WO2012098826A1 - 単結晶製造装置及び単結晶製造方法 - Google Patents

単結晶製造装置及び単結晶製造方法 Download PDF

Info

Publication number
WO2012098826A1
WO2012098826A1 PCT/JP2012/000050 JP2012000050W WO2012098826A1 WO 2012098826 A1 WO2012098826 A1 WO 2012098826A1 JP 2012000050 W JP2012000050 W JP 2012000050W WO 2012098826 A1 WO2012098826 A1 WO 2012098826A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
cooling
cooling cylinder
insulating material
heat insulating
Prior art date
Application number
PCT/JP2012/000050
Other languages
English (en)
French (fr)
Inventor
孝世 菅原
克 松本
聡郎 島田
星 亮二
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112012000265T priority Critical patent/DE112012000265T5/de
Priority to US13/990,266 priority patent/US20130247815A1/en
Priority to KR1020137018800A priority patent/KR101756687B1/ko
Publication of WO2012098826A1 publication Critical patent/WO2012098826A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Definitions

  • a single crystal when pulling up a single crystal from a raw material melt in a crucible by the Czochralski method, a single crystal is provided that is provided with a heat shield member immediately above the raw material melt surface and cools the crystal using a cooling cylinder.
  • the present invention relates to a manufacturing apparatus and a manufacturing method.
  • a Czochralski method (also referred to as a CZ method) in which a silicon single crystal is grown from a raw material melt in a quartz crucible is widely used.
  • a silicon single crystal having a desired diameter is grown by immersing a seed crystal in a raw material melt (silicon melt) in a quartz crucible under an inert gas atmosphere and pulling the quartz crucible and seed crystal while rotating them. To do.
  • growth defects also referred to as grown-in defects
  • the growth defect becomes a factor that deteriorates the characteristics of the semiconductor element, and its influence is further increased with the progress of miniaturization of the element.
  • growth defects include octahedral void defects (non-patent document 1) that are aggregates of vacancies in a silicon single crystal manufactured by the CZ method, and aggregates of interstitial silicon. Dislocation clusters (Non-Patent Document 2) are known.
  • Non-patent Document 3 the introduction amount of these growth defects is determined by the temperature gradient of the crystal in the interface region in the solid / liquid phase of the silicon single crystal and the growth rate of the silicon single crystal.
  • the growth rate of the silicon single crystal is slowed down (Patent Document 1), or the maximum pulling rate that is substantially proportional to the temperature gradient in the interface region of the silicon single crystal is set. Pulling up a silicon single crystal at a speed not exceeding (Patent Document 2) has been disclosed.
  • Non-patent Document 4 an improved CZ method (Non-patent Document 4) focusing on the temperature gradient (G) and growth rate (V) during crystal growth has been reported, and a high-quality silicon single crystal in a defect-free region at a high growth rate. In order to obtain a crystal, it is necessary to quench the crystal in order to increase the crystal temperature gradient.
  • the cooling cylinder and the cooling auxiliary member extending downward from the cooling cylinder and having a diameter reduced toward the cylinder or downward are provided, and the cooling auxiliary member extended from the cooling cylinder is provided with a heat shield member.
  • Patent Document 3 a single crystal manufacturing apparatus is disclosed (Patent Document 3), heat is supplied from an external high-temperature region to the crystal side through a portion where no heat shield member is installed, so that the cooling ability of the grown single crystal is inadequate. It was enough.
  • the inner peripheral surface of the cooling cylinder is a radiant heat reflection preventing surface
  • the opposed part to the melt is a radiant heat reflecting surface
  • a heat insulator is provided on the outer peripheral surface, so that when the cooling cylinder is used, SiO components in the gas phase are generated at the outer peripheral part of the cooling cylinder.
  • Patent Document 4 A single crystal manufacturing apparatus capable of suppressing twinning or dislocation due to solid-layer SiO generated by cooling and solidification is disclosed (Patent Document 4).
  • Patent Document 4 A single crystal manufacturing apparatus capable of suppressing twinning or dislocation due to solid-layer SiO generated by cooling and solidification.
  • the heat insulating body is only installed and heat-insulated in close contact with the outer peripheral surface of the cooling cylinder, the ability of forced cooling depends on the inner peripheral surface of the cooling cylinder.
  • Patent Document 5 a semiconductor single crystal manufacturing apparatus in which at least a part of the outer peripheral surface of the cooling cylinder is covered with a heat reflecting layer is disclosed (Patent Document 5). Since it depends on the inner peripheral surface, it has the same problem as described above.
  • JP-A-6-56588 Japanese Patent Laid-Open No. 7-257991 WO01 / 057293 Publication Japanese Patent Publication No.7-33307 WO02 / 103092 publication
  • An object of the present invention is to provide a single crystal manufacturing apparatus and a manufacturing method capable of increasing the pulling speed, thereby improving the productivity and yield of the single crystal and suppressing power consumption.
  • a single crystal manufacturing apparatus having a crucible for storing a raw material melt, a heater for heating the raw material melt, a cooling cylinder forcedly cooled by a cooling medium, and a cooling chamber for storing them.
  • a heat shield member is disposed so as to surround the single crystal being pulled, and above the heat shield member.
  • the cooling cylinder is disposed so as to surround the single crystal, and a cooling cylinder outer peripheral heat insulating material is disposed so as to surround the cooling cylinder with a gap provided between the cooling cylinder and the outer periphery.
  • the cooling cylinder outer peripheral heat insulating material is directed toward the gap and the cooling cylinder from the outer periphery.
  • the space formed by the gap is cooled by the outer peripheral portion and the lower end portion of the cooling cylinder to lower the temperature.
  • This also strengthens the crystal cooling, and it is not necessary to bring the cooling cylinder close to the high temperature part near the melt surface, which is caused by solidification occurring at the interface between the raw material melt and the growing single crystal or quartz crucible pieces. It is possible to suppress dislocation due to an increase in foreign matter adhesion frequency. In addition, this makes it possible to increase the crystal pulling speed, thereby improving the productivity and yield of the single crystal. Furthermore, since the voids contribute to crystal cooling, the burden on the cooling cylinder during crystal cooling is reduced, so that the power consumption of the manufacturing apparatus can be suppressed and the cost can be reduced.
  • the gap may have a width of 15 mm or more.
  • the gap has such a width, when the gap is cooled by the outer peripheral portion of the cooling cylinder and the temperature is lowered, an effective cooling ability for the growing single crystal can be obtained.
  • the cooling cylinder outer peripheral heat insulating material has a thickness of 20 mm or more, the lower end in the vertical direction is a position equal to the height of the lower end portion of the heat shield member, and the upper end is 50 mm above the lower end of the cooling cylinder. It may be in a range from the position to the upper inner wall of the cooling chamber.
  • the heat shield member may be cylindrical and have a heat insulating material, and may be formed so that its inner diameter increases toward the top.
  • Such a heat shielding member can further enhance the crystal cooling by the low-temperature voids while suppressing the radiant heat to the growing single crystal by the raw material melt and the heater.
  • the upper inner wall of the cooling chamber may be covered with an upper wall heat insulating material.
  • the graphite material may be disposed in close contact with either one or both of the inner peripheral surface and the outer peripheral surface of the cooling cylinder.
  • the endothermic capacity of the cooling cylinder is improved by the graphite material, so that the cooling capacity by the cooling cylinder and the low-temperature gap can be further improved.
  • the cooling cylinder outer peripheral heat insulating material may have a surface covered with a graphite material.
  • Such a cooling cylinder outer peripheral heat insulating material can prevent contamination of the raw material melt due to dust generation from the heat insulating material and dislocation of the grown single crystal.
  • the single crystal while heating the raw material melt in the crucible with a heater in the chamber, the single crystal is pulled from the raw material melt by the Czochralski method, and the single crystal being pulled is cooled with a cooling cylinder.
  • a single crystal manufacturing method for manufacturing a single crystal wherein the single crystal is manufactured using the single crystal manufacturing apparatus of the present invention.
