WO2012096342A1 - リチウム二次電池正極用添加剤及びリチウム二次電池用正極 - Google Patents
リチウム二次電池正極用添加剤及びリチウム二次電池用正極 Download PDFInfo
- Publication number
- WO2012096342A1 WO2012096342A1 PCT/JP2012/050484 JP2012050484W WO2012096342A1 WO 2012096342 A1 WO2012096342 A1 WO 2012096342A1 JP 2012050484 W JP2012050484 W JP 2012050484W WO 2012096342 A1 WO2012096342 A1 WO 2012096342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- thiophene
- carbon atoms
- additive
- parts
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/286—Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/127—Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/145—Side-chains containing sulfur
- C08G2261/1452—Side-chains containing sulfur containing sulfonyl or sulfonate-groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/14—Side-groups
- C08G2261/146—Side-chains containing halogens
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an additive for a positive electrode of a lithium secondary battery and a positive electrode material.
- the positive electrode material of a lithium secondary battery is configured by binding a current collector and an active material with a binder.
- a binder polyvinylidene fluoride having a strong binding force is used.
- polyvinylidene fluoride does not have electronic conductivity, and a conductive additive is mixed as a countermeasure.
- the conductivity is still insufficient.
- Patent Document 1 It has been proposed to use a conductive polymer compound such as polyaniline as a conductive aid for improving the conductivity of the binder (for example, Patent Document 1).
- a conductive polymer compound such as polyaniline
- Patent Document 1 the electrode material using the polyaniline of Patent Document 1 as a binder has a problem of poor electrochemical stability and insufficient storage stability and cycle characteristics.
- Patent Document 2 an electrode material using polythiophene having excellent electrochemical stability as a binder has been proposed, and storage stability and cycle characteristics have been improved (for example, Patent Document 2).
- the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrode additive and an electrode capable of increasing the output of a lithium secondary battery and maintaining cycle characteristics even during high-speed charge / discharge. To provide materials.
- the present invention provides at least a group selected from the group consisting of groups (f1) to (f4) in which the hydrogen atom at the 3-position and / or 4-position of the thiophene ring is represented by the following general formulas (1) to (4), respectively.
- An essential component is a substituted polythiophene (P) having a repeating unit (D) of thiophene substituted with one kind of group (f) (hereinafter also referred to as a repeating unit (D)) as at least a part of the thiophene repeating unit.
- An additive for a lithium secondary battery positive electrode (hereinafter also referred to as an additive (A) for a lithium secondary battery positive electrode, an additive for a positive electrode (A), an additive (A), etc.); and the additive (A ), A positive electrode for a lithium secondary battery comprising the active material (B) and the current collector (C); a lithium secondary battery comprising the additive (A).
- A an additive for a lithium secondary battery positive electrode
- A an additive for a lithium secondary battery positive electrode
- A A positive electrode for a lithium secondary battery comprising the active material (B) and the current collector (C)
- a lithium secondary battery comprising the additive (A).
- -OR 1 -R 2 (1)
- R 1 represents an alkylene group having 1 to 6 carbon atoms
- R 2 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
- -O-R 3 (2)
- R 3 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
- R 4 represents a linear or branched alkylene group having 1 to 6 carbon atoms
- R 5 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
- -R 6 -OR 7 -R 8 (4)
- R 6 represents a linear or branched alkylene group having 1 to 6 carbon atoms
- R 7 represents an alkylene group having 1 to 6 carbon atoms
- R 8 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
- the additive for a lithium secondary battery positive electrode of the present invention has the effect of greatly improving the output characteristics of the battery and greatly improving the cycle characteristics during high-speed charge / discharge.
- the additive (A) for a lithium secondary battery positive electrode of the present invention is a group (f1) to (f1)- A substituted polythiophene (P) having a repeating unit (D) of thiophene substituted with at least one group (f) selected from the group consisting of f4) is an essential component.
- the elements listed with the symbols (f1), (f2), (f3), and (f4) are referred to as a perfluoroalkylalkoxy group (f1) and a perfluoroalkoxy group, respectively, in the present specification. Also referred to as (f2), a perfluoroalkoxyalkyl group (f3), and an alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1).
- the additive (A) for a lithium secondary battery positive electrode according to the present invention is a contact point between a conductive additive and an active material by using a substituted polythiophene (P) having both electron conductivity and lithium ion conductivity as an essential component.
- P substituted polythiophene
- the positive electrode additive (A) of the present invention has the repeating unit (D), the lithium ion conductivity is improved as compared with the conventional additive, and as a result, the internal resistance and electrical resistance are greatly increased. Thus, the output characteristics can be improved and the cycle characteristics at high potential and high temperature can be improved.
- Examples of the perfluoroalkylalkoxy group (f1) include a perfluoroalkylalkoxy group having an oxyalkylene group having 1 to 6 carbon atoms and one end of which is a perfluoroalkyl group having 1 to 15 carbon atoms.
- R 1 in the general formula (1) examples include a methylene group, an ethylene group, a propylene group, an n-, sec-, an iso-butylene group, a pentylene group, a hexylene group, and a 1,4-cyclohexylene group.
- R 2 in the general formula (1) is a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluoroisopropyl group, a perfluoro-n-, iso-, sec- or tert-butyl group, Fluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluoro-2-ethylhexyl group, perfluorononyl group, perfluorodecyl group, perfluoroundecyl group, perfluorododecyl group, perfluoro Examples include tridecyl group, perfluorotetradecyl group, and perfluoropentadecyl group.
- (F1) is preferably a linear or branched perfluoroalkylethoxy group having 1 to 6 carbon atoms, and more preferably a linear or branched perfluoroalkylethoxy group having 1 to 4 carbon atoms.
- Examples of the perfluoroalkoxy group (f2) include perfluoroalkoxy groups having 1 to 15 carbon atoms.
