。また、特許文献1では、電子輸送層に電子移動度が十分に大きくないAlqを用いた有機EL素子について検討されるに止まる。そのため、高い発光効率を発揮する発光層システムの採用を考える上で、発光層への電子注入性が大きい電子輸送層を用いることが望まれている。
 本発明の目的は、発光効率が向上した燐光型の有機EL素子を提供することである。
 また、電子移動度の大きい電子輸送層を用いた場合にも、発光効率が向上した燐光型の有機EL素子を提供することである。
 本発明者は、上記課題を解決すべく、鋭意検討した結果、発光層のホスト材料に特定の条件を満たす化合物を用いることで、燐光型の有機EL素子の発光効率が向上することを見出し、本発明を完成するに至った。
 本発明の有機EL素子は、
 一対の電極間に有機化合物層を備える有機EL素子であって、
 前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
 前記ホスト材料は、一重項エネルギーEgSと、77[K]におけるエネルギーギャップEg77Kとの差ΔSTが、下記数式(1)の関係を満たし、かつ、前記一重項エネルギーEgSが、下記数式(2)の関係を満たす化合物から選択される
 ことを特徴とする。
  [数1]
   ΔST=EgS-Eg77K<0.4[eV]…(1)
  [数2]
   EgS≧2.90[eV]        …(2)
 本発明の有機EL素子は、
 一対の電極間に有機化合物層を備える有機EL素子であって、
 前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
 前記ホスト材料は、一重項エネルギーEgSと、77[K]におけるエネルギーギャップEg77Kとの差ΔSTが、下記数式(3)の関係を満たし、かつ、前記エネルギーギャップEg77Kが、下記数式(4)の関係を満たす化合物から選択される
 ことを特徴とする。
  [数3]
   ΔST=EgS-Eg77K<0.4[eV]…(3)
  [数4]
   Eg77K≧2.85[eV]       …(4)
 本発明の有機EL素子は、
 一対の電極間に有機化合物層を備える有機EL素子であって、
 前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
 前記ホスト材料は、分光エリプソメトリーにおいてシリコン基板面に対して垂直方向の屈折率nと、シリコン基板面に対して平行方向の屈折率nが、下記数式(5)の関係を満し、かつ、一重項エネルギーEgSが、下記数式(6)の関係を満たす化合物から選択される
 ことを特徴とする。
  [数5]
   Δn=|n-n|>0.04       …(5)
  [数6]
   EgS≧2.90[eV]        …(6)
 本発明の有機EL素子は、
 一対の電極間に有機化合物層を備える有機EL素子であって、
 前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
 前記ホスト材料は、分光エリプソメトリーにおいてシリコン基板面に対して垂直方向の屈折率nと、シリコン基板面に対して平行方向の屈折率nが、下記数式(7)の関係を満たし、かつ、77[K]におけるエネルギーギャップEg77Kが、下記数式(8)の関係を満たす化合物から選択される
 ことを特徴とする。
  [数7]
   Δn=|n-n|>0.04      …(7)
  [数8]
   Eg77K≧2.85[eV]       …(8)
 本発明の有機EL素子は、
 一対の電極間に有機化合物層を備える有機EL素子であって、
 前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
 前記ホスト材料は、フォトルミネッセンススペクトルの半値幅が75nmより大きく、かつ、一重項エネルギーEgSが、下記数式(9)の関係を満たす化合物から選択される
 ことを特徴とする。
  [数9]
   EgS≧2.90[eV]        …(9)
 本発明の有機EL素子は、
 一対の電極間に有機化合物層を備える有機EL素子であって、
 前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
 前記ホスト材料は、フォトルミネッセンススペクトルの半値幅が75nmより大きく、かつ、77[K]におけるエネルギーギャップEg77Kが、下記数式(10)の関係を満たす化合物から選択される
 ことを特徴とする。
  [数10]
   Eg77K≧2.85[eV]      …(10)
 本発明の有機EL素子において、
 前記ホスト材料は、フォトルミネッセンススペクトルの半値幅が75nmより大きい化合物から選択される
 ことが好ましい。
 本発明の有機EL素子において、
 前記差ΔSTが、下記数式(11)の関係を満たす
 ことが好ましい。
  [数11]
   ΔST=EgS-Eg77K<0.3[eV]…(11)
 本発明の有機EL素子において、
 前記燐光発光性ドーパント材料の三重項エネルギーEgTと、前記ホスト材料の77[K]におけるエネルギーギャップEg77Kとの差ΔTが、下記数式(12)の関係を満たす
 ことが好ましい。
  [数12]
   ΔT=Eg77K-EgT>0.20[eV]   …(12)
 本発明の有機EL素子において、
 前記一対の電極は、陽極、及び陰極であり、
 前記有機化合物層と前記陰極との間に電子輸送層を備え、
 前記電子輸送層の電子移動度は、電界強度500(V/cm)1/2において、5×10-6cm/Vs以上である
 ことが好ましい。
 本発明の有機EL素子において、
 前記ホスト材料が、下記化学式(1)から(8)までに示す骨格のうち少なくともいずれかを有する
 ことが好ましい。
Figure JPOXMLDOC01-appb-C000002
 本発明によれば、上記のような特定の条件を満たす化合物をホスト材料に用いるので、発光効率が向上した燐光型の有機EL素子を提供することができる。
 また、本発明によれば、電子移動度の大きい電子輸送層を用いた場合にも、上記のような特定の条件を満たす化合物をホスト材料に用いるので、燐光型の有機EL素子の発光効率を向上させることができる。
本発明の第一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 会合体形成による物理モデルの一例を示す図である。 発光層におけるホスト材料、及びドーパント材料のエネルギー準位の関係を示す図である。 分光エリプソメトリー測定の一例を示す図である。 図4Aの分光エリプソメトリー測定における測定対象となるシリコン基板上の有機薄膜の断面図である。
 以下、本発明に係る有機EL素子の素子構成について説明する。
 本発明の有機EL素子は、一対の電極間に有機化合物層を備える。この有機化合物層は、有機化合物で構成される層を少なくとも一層、有する。有機化合物層は、無機化合物を含んでいてもよい。
 本発明の有機EL素子において、有機化合物層のうち少なくとも1層は、発光層を有する。そのため、有機化合物層は、例えば、一層の発光層で構成されていてもよいし、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔障壁層、電子障壁層等の公知の有機EL素子で採用される層を有していてもよい。
 有機EL素子の代表的な素子構成としては、
(a)陽極/発光層/陰極
(b)陽極/正孔注入・輸送層/発光層/陰極
(c)陽極/発光層/電子注入・輸送層/陰極
(d)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極
(e)陽極/正孔注入・輸送層/発光層/障壁層/電子注入・輸送層/陰極
などの構造を挙げることができる。
 上記の中で(d)の構成が好ましく用いられるが、もちろんこれらに限定されるものではない。
 なお、上記「発光層」とは、一般的にドーピングシステムが採用されており、ホスト材料とドーパント材料を含む有機層である。ホスト材料は、一般的に電子と正孔の再結合を促し、再結合により生じた励起エネルギーをドーパント材料に伝達させる。ドーパント材料としては、量子収率の高い化合物が好まれ、ホスト材料から励起エネルギーを受け取ったドーパント材料は、高い発光性能を示す。
 上記「正孔注入・輸送層」は「正孔注入層および正孔輸送層のうちの少なくともいずれか1つ」を意味し、「電子注入・輸送層」は「電子注入層および電子輸送層のうちの少なくともいずれか1つ」を意味する。ここで、正孔注入層および正孔輸送層を有する場合には、陽極側に正孔注入層が設けられていることが好ましい。また、電子注入層および電子輸送層を有する場合には、陰極側に電子注入層が設けられていることが好ましい。
 本発明において電子輸送層といった場合には、発光層と陰極との間に存在する電子輸送領域の有機層のうち、最も電子移動度の高い有機層をいう。電子輸送領域が一層で構成されている場合には、当該層が電子輸送層である。また、燐光素子においては、構成(e)に示すように発光層で生成された励起エネルギーの拡散を防ぐ目的で必ずしも電子移動度が高くない障壁層を発光層と電子輸送層との間に採用することがあり、発光層に隣接する有機層が電子輸送層に必ずしも該当しない。
 図1に、本発明の実施形態における有機EL素子の一例の概略構成を示す。