  • the single crystal production method using the single crystal production apparatus of the present invention can easily increase the pulling rate of the crystal while suppressing the solidification and dislocation of the raw material melt. Single crystals can be produced.
  • the temperature can be lowered not only by the inner periphery of the cooling cylinder but also by the outer periphery of the cooling cylinder.
  • the above-mentioned voids can also contribute to crystal cooling of the growing single crystal, so that the crystal pulling rate can be increased while suppressing the occurrence of solidification on the melt surface and the dislocation of the growing single crystal.
  • the productivity and yield of the single crystal can be improved.
  • the single-crystal manufacturing apparatus of this invention it is the figure which showed the cross-sectional structural example at the time of forming so that a heat-shielding member may be formed with a heat insulating material and the internal diameter may become large as it becomes upper part. It is the figure which showed the cross-sectional structural example of the single-crystal manufacturing apparatus provided with the conventional cooling cylinder. In the single crystal manufacturing apparatus provided with the conventional cooling cylinder, it is the figure which showed the cross-sectional structural example at the time of forming so that the upper end of a heat insulating material may closely_contact
  • gap between a cooling cylinder and a heat insulating material suspension auxiliary tool In an Example and a comparative example, it is the figure which showed the graph of the result of the silicon single crystal growth rate in which the whole wafer surface becomes defect-free when the comparative example 1 is made into 100%. It is the figure which showed the graph of the result of the solidification incidence on the melt surface in an Example and a comparative example. It is the figure which showed the graph of the result of DF conversion rate in an Example and a comparative example.
  • Example and a comparative example it is the figure which showed the graph of the result of the heater power during the silicon single crystal growth when the comparative example 1 was made into 100%.
  • the internal space is formed by forming an internal space that is thermally insulated from the outside by providing an air gap in the outer periphery of the cooling cylinder and installing a cooling cylinder outer peripheral heat insulating material.
  • a cooling internal space cooled by the outer peripheral portion and the lower end portion of the cooling cylinder can be obtained, and the cooling internal space contributes to crystal cooling together with the inner peripheral portion and the lower end portion of the cooling cylinder, and the solidification of the raw material melt and the growth single crystal It has been found that crystal cooling can be enhanced while suppressing dislocation.
  • the present invention is a single crystal manufacturing apparatus having at least a crucible for storing a raw material melt, a heater for heating the raw material melt, a cooling cylinder forcibly cooled by a cooling medium, and a cooling chamber for storing them.
  • a heat shield member having a heat insulating material is disposed in the vicinity of the interface between the raw material melt and the single crystal being pulled so as to surround the single crystal being pulled, and the pulling member is disposed above the heat shield member.
  • the cooling cylinder is disposed so as to surround the single crystal therein, and the cooling cylinder outer peripheral heat insulating material is disposed so as to surround the cooling cylinder with a gap between the cooling cylinder outer periphery and the cooling cylinder outer periphery. Is a single crystal manufacturing apparatus.
  • the cooling cylinder is arranged so as to surround the single crystal being pulled up, and a gap is provided between the cooling cylinder and the cooling cylinder so as to surround the cooling cylinder.
  • a heat insulating material is disposed, and a heat shield member is disposed so as to surround the single crystal being pulled in the vicinity of the interface between the raw material melt at the lower end of the cooling cylinder outer peripheral heat insulating material and the single crystal being pulled.
  • the single crystal production apparatus 1 of the present invention has an external appearance formed of a hollow cylindrical chamber, which includes a cooling chamber 12a forming a lower cylinder and a pull chamber 12b forming an upper cylinder connected and fixed to the cooling chamber 12a. Composed.
  • a crucible 2 is disposed in the center, and this crucible has a double structure, and is an inner layer holding container made of quartz having a bottomed cylindrical shape (hereinafter simply referred to as “quartz crucible 2a”), and the quartz crucible 2a.
  • an outer layer holding container made of graphite hereinafter simply referred to as “graphite crucible 2b” that is adapted to hold the outside of the same.
  • a heater 3 is disposed outside the crucible 2 having a double structure, and a heat insulating cylinder 9 is concentrically disposed around the outside of the heater 3.
  • a heat insulating member 11 is provided in the case. Then, a predetermined weight of silicon raw material charged into the crucible 2 is melted to form a raw material melt 4.
  • the seed crystal 8 is immersed in the surface of the formed raw material melt 4, the crucible 2 is rotated by the support shaft 7, and the pulling shaft 6 is rotated in the opposite direction, while the pulling shaft 6 is pulled upward to form the seed.
  • a silicon single crystal 5 is grown on the lower end surface of the crystal 8.
  • a heat shield member 15 having a heat insulating material is disposed so as to surround the single crystal 5.
  • the heat shield member 15 can suppress radiant heat from the raw material melt 4 to the growing single crystal 5.
  • the material of the heat shield member 15 for example, graphite, molybdenum, tungsten, silicon carbide, or a material in which the surface of graphite is coated with silicon carbide can be used.
  • the present invention is not limited to these.
  • the heat shield member is cylindrical and the heat shield member 15 'is made of a heat insulating material and is formed such that its inner diameter increases as it becomes the upper portion as shown in FIG. 4, the radiation heat is suppressed. Further, it is possible to further strengthen the crystal cooling by the low-temperature voids.
  • the cooling cylinder 16 disposed on the outer periphery of the single crystal 5 so as to surround the single crystal 5 being pulled above the heat shield member 15 is cooled at about 10 to 50 ° C. using water as a cooling medium,
  • the single crystal 5 is forcibly cooled mainly by radiant heat transfer.
  • the material of the cooling cylinder 16 is, for example, iron, nickel, chromium, copper, titanium, molybdenum or tungsten, or an alloy containing these metals, or an alloy thereof coated with titanium, molybdenum, tungsten, or a platinum group metal. be able to.
  • the present invention is not limited to these.
  • the cooling cylinder outer peripheral heat insulating material 14 is arrange
  • a material of the cooling cylinder outer periphery heat insulating material 14 a carbon fiber molded object etc. can be used, for example. However, the present invention is not limited to these.
  • the width of the gap 17 is preferably 15 mm or more, more preferably 20 mm or more and 50 mm or less. Since the space formed by the void 17 is cooled by the outer peripheral portion of the cooling cylinder 16 and the temperature is lowered, the space formed by the lower temperature of the void 17 in addition to the inner peripheral portion of the cooling cylinder 16 contributes to the crystal cooling. be able to. Moreover, since the outer periphery is surrounded by the cooling cylinder outer peripheral heat insulating material 14, the inflow of heat from the outer periphery to the gap 17 can be reliably cut. Thereby, crystal cooling can be further strengthened.
  • the thickness of the cooling cylinder outer peripheral heat insulating material 14 is preferably 20 mm or more, more preferably 25 mm or more and 100 mm or less. Further, the lower end in the vertical direction is set to a position equal to the height of the lower end portion of the heat shield member 15, and the upper end is a range from the lower end of the cooling cylinder 16, preferably 50 mm, more preferably 150 mm to the upper inner wall of the cooling chamber 12a. It is formed as shown in Further, as shown in FIG. 2, it is more preferable that the cooling cylinder outer peripheral heat insulating material 14 is formed such that the upper end thereof is as free as possible from the upper inner wall of the cooling chamber 12a. If it does in this way, in addition to improving the heat insulation effect by the cooling cylinder outer periphery heat insulating material 14, when the said space
  • the radiant heat from the high temperature portion such as the heater 3 to the upper inner wall of the cooling chamber 12a or the outer peripheral heat insulating material of the cooling cylinder can be cut more efficiently.