- R 3 in the general formula (2) examples include the same as those exemplified for R 2 .
- (F2) is preferably a linear or branched perfluoroalkoxy group having 1 to 6 carbon atoms, and more preferably a linear or branched perfluoroalkoxy group having 1 to 4 carbon atoms.
- Examples of the perfluoroalkoxyalkyl group (f3) include alkyl groups having 1 to 6 carbon atoms substituted with perfluoroalkoxy groups having 1 to 15 carbon atoms.
- R 4 in the general formula (3) is methylene group, ethylene group, n- or iso-propylene group, n-, sec-, iso-butylene group, pentylene group, hexylene group and 1,4-cyclohexylene. Groups and the like.
- Examples of R 5 in the general formula (3) include the same as those exemplified for R 2 .
- Preferred as (f3) is a linear or branched alkylene group having 1 to 3 carbon atoms as R 4 , and a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms as R 5 , More preferably, R 4 is an alkylene group having 1 or 2 carbon atoms, and R 5 is a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms.
- the alkylene group (R 6 ) in the above general formula (4) in the alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1) of the thiophene repeating unit (D) is an alkyl group having 1 to 6 carbon atoms. An alkylene group is mentioned.
- R 6 in the general formula (4) examples include the same as those exemplified for R 4 .
- R 7 in the general formula (4) examples include the same as those exemplified for R 1 .
- R ⁇ 8 > in the said General formula (4) the thing similar to what was illustrated by said R ⁇ 2 > is mentioned.
- R 6 is preferably a linear or branched alkylene group having 1 to 3 carbon atoms
- R 7 is an ethylene group
- R 8 is linear or branched having 1 to 6 carbon atoms. More preferably, R 6 is an alkylene group having 1 or 2 carbon atoms, and R 8 is a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms.
- the group (f) is preferably (f1) from the viewpoint of battery output characteristics, more preferably 2,2,2-trifluoroethoxy group, 2,2,3,3,3-pentafluoro.
- the substituted polythiophene (P) in the present invention is at least one group selected from the group consisting of a group (h1) represented by the following general formula (10) and a group (h2) represented by the following general formula (11).
- the repeating unit (F) of thiophene substituted with (h) may be included.
- r is an integer of 0 to 5.
- R 9 is a linear or branched alkylene group having 2 to 4 carbon atoms
- R 10 is a linear or branched alkyl group having 1 to 12 carbon atoms.
- R 12 is a linear or branched alkylene group having 2 to 4 carbon atoms
- R 13 is a linear or branched alkyl group having 1 to 12 carbon atoms
- R 11 is a linear or branched alkylene group having 1 to 4 carbon atoms.
- OR 9 and OR 12 in the general formula (10) or (11) each independently represent an oxyethylene group, an oxypropylene group, or an oxybutylene group, and an oxyethylene group is preferable from the viewpoint of conductivity.
- R 10 and R 13 in the general formula (10) or (11) are, for example, methyl group, n- or iso-propyl group, n-, iso-, sec- or tert-butyl group, n- or iso- Pentyl group, cyclopentyl group, n- or iso-hexyl group, cyclohexyl group, n- or iso-heptyl group, n- or iso-octyl group, 2-ethylhexyl group, n- or iso-nonyl group, n- or iso -Represents a decyl group, an n- or iso-undecyl group and an n- or iso-dodecyl group.
- R 10 when r is 1 or more, R 10 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, from the viewpoint of conductivity.
- R 10 is preferably a linear or branched alkyl group having 3 to 12 carbon atoms, more preferably a linear or branched alkyl group having 6 to 12 carbon atoms, from the viewpoint of conductivity. It is.
- R 13 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, from the viewpoint of conductivity.
- R 13 is preferably a linear or branched alkyl group having 3 to 12 carbon atoms, more preferably a linear or branched alkyl group having 6 to 12 carbon atoms, from the viewpoint of conductivity. It is.
- R 11 in the general formula (11) is, for example, a methylene group, 1,2- or 1,3-propylene group and 1,2-, 1,3-, 2,3- or 1,4-butylene group.
- a linear or branched alkylene group having 1 to 3 carbon atoms is preferable, and an alkylene group having 1 or 2 carbon atoms is more preferable.
- r and s are each independently an integer of 0 to 5. From the viewpoint of solvent solubility and conductivity, r is preferably 1 to 5, and more preferably 2 to 5. s is preferably 0 to 4, more preferably 0 to 3, from the viewpoint of solvent solubility and conductivity.
- the content of the repeating unit (D) of the thiophene in the substituted polythiophene (P) is preferably 30 to 100 mol%, more preferably 35 to 100 mol%, particularly preferably 40 to 100, from the viewpoint of solvent solubility. Mol%.
- the content of the repeating unit (F) of the thiophene substituted with the group (h) in the substituted polythiophene (P) is preferably 0 to 50 mol%, more preferably from the viewpoint of withstand voltage and cycle characteristics at high temperature. Is from 10 to 40 mol%, particularly preferably from 10 to 30 mol%.
- the substituted polythiophene (P) in the present invention may contain an unsubstituted thiophene repeating unit.
- a group bonded to the 3-position and 4-position of the thiophene ring is a combination of a hydrogen atom and a group (f), a combination of different groups (f) or a group (f) Combination with group (h).
- the thiophene repeating unit (D) is preferably a thiophene repeating unit (D1) represented by the following general formula (5) or a thiophene represented by the general formula (6) from the viewpoint of conductivity and solvent solubility.
- a substituted polythiophene having at least one selected from the group consisting of (D1) to (D4) as a repeating unit is defined as (P1).