 有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機化合物層10と、を有する。
 有機化合物層10は、ホスト材料およびドーパント材料を含む発光層5を有し、発光層5と陽極3との間に正孔注入・輸送層6を有し、発光層5と陰極4との間に電子注入・輸送層7を有する。
(発光層)
 本発明では、上記のとおり、発光層のホスト材料に特定の条件を満たす化合物を用いる。この特定の条件について、次の[1]~[3]で説明する。
[1]ΔST
 本発明者は、一重項エネルギーEgSと三重項エネルギーEgTとのエネルギー差(ΔST)が小さく、かつ一重項エネルギーEgSが所定の大きさ以上である化合物をホストに用いるか、又は、ΔSTが小さく、かつ三重項エネルギーEgTが所定の大きさ以上である化合物をホスト材料に用いると、燐光型の有機EL素子の発光効率が向上することを見出した。
 一重項エネルギーEgSと三重項エネルギーEgTの差に値するΔSTを小さくするには、量子化学的には、一重項エネルギーEgSと三重項エネルギーEgTにおける交換相互作用が小さいことで実現する。ΔSTと交換相互作用の関係性における物理的な詳細に関しては、例えば、
 文献1:安達千波矢ら、有機EL討論会 第10回例会予稿集、S2-5,p11~12
 文献2:徳丸克己、有機光化学反応論、東京化学同人出版、(1973)
に記載されている。このような材料は、量子計算により分子設計を行い合成することが可能であり、具体的には、LUMO、及びHOMOの電子軌道を重ねないように局在化させた化合物である。
 ΔSTが小さくなると、ホスト材料と隣接する電子輸送層とのエネルギー差が小さくなり、その結果、発光層に電子が注入しやすくなり、有機EL素子の駆動電圧を下げることができる。
 また、一重項エネルギーEgSと三重項エネルギーEgTとのエネルギー差(ΔST)を小さくするには、会合体を形成することによっても可能である。ここでの会合体とは、単純な1分子だけの電子状態を反映したものではなく、数分子が物理的に接近したものである。複数の分子が接近した結果、複数の分子間における電子状態が混ざり、電子状態が変化することによりエネルギー準位が変化し、主に一重項エネルギーの値が減少することで、ΔSTの値が小さくなると考えられる。このような会合体形成によるΔSTの値の減少は、2分子が接近した事により電子状態が変化するDavydov splitting modelによっても説明することができる(図2参照)。このDavydov splitting modelで示されるように、2分子が物理的に接近する事で、1分子と異なる電子状態の変化が考えられる。励起一重項状態がS1‐m、及びS1‐mの2つの状態で存在し、励起三重項状態がT1‐m、及びT1‐mの2つの状態で存在する。この結果、エネルギー準位が低いS1‐m、及びT1‐m-が存在する事により、S1‐mとT1‐mとの差であるΔSTの大きさは、1分子での電子状態と比べて、小さくなる。
 上記Davydov splitting modelについては、例えば、
 文献3:J. Kang, et al, International Journal of PolymerScience, Volume 2010,Article ID 264781,
 文献4:M. Kasha, et al, Pure and Applied Chemistry,Vol.11, pp371, 1965
 文献5:S. Das, et al, J. Phys. Chem. B. . vol.103, pp209,1999
に記載されている。
 なお、本発明における会合体とは、単分子同士が任意の会合体を形成することを意味している。すなわち、特定の会合状態を示すものではない。有機分子の会合状態は、薄膜中では確率的に様々な状態を許容するものであり、無機分子とは大きくこの点を異にする。
 本発明において、ホスト材料に用いる化合物は、このΔSTに関する条件に加えて、一重項エネルギーEgS、又は、三重項エネルギーEgTが所定の大きさ以上の化合物であることが必要である。
 このEgS、及びEgTに関する点について、次に説明する。
 図3は、発光層におけるホスト材料、及びドーパント材料のエネルギー準位の関係を示す図である。図3において、S0は、基底状態を表し、S1は、ホスト材料の最低励起一重項状態を表し、T1は、ホスト材料の最低励起三重項状態を表し、T1は、ドーパント材料の最低励起三重項状態を表す。
 図3に示すように、S1とT1との差が、ΔSTに相当し、T1とT1との差が、ΔTに相当する。図3中の破線矢印は、各励起状態間のエネルギー移動を表す。
 上記のとおり、本発明のホスト材料に用いる化合物として選択されるのは、ΔSTの小さい材料である。ここで、ホスト材料の最低励起三重項状態T1とドーパント材料の最低励起三重項状態T1とのエネルギー差が小さいと、三重項励起子が燐光発光性ドーパント材料からホスト材料へ移動して三重項励起子の閉じ込め効率が低下するおそれがある。そのため、三重項励起子が燐光発光性ドーパント材料からホスト材料へ移動して発光効率を落とさないようにするためには、ホスト材料の最低励起三重項状態T1とドーパント材料の最低励起三重項状態T1とのエネルギー差が大きい必要がある。
 また、分子どうしが会合体を形成する場合、一例として示したDavydov splitting modelで考えると、会合体の形成により励起準位が分裂するため、エネルギー準位が低いT1‐mの励起状態も存在しうる。そのため、ホスト材料の最低励起三重項状態T1とドーパント材料の最低励起三重項状態T1とのエネルギー差が小さくなり、三重項励起子が燐光発光性ドーパント材料からホスト材料へ移動して三重項励起子の閉じ込め効率が低下するおそれがある。すなわち、有機薄膜層中における会合体を形成し易い化合物は、計算上、単量体(単分子)であればドーパント材料の三重項励起子を高い確率で閉じ込めることができると考えられる場合がある。このような場合であっても、当該会合体を形成し易い化合物をホスト材料に用いると、実際上、会合体の形成によってホスト材料の最低励起三重項状態のエネルギー準位が低くなり、十分にドーパント材料の三重項励起子を閉じ込めることが出来なくなる場合がある。
 そこで、本発明のホスト材料に用いる化合物は、ΔSTが所定値よりも小さいことに加えて、一重項エネルギーEgS、及び三重項エネルギーEgTの少なくともいずれかが所定の大きさ以上である化合物から選択する。このような化合物を用いることで、三重項励起子の閉じ込め効率の低下を防止する。
 ここで、本発明ではΔSTが所定値以下である化合物を用いており、上記した三重項エネルギーEgTは、通常定義される三重項エネルギーとは異なる点がある。この点について、以下に説明する。
 一般に、三重項エネルギーは、測定対象となる化合物を溶媒に溶解させた試料について低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。
 ここで、本発明のホスト材料に用いる化合物は、上記のとおりΔSTが小さい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態、及び励起三重項状態の両者からの発光を含んだものとなり、いずれの状態から発光したものかについて峻別することは困難であるが、基本的には3重項エネルギーの値が支配的と考えられる。
 そのため、本発明では、通常の三重項エネルギーEgTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、測定対象となる化合物を溶媒に溶解させた試料について低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出されるエネルギー量をエネルギーギャップEg77Kとし、ΔSTを一重項エネルギーEgSとエネルギーギャップEg77Kとの差として定義する。
 また、溶液状態における三重項エネルギーの測定には、対象分子と溶媒との間における相互作用により三重項エネルギーに誤差を含む場合がある。そのため理想的な条件としては、対象分子と溶媒との相互作用を除くため、薄膜状態における測定が望まれる。しかしながら、本発明でホスト材料に用いられる化合物の分子は、溶液状態において幅広い半値幅を有するフォトルミネッセンススペクトルを示すことから、溶液状態においても会合状態を形成していることが強く示唆されるため、薄膜状態と同等の条件と考えられることから、本発明では、三重項エネルギーについて溶液条件で測定した値を用いることにした。
 一重項エネルギーEgSについては、本発明においても通常の手法と同様にして算出されるもので定義される。すなわち、測定対象となる化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトル(縦軸:吸光度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から算出される。また、会合体を形成する場合の、EgSは、上記Davydov splitting modelにおけるS1‐mと基底状態S0とのエネルギーギャップに対応する。
 なお、一重項エネルギーEgS、及びエネルギーギャップEg77Kの具体的な算出については、後述する。