  • the radiant heat to the single crystal 5 can be more efficiently suppressed, and at the same time, the effect of power saving can be obtained by reducing the heater power. be able to.
  • the graphite material 19 can be disposed in close contact with the outer peripheral surface of the cooling cylinder 16 that is forcibly cooled.
  • the graphite material 19 which is a good heat conductor in close contact with the outer peripheral surface of the cooling cylinder 16
  • the cooling of the voids 17 is further promoted, and the crystal cooling can be further strengthened.
  • the graphite material may be disposed in close contact with not only the outer peripheral surface of the cooling cylinder but also the inner peripheral surface or both surfaces of the cooling cylinder.
  • single crystals are manufactured as follows. First, the seed crystal 8 is immersed in the raw material melt 4 held by the crucible 2. Thereafter, the seed crystal 8 is pulled up while being rotated by the pulling shaft 6. At that time, it is heated by the heater 3 and the crucible 2 is rotated in the direction opposite to the seed crystal 8 by the support shaft 7. Then, the pulled single crystal 5 is rapidly cooled by the cooling cylinder 16 to manufacture the single crystal 5.
  • the cooling cylinder outer peripheral heat insulating material 14 is provided in the outer periphery of the cooling cylinder 16 and the cooling cylinder outer peripheral heat insulating material 14 is disposed, the radiant heat from the high temperature part such as the heater 3 can be surely cut.
  • the space formed by the gap 17 is cooled by the outer peripheral portion and the lower end of the cooling cylinder 16 to lower the temperature, so that the lower temperature space can contribute to crystal cooling and strengthen crystal cooling. Further, this can suppress solidification and dislocation formation that occur on the surface of the melt. In addition, this makes it possible to increase the crystal pulling speed, thereby improving the productivity and yield of the single crystal.
  • Example 1 In the single crystal manufacturing apparatus shown in FIG. 1, a 60 mm gap is provided between the cooling cylinder and the cooling cylinder outer peripheral insulating material having a thickness of 30 mm, and the lower end of the cooling cylinder outer peripheral insulating material is used as the lower end portion of the heat shield member. The upper end was positioned 150 mm above the lower end of the cooling cylinder.
  • a quartz crucible with an inner diameter of 800 mm is filled with 200 kg of silicon raw material, and after forming a raw material melt, a silicon single crystal with a diameter of 300 mm is pulled up and grown.
  • the amount of heat removed from the cooling cylinder was obtained from the flow rate of the water used for cooling and the amount of temperature rise, and the cooling water path was separately arranged so that the total removed heat amount and the removed heat amount at the outer periphery could be measured separately. The results at this time are shown in FIGS.
  • Example 2 In the single crystal manufacturing apparatus shown in FIG. 2, the upper end of the cooling cylinder outer peripheral heat insulating material is in close contact with the upper inner wall of the cooling chamber, and the upper inner wall of the cooling chamber is covered with the upper wall heat insulating material.
  • the silicon single crystal growth rate at which the entire wafer surface becomes defect-free, the solidification occurrence rate on the melt surface, the DF conversion rate, the heater power during the silicon single crystal growth, and the cooling tube removal heat amount were determined. The results at this time are shown in FIGS.
  • Example 3 In the single crystal manufacturing apparatus shown in FIG. 3, as shown in FIG. 4, a heat insulating member made of a heat insulating material is formed so that its inner diameter increases toward the upper part, and the graphite material is adhered to the outer peripheral surface of the cooling cylinder.
  • the silicon single crystal growth rate in which the entire wafer surface becomes defect-free, except for the arrangement, the solidification occurrence rate on the melt surface, the DF conversion rate, the heater power during the silicon single crystal growth, and the cooling cylinder The amount of heat removed was determined. The results at this time are shown in FIGS.
  • Comparative Example 2 In the single crystal manufacturing apparatus shown in FIG. 6, the entire in-plane wafer surface is subjected to the same conditions as in Comparative Example 1 except that the upper end of the heat insulating material 22 is in close contact with the upper inner wall of the cooling chamber 25 and the side surface is in close contact with the cooling cylinder 21.
  • the silicon single crystal growth rate at which no defect occurs, the solidification rate on the melt surface, the DF conversion rate, the heater power during the growth of the silicon single crystal, and the amount of heat removed from the cooling cylinder were determined. The results at this time are shown in FIGS.
  • Comparative Example 3 In the single crystal manufacturing apparatus shown in FIG. 7, the entire wafer surface is subjected to the same conditions as in Comparative Example 1 except that a gap having a width of 60 mm is provided between the cooling cylinder 21 and the heat insulating material 22 and the suspension aid 23.
  • the silicon single crystal growth rate at which no defect occurs, the solidification occurrence rate on the melt surface, the DF conversion rate, the heater power during the silicon single crystal growth, and the cooling tube removal heat amount were determined. The results at this time are shown in FIGS.
  • FIG. 8 is a graph showing the results of the silicon single crystal growth rate in which the entire wafer surface is defect-free when the comparative example 1 is 100% in the examples and comparative examples.
  • the defect-free silicon single crystal growth rate can be increased by 10 to 25% as compared with Comparative Example 1. This is because a space is formed between the outer periphery of the cooling cylinder and the outer peripheral heat insulating material of the cooling cylinder to insulate, and the space formed by the gap is cooled to lower the temperature, which contributes to crystal cooling. This is because cooling can be strengthened.
  • FIG. 10 shows that in the example of the present invention, the defect-free silicon single crystal growth rate can be increased, and the DF conversion rate is slightly improved as compared with the comparative example.
  • FIG. 11 is a graph showing a result of heater power during silicon single crystal growth when Comparative Example 1 is set to 100% in Examples and Comparative Examples.
  • Example 1 of the present invention the gap between the cooling cylinder and the cooling cylinder outer peripheral heat insulating material is insulated from the external high-temperature portion, so that 12% of power is saved as compared with Comparative Example 1. It turns out that an effect is acquired.
  • Example 2 and Example 3 since the upper end of the cooling cylinder outer peripheral heat insulating material is brought into close contact with the upper inner wall of the cooling chamber and the heat insulating structure using the cooling chamber heat insulating material is used, the comparison with Comparative Example 1 is made. It can be seen that a power saving effect of 25 to 31% can be obtained.
  • FIG. 12 is a diagram showing a graph of the result of the cooling tube removal heat amount when the comparative example 1 is set to 100% in the examples and comparative examples.
  • the Example of this invention has the heater electric power reduced compared with the comparative example as mentioned above, there is almost no difference in the amount of removal heat. This is because, as described above, the space cooled by the outer periphery of the cooling cylinder due to the presence of the air gap contributes to the crystal cooling efficiently.
  • the single crystal manufacturing apparatus and manufacturing method of the present invention in the pulling process of the single crystal, a gap is provided between the outer peripheral portion of the cooling cylinder and the outer peripheral insulating material of the cooling cylinder to insulate from the external high temperature section. It can be seen that the cooling of the outer periphery of the cooling cylinder mainly cools the gap, whereby the cooling of the crystal can be strengthened by lowering the gap. As a result, the crystal growth rate can be increased, the productivity of defect-free crystals can be improved with a high yield, and a silicon single crystal can be obtained with energy saving and high productivity.
  • the present invention can be widely used in the field of manufacturing silicon single crystals and silicon single crystals for solar cells.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明は、原料融液を収容するルツボ、前記原料融液を加熱するヒーター、冷却媒体によって強制冷却される冷却筒及びこれらを収容する冷却チャンバーを有する単結晶製造装置であって、前記原料融液と引上げ中の単結晶との界面近傍において、前記引上げ中の単結晶を囲繞するように、断熱材を有する遮熱部材が配置され、該遮熱部材の上方に、前記引上げ中の単結晶を囲繞するように前記冷却筒が配置され、該冷却筒を囲繞するように、前記冷却筒外周との間に空隙を設けて冷却筒外周断熱材が配置されたものであることを特徴とする単結晶製造装置である。これにより、融液表面における固化や有転位化を生じさせることなく冷却筒の冷却能力を向上させ、無欠陥の単結晶製造時における引上げ速度を高速度とし、それによって単結晶の生産性及び歩留まりを向上させ、かつ消費電力を抑制することができる単結晶の製造装置及び製造方法を提供する。