- Preferred as (P1) is (D1) or (D4) from 50 to 100 mol%, more preferably from 60 to 100 mol%, particularly preferably from 70 to 100 mol, from the viewpoint of solvent solubility and ease of synthesis. % Content.
- the substituted polythiophene (P) in the present invention can be synthesized by a known method such as anionic polymerization or oxidation polymerization of a monomer corresponding to each thiophene repeating unit.
- anionic polymerization or oxidation polymerization of a monomer corresponding to each thiophene repeating unit.
- Examples of the monomer corresponding to the substituted thiophene repeating unit (D) include a perfluoroalkylalkoxy group (f1), a perfluoroalkoxy group (f2), and a perfluoroalkoxyalkyl group at the 3-position and / or 4-position of the thiophene ring. (F3), or a thiophene substituted with the alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1) and substituted with a halogen atom at the 2- and 5-positions.
- Specific examples of the monomer in which the 3-position of the thiophene ring is substituted with a perfluoroalkylalkoxy group (f1) include thiophene in which the 2-position and 5-position of the following thiophene (d1) are substituted with a halogen atom.
- Thiophene (d1) includes 3- (3,3,4,4,5,5,6,6,6-nonafluoro-1-hexyloxy) thiophene, 3- (3,3,4,4,5, 5,6,6,7,7,8,8,8-tridecafluoro-1-octyloxy) thiophene, 3- (3,3,4,4,5,5,6,6,7,7, 8,8,9,9,10,10,10-heptadecafluoro-1-decyloxy) thiophene, 3- (4,4,5,5,5-pentafluoro-1-pentyloxy) thiophene, 3- ( 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene, 3- (4,4,5,5,6,6,7,7,8,8, 9,9,9-tridecafluoro-1-nonyloxy) thiophene or 3- (4,4,5,5,6,6,7,7,8, , 9,9,10,10,11,11,
- Specific examples of the monomer in which the 3-position of the thiophene ring is substituted with a perfluoroalkoxy group (f2) include thiophene in which the 2-position and 5-position of the following thiophene (d2) are substituted with a halogen atom.
- thiophene (d2) 3-perfluoromethoxythiophene, 3-perfluoroethoxythiophene, 3-perfluoropropoxythiophene, 3-perfluorobutoxythiophene, 3-perfluoropentyloxythiophene, 3-perfluorohexyloxythiophene , 3-perfluoroheptyloxythiophene, 3-perfluorooctyloxythiophene, 3-perfluorononyloxythiophene, 3-perfluorodecyloxythiophene, 3-perfluoroundecyloxythiophene and 3-perfluorododecyloxythiophene Is mentioned.
- thiophene examples include 3-perfluoromethoxymethylthiophene, 3-perfluoroethoxymethylthiophene, 3-perfluoropropoxymethylthiophene, 3-perfluorobutoxymethylthiophene, 3-perfluoropentyloxymethylthiophene, 3- Perfluorohexyloxymethylthiophene, 3-perfluoroheptyloxymethylthiophene, 3-perfluorooctyloxymethylthiophene, 3-perfluorononyloxymethylthiophene, 3-perfluorodecyloxymethylthiophene, 3-perfluoroundecyloxy Methylthiophene, 3-perfluorododecyloxymethylthiophene
- the monomer substituted with the alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1) include the following thiophene substituted with a halogen atom at the 2-position and 5-position of the thiophene (d4): Can be mentioned.
- Examples of thiophene (d4) include 3- (4,4,5,5,5-pentafluoro-2-oxapentyl) thiophene, 3- (4,4,5,5,6,6,6-heptafluoro- 2-oxahexyl) thiophene, 3- (5,5,6,6,7,7,8,8,8-nonafluoro-2-oxaoctyl) thiophene, 3- (5,5,6,6,7, 7,8,8,9,9,10,10,10-tridecafluoro-2-oxadecyl) thiophene and 3- (5,5,6,6,7,7,8,8,9,9,10) , 10, 11, 11, 12, 12, 12-heptadecafluoro-2-oxadodecyl) thiophene and the like.
- Specific examples of the monomer in which the 3rd and 4th positions of the thiophene ring are substituted with the group (f) include the following thiophenes in which the 2nd and 5th positions of the following thiophene (d5) are substituted with halogen atoms.
- Examples of the monomer corresponding to the unsubstituted thiophene repeating unit include thiophenes in which the 2-position and 5-position are substituted with halogen atoms.
- Monomers corresponding to the repeating unit (F) of thiophene substituted with the group (h) include 3-hexyloxythiophene, 3- (2,5-dioxaheptyl) thiophene, 3- (1,3-dioxo A pentyl) -4-methoxythiophene monomer having 2- and 5-positions substituted with a halogen atom.
- the stereoregularity (RR) of the substituted polythiophene (P) in the present invention is usually 50% or more, preferably 80% or more, more preferably 90% or more from the viewpoint of conductivity.
- RR is based on the substituent (f), and the groups bonded to the 3-position and 4-position of the thiophene ring of the substituted polythiophene (P) are different from each other in combination of the hydrogen atom and the group (f). This is applied to a combination of groups (f), a combination of groups (f) and (h), or a combination of groups (f) and groups (g) described later.
- stereoregularity (RR) in the present invention will be described below.
- an HT-HT bond (B1), a TT-HT bond (B2) There are four types: HT-HH bond (B3) and TT-HH bond (B4).
- HT is an abbreviation for head to tail
- TT is an abbreviation for tail to tail
- HH is an abbreviation for head to head.
- R in the chemical formulas of the above four bond types is substituted with a perfluoroalkylalkoxy group (f1), a perfluoroalkoxy group (f2), a perfluoroalkoxyalkyl group (f3), and the perfluoroalkylalkoxy group (f1).
- f1 perfluoroalkylalkoxy group
- f2 perfluoroalkoxy group
- f3 perfluoroalkoxyalkyl group
- f1 Represents an alkyl group (f4).