 よって、本発明のホスト材料に、ΔSTが上記数式(1)又は(3)で規定する値よりも小さく、好ましくは数式(11)で規定する値よりも小さいことに加えて、一重項エネルギーEgSが2.90eV以上、またはエネルギーギャップEg77Kが2.85eV以上である化合物を用いると、燐光発光性ドーパント材料からのエネルギー移動が防止されるので、有機EL素子の発光効率が向上する。
[2]Δn
 本発明者は、ホスト材料に、分光エリプソメトリーにおいてシリコン基板面に対して垂直方向の屈折率nと、シリコン基板面に対して平行方向の屈折率nとの差Δnが、所定の大きさであり、かつ一重項エネルギーEgSが所定の大きさ以上である化合物を用いるか、又は、屈折率の差Δnが、所定の大きさであり、かつ三重項エネルギーEgTが所定の大きさ以上である化合物を用いると、燐光型の有機EL素子の発光効率が向上することを見出した。
 ここでのΔnとは、分光エリプソメトリー測定(測定範囲:200nm~1000nm)において、消衰係数が0.001以下の領域において、シリコン基板面に対して垂直方向の屈折率nと、シリコン基板に対して平行方向の屈折率nとの差を取ったものである。分光エリプソメトリーの測定範囲として、具体的には、波長が600nm~800nmの範囲であることが好ましい。本願では、Δnは、波長700nmでの値とした。
 本発明者は、ΔSTを小さくする手段の一つとして会合体を形成する化合物を用いることを見出し、Δnが大きい化合物は、当該化合物の膜内において会合体を形成し易いことを見出した。Δnの大きさと会合体の形成し易さとの関連性は、次のように推測される。
 シリコン基板面に対して垂直方向zと平行方向xの屈折率nに大きな違いが生じる場合は、薄膜状態において、分子が、ある程度の規則性を有する状態で存在していることを意味していると考えられる。すなわち、本発明のホスト材料に用いる化合物は、所定の大きさのΔnを有する化合物であり、薄膜状態において会合体を形成し、ある程度の規則性を有して存在していると推測される。
 一方で、このΔnが非常に小さい化合物、例えば、CBPやAlqなどは、薄膜状態において分子が全く規則性を有していないアモルファス状態で存在している。
 Δnの大きさと会合体の形成し易さとの関連性については、例えば、
 文献6:D. Yokoyama et al., Org. Electron. 10, 127-137(2009)、
 文献7:D. Yokoyama et al., Appl. Phys. Lett. 93, 173302 (2008)、
 文献8:D. Yokoyama et al., Appl. Phys. Lett. 95, 243303 (2009)、
の文献に記載されている。
 上記数式(5)又は数式(7)で規定するように、Δnが0.04よりも大きい化合物は、膜内で会合体を形成し易く、会合体形成によりΔSTが小さくなる。そして、ΔSTが小さくなると、ホスト材料と隣接する電子輸送層とのエネルギー差が小さくなり、その結果、発光層に電子が注入しやすくなり、有機EL素子の駆動電圧を下げることができる。
 本発明において、ホスト材料に用いる化合物は、このΔnに関する条件に加えて、一重項エネルギーEgS、及び三重項エネルギーEgTに関して、上記[1]で説明したものと同様の条件を満たす。
 よって、本発明のホスト材料に、Δnが0.04よりも大きいことに加えて、一重項エネルギーEgSが2.90eV以上、またはエネルギーギャップEg77Kが2.85eV以上である化合物を用いると、燐光発光性ドーパント材料からのエネルギー移動が防止されるので、有機EL素子の発光効率が向上する。
[3]半値幅
 本発明者は、ホスト材料に、フォトルミネッセンススペクトルの半値幅が所定の大きさであり、かつ一重項エネルギーEgSが所定の大きさ以上である化合物を用いるか、又は、フォトルミネッセンススペクトルの半値幅が所定の大きさであり、かつ三重項エネルギーEgTが所定の大きさ以上である化合物を用いると、燐光型の有機EL素子の発光効率が向上することを見出した。
 本発明者は、ΔSTを小さくする手段の一つとして会合体を形成する化合物を用いることを見出し、フォトルミネッセンススペクトルの半値幅が大きい化合物は、当該化合物の膜内において会合体を形成し易いことを見出した。フォトルミネッセンススペクトルの半値幅の大きさと会合体の形成し易さとの関連性は、次のように推測される。
 会合体を形成せずに主として1分子状態で存在する性質の化合物については、励起一重項状態における振動準位の存在が少なく、その結果、フォトルミネッセンススペクトルの半値幅が狭く観測される。例えば、CBPは、主として1分子状態で存在する性質を有し、フォトルミネッセンススペクトルの半値幅の大きさは、50nm程度と比較的狭い。
 一方、会合体を形成し易い化合物については、複数の分子が電子的に影響しあう事により、励起一重項状態に多くの振動準位が存在する。この結果、各振動準位から基底状態に緩和する状態が多くなるので、フォトルミネッセンススペクトルの半値幅が大きくなる。
 そして、フォトルミネッセンススペクトルの半値幅が大きい化合物は、会合体を形成し易いことから、上記[1]と同様に、ΔSTが小さい化合物である。ΔSTが小さくなると、ホスト材料と隣接する電子輸送層とのエネルギー差が小さくなり、その結果、発光層に電子が注入しやすくなり、有機EL素子の駆動電圧を下げることができる。
 ホスト材料に用いる化合物は、この半値幅に関する条件に加えて、上記[1]と同様に一重項エネルギーEgSが2.90eV以上、またはエネルギーギャップEg77Kが2.85eV以上であるので、燐光発光性ドーパント材料からのエネルギー移動が防止されて、発光効率が向上する。
 上記[1]~[3]のとおり、本発明の有機EL素子のホスト材料に用いる化合物をΔST、Δn又は半値幅に基づいて選択すると、その化合物の一形態としては、会合体を形成し易いものであった。
 ΔST、Δn又は半値幅に関する条件に加えて、一重項エネルギーEgS、又は、三重項エネルギーEg77Kが所定の大きさ以上である化合物からホスト材料に用いる化合物を選択すると、有機EL素子の発光効率が向上した。
 本発明のホスト材料に用いる化合物は、発光層においてすべての分子が会合体を形成するものに限られない。例えば、一部の分子は、会合体を形成せずに、単独でも存在し、会合体と非会合体とが混在した状態で発光層中に存在するものでもよい。
 また、発光層において会合体を形成せずとも、ΔSTが小さい化合物であれば本発明のホスト材料として使用できる。
 本発明のホスト材料に用いる化合物は、上記特定の条件を満たす他に、上記化学式(1)から(8)までに示す骨格のうち少なくともいずれかを有することが好ましい。
 本発明のホスト材料に用いる化合物の具体例を次に示すが、本発明のホスト材料は、これらに限定されない。
Figure JPOXMLDOC01-appb-C000003
 本発明のホスト材料に用いるΔSTの小さな化合物の例としては、分子内でドナー要素とアクセプター要素とを結合した化合物であり、さらに電気化学的な安定性(酸化還元安定性)を考慮し、ΔSTが0.3eV~0.4eVの化合物が挙げられる。
 好ましいドナー要素は、カルバゾール構造、アリールアミン構造等である。
 好ましいアクセプター要素は、アジン環部位、アザ芳香族環、アザ含酸素環、CN置換芳香族環、ケトン含有環等である。
 ドナー要素とアクセプター要素とを結合するとは各種、連結基で結合することを意味する。好ましい連結基は、単結合、フェニレン構造、メタビフェニレン構造である。本発明の開示に基づき、量子化学的な考察を加え、さらに最適化を行うことにより、ΔSTが0.3eVより小さい化合物も本発明のホスト材料として充分使用可能になる。
 また、より好ましい化合物は、分子の励起状態で形成される双極子(ダイポール)が互いに相互作用し、交換相互作用エネルギーが小さくなるような会合体を形成する化合物である。本発明者の検討によれば、このような化合物は、双極子(ダイポール)の方向がおおよそ揃い、分子の相互作用により、さらにΔSTが小さくなり得る。このような場合、ΔSTは、0~0.3eVと極めて小さくなり得る。
 本発明では、上記のとおり、発光層のドーパント材料に燐光発光性のドーパント材料を用いる。
 燐光発光性ドーパント材料の三重項エネルギーEgTと、ホスト材料のエネルギーギャップEg77Kとの差ΔTが、上記数式(12)の関係を満たすことが好ましい。上記数式(12)のように、ΔTが0.20eVより大きいと三重項励起子の閉じ込め効率が向上する。
 発光層において、ホスト材料と燐光発光性ドーパント材料との比率は、質量比で99:1以上50:50以下であることが好ましい。
 燐光発光性ドーパント材料は、金属錯体を含有するものが好ましい。該金属錯体としては、イリジウム(Ir),白金(Pt),オスミウム(Os),金(Au),レニウム(Re)、およびルテニウム(Ru)から選択される金属原子と配位子とを有するものが好ましい。特に、配位子と金属原子とが、オルトメタル結合を形成していることが好ましい。
 燐光発光性ドーパント材料としては、燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、イリジウム(Ir),オスミウム(Os)および白金(Pt)から選ばれる金属を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体などの金属錯体であるとさらに好ましく、中でもイリジウム錯体および白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。また、発光効率などの観点からフェニルキノリン、フェニルイソキノリン、フェニルピリジン、フェニルピリミジン、フェニルピラジンおよびフェニルイミダゾールから選択される配位子から構成される有機金属錯体が好ましい。