Description

単結晶製造装置及び単結晶製造方法
 本発明は、チョクラルスキー法によりルツボ内の原料融液から単結晶を引上げる際に、原料融液面の直上に遮熱部材を設け、かつ冷却筒を用いて結晶冷却を行う単結晶の製造装置及び製造方法に関する。
 
 半導体素子の製造に用いられるシリコン単結晶の製造方法として、石英ルツボ内の原料融液からシリコン単結晶を成長させつつ引上げるチョクラルスキー法(CZ法とも言う。)が広く実施されている。CZ法では、不活性ガス雰囲気下で石英ルツボ内の原料融液(シリコン融液)に種結晶を浸し、該石英ルツボ及び種結晶を回転させながら引上げることにより所望直径のシリコン単結晶を育成する。
 近年、半導体素子の高集積化とそれに伴う微細化の進展によりシリコンウェーハ内の成長欠陥(grown-in欠陥とも言う。)が問題となっている。成長欠陥は、半導体素子の特性を劣化させる要因となるものであり、素子の微細化の進展にともない、その影響が一層大きくなっている。そのような成長欠陥としては、例えばCZ法により製造されたシリコン単結晶中の空孔の凝集体である八面体のボイド状欠陥(非特許文献1)や、格子間シリコンの凝集体として形成される転位クラスター(非特許文献2)などが知られている。
 これらの成長欠陥は、シリコン単結晶の固相/液相における界面領域における結晶の温度勾配とシリコン単結晶の成長速度によりその導入量が決まることが示されている(非特許文献3)。このことを利用した低欠陥シリコン単結晶の製造方法について、例えばシリコン単結晶の成長速度を遅くすること(特許文献1)や、シリコン単結晶の界面領域の温度勾配にほぼ比例する最大引上げ速度を超えない速度でシリコン単結晶を引上げること(特許文献2)が従来より開示されている。
 さらに結晶成長中の温度勾配(G)と成長速度(V)に着目した改善CZ法(非特許文献4)などが報告されており、高速な成長速度で無欠陥領域の高品質なシリコン単結晶を得るためには、結晶温度勾配を大きくするために結晶を急冷化することが必要である。
 また、冷却筒と冷却筒より下方に延伸し、円筒または下方に向かって縮径された形状の冷却補助部材を有し、冷却筒から延伸された冷却補助部材に遮熱部材が設けられている単結晶製造装置が開示されている(特許文献3)が、遮熱部材の設置されていない部分を通して外部の高温域から結晶側へ熱が供給されてしまうため、育成単結晶の冷却能力が不十分であった。
 さらに、冷却筒の内周面を輻射熱反射防止面、融液との対抗部を輻射熱反射面とし、外周面に断熱体を設けることで冷却筒使用時に冷却筒外周部で気相中SiO成分が冷却固化して発生する固層SiOによる双晶あるいは転位を抑制できる単結晶製造装置が開示されている(特許文献4)。
 しかし、冷却筒外周面に断熱体を密着して設置し断熱するだけであるため、強制冷却の能力は冷却筒内周面に依存してしまい、更なる冷却能力向上のためには、より高温の固液界面近傍に冷却筒を設置するか、表面輻射率を向上させ、吸熱を促進するしかない。ところが、前者は融液面も一緒に冷却してしまうことによって生じる融液表面での固化の発生や、原料融液の保持体となる石英ルツボから発生する石英ルツボ片に起因する異物付着頻度増加による有転位化の原因となるという問題があり、後者は表面輻射率の上限が1であるため更なる急冷化への寄与は難しいという問題があった。
 また、冷却筒の外周面の少なくとも一部を熱反射層で覆った半導体単結晶の製造装置が開示されている(特許文献5)が、上記特許文献4と同様、強制冷却の能力は冷却筒内周面に依存してしまうため、前述と同様の問題を有していた。
 