- the stereoregularity (RR) in the present invention is defined by the ratio (%) of HT-HT bonds (head-to-tail-head-to-tail bonds) in the substituted polythiophene (P), and is calculated by the following formula (1).
- Stereoregularity (RR) b1 ⁇ 100 / (b1 + b2 + b3 + b4)
- Formula (1) Where b1: HT-HT bond number, b2: TT-HT bond number, b3: HT-HH bond number, b4: TT-HH bond number.
- the protons possessed by these bonds each show a unique chemical shift ( ⁇ ) by nuclear magnetic resonance ( 1 H-NMR), and are calculated from the integrated values of chemical shifts corresponding to the four types of bonds. can do.
- D1 thiophene repeating unit
- B1: ⁇ 6.98
- B2: ⁇ 7.00
- B3: ⁇ 7. 02
- B4: ⁇ 7.05.
- the integral values S1, S2, S3, S4 in the chemical shifts unique to B1, B2, B3, B4 are calculated
- the stereoregulation rule is calculated from the ratio (%) of the integral value S1 in the chemical shift unique to B1 to the sum of the integral values.
- the property (RR) is calculated using the following mathematical formula (2).
- Stereoregularity (RR) S1 ⁇ 100 / (S1 + S2 + S3 + S4)
- the substituted polythiophene (P) becomes solvent-soluble by having the repeating unit (D1), (D2), (D3) or (D4) of thiophene, but one or more of (P)
- a sulfonium group (g) represented by the following general formula (9) into the thiophene repeating unit, the affinity with water is increased, and a water-dispersible substituted polythiophene (P2) can be obtained.
- Preferred as such a substituted polythiophene is a repeating unit of at least one thiophene selected from the group consisting of repeating units (E1) to (E4) of thiophene represented by the following general formulas (12) to (15) ( E) and substituted polythiophene (P2) having a repeating unit (D).
- M + is an alkali metal cation or a proton.
- M + in the general formula (9) represents an alkali metal cation (such as a lithium cation ion, a sodium ion, or a potassium ion) or a proton.
- M + is preferably an alkali metal cation from the viewpoint of dispersibility in water, and more preferably lithium ion from the viewpoint of stability to the electrolyte.
- the substituted polythiophene (P2) having the thiophene repeating unit (D) and the thiophene repeating unit (E) can be produced by sulfonating the substituted polythiophene (P1) with a sulfonation reagent.
- a sulfonation reagent include, but are not limited to, monochlorosulfuric acid, fuming sulfuric acid, and concentrated sulfuric acid.
- the content of the repeating unit (E) of thiophene in the substituted polythiophene (P2) is usually from 5 to 70 mol%, preferably from 30 to 60 mol%, from the viewpoint of water dispersibility, conductivity and ease of synthesis. More preferably, it is 50 to 60 mol%.
- the content of the repeating unit (D) of thiophene in the substituted polythiophene (P2) is usually 30 to 95 mol%, preferably 40 to 70 mol%, from the viewpoint of water dispersibility, conductivity and ease of synthesis. Preferably, it is 40 to 50 mol%.
- the substituted polythiophene (P1) is preferable from the viewpoint of conductivity, and the substituted polythiophene (P2) is preferable from the viewpoint of environmental load that does not use an organic solvent.
- the additive (A) in the present invention may be mixed with a polymer compound or a conductive aid that assists the binding force as necessary.
- a polymer compound that assists the binding force when the substituted polythiophene (P) is dissolved in an organic solvent to be described later a polymer compound that is soluble in the organic solvent can be mixed.
- polythiophene (P) is used by dispersing in water, a water-soluble polymer compound can be mixed.
- polystyrene resin examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
- PTFE polytetrafluoroethylene
- polyvinylidene fluoride examples include polyvinylidene fluoride, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
- FEP tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- EPF tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- EPF tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- EPF resin ethylene-tetrafluoroethylene copolymer
- PCTFE polychlorotrifluoroethylene
- vinylidene fluoride-pentafluoropropylene copolymer propylene-tetrafluoroethylene copolymer
- ECTFE ethylene-chloro Li fluoroethylene copolymer
- ECTFE vinylidene fluoride - hexafluoropropylene - tetrafluoroethylene copolymer
- water-soluble polymer compound examples include cellulose derivatives, poly (meth) acrylic acids, polyvinyl alcohol, polyvinyl sulfonic acid, polyvinylidene fluoride, polyvinyl pyrrolidone, polyethylene oxide, polyacrylamide, poly-N-isopropylacrylamide, poly- N, N-dimethylacrylamide, polyoxyethylene, polyethyleneimine and the like can be mentioned.
- cellulose derivatives include carboxymethyl cellulose (including Li salt, Na salt, K salt or NH 4 salt), methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, cellulose acetate butyrate, oxidized starch and phosphorylated starch.
- carboxymethyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
- methyl cellulose including Li salt, Na salt, K salt or
- Poly (meth) acrylic acids include (meth) acrylic acid homopolymers, copolymers of (meth) acrylic acid and itaconic acid and / or maleic acid, and their Li salts, Na salts, K Salt or NH 4 salt.
- a cellulose derivative is preferable, a carboxymethyl cellulose is more preferable, and a carboxymethyl cellulose salt is particularly preferable.
- the content of the polymer compound that assists the binding force in the additive (A) is usually 0 to 80% by weight, preferably 1 to 50% by weight. If the content of the polymer compound is too large, the output is reduced, which is not preferable.
- the conductive auxiliary agent that can be mixed with the additive (A) of the present invention is not particularly limited as long as it is an electron conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode material used.
- the conductive assistant include graphites such as natural graphite (flaky graphite etc.) and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, carbon nanotubes, and the like.