 燐光発光性ドーパント材料の具体例を次に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 発光層の厚さ寸法は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、最も好ましくは10nm以上50nm以下である。5nm未満では発光層形成が困難となり、色度の調整が困難となるおそれがあり、50nmを超えると駆動電圧が上昇するおそれがある。
(基板)
 本発明の有機EL素子は、透光性の基板上に作製する。この透光性基板は、有機EL素子を構成する陽極、有機化合物層、陰極等を支持する基板であり、400nm以上700nm以下の可視領域の光の透過率が50%以上で平滑な基板が好ましい。
 透光性基板としては、ガラス板やポリマー板などが挙げられる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などを原料として用いてなるものを挙げられる。
 またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォンなどを原料として用いてなるものを挙げることができる。
(陽極および陰極)
 有機EL素子の陽極は、正孔を発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。
 陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅などが挙げられる。
 発光層からの発光を陽極側から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□(Ω/sq。オーム・パー・スクウェア。)以下が好ましい。陽極の厚さ寸法は、材料にもよるが、通常10nm以上1μm以下、好ましくは10nm以上200nm以下の範囲で選択される。
 陰極としては、発光層に電子を注入する目的で、仕事関数の小さい材料が好ましい。
 陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金などが使用できる。
 陰極も、陽極と同様に、蒸着法などの方法で、例えば、電子輸送層や電子注入層上に薄膜を形成できる。また、陰極側から、発光層からの発光を取り出す態様を採用することもできる。発光層からの発光を陰極側から取り出す場合、陰極の可視領域の光の透過率を10%より大きくすることが好ましい。
 陰極のシート抵抗は、数百Ω/□以下が好ましい。
 陰極の厚さ寸法は、材料にもよるが、通常10nm以上1μm以下、好ましくは50nm以上200nm以下の範囲で選択される。
(正孔注入・輸送層)
 正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが小さい化合物が用いられる。
 正孔注入・輸送層を形成する材料としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、例えば、芳香族アミン化合物が好適に用いられる。
(電子注入・輸送層)
 電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい化合物が用いられる。
 電子注入・輸送層に用いられる化合物としては、例えば、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する複素環化合物が好ましい。
 本発明の有機EL素子において、電子輸送層を有する場合、当該電子輸送層の電子移動度は、電界強度500(V/cm)1/2において、5×10-6cm/Vs以上であることが好ましい。このような電子移動度であれば、発光層への電子注入が促進され、有機EL素子の駆動電圧が低下する。
 本発明の有機EL素子において、発光層以外の有機化合物層には、上述の例示した化合物以外に、従来の有機EL素子において使用される公知のものの中から任意の化合物を選択して用いることができる。
 本発明の有機EL素子の各層の形成方法としては、上記で特に言及した以外には制限されないが、真空蒸着、スパッタリング、プラズマ、イオンプレーティングなどの乾式成膜法や、スピンコーティング、ディッピング、フローコーティング、インクジェットなどの湿式成膜法などの公知の方法を採用することができる。
 本発明の有機EL素子の各有機層の厚さ寸法は、上記で特に言及した以外には制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
[変形例]
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変更、改良などは、本発明に含まれるものである。
 例えば、発光層の陽極側に電子障壁層を、発光層の陰極側に正孔障壁層を、それぞれ設けてもよい。これにより、電子や正孔を発光層に閉じ込めて、発光層における励起子の生成確率を高めることができる。
 また、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が本発明で規定する上記ホスト材料と燐光発光性ドーパント材料とを含んでいればよく、その他の発光層が蛍光発光型の発光層であっても、燐光発光型の発光層であってもよい。
 また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、その他の層(例えば、電荷発生層)を介して積層されていてもよい。
 その他、本発明の実施における具体的な構造および形状などは、本発明の目的を達成できる範囲で他の構造などとしてもよい。
 以下、本発明に係る実施例を説明するが、本発明はこれらの実施例によって限定されない。
 使用した化合物は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
<化合物の合成>
〔合成例1〕 GH-1の合成
 アルゴン雰囲気下、特開2010-180204号公報に記載の方法に従って合成した中間体A(2.3g、11mmol)、国際公開第2003/080760号(WO03/080760 A1)に記載の方法に従って合成した中間体B(3.9g、10mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.18g、0.2mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩(0.12g、0.4mmol)、t-ブトキシナトリウム(1.35g、14mmol)、無水トルエン(80mL)を順次加えて8時間加熱還流した。
 室温まで反応液を冷却した後、有機層を分離し、有機溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、化合物GH-1(2.8g、収率54%)を得た。
 FD-MS(フィールドディソープションマススペクトル。以下、FD-MSと略記する。)分析の結果、分子量515に対してm/e=515であった。
 以下に化合物GH-1の合成スキームを示す。
Figure JPOXMLDOC01-appb-C000012
〔合成例2〕 GH-2の合成
 3-ブロモベンズアルデヒド(18.4g、100mmol)をエタノール(500mL)に溶かし、ベンズアミジン塩酸塩(31.2g、200mmol)、水酸化ナトリウム(8g、200mmol)を加えて8時間加熱還流した。室温まで反応液を冷却した後、トルエンと水を加えて有機層を分離し、有機溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体C(9.3g、収率24%)を得た。
 アルゴン雰囲気下、中間体C(1.5g、3.9mmol)、欧州特許出願公開第1972619号明細書(EP1972619 A1)に記載の方法に従って合成した中間体D(1.6g、3.9mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.071g、0.078mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩(0.091g、0.31mmol)、t-ブトキシナトリウム(0.53g、5.5mmol)、無水トルエン(20mL)を順次加えて8時間加熱還流した。
 室温まで反応液を冷却した後、有機層を分離し、有機溶媒を減圧下で留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、化合物GH-2(2.3g,収率82%)を得た。
 FD-MS分析の結果、分子量715に対してm/e=715であった。
 以下に化合物GH-2の合成スキームを示す。
Figure JPOXMLDOC01-appb-C000013
<化合物の評価>
(1)一重項エネルギーEgS
 一重項エネルギーEgSは、以下の方法により求めた。