特開平6-56588号公報 特開平7-257991号公報 WO01/057293号公報 特公平7-33307号公報 WO02/103092号公報
Analysis of side-wall structure of grown-in twin-type octahedral defects in Czochralski silicon, Jpn. J.Appl. Phys. Vol.37(1998) p-p.1667-1670 Evaluation of microdefects in as-grown silicon crystals, Mat. Res. Soc. Symp. Proc. Vol.262(1992) p-p.51-56 The mechanism of swirl defects formation in silicon, Journal of Crystal growth 1982 p-p.625-643 日本結晶成長学会 vol.25 No.5 1998
 そこで、本発明はこのような問題に鑑みなされたもので、融液表面での固化の発生や有転位化を生じさせることなく冷却筒の冷却能力を向上させ、無欠陥の単結晶製造時における引上げ速度を高速度とし、それによって単結晶の生産性及び歩留まりを向上させ、かつ消費電力を抑制することができる単結晶の製造装置及び製造方法を提供することを目的としている。
 上記課題を解決するため、本発明では、原料融液を収容するルツボ、前記原料融液を加熱するヒーター、冷却媒体によって強制冷却される冷却筒及びこれらを収容する冷却チャンバーを有する単結晶製造装置であって、前記原料融液と引上げ中の単結晶との界面近傍において、前記引上げ中の単結晶を囲繞するように遮熱部材が配置され、該遮熱部材の上方に、前記引上げ中の単結晶を囲繞するように前記冷却筒が配置され、該冷却筒を囲繞するように、前記冷却筒外周との間に空隙を設けて冷却筒外周断熱材が配置されたものであることを特徴とする単結晶製造装置を提供する。
 このように、冷却筒外周との間に空隙を設けて冷却筒外周断熱材が配置された単結晶製造装置であれば、前記冷却筒外周断熱材が、外周からの前記空隙及び冷却筒に向けた熱を遮断するため、前記空隙で形成される空間が冷却筒外周部及び下端部によって冷却されて低温化する。これによって冷却筒内周部のみならず、前記低温化された空隙で形成される空間も成長中の単結晶の結晶冷却に寄与させることができる。
 またこれによって結晶冷却を強化させることができ、冷却筒を融液表面近傍の高温部に近づける必要がないため、原料融液と成長中の単結晶界面に生じる固化や、石英ルツボ片に起因する異物付着頻度増加による有転位化を抑制することができる。さらにこれによって、結晶の引上げ速度を高速度のものとすることができるため、単結晶の生産性や歩留まりを向上させることができる。
 さらに、前記空隙が結晶冷却に寄与することによって結晶冷却時における冷却筒の負担が軽減されるため、製造装置の消費電力を抑え、コストダウンを図ることができる。
 またこのとき、前記空隙は、幅が15mm以上であるものとすることができる。
 このような幅の空隙であれば、冷却筒外周部によって空隙が冷却され低温化した際に、成長中の単結晶に対する効果的な冷却能を得ることができる。
 またこのとき、前記冷却筒外周断熱材は、肉厚が20mm以上であり、鉛直方向の下端は前記遮熱部材の下端部の高さと等しい位置であり、上端は前記冷却筒下端より50mm上方の位置から前記冷却チャンバーの上内壁までの範囲にあるものとすることができる。
 このような冷却筒外周断熱材であれば、冷却筒との間に確実に空隙を設けることができ、さらにその断熱能もより効果的なものとすることができるため、前記低温化された空隙により、より効率的に成長中の単結晶を冷却することができる。
 またこのとき、前記遮熱部材は円筒状であって断熱材を有し、上部になるにつれてその内径が拡大するように形成されたものとすることができる。
 このような遮熱部材であれば、原料融液及びヒーターによる成長中の単結晶への輻射熱を抑制しつつ、前記低温化された空隙による結晶冷却をさらに強化することができる。
 またこのとき、前記冷却チャンバーの上内壁は、上壁断熱材によって覆われたものとすることができる。
 このようにすれば、ヒーター等の高温部から冷却チャンバー上内壁及び冷却筒への輻射熱をより効率的に抑制でき、これによってヒーターパワーが低減し、成長中の単結晶への結晶冷却を強化させることができると同時に、省電力効果も得ることができる。
 またこのとき、前記冷却筒の内周面または外周面のどちらか一面もしくは両面に黒鉛材を密着して配置させたものとすることができる。
 このような冷却筒であれば、黒鉛材によって冷却筒の吸熱能が向上するため、冷却筒及び低温化された空隙による冷却能力をより向上させることができる。
 またこのとき、前記冷却筒外周断熱材は、表面が黒鉛材によって覆われたものとすることができる。
 このような冷却筒外周断熱材であれば、断熱材からの発塵に起因する原料融液の汚染及び成長単結晶の有転位化を防止することができる。
 また本発明は、チャンバー内において、ルツボ内の原料融液をヒーターで加熱しつつ、前記原料融液からチョクラルスキー法により単結晶を引上げ、該引上げ中の単結晶を冷却筒で冷却しながら単結晶を製造する単結晶製造方法であって、本発明の単結晶製造装置を用いて単結晶を製造することを特徴とする単結晶製造方法を提供する。
 このように、本発明の単結晶製造装置を用いた単結晶の製造方法であれば、原料融液の固化や有転位化を抑制しつつ、容易に結晶の引上げ速度を高速度のものとしながら単結晶を製造することができる。
 以上説明したように、本発明によれば、冷却筒外周との間に空隙を設けて冷却筒外周断熱材を配置することによって、冷却筒内周部のみならず、冷却筒外周部によって低温化された前記空隙も成長中の単結晶の結晶冷却に寄与させることができるため、融液表面における固化の発生や成長単結晶の有転位化を抑制しつつ結晶の引上げ速度を高速度のものとすることができ、単結晶の生産性や歩留まりを向上させることができる。
 