- Conductive fibers such as carbon fibers and metal fibers, metal powders such as carbon fluoride, copper, nickel, aluminum and silver, conductive whiskers such as zinc oxide and potassium titanate, conductive metals such as titanium oxide Examples thereof include organic conductive materials such as oxides and polyphenylene derivatives, and mixtures thereof. Of these conductive agents, artificial graphite, acetylene black and nickel powder are particularly preferred.
- the content of the conductive assistant in the additive (A) is not particularly limited, but is preferably 1 to 50% by weight, more preferably 1 to 30% by weight. In the case of carbon or graphite, 2 to 15% by weight is particularly preferable.
- the positive electrode for a lithium secondary battery of the present invention contains an additive (A), an active material (B), and a current collector (C).
- the positive electrode for a lithium secondary battery of the present invention is obtained by kneading an additive (A), an active material (B), and a solvent, and then applying the kneaded material to a current collector (C) and drying it. Can do.
- the additive (A) and the active material (B) are mixed in a desired ratio, and a solvent is added thereto to obtain a slurry-like kneaded product.
- the obtained kneaded material is applied to a current collector (C) such as an aluminum foil and dried, and further pressed at a predetermined pressure as necessary to obtain an electrode.
- the drying temperature for drying the kneaded product is preferably 100 to 150 ° C., more preferably 120 to 140 ° C. When the drying temperature is less than 100 ° C., the amount of the solvent remaining in the electrode material may increase, which may adversely affect the characteristics of the battery. On the other hand, when the temperature exceeds 150 ° C., the additive (A) is likely to be decomposed (carbonized), which may adversely affect the characteristics of the battery.
- a lithium transition metal composite oxide can be used as the active material (B).
- a lithium transition metal composite oxide can be used as the active material (B).
- Li x FePO 4 Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- y My O z , Li x Mn 2 O 4 , Li x Mn 2- y My O 4 (where M is Na, At least one atom selected from Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B, x is a number from 0 to 1.2, and y is from 0 to 0.9 and z is a number from 2.0 to 2.3).
- the value of x described above is a value before the start of charge / discharge, and increases or decreases due to charge / discharge.
- Li x FePO 4, or Li x CoO 2 in terms of cost preferably Li x FePO 4, or Li x CoO 2 in terms of cost, further Li x FePO 4 are preferable in view of safety of not exothermic decomposition even at a high temperature of over 160 degrees.
- the amount of the additive (A) relative to the active material (B) is usually 1 to 20% by weight.
- the amount is preferably 3 to 10% by weight, more preferably 3 to 5% by weight. If the amount of the binder is too small, the active material cannot be sufficiently bonded, and if the amount is too large, the energy density of the battery is lowered, which is not preferable.
- the solvent for kneading the additive (A) and the active material (B) of the present invention has a boiling point of 150 when the substituted polythiophene (P) contained in the additive (A) is a substituted polythiophene (P1).
- An organic solvent having a temperature of less than 0 ° C. is preferred, and water is preferred when it is a substituted polythiophene (P2).
- the organic solvent preferably has a boiling point of less than 150 ° C. If the boiling point is 150 ° C. or higher, the amount of the solvent remaining in the electrode material in the drying process may increase, which may adversely affect the battery characteristics.
- examples of such an organic solvent include 1-methyl-2-pyrrolidone, dimethylformamide, chloroform, tetrahydrofuran (hereinafter abbreviated as THF), 1,3-dioxolane, 1,4-dioxane and toluene. Of these, 1-methyl-2-pyrrolidone and 1,3-dioxolane are preferred from the viewpoint of the solubility of the substituted polythiophene (P).
- the amount of the solvent when producing the positive electrode of the present invention is 50 to 300% by weight, preferably 50 to 100% by weight, based on the active material (B). If the amount of the solvent is too small, the active material (B) and the additive (A) cannot be sufficiently kneaded. If the amount is too large, the amount of the solvent remaining in the electrode material may increase, which adversely affects the battery characteristics. Since it may affect, it is not preferable.
- the current collector (C) used in the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change at the charge / discharge potential of the positive electrode used.
- the material is stainless steel, aluminum, titanium, carbon.
- an alloy or the like obtained by treating carbon or titanium on the surface of aluminum or stainless steel is used.
- aluminum and aluminum alloys are particularly preferable. These materials can be used by oxidizing the surface thereof. Further, it is desirable to make the current collector surface uneven by surface treatment.
- Examples of the shape of the current collector (C) include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foams, fiber groups, and nonwoven fabric shaped bodies.
- the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
- the lithium secondary battery of the present invention can be obtained by using such a positive electrode.
- a part shows a weight part.
- the reaction solution was allowed to cool to room temperature, and 5 parts of methanol was added.
- the reaction mixture was transferred to a Soxhlet extractor and washed sequentially with 150 parts of methanol, 150 parts of chloroform and 150 parts of acetone. Finally, the residue is extracted with 150 parts of 1-methyl-2-pyrrolidone, and the solvent is distilled off to remove poly ⁇ 3- (4,4,5,5,6,6,7,7,7-nonafluoro-1 -Heptyloxy) thiophene ⁇ (P1-1) 2.95 parts (yield 40%, total yield 28%) were obtained.
- the stereoregularity calculated by the above-described method using 1 H-NMR was 96.3%.
- reaction mixture was allowed to cool to room temperature, 30 parts of distilled water was added and the mixture was transferred to a separatory funnel, and the aqueous layer was separated. Further, the organic layer was washed twice with 30 parts of distilled water, THF was distilled off, and the resulting mixture was purified with a silica gel column to give 3- (4,4,5,5,5-pentafluoro-2 There was obtained 7.47 parts (30.35 mmol) (yield 85%) of -oxapentyl) thiophene.