 測定対象化合物を石英基板上に蒸着して試料を作製し、常温(300K)でこの試料の吸収スペクトルを測定した。吸収スペクトルは、縦軸を吸光度、横軸を波長とした。この吸収スペクトルの長波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をEgSとした。
  換算式:EgS[eV]=1239.85/λedge
 吸収スペクトルの測定には、分光光度計(日立製、U3310)を用いた。
 測定した化合物は、GH-1、GH-2、GH-3、及びCBPである。各化合物のEgSの測定結果を表1に示す。
(2)エネルギーギャップEg77K、及び三重項エネルギーEgT
 Eg77K、及びEgTは、以下の方法により求めた。
 各化合物を、公知の燐光測定法(例えば、「光化学の世界」(日本化学会編・1993)50頁付近に記載の方法)により測定した。具体的には、各化合物を溶媒に溶解(試料10[μmol/リットル]、EPA(ジエチルエーテル:イソペンタン:エタノール=5:5:5(容積比)、各溶媒は分光用グレード)し、燐光測定用試料とした。石英セルへ入れた燐光測定用試料を77[K]に冷却し、励起光を燐光測定用試料に照射し、波長を変えながら燐光強度を測定した。燐光スペクトルは、縦軸を燐光強度、横軸を波長とした。
 この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をEg77K又はEgTとした。
  換算式:Eg77K[eV]=1239.85/λedge
     :EgT[eV]=1239.85/λedge
 燐光の測定には、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計本体と低温測定用オプション備品を用いた。なお、測定装置はこの限りではなく、冷却装置及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
 Eg77Kを測定した化合物は、GH-1、GH-2、GH-3、及びCBPである。各化合物のEg77Kの測定結果を表1に示す。
 EgTを測定した化合物は、Ir(ppy)、及びIr(Ph-ppy)である。各化合物のEgTの測定結果は、次のとおりである。
  Ir(ppy)    : 2.62[eV]
  Ir(Ph-ppy) : 2.54[eV]
(3)ΔST
 ΔSTは、上記(1)、及び(2)で測定したEgSとEg77Kとの差として求めた(上記式(1)、及び(3)参照)。結果を表1に示す。
(4)ΔT
 ΔTは、上記(1)、及び(2)で測定したEg77KとEgTとの差として求めた(上記数式(12)参照)。結果を表2に示す。
(5)Δn
 Δnは、分光エリプソメトリーにて測定した各化合物の屈折率に基づいて算出した。分光エリプソメトリーは、薄膜の光学定数(屈折率nや消衰係数k)や膜厚を測定する方法である。
 本発明では、多入角高速分光エリプソメータ(J.A.Woollam社製、M-2000D)を用いた。図4に分光エリプソメトリー測定の一例を示す。図4Aは、光源からの入射光の入射角度を示し、図4Bは、測定対象となるシリコン基板上の有機薄膜を断面図で示す。
 各化合物をシリコン基板(Si(100))上に蒸着し、厚さ100nmの有機薄膜を形成した。シリコン基板上の有機薄膜に対し、光源からの入射光の入射角度を45度から80度まで5度間隔で、さらに波長を245nmから1000nmまで1.6nm間隔で変えながら光を照射し、エリプソパラメーターψおよびΔを測定した。得られたパラメータに対し、解析ソフトWVASE32(J.A.Woollam社製)を用いて一括解析を行う事で、膜の光学異方性を調べた。膜の光学定数(屈折率nや消衰係数k)の異方性が、膜内における分子配向の異方性を反映する。詳細な測定方法・解析方法は、上記文献6~8に記載されている。
 Δnは、シリコン基板面に対して垂直方向zと平行方向xの屈折率nの差として求めた(上記数式(5)、及び(7)参照)。シリコン基板面に対する垂直方向z、及び平行方向xについては、図4(A)に示す。
 Δnを測定した化合物は、GH-1、GH-2、GH-3であり、CBPに関しては以下の文献9から引用した。
 文献9:横山大輔ら、有機EL討論会 第6回例会予稿集、S2-2,p5~6
各化合物のΔnの結果を表1に示す。
(6)半値幅
 フォトルミネッセンススペクトルの半値幅は、次のようにして求めた。
 各化合物を溶媒(ジクロロメタン)に溶解(試料10[μmol/リットル])し、蛍光測定用試料とした。石英セルへ入れた蛍光測定用試料に室温(300[K])で励起光を照射し、波長を変えながら蛍光強度を測定した。フォトルミネッセンススペクトルは、縦軸を蛍光強度、横軸を波長とした。蛍光の測定に用いた装置は、(株)日立ハイテクノロジー製のF-4500形分光蛍光光度計である。
 このフォトルミネッセンススペクトルから半値幅(単位は、nm。)を測定した。
 半値幅を測定した化合物は、GH-1、GH-2、GH-3、及びCBPである。各化合物の半値幅の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000014
 会合体を形成し難い化合物として知られるCBPは、ΔSTについて、前記数式(1)又は(3)の関係を満たさず、Δnについて前記数式(5)又は(7)の関係を満たさず、フォトルミネッセンススペクトルの半値幅について75nmよりも小さいことが分かった。
(7)電子移動度
 インピーダンス分光法を用いて電子移動度評価を行った。基板上に陽極としてAl、その上に電子輸送層に用いる材料、その上にLiF、続けて陰極としてAlを積層することにより電子オンリーデバイスを作製し、100mVの交流電圧を乗せたDC電圧を印加し複素モジュラスを測定した。モジュラスの虚部が最大となる周波数をfmax(Hz)としたとき、応答時間T(秒)をT=1/2/π/fmaxとして算出し、この値を用いて電子移動度の電界強度依存性を決定した。
 電子移動度を測定した化合物は、ET-1、及びAlqである。電界強度が500(V/cm)1/2の時の電子移動度の測定結果は、次のとおりである。
  ET-1 :1×10-5cm/Vs
  Alq3  :3×10-6cm/Vs
<有機EL素子の作製、及び評価>
 有機EL素子を以下のように作製し、評価した。
〔実施例1〕
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HI-1を蒸着し、膜厚5nmの化合物HI-1膜を形成した。このHI-1膜は、正孔注入層として機能する。
 このHI-1膜の成膜に続けて、化合物HT-1を蒸着し、HI-1膜上に膜厚120nmのHT-1膜を成膜し、さらに化合物HT-2を蒸着し、HT-1膜上に膜厚46.5nmのHT-2膜を成膜した。これらのHT-1膜、及びHT-2膜は、正孔輸送層として機能する。
 このHT-2膜上に化合物GH-1(ホスト材料)および化合物Ir(ppy)(燐光発光性ドーパント材料)を共蒸着し、膜厚40nmの発光層を成膜した。ドーパント材料濃度は、10質量%とした。
 この発光層上に電子輸送性化合物であるET-1、及びLiqを共蒸着して、膜厚20nmの電子輸送層を形成した。Liq濃度は、50質量%とした。
 この電子輸送層上にLiqを蒸着して、膜厚1nmのLiq膜を形成した。
 このLiq膜上に金属Alを蒸着して、膜厚80nmの金属陰極を形成した。
 このようにして、実施例1の有機EL素子を作製した。
 実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO/HI-1(5)/HT-1(120)/HT-2(46.5)/GH-1:Ir(ppy)3(40,10%)/ET-1:Liq(20,50%)/Liq(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層におけるリン光発光性ドーパント材料等のように、添加される成分の割合(質量%)を示す。
〔実施例2~4、及び比較例1~2〕
 実施例2~4、及び比較例1~2の有機EL素子については、表2に示すように発光層の化合物を変更した以外は、実施例1の有機EL素子と同様に作製した。
 なお、表2には、表1に示した測定結果の一部を比較のために再び示した。
Figure JPOXMLDOC01-appb-T000015
〔有機EL素子の評価〕
 作製した有機EL素子について、発光効率の評価を行った。結果を表2に示す。
 発光効率(電流効率)の測定は、次のようにして行った。
 電流密度が10mA/cmとなるように素子に電圧を印加し、そのときの分光放射輝度スペクトルを分光放射輝度計(コミカミノルタ社製、CS-1000)にて計測した。得られた分光放射輝度スペクトルから、発光効率(単位:cd/A)を算出した。
 表2に示すように、実施例1~4の有機EL素子は、比較例1~2の有機EL素子よりも発光効率が優れていることが分かった。
 ここで、比較例1~2の有機EL素子のホスト材料GH-3は、ΔSTが0.4eVよりも小さく、Δnが0.04よりも大きく、フォトルミネッセンススペクトルの半値幅が75nmよりも大きいが、EgSが2.9eVよりも小さく、Eg77Kが2.85eVよりも小さいため、本発明のホスト材料に用いられる化合物の条件を満たさない。そのため、発光効率が実施例よりも劣る結果となった。