本発明の単結晶製造装置の冷却筒周辺構造の断面構成例を模式的に示した図である。 本発明の単結晶製造装置において、冷却筒外周断熱材の上端を冷却チャンバー上内壁に密着させ、冷却チャンバー上内壁を上壁断熱材で覆った場合の断面構成例を示した図である。 本発明の単結晶製造装置において、冷却筒外周面に黒鉛材を密着配置させた場合の断面構成例を示した図である。 本発明の単結晶製造装置において、遮熱部材を断熱材で形成し、上部になるにつれてその内径が拡大するように形成した場合の断面構成例を示した図である。 従来の冷却筒を具備した単結晶製造装置の断面構成例を示した図である。 従来の冷却筒を具備した単結晶製造装置において、断熱材の上端は冷却チャンバー上内壁と密着し、側面は冷却筒と密着するように形成した場合の断面構成例を示した図である。 従来の冷却筒を具備した単結晶製造装置において、冷却筒と断熱材吊り下げ補助具との間に空隙を設けた場合の断面構成例を示した図である。 実施例及び比較例において、比較例1を100%としたときのウェーハ面内全体が無欠陥となるシリコン単結晶成長速度の結果のグラフを示した図である。 実施例および比較例における、融液表面における固化発生率の結果のグラフを示した図である。 実施例および比較例におけるDF化率の結果のグラフを示した図である。 実施例および比較例において、比較例1を100%としたときのシリコン単結晶成長中のヒーターパワーの結果のグラフを示した図である。 実施例および比較例において、比較例1を100%としたときの冷却筒除去熱量の結果のグラフを示した図である。
 以下、本発明についてより具体的に説明する。
 前述のように、高速な成長速度で無欠陥領域の高品質なシリコン単結晶を得るためには、結晶温度勾配を大きくするために結晶を急冷化することが必要である。
 これに対し、従来、冷却筒を用いて強制冷却を行う技術が開示されているが、強制冷却の能力は冷却筒内周面に依存するため、更なる冷却能力向上には、例えばより高温の固液界面近傍に冷却筒を設置することが必要となる。しかし、単結晶と共に原料融液も一緒に冷却してしまうことによって生じる融液表面における固化の発生や、原料融液の保持体となる石英ルツボから発生する異物付着頻度増加による有転位化の原因となるという問題があった。
 そこで、本発明者らが鋭意研究を行った結果、冷却筒外周部に空隙を設けて冷却筒外周断熱材を設置することによって外部から断熱された内部空間を形成することで、前記内部空間は冷却筒外周部および下端部により冷却された冷却内部空間を得ることができ、前記冷却内部空間が冷却筒内周部および下端部とともに結晶冷却に寄与し、原料融液の固化や成長単結晶の有転位化を抑制しつつ結晶冷却を強化できることを見出した。
 すなわち、本発明は、少なくとも、原料融液を収容するルツボ、前記原料融液を加熱するヒーター、冷却媒体によって強制冷却される冷却筒及びこれらを収容する冷却チャンバーを有する単結晶製造装置であって、前記原料融液と引上げ中の単結晶との界面近傍において、前記引上げ中の単結晶を囲繞するように、断熱材を有する遮熱部材が配置され、該遮熱部材の上方に、前記引上げ中の単結晶を囲繞するように前記冷却筒が配置され、該冷却筒を囲繞するように、前記冷却筒外周との間に空隙を設けて冷却筒外周断熱材が配置されたものであることを特徴とする単結晶製造装置である。
 つまり、本発明の単結晶製造装置では、引上げ中の単結晶を囲繞するように冷却筒が配置され、該冷却筒を囲繞するように、冷却筒外周との間に空隙を設けて冷却筒外周断熱材が配置され、該冷却筒外周断熱材の下端の原料融液と引上げ中の単結晶との界面近傍において、引上げ中の単結晶を囲繞するように遮熱部材が配置されている。
 以下、本発明の実施形態について、シリコン単結晶の製造を例に挙げて図面を参照しながら具体的に説明するが、本発明はこれに限定されるものではない。
 先ず、図1に本発明の単結晶製造装置の冷却筒周辺構造の断面構成例を模式的に示した図を示す。本発明の単結晶製造装置1は、中空円筒状のチャンバーで外観を構成し、そのチャンバーは下部円筒をなす冷却チャンバー12aと、冷却チャンバー12aに連接固定された上部円筒をなすプルチャンバー12bとから構成される。
 その中心部にはルツボ2が配設され、このルツボは二重構造であり、有底円筒状をなす石英製の内層保持容器(以下、単に「石英ルツボ2a」という)と、その石英ルツボ2aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外層保持容器(以下、単に「黒鉛ルツボ2b」という)とから構成されている。
 二重構造からなるルツボ2の外側にはヒーター3が配設され、ヒーター3の外側周辺には保温筒9が同心円状に配設され、またその下方で装置底部には保温板10が、上方には保温部材11が配設されている。
 そして、前記ルツボ2内に投入された所定重量のシリコン原料が溶融され、原料融液4が形成される。形成された原料融液4の表面に種結晶8を浸漬し、ルツボ2を支持軸7によって回転させ、且つ引上げ軸6はそれとは逆方向に回転させつつ、引上げ軸6を上方に引き上げて種結晶8の下端面にシリコン単結晶5を成長させる。
 ここで、原料融液4と単結晶5との界面近傍において、前記単結晶5を囲繞するように、断熱材を有する遮熱部材15が配置される。この遮熱部材15によって、原料融液4から成長中の単結晶5への輻射熱を抑制することができる。遮熱部材15の材質としては、例えば黒鉛、モリブデン、タングステン、炭化ケイ素、または黒鉛の表面を炭化ケイ素で被覆したもの等を用いることができる。しかし、これらに限定されるわけではない。
 さらに、遮熱部材を円筒状とし、図4に示すように上部になるにつれてその内径が拡大するように形成された、断熱材からなる遮熱部材15′とすれば、前記輻射熱を抑制しつつ、前記低温化された空隙による結晶冷却をさらに強化することができる。
 また、遮熱部材15の上方で引上中の単結晶5を取り囲むように単結晶5の外周に配置された冷却筒16は、水を冷却媒体として10~50℃程度で冷却されており、主に輻射伝熱により単結晶5を強制冷却している。冷却筒16の材質としては、例えば鉄、ニッケル、クロム、銅、チタン、モリブデンまたはタングステン、もしくはこれらの金属を含む合金、もしくはこれら合金をチタン、モリブデン、タングステンまたは白金族金属で被覆したものとすることができる。しかし、これらに限定されるわけではない。
 そして本発明では、空隙17を設けて前記冷却筒16を囲繞するように、遮熱板13上に冷却筒外周断熱材14が配置され、ヒーター3から単結晶5への輻射熱を緩和遮熱している。冷却筒外周断熱材14の材質としては、例えば炭素繊維成型体等を用いることができる。しかし、これらに限定されるわけではない。
 ここで、前記空隙17の幅は、好ましくは15mm以上、より好ましくは20mm以上50mm以下として形成される。
 この空隙17で形成される空間が、冷却筒16外周部によって冷却され低温化するため、冷却筒16内周部に加えて前記低温化された空隙17で形成される空間を結晶冷却に寄与させることができる。しかも、外周は冷却筒外周断熱材14によって囲繞されているため、外周から空隙17への熱の流入を確実にカットすることができる。これによって、結晶冷却をさらに強化することができる。
 また、前記冷却筒外周断熱材14の肉厚は、好ましくは20mm以上、より好ましくは25mm以上100mm以下として形成される。さらに、鉛直方向の下端は遮熱部材15の下端部の高さと等しい位置とし、上端は冷却筒16下端より、好ましくは50mm、より好ましくは150mm上方の位置から冷却チャンバー12aの上内壁までの範囲にあるように形成される。また、図2に示すように、前記冷却筒外周断熱材14は上端が冷却チャンバー12aの上内壁と可能な限り隙間のないように形成されることがより好ましい。
 このようにすれば、冷却筒外周断熱材14による断熱効果を向上させることができることに加え、前記空隙17が低温化された際に、その結晶冷却能をより効果的なものとすることができる。
 また、前記冷却チャンバー12aの上内壁を、図2に示すように上壁断熱材18によって覆うことにより、ヒーター3等の高温部から冷却チャンバー12aの上内壁への輻射熱や、冷却筒外周断熱材14の側面を通して空隙17に達する輻射熱をより効率良くカットすることができ、結果として単結晶5への輻射熱をより効率的に抑制することができると同時にヒーターパワーの低減による省電力の効果を得ることができる。
 さらに、図3に示すように、強制冷却されている冷却筒16外周面に黒鉛材19を密着させて配置することができる。このように良熱伝導体である黒鉛材19を冷却筒16外周面に密着配置することで、さらに空隙17の冷却が促進され、結晶冷却をより強化することができる。このとき、冷却筒外周面のみならず、冷却筒内周面または両面に黒鉛材を密着配置しても良い。
 本発明の単結晶製造方法では、このような装置を用いて、以下のようにして単結晶の製造が行われる。
 先ず、ルツボ2によって保持される原料融液4に種結晶8を浸漬する。その後、引上げ軸6で種結晶8を回転させながら引き上げる。その際、ヒーター3で熱し、支持軸7によってルツボ2を種結晶8とは逆方向に回転させる。そして、引上げられた単結晶5を冷却筒16で急冷し、単結晶5を製造する。
 その際、冷却筒16の外周には空隙17を設けて冷却筒外周断熱材14が配置されているため、ヒーター3等の高温部から空隙17への輻射熱を確実にカットできる。これによって、空隙17で形成された空間が、冷却筒16外周部及び下端部によって冷却され低温化するため、前記低温化された空間を結晶冷却に寄与させ、結晶冷却を強化することができる。
 またこれによって融液表面に生じる固化や、有転位化を抑制することができる。さらにこれによって、結晶の引上げ速度を高速度のものとすることができるため、単結晶の生産性や歩留まりを向上させることができる。
 
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 
(実施例1)
 図1に示した単結晶製造装置において、冷却筒と、肉厚30mmの冷却筒外周断熱材との間に60mmの空隙を設け、冷却筒外周断熱材の下端を遮熱部材の下端部とし、上端を冷却筒下端より150mm上方の位置とした。このような製造装置を用いて、内径800mmの石英ルツボにシリコン原料200kgを充填し、原料融液を形成した後に、直径300mmのシリコン単結晶を引き上げ、成長させ、ウェーハ面内全体が無欠陥となるシリコン単結晶成長速度、融液表面における固化発生率、DF化率(結晶全長に渡り無転位で単結晶が得られた確率)、シリコン単結晶成長中のヒーター電力及び冷却筒除去熱量を求めた。尚、冷却筒除去熱量は冷却に用いた水の流量と温度上昇量から求め、冷却水経路を分けて配置することで全体の除去熱量と外周部の除去熱量を分けて測定できるようにした。
 このときの結果を図8~図12に示す。
 