- the dispersion was settled using a centrifuge, the supernatant was removed, and then washed twice with 800 parts of distilled water using a centrifuge.
- the obtained precipitate was put into 6000 parts of distilled water and dispersed by irradiating with ultrasonic waves for 30 minutes.
- the obtained dispersion was passed through a column packed with 30 parts of an ion exchange resin (Amberjet 4400, manufactured by Aldrich). After removing residual sulfonic acid, water was distilled off under reduced pressure to obtain sulfonated poly ⁇ 3- ( 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene ⁇ 3.16 parts (yield 96%).
- the reaction mixture was depressurized to distill off water, and sulfonated poly ⁇ 3- (4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene ⁇ lithium salt (P2 -1) 3.19 parts (99% yield, 95% overall yield) were obtained.
- the obtained sulfonated poly ⁇ 3- (4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene ⁇ lithium salt was analyzed by NMR.
- the content of (D1) was 49 mol%
- the content of the repeating unit (E1) of thiophene was 51 mol%.
- the obtained sulfonated poly ⁇ 3- (4,4,5,5,5-pentafluoro-2-oxapentyl) thiophene ⁇ lithium salt was analyzed by NMR.
- the content of the repeating unit (D4) of thiophene was The content of 52 mol% of thiophene repeating units (E4) was 48 mol%.
- ⁇ Production Example 12 Production of negative electrode: 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd.) are thoroughly mixed in a mortar to obtain a slurry. Obtained. The obtained slurry was applied to one side of a 20 ⁇ m thick copper foil, dried at 120 ° C. for 15 minutes to evaporate the solvent, punched out to 12 mm ⁇ , and made a negative electrode with a thickness of 30 ⁇ m using a press.
- Drying was performed at a temperature of 5 ° C. for 5 minutes to form a layer made of an active material and an additive having a thickness of 10 ⁇ m on the aluminum electrolytic night, and a positive electrode having a total film thickness of 30 ⁇ m was produced.
- Binding power (%) (Number of remaining squares / 100) ⁇ 100
- the substituted polythiophene (P) in the prepared test sample was gas-phase dyed with ruthenium tetroxide, and in a polyvinylidene fluoride using a transmission electron microscope (TEM) "H-7100 type manufactured by Hitachi, Ltd.”
- TEM transmission electron microscope
- the dispersed particle size (nm) of the substituted polythiophene (P) was measured.
- the additives of Examples 11 and 12 and Comparative Example 3 are not measured because they do not dissolve in polyvinylidene fluoride.
- the additive of the comparative examples 4 and 5 does not contain substituted polythiophene, it has not measured.
- Cycle characteristic deterioration rate during high-speed charge / discharge is calculated based on the following formula. The larger the value, the better the cycle characteristics during high-speed charge / discharge compared with the normal charge / discharge.
- Cycle characteristic deterioration rate during high-speed charge / discharge (%) (high-speed charge / discharge capacity retention ratio / capacity retention ratio) ⁇ 100
- the additive of Example 1 has a larger battery output and superior output characteristics than the additive of Comparative Example 1, and also has good cycle characteristics even during high-speed charge / discharge. It can be seen that the additives of Examples 4 to 10, 13 and 14 have larger battery output and superior output characteristics than the additive of Comparative Example 2, and also have good cycle characteristics even during high-speed charge / discharge.
- the additives of Examples 4 to 10, 13 and 14 were substituted with the substituted polythiophene (P) in polyvinylidene fluoride from the binder of Comparative Example 2.
- the dispersibility of the additives of Examples 11 and 12 have larger battery output and better output characteristics than the additive of Comparative Example 3, and also have good cycle characteristics even during high-speed charge / discharge.