 以上より、高発光効率の燐光型の有機EL素子を得るためには、発光層に用いるホスト材料は、GH-1やGH-2のように、ΔST、Δn又はフォトルミネッセンススペクトルの半値幅に関する上記条件を満たすだけでなく、さらにEgSやEg77Kが大きい化合物から選択することが重要であることが分かった。また、このような化合物をホスト材料に用いた発光層に対して、Alqよりも大きい電子移動度を有するET-1を用いた電子輸送層を隣接させた場合も、高い発光効率を示すことが分かった。
〔実施例5〕
 実施例5の有機EL素子を次のように作製した。
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HI-1を蒸着し、膜厚5nmの化合物HI-1膜を形成した。このHI-1膜は、正孔注入層として機能する。
 このHI-1膜の成膜に続けて、化合物HT-1を蒸着し、HI-1膜上に膜厚90nmのHT-1膜を成膜し、さらに化合物HT-2を蒸着し、HT-1膜上に膜厚46.5nmのHT-2膜を成膜した。これらのHT-1膜、及びHT-2膜は、正孔輸送層として機能する。
 このHT-2膜上に化合物PBH-1(ホスト材料)および化合物PBD-1(燐光発光性ドーパント材料)を共蒸着し、膜厚30nmの発光層を成膜した。ドーパント材料濃度は、20質量%とした。
 この発光層上に化合物PBH-1を蒸着し、膜厚5nmのPBH-1膜を形成した。
 次に、このPBH-1膜上に化合物ET-1、及びLiqを共蒸着して、膜厚30nmの電子輸送層を形成した。Liq濃度は、50質量%とした。
 この電子輸送層上にLiqを蒸着して、膜厚1nmのLiq膜を形成した。
 このLiq膜上に金属Alを蒸着して、膜厚80nmの金属陰極を形成した。
 このようにして、実施例5の有機EL素子を作製した。
 実施例5の有機EL素子の素子構成を略式的に示すと、次のとおりである。
 ITO/HI-1(5)/HT-1(90)/HT-2(46.5)/PBH-1:PBD-1(30,20%)/PBH-1(5)/ET-1:Liq(30,50%)/Liq(1)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層におけるリン光発光性ドーパント材料等のように、添加される成分の割合(質量%)を示す。
 以下に化合物GH-1の合成スキームを示す。
 実施例5では、すでに示した化合物の他、次に示す化合物を用いた。
Figure JPOXMLDOC01-appb-C000016
<化合物の合成>
〔合成例3〕 PBH-1の合成
 アルゴン雰囲気下、国際公開第2009/008100号(WO2009/008100 A1)に記載の方法に従って合成した中間体E(3.3g、10mmol)、特開2010-180204号公報に記載の方法に従って合成した中間体F(6.1g、30mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0.37g、0.4mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩(0.46g、1.6mmol)、t-ブトキシナトリウム(7.7g、80mmol)、無水トルエン50mlを順次加えて8時間加熱還流攪拌した。
 反応溶液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/トルエン=7/3(体積比))で精製した。さらにヘキサンを用いて再結晶により精製することにより、化合物PBH-1(4.0g、収率69%)を白色固体として得た。
 FD-MS分析の結果、分子量582(計算値)に対してm/e=582(実測値)であり、化合物PBH-1と同定した。
Figure JPOXMLDOC01-appb-C000017
 化合物PBH-1について、上記と同様にして評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000018
 また、化合物PBD-1について、三重項エネルギーEgTを上記と同様にして測定したところ、2.82eVであった。
 実施例5におけるホスト材料である化合物PBH-1のEg77Kと、ドーパント材料である化合物PBD-1のEgTとの差ΔTは、上記数式(12)より、次のようになった。
 ΔT=Eg77K-EgT=3.05-2.82=0.23[eV]
 作製した実施例5の有機EL素子について、駆動電圧及び発光効率の評価を行った。結果を表4に示す。
・駆動電圧
 電流密度が10mA/cmとなるようにITO(陽極)とAl(陰極)との間に通電したときの電圧(単位:V)を計測した。
 ・発光効率(電流効率)
 電流密度が10mA/cmとなるように素子に電圧を印加し、そのときの分光放射輝度スペクトルを分光放射輝度計(コミカミノルタ社製、CS-1000)にて計測した。得られた分光放射輝度スペクトルから、発光効率(単位:cd/A)を算出した。
Figure JPOXMLDOC01-appb-T000019
 本発明の有機EL素子は、表示装置や照明装置における発光素子として利用できる。
 1…有機EL素子、2…基板、3…陽極、4…陰極、5…発光層、6…正孔注入・輸送層、7…電子注入・輸送層、10…有機化合物層。

Claims (11)

  1.  一対の電極間に有機化合物層を備える有機エレクトロルミネッセンス素子であって、
     前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
     前記ホスト材料は、一重項エネルギーEgSと、77[K]におけるエネルギーギャップEg77Kとの差ΔSTが、下記数式(1)の関係を満たし、かつ、前記一重項エネルギーEgSが、下記数式(2)の関係を満たす化合物から選択される
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数1]
       ΔST=EgS-Eg77K<0.4[eV]…(1)
      [数2]
       EgS≧2.90[eV]        …(2)
  2.  一対の電極間に有機化合物層を備える有機エレクトロルミネッセンス素子であって、
     前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
     前記ホスト材料は、一重項エネルギーEgSと、77[K]におけるエネルギーギャップEg77Kとの差ΔSTが、下記数式(3)の関係を満たし、かつ、前記エネルギーギャップEg77Kが、下記数式(4)の関係を満たす化合物から選択される
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数3]
       ΔST=EgS-Eg77K<0.4[eV]…(3)
      [数4]
       Eg77K≧2.85[eV]       …(4)
  3.  一対の電極間に有機化合物層を備える有機エレクトロルミネッセンス素子であって、
     前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
     前記ホスト材料は、分光エリプソメトリーにおいてシリコン基板面に対して垂直方向の屈折率nと、シリコン基板面に対して平行方向の屈折率nが、下記数式(5)の関係を満し、かつ、一重項エネルギーEgSが、下記数式(6)の関係を満たす化合物から選択される
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数5]
       Δn=|n-n|>0.04      …(5)
      [数6]
       EgS≧2.90[eV]        …(6)
  4.  一対の電極間に有機化合物層を備える有機エレクトロルミネッセンス素子であって、
     前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
     前記ホスト材料は、分光エリプソメトリーにおいてシリコン基板面に対して垂直方向の屈折率nと、シリコン基板面に対して平行方向の屈折率nが、下記数式(7)の関係を満たし、かつ、77[K]におけるエネルギーギャップEg77Kが、下記数式(8)の関係を満たす化合物から選択される
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数7]
       Δn=|n-n|>0.04      …(7)
      [数8]
       Eg77K≧2.85[eV]       …(8)
  5.  一対の電極間に有機化合物層を備える有機エレクトロルミネッセンス素子であって、
     前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
     前記ホスト材料は、フォトルミネッセンススペクトルの半値幅が75nmより大きく、かつ、一重項エネルギーEgSが、下記数式(9)の関係を満たす化合物から選択される
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数9]
       EgS≧2.90[eV]            …(9)
  6.  一対の電極間に有機化合物層を備える有機エレクトロルミネッセンス素子であって、
     前記有機化合物層は、ホスト材料と燐光発光性ドーパント材料とを含む発光層を有し、