(実施例2)
 図2に示した単結晶製造装置において、冷却筒外周断熱材の上端を、冷却チャンバー上内壁を密着させ、且つ冷却チャンバー上内壁を上壁断熱材で覆ったこと以外は実施例1と同様にウェーハ面内全体が無欠陥となるシリコン単結晶成長速度、融液表面における固化発生率、DF化率、シリコン単結晶成長中のヒーター電力及び冷却筒除去熱量を求めた。
 このときの結果を図8~図12に示す。
 
(実施例3)
 図3に示した単結晶製造装置において、図4に示すように、断熱材からなる遮熱部材を、上部になるにつれてその内径が拡大するように形成し、冷却筒外周面に黒鉛材を密着配置させたこと以外は実施例2と同様にウェーハ面内全体が無欠陥となるシリコン単結晶成長速度、融液表面における固化発生率、DF化率、シリコン単結晶成長中のヒーター電力及び冷却筒除去熱量を求めた。このときの結果を図8~図12に示す。
 
(比較例1)
 図5に示した単結晶製造装置において、冷却筒21と、育成中の単結晶を囲繞する肉厚30mmの断熱材22を設け、該断熱材22を吊り下げるための補助具23との間には空隙は設けず、前記断熱材22の下端を遮熱部材24の下端部とし、上端を冷却筒21下端部より150mm下方の位置とした。このような製造装置を用いて、内径800mmの石英ルツボにシリコン原料200kgを充填し、原料融液を形成した後に、直径300mmのシリコン単結晶を引き上げ、成長させ、ウェーハ面内全体が無欠陥となるシリコン単結晶成長速度、融液表面における固化発生率、DF化率、シリコン単結晶成長中のヒーター電力及び冷却筒除去熱量を求めた。このときの結果を図8~図12に示す。
 
(比較例2)
 図6に示した単結晶製造装置において、断熱材22の上端を冷却チャンバー25上内壁と密着させ、側面を冷却筒21と密着させたこと以外は比較例1と同様の条件でウェーハ面内全体が無欠陥となるシリコン単結晶成長速度、融液表面における固化発生率、DF化率、シリコン単結晶成長中のヒーター電力及び冷却筒除去熱量を求めた。このときの結果を図8~図12に示す。
 
(比較例3)
 図7に示した単結晶製造装置において、冷却筒21と断熱材22吊り下げ補助具23との間に幅が60mmの空隙を設けたこと以外は比較例1と同様の条件でウェーハ面内全体が無欠陥となるシリコン単結晶成長速度、融液表面における固化発生率、DF化率、シリコン単結晶成長中のヒーター電力及び冷却筒除去熱量を求めた。このときの結果を図8~図12に示す。
 図8は、実施例および比較例において、比較例1を100%としたときのウェーハ面内全体が無欠陥となるシリコン単結晶成長速度の結果のグラフを示した図である。図8において、本発明の実施例では、比較例1と比較して10~25%の無欠陥シリコン単結晶成長速度の高速化が得られることがわかる。これは、冷却筒の外周部と冷却筒外周断熱材の間に空隙を設けて断熱することで、前記空隙で形成される空間が冷却されて低温化し、それが結晶冷却に寄与することによって結晶冷却を強化できるためである。
 これに対し、冷却筒の外周部と断熱材とを密着させ、間に空隙を設けていない比較例2及び空隙を設けても、断熱材の上端が冷却筒下端部より下方にあるため、断熱材による断熱が十分に成されていない比較例3では、ほとんど無欠陥シリコン単結晶成長速度は高速化できないことがわかる。
 図9において、本発明の実施例では、冷却筒を融液界面近傍の高温部に近づける必要が無いため、上記の冷却強化による無欠陥シリコン単結晶成長速度の高速化を行っているにも関わらず固化発生率は悪化せず、むしろ減少することが分かる。
 図10において、本発明の実施例では、無欠陥シリコン単結晶成長速度の高速化を行うことができるとともに、DF化率も比較例と比べてやや良くなっていることがわかる。
 図11は、実施例および比較例において、比較例1を100%としたときのシリコン単結晶成長中のヒーターパワーの結果のグラフを示した図である。図11において、本発明の実施例1では、冷却筒と冷却筒外周断熱材との間の空隙を外部の高温部から断熱しているため、比較例1と比較して12%の省電力化効果が得られることがわかる。また、実施例2及び実施例3では、冷却筒外周部断熱材の上端を冷却チャンバーの上内壁に密着させ、且つ冷却チャンバー断熱材を用いた断熱構造となっているため、比較例1と比較して25~31%の省電力化効果が得られることがわかる。
 図12は、実施例および比較例において、比較例1を100%としたときの冷却筒除去熱量の結果のグラフを示した図である。図12において、本発明の実施例は、前述のように比較例と比べヒーター電力が下げられているにも関わらず、除去熱量にはほとんど差が無い。これは、前述のように空隙の存在により冷却筒外周部によっても冷却された空間が、効率良く結晶冷却に寄与しているからである。
 以上のことから、本発明の単結晶製造装置及び製造方法によれば、単結晶の引上げ過程において、冷却筒外周部と冷却筒外周断熱材の間に空隙を設け、外部の高温部から断熱し、この空隙を主として冷却筒外周部が冷却することにより、前記空隙が低温化されることによって結晶冷却を強化できることがわかる。
 これにより、結晶成長速度を高速度化し、高い歩留まりのまま無欠陥結晶の生産性を向上することができ、省エネルギーかつ高い生産性でシリコン単結晶を得ることが可能となるため、半導体デバイス用のシリコン単結晶および太陽電池用のシリコン単結晶の製造分野において広く利用することができる。
 なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 

Claims (8)

  1.  原料融液を収容するルツボ、前記原料融液を加熱するヒーター、冷却媒体によって強制冷却される冷却筒及びこれらを収容する冷却チャンバーを有する単結晶製造装置であって、前記原料融液と引上げ中の単結晶との界面近傍において、前記引上げ中の単結晶を囲繞するように遮熱部材が配置され、該遮熱部材の上方に、前記引上げ中の単結晶を囲繞するように前記冷却筒が配置され、該冷却筒を囲繞するように、前記冷却筒外周との間に空隙を設けて冷却筒外周断熱材が配置されたものであることを特徴とする単結晶製造装置。
     
  2.  前記空隙は、幅が15mm以上であることを特徴とする請求項1に記載の単結晶製造装置。
     
  3.  前記冷却筒外周断熱材は、肉厚が20mm以上であり、鉛直方向の下端は前記遮熱部材の下端部の高さと等しい位置であり、上端は前記冷却筒下端より50mm上方の位置から前記冷却チャンバーの上内壁までの範囲にあることを特徴とする請求項1または請求項2に記載の単結晶製造装置。
     
  4.  前記遮熱部材は円筒状であって断熱材を有し、上部になるにつれてその内径が拡大するように形成されたものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の単結晶製造装置。
     
  5.  前記冷却チャンバーの上内壁は、上壁断熱材によって覆われたものであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の単結晶製造装置。
     
  6.  前記冷却筒の内周面または外周面のどちらか一面もしくは両面に黒鉛材が密着して配置されたものであることを特徴とする請求項1乃至請求項5のいずれか1項に記載の単結晶製造装置。
     