- the additive for positive electrode of the present invention can sufficiently withstand the binding force of the coating film applied to the aluminum electrolytic foil surface, and the positive electrode produced using these positive electrode additives has excellent output characteristics, and It can be seen that the cycle characteristics are good even during high-speed charge / discharge.
- the positive electrode additive for lithium secondary batteries of the present invention is useful as an additive for batteries other than lithium secondary batteries because it has excellent electron conductivity and ion conductivity. Moreover, since the lithium secondary battery using the additive of the present invention is excellent in output and safety, it is useful for electric vehicles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は上記問題点に鑑みてなされたものであり、本発明の目的は、リチウム二次電池の高出力化が可能で、かつ高速充放電時でもサイクル特性が維持できる電極用添加剤及び電極材料を提供することにある。
即ち、本発明は、チオフェン環の3位及び/又は4位の水素原子が下記一般式(1)~(4)でそれぞれ表される基(f1)~(f4)からなる群から選ばれる少なくとも1種の基(f)で置換されたチオフェンの繰り返し単位(D)(以下、繰り返し単位(D)ともいう。)をチオフェン繰り返し単位のうちの少なくとも一部として有する置換ポリチオフェン(P)を必須成分とするリチウム二次電池正極用添加剤(以下、リチウム二次電池正極用添加剤(A)、正極用添加剤(A)、添加剤(A)などともいう。);及び該添加剤(A)、活物質(B)及び集電体(C)を含有してなるリチウム二次電池用正極;該添加剤(A)を含有してなるリチウム二次電池である。
-OR1-R2 (1)
式中、R1は炭素数1~6のアルキレン基を表し、R2は炭素数1~15のパーフルオロアルキル基を表す。
-O-R3 (2)
式中、R3は炭素数1~15のパーフルオロアルキル基を表す。
-R4-O-R5 (3)
式中、R4は直鎖又は分岐の炭素数1~6のアルキレン基を表し、R5は炭素数1~15のパーフルオロアルキル基を表す。
-R6-OR7-R8 (4)
式中、R6は直鎖又は分岐の炭素数1~6のアルキレン基を表し、R7は炭素数1~6のアルキレン基を表し、R8は炭素数1~15のパーフルオロアルキル基を表す。
上記一般式(4)におけるR7としては、前記R1で例示したものと同様のものが挙げられる。
上記一般式(4)におけるR8としては、前記R2で例示したものと同様のものが挙げられる。
-(OR9)r-OR10 (10)
式中、rは0~5の整数である。R9は直鎖又は分岐の炭素数2~4のアルキレン基、R10は直鎖又は分岐の炭素数1~12のアルキル基である。
-R11-(OR12)s-OR13 (11)
式中、sは0~5の整数である。R12は直鎖又は分岐の炭素数2~4のアルキレン基、R13は直鎖又は分岐の炭素数1~12のアルキル基である。R11は直鎖又は分岐の炭素数1~4のアルキレン基である。
置換ポリチオフェン(P)の結合の種類は代表例として水素原子と基(f)との組み合わせを表す下記の一般式に示すように、HT-HT結合(B1)、TT-HT結合(B2)、HT-HH結合(B3)、TT-HH結合(B4)の4種類ある。尚ここで、HTはヘッドtoテール、TTはテールtoテール、HHはヘッドtoヘッドの略称である。
立体規則性(RR)=b1×100/(b1+b2+b3+b4) 数式(1)
ただし、b1:HT-HT結合の個数、b2:TT-HT結合の個数、b3:HT-HH結合の個数、b4:TT-HH結合の個数を表す。
立体規則性(RR)=S1×100/(S1+S2+S3+S4) 数式(2)
式中、M+は、アルカリ金属カチオン又はプロトンである。
集電体の厚みは、特に限定されないが、1~500μmであることが好ましい。
ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}(P1-1)の合成:
(1)3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェンの合成;
N,N-ジメチルホルムアミド7部に水素化ナトリウム(60%パラフィン分散)2.41部を分散させ、そこに3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール[アルドリッチ社製]15.92部を滴下した。反応溶液は発泡し白濁した。発泡が収まったところで、反応溶液に3-ブロモチオフェン(アルドリッチ社製)4.91部とヨウ化銅(I)0.115部を順に加えた。
反応溶液を110℃まで加熱し2時間反応させた。反応終了後、室温まで放冷し1Mの塩化アンモニウム水溶液30部を加え、酢酸エチル30部を使って分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、酢酸エチルを留去し、3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン9.39部(収率90%)を得た。
上記の3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン9.39部とN-ブロモスクシンミド9.90部をTHF30部に溶解させ、室温で2時間反応させた。
酢酸エチル50部を使ってグラスフィルターで沈殿物を除去し、THFと酢酸エチルを留去した。得られた混合物をシリカゲルカラムで精製することにより2,5-ジブロモ-3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン10.80部(収率79%)を得た。
上記の2,5-ジブロモ-3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン10.80部をTHF30部に溶かした後、メチルマグネシウムブロマイドTHF溶液21.21部を加え、75℃で30分反応させた。その反応溶液に[1,3-ビス(ジフェニルホスフィノ)プロパン]-ジクロロニッケル(II)0.116部を加え75℃のまま更に2時間反応させた。
反応溶液を室温まで放冷した後、メタノール5部を加えた。反応混合物をソックスレー抽出機に移し、メタノール150部とクロロホルム150部とアセトン150部で順に洗浄した。最後に残留物を1-メチル-2-ピロリドン150部で抽出し、溶剤を留去してポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}(P1-1)2.95部(収率40%、全収率28%)を得た。前述の1H-NMRを用いた方法で算出した立体規則性は96.3%であった。
ポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロ-1-ノニルオキシ)チオフェン}(P1-2)の合成:
3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール15.92部の代わりに3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール[東京化成工業(株)製]20.23部を使用したこと以外は製造例1と同様にして立体規則性が95.6%であるポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロ-1-ノニルオキシ)チオフェン}(P1-2)3.05部を得た(全収率25%)。
尚、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノールを3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノールに変更するに際して、反応成分のモル比及び非反応成分(溶剤等)の重量比が、製造例1における場合と同等となるように各原料の量を調整して操作を行った。以下の製造例3、5~7及び9~11についても同様に行った。
ポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロ-1-ウンデシルオキシ)チオフェン}(P1-3)の合成:
3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール15.92部の代わりに3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ-1-デカノール[東京化成工業(株)製]23.55部を使用したこと以外は製造例1と同様にして立体規則性が96.6%であるポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロ-1-ウンデシルオキシ)チオフェン}(P1-3)3.51部を得た(全収率25%)。
ポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}(P1-4)の合成:
(1)3-ブロモメチルチオフェンの合成;
3-メチルチオフェン[東京化成工業(株)製]5部(50.9mmol)、N-ブロモスクシンイミド9.97部(56.0mmol)、ジベンゾイルパーオキサイド[東京化成工業(株)製]0.12部(0.50mmol)をベンゼン30部に溶解させた後100℃まで昇温し、4時間反応させた。反応終了後、室温まで放冷し、1Mのチオ硫酸ナトリウム水溶液30部を加え分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、ベンゼンを留去し、3-ブロモメチルチオフェン6.32部(35.7mmol)(収率70.1%)を得た。
2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部(39.3mmol)をTHF15部に溶解させ、そこに水素化ナトリウム(60%パラフィン分散)1.57部(39.3mmmol)を加えた。上記の3-ブロモメチルチオフェン6.32部(35.7mmol)をTHF15部に溶かし2時間かけて滴下した後、100℃まで昇温し4時間反応させた。反応終了後、室温まで放冷し、蒸留水30部を加え分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、THFを留去し、得られた混合物をシリカゲルカラムで精製することにより3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン7.47部(30.35mmol)(収率85%)を得た。
上記の3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン7.47部(30.35mmol)とN-ブロモスクシンイミド11.07部(62.21mmol)をTHF30部に溶解させ、室温で2時間反応させた。
酢酸エチル50部を使ってグラスフィルターで沈殿物を除去し、THFと酢酸エチルを留去した。得られた混合物をシリカゲルカラムで精製することにより2,5-ジブロモ-3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン9.44部(23.37mmol)(収率77%)を得た。
上記の2,5-ジブロモ-3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン9.44部(23.37mmol)をTHF30部に溶かした後、メチルマグネシウムブロマイドTHF溶液23.14部(23.37mmol)を加え、75℃で30分反応させた。その反応溶液に[1,3-ビス(ジフェニルホスフィノ)プロパン]-ジクロロニッケル(II)0.127部(0.234mmol)を加え75℃のまま更に2時間反応させた。反応溶液を室温まで放冷した後、メタノール5部を加えた。反応混合物をソックスレー抽出機に移し、メタノール150部とクロロホルム150部とアセトン150部で順に洗浄した。最後に残留物を1-メチル-2-ピロリドン150部で抽出し、溶剤を留去して、立体規則性が96.7%であるポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}(P1-4)2.28部(収率40%、全収率18%)を得た。
ポリ{3-(4,4,5,5,6,6,6-ヘプタフルオロ-2-オキサヘキシル)チオフェン}(P1-5)の合成:
2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部の代わりに2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール7.86部[東京化成工業(株)製]を使用したこと以外は製造例4と同様にして立体規則性が97.4%である(P1-5)2.51部を得た(全収率17%)。
ポリ{3-(5,5,6,6,7,7,8,8,8-ノナフルオロ-2-オキサオクチル)チオフェン}(P1-6)の合成:
2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部の代わりに3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール10.37部を使用したこと以外は製造例4と同様にして立体規則性が95.9%である(P1-6)2.97部を得た(全収率16%)。
ポリ{3-(5,5,6,6,7,7,8,8,9,9,10,10,10-トリデカフルオロ-2-オキサデシル)チオフェン}(P1-7)の合成:
2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部の代わりに3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール14.30部を使用したこと以外は製造例4と同様にして立体規則性が95.8%である(P1-7)3.79部を得た(全収率16%)。
スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}リチウム塩(P2-1)の合成:
(1)スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}の合成;
製造例1で得られた(P1-1)2.95部に発煙硫酸180部を混合し、85℃で24時間反応させた。反応混合物を蒸留水6000部で希釈した後、室温で1時間攪拌し分散させた。遠心分離機を使って分散体を沈降させ、上澄みを除いた後、遠心分離機で蒸留水800部を使って2回洗浄した。得られた沈殿物を蒸留水6000部に入れ、超音波を30分照射して分散させた。
得られた分散液を、イオン交換樹脂(Anberjet 4400,アルドリッチ社製)30部を充填したカラムに通して、残留するスルホン酸を取り除いたのち、水を減圧留去しスルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}3.16部(収率96%)を得た。
上記スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}3.16部を蒸留水50部に分散させた後、炭酸リチウム0.60部を加えて室温で1時間反応させた。反応混合物を減圧して水を留去し、スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}リチウム塩(P2-1)3.19部(収率99%、全収率95%)を得た。
得られたスルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}リチウム塩をNMRにより分析した結果、チオフェンの繰り返し単位(D1)の含有量は49モル%、チオフェンの繰り返し単位(E1)の含有量は51モル%であった。
スルホン化ポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}リチウム塩(P2-2)の合成:
(P1-1)2.95部の代わりに製造例4で得られた(P1-4)2.28部を使用したこと以外は製造例8と同様にしてスルホン化ポリ{3-(2,5-ジオキサペンチルヘプチル)チオフェン}リチウム塩(P2-2)2.46部を得た(全収率91%)。得られたスルホン化ポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}リチウム塩をNMRにより分析した結果、チオフェンの繰り返し単位(D4)の含有量は52モル%、チオフェンの繰り返し単位(E4)の含有量は48モル%であった。
ポリ(3-ヘキシルオキシチオフェン)(P’-1)の合成:
3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール15.92部の代わりに1-ヘキサノール10.65部を使用したこと以外は製造例1と同様にして立体規則性が96.7%であるポリ(3-ヘキシルオキシチオフェン)(P’-1)2.85部を得た(全収率30%)。
スルホン化ポリ(3-ヘキシルオキシチオフェン)リチウム塩(P’-2)の合成:
(P1-1)2.95部の代わりに製造例10で得られた(P’-1)2.85部を使用したこと以外は製造例8と同様にしてスルホン化ポリ(3-ヘキシルオキシチオフェン)リチウム塩(P’-2)3.23部を得た(全収率91%)。得られたスルホン化ポリ(3-ヘキシルオキシチオフェン)リチウム塩をNMRにより分析した結果、チオフェンの繰り返し単位(F)の含有量は52モル%、チオフェンの繰り返し単位(E)の含有量は48モル%であった。
負極の作製:
平均粒径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部及び1-メチル-2-ピロリドン[東京化成工業(株)製]200部を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、120℃で15分間乾燥して溶媒を蒸発させた後、12mmφに打ち抜き、プレス機で厚さ30μmにして負極を作製した。
リチウム二次電池電解質の調製:
エチレンカーボネート:ジエチルカーボネート:ビニレンカーボネート=48.5:48.5:3(重量比)混合溶媒に、電解質としてLiPF6を1mol/Lの濃度になるように溶解し、電解質溶液を調製した。
<添加剤の作製>
上記の製造例1~11で得られた置換ポリチオフェン、結着力補助高分子化合物としてのポリフッ化ビニリデン