     前記ホスト材料は、フォトルミネッセンススペクトルの半値幅が75nmより大きく、かつ、77[K]におけるエネルギーギャップEg77Kが、下記数式(10)の関係を満たす化合物から選択される
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数10]
       Eg77K≧2.85[eV]           …(10)
  7.  請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子において、
     前記ホスト材料は、フォトルミネッセンススペクトルの半値幅が75nmより大きい化合物から選択される
     ことを特徴とする有機エレクトロルミネッセンス素子。
  8.  請求項1、請求項2、及び請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記差ΔSTが、下記数式(11)の関係を満たす
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数11]
       ΔST=EgS-Eg77K<0.3[eV]…(11)
  9.  請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記燐光発光性ドーパント材料の三重項エネルギーEgTと、前記ホスト材料の77[K]におけるエネルギーギャップEg77Kとの差ΔTが、下記数式(12)の関係を満たす
     ことを特徴とする有機エレクトロルミネッセンス素子。
      [数12]
       ΔT=Eg77K-EgT>0.20[eV]   …(12)
  10.  請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記一対の電極は、陽極、及び陰極であり、
     前記有機化合物層と前記陰極との間に電子輸送層を備え、
     前記電子輸送層の電子移動度は、電界強度500(V/cm)1/2において、5×10-6cm/Vs以上である
     ことを特徴とする有機エレクトロルミネッセンス素子。
  11.  請求項1から請求項10までのいずれか一項に記載の有機エレクトロルミネッセンス素子において、
     前記ホスト材料が、さらに下記化学式(1)から(8)までに示す骨格のうち少なくともいずれかを有する
     ことを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
PCT/JP2012/051123 2011-01-20 2012-01-19 有機エレクトロルミネッセンス素子 WO2012099219A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012553772A JPWO2012099219A1 (ja) 2011-01-20 2012-01-19 有機エレクトロルミネッセンス素子
KR1020137021595A KR101831015B1 (ko) 2011-01-20 2012-01-19 유기 일렉트로 루미네선스 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009659 2011-01-20
JP2011009659 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012099219A1 true WO2012099219A1 (ja) 2012-07-26

Family

ID=46515838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051123 WO2012099219A1 (ja) 2011-01-20 2012-01-19 有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US9159941B2 (ja)
JP (1) JPWO2012099219A1 (ja)
KR (1) KR101831015B1 (ja)
WO (1) WO2012099219A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075249A (ja) * 2012-10-03 2014-04-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
KR20140076521A (ko) * 2012-12-12 2014-06-20 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP2014220467A (ja) * 2013-05-10 2014-11-20 住友化学株式会社 発光素子
JP2016015487A (ja) * 2014-07-01 2016-01-28 ピョクサン ペイント アンド コーティングス カンパニー,リミテッド 燐光ホスト用化合物及びこれを含んだ有機発光素子
WO2016181844A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、遅延蛍光体、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
JP2017210464A (ja) * 2016-05-26 2017-11-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 含窒素化合物及び含窒素化合物を含む有機電界発光素子
WO2018159663A1 (ja) * 2017-02-28 2018-09-07 国立大学法人九州大学 発光材料、有機発光素子および化合物
CN109575039A (zh) * 2017-09-29 2019-04-05 江苏三月光电科技有限公司 一种氮杂苯类有机化合物及其应用
CN110642820A (zh) * 2019-09-04 2020-01-03 武汉华星光电半导体显示技术有限公司 电子阻挡材料及有机电致发光器件
JP2022009808A (ja) * 2012-08-03 2022-01-14 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、および電子機器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329621A (zh) * 2011-01-20 2013-09-25 出光兴产株式会社 有机电致发光元件
KR101704150B1 (ko) 2011-12-05 2017-02-07 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 유기 전기발광 소자
JP5959970B2 (ja) * 2012-07-20 2016-08-02 出光興産株式会社 有機エレクトロルミネッセンス素子
JP6196791B2 (ja) * 2013-03-18 2017-09-13 出光興産株式会社 有機エレクトロルミネッセンス素子の製造方法
US10439148B2 (en) 2013-08-01 2019-10-08 Nippon Steel Chemical & Material Co., Ltd. Compound, light emitting material, and organic light emitting device
TWI594476B (zh) * 2015-12-11 2017-08-01 友達光電股份有限公司 螢光有機發光材料及有機電激發光裝置
CN105633303B (zh) * 2016-03-09 2018-05-01 苏州大学 一种有机磷光器件的制备方法
CN105895819B (zh) * 2016-04-28 2018-07-06 京东方科技集团股份有限公司 一种oled器件及其制备方法、oled显示面板
KR20180066339A (ko) 2016-12-07 2018-06-19 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034751A1 (ja) * 2002-10-09 2004-04-22 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005079118A1 (ja) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2006330710A (ja) * 2005-04-28 2006-12-07 Sumitomo Chemical Co Ltd フィルム及びその製造方法
WO2008105294A1 (ja) * 2007-02-28 2008-09-04 Idemitsu Kosan Co., Ltd. 有機el素子
JP2009004351A (ja) * 2006-12-07 2009-01-08 Mitsubishi Chemicals Corp 有機蛍光体、有機蛍光体材料、発光装置およびその発光方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316387B2 (ja) 2002-03-22 2009-08-19 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