  7.  前記冷却筒外周断熱材は、表面が黒鉛材によって覆われたものであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の単結晶製造装置。
     
  8.  チャンバー内において、ルツボ内の原料融液をヒーターで加熱しつつ、前記原料融液からチョクラルスキー法により単結晶を引上げ、該引上げ中の単結晶を冷却筒で冷却しながら単結晶を製造する単結晶製造方法であって、前記請求項1乃至請求項7のいずれか1項に記載の単結晶製造装置を用いて単結晶を製造することを特徴とする単結晶製造方法。
PCT/JP2012/000050 2011-01-19 2012-01-06 単結晶製造装置及び単結晶製造方法 WO2012098826A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012000265T DE112012000265T5 (de) 2011-01-19 2012-01-06 Einkristallherstellungsvorrichtung und Verfahren zum Herstellen eines Einkristalls
US13/990,266 US20130247815A1 (en) 2011-01-19 2012-01-06 Single crystal production apparatus and method for producing single crystal
KR1020137018800A KR101756687B1 (ko) 2011-01-19 2012-01-06 단결정 제조장치 및 단결정 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011008433A JP5724400B2 (ja) 2011-01-19 2011-01-19 単結晶製造装置及び単結晶製造方法
JP2011-008433 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012098826A1 true WO2012098826A1 (ja) 2012-07-26

Family

ID=46515462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000050 WO2012098826A1 (ja) 2011-01-19 2012-01-06 単結晶製造装置及び単結晶製造方法

Country Status (5)

Country Link
US (1) US20130247815A1 (ja)
JP (1) JP5724400B2 (ja)
KR (1) KR101756687B1 (ja)
DE (1) DE112012000265T5 (ja)
WO (1) WO2012098826A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5904079B2 (ja) 2012-10-03 2016-04-13 信越半導体株式会社 シリコン単結晶育成装置及びシリコン単結晶育成方法
KR101523504B1 (ko) * 2014-03-26 2015-05-28 (주)에스테크 수냉튜브를 이용한 잉곳성장장치의 차열부재 냉각장치
JP7432734B2 (ja) * 2020-08-10 2024-02-16 西安奕斯偉材料科技股▲ふん▼有限公司 単結晶炉の組立スリーブ及び単結晶炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000462A1 (en) * 1991-06-24 1993-01-07 Komatsu Electronic Metals Co., Ltd. Device for pulling up single crystal
JPH1192272A (ja) * 1997-09-22 1999-04-06 Komatsu Electron Metals Co Ltd 単結晶製造装置および単結晶の製造方法
JP2001270798A (ja) * 2000-03-28 2001-10-02 Wacker Nsce Corp シリコン単結晶製造装置
JP2005187244A (ja) * 2003-12-25 2005-07-14 Shin Etsu Handotai Co Ltd 単結晶の製造方法及び単結晶

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795036B2 (ja) * 1992-02-04 1998-09-10 信越半導体株式会社 単結晶引上装置
JP2521007B2 (ja) 1992-06-30 1996-07-31 九州電子金属株式会社 シリコン単結晶の製造方法
JPH0741384A (ja) * 1993-05-24 1995-02-10 Kawasaki Steel Corp 低酸素濃度シリコン単結晶の製造方法および装置
JPH0733307A (ja) 1993-07-16 1995-02-03 Omron Corp 小切手処理装置
IT1280041B1 (it) 1993-12-16 1997-12-29 Wacker Chemitronic Procedimento per il tiraggio di un monocristallo di silicio
US6632280B2 (en) * 2000-01-31 2003-10-14 Shin-Etsu Handotai Co., Ltd. Apparatus for growing single crystal, method for producing single crystal utilizing the apparatus and single crystal
JP3573045B2 (ja) * 2000-02-08 2004-10-06 三菱住友シリコン株式会社 高品質シリコン単結晶の製造方法
WO2001083860A1 (fr) * 2000-04-28 2001-11-08 Shin-Etsu Handotai Co.,Ltd. Plaquette de silicium haute qualite et procede de production de silicium monocristallin
WO2002103092A1 (fr) 2001-06-14 2002-12-27 Shin-Etsu Handotai Co., Ltd. Dispositif permettant la production d'un monocristal semi-conducteur et procede permettant de produire un monocristal semi-conducteur au moyen de ce dispositif
JP2003243404A (ja) * 2002-02-21 2003-08-29 Shin Etsu Handotai Co Ltd アニールウエーハの製造方法及びアニールウエーハ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000462A1 (en) * 1991-06-24 1993-01-07 Komatsu Electronic Metals Co., Ltd. Device for pulling up single crystal
JPH1192272A (ja) * 1997-09-22 1999-04-06 Komatsu Electron Metals Co Ltd 単結晶製造装置および単結晶の製造方法
JP2001270798A (ja) * 2000-03-28 2001-10-02 Wacker Nsce Corp シリコン単結晶製造装置
JP2005187244A (ja) * 2003-12-25 2005-07-14 Shin Etsu Handotai Co Ltd 単結晶の製造方法及び単結晶

Also Published As

Publication number Publication date
KR20140037034A (ko) 2014-03-26
JP2012148918A (ja) 2012-08-09
DE112012000265T5 (de) 2013-09-26
US20130247815A1 (en) 2013-09-26
JP5724400B2 (ja) 2015-05-27
KR101756687B1 (ko) 2017-07-11

Similar Documents

Publication Publication Date Title
JP3944879B2 (ja) 単結晶インゴットの製造装置
TW522456B (en) Silicon single crystal wafer and method for manufacturing the same
CN110983429A (zh) 单晶炉及单晶硅制备方法
JP2002538064A (ja) 結晶引揚装置のための熱シールド装置
KR101105950B1 (ko) 단결정 잉곳 제조장치
JP5482643B2 (ja) 炭化珪素単結晶インゴットの製造装置
WO2011062092A1 (ja) 単結晶引き上げ装置
US8268077B2 (en) Upper heater, single crystal production apparatus, and method for producing single crystal
JP5724400B2 (ja) 単結晶製造装置及び単結晶製造方法
JP6628640B2 (ja) 炭化珪素単結晶インゴットの製造装置及び製造方法
JP5392040B2 (ja) 単結晶製造装置及び単結晶製造方法
KR20110134827A (ko) 실리콘으로 구성된 반도체 웨이퍼를 제조하는 방법
JP4166316B2 (ja) 単結晶製造装置
CN114929951A (zh) 单晶制造装置
JP2002068887A (ja) 半導体単結晶の製造装置及びそれを用いた半導体単結晶の製造方法
KR101411275B1 (ko) 태양전지용 다결정 실리콘 제조장치 및 그 제조방법
JP2000327479A (ja) 単結晶製造装置及び単結晶製造方法
JP2007210820A (ja) シリコン単結晶の製造方法
JP2003165791A (ja) シリコン単結晶製造方法及び装置
JP4150167B2 (ja) シリコン単結晶の製造方法
JP2014058414A (ja) 評価用シリコン単結晶の製造方法
WO2022123957A1 (ja) 単結晶製造装置
JP2019052067A (ja) 単結晶育成装置
WO2011104796A1 (ja) 太陽電池用多結晶シリコン
CN117488395A (zh) 基于提拉法的双温区单晶生长装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13990266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012000265

Country of ref document: DE

Ref document number: 1120120002652

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137018800

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12736585

Country of ref document: EP

Kind code of ref document: A1