CN101511834B (zh) 2006-11-09 2013-03-27 新日铁化学株式会社 有机场致发光元件用化合物及有机场致发光元件
US7723722B2 (en) 2007-03-23 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Organic compound, anthracene derivative, and light-emitting element, light-emitting device, and electronic device using anthracene derivative
JPWO2009008099A1 (ja) 2007-07-10 2010-09-02 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP5551428B2 (ja) 2009-01-06 2014-07-16 ユー・ディー・シー アイルランド リミテッド 電荷輸送材料及び有機電界発光素子
KR101477613B1 (ko) * 2009-03-31 2014-12-30 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전자 소자
CN104592206B (zh) * 2010-04-20 2019-12-31 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034751A1 (ja) * 2002-10-09 2004-04-22 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005079118A1 (ja) * 2004-02-13 2005-08-25 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2006330710A (ja) * 2005-04-28 2006-12-07 Sumitomo Chemical Co Ltd フィルム及びその製造方法
JP2009004351A (ja) * 2006-12-07 2009-01-08 Mitsubishi Chemicals Corp 有機蛍光体、有機蛍光体材料、発光装置およびその発光方法
WO2008105294A1 (ja) * 2007-02-28 2008-09-04 Idemitsu Kosan Co., Ltd. 有機el素子

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11730007B2 (en) 2012-08-03 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
JP7245308B2 (ja) 2012-08-03 2023-03-23 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、および電子機器
JP7202491B2 (ja) 2012-08-03 2023-01-11 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置および電子機器
JP2022065158A (ja) * 2012-08-03 2022-04-26 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置および電子機器
JP2022009808A (ja) * 2012-08-03 2022-01-14 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、および電子機器
JP2014075249A (ja) * 2012-10-03 2014-04-24 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
KR102140005B1 (ko) * 2012-12-12 2020-07-31 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20140076521A (ko) * 2012-12-12 2014-06-20 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP2014220467A (ja) * 2013-05-10 2014-11-20 住友化学株式会社 発光素子
JP2016015487A (ja) * 2014-07-01 2016-01-28 ピョクサン ペイント アンド コーティングス カンパニー,リミテッド 燐光ホスト用化合物及びこれを含んだ有機発光素子
WO2016181844A1 (ja) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 π共役系化合物、遅延蛍光体、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置、及び照明装置
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
JP2017210464A (ja) * 2016-05-26 2017-11-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 含窒素化合物及び含窒素化合物を含む有機電界発光素子
WO2018159663A1 (ja) * 2017-02-28 2018-09-07 国立大学法人九州大学 発光材料、有機発光素子および化合物
CN109575039A (zh) * 2017-09-29 2019-04-05 江苏三月光电科技有限公司 一种氮杂苯类有机化合物及其应用
CN109575039B (zh) * 2017-09-29 2022-02-08 江苏三月科技股份有限公司 一种氮杂苯类有机化合物及其应用
CN110642820A (zh) * 2019-09-04 2020-01-03 武汉华星光电半导体显示技术有限公司 电子阻挡材料及有机电致发光器件

Also Published As

Publication number Publication date
US9159941B2 (en) 2015-10-13
KR101831015B1 (ko) 2018-02-21
KR20140015329A (ko) 2014-02-06
US20130020558A1 (en) 2013-01-24
JPWO2012099219A1 (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
WO2012099219A1 (ja) 有機エレクトロルミネッセンス素子
JP5889280B2 (ja) 有機エレクトロルミネッセンス素子
WO2012099241A1 (ja) 有機エレクトロルミネッセンス素子
TWI395510B (zh) Blue light emitting organic electroluminescent components
KR102160720B1 (ko) 유기 전계발광 소자
JP6113993B2 (ja) 有機エレクトロルミネッセンス素子
KR102255816B1 (ko) 발광 소자
CN110492005B (zh) 一种以激基复合物作为主体材料的有机电致发光器件
US20110309343A1 (en) Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
CN110492009B (zh) 一种基于激基复合物体系搭配含硼有机化合物的电致发光器件
KR20120103636A (ko) 고효율 청색 발광층을 가진 oled
WO2014087913A1 (ja) 有機エレクトロルミネッセンス素子
KR20160047297A (ko) 유기 전계 발광 소자
KR102148534B1 (ko) 유기 전계 발광 소자
WO2011033978A1 (ja) 有機エレクトロルミネッセンス素子
Yuan et al. A Versatile Triphenylamine/Fluoranthene‐Based Derivative as a Nondoped Green‐Emitting, Hole‐Transporting Interlayer for Electroluminescent Devices
TW201121359A (en) Organic electroluminescence element
KR20200022401A (ko) 유기 발광 소자
US20130306960A1 (en) Organic light emitting device and materials for use in same
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021595

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12736546

Country of ref document: EP

Kind code of ref document: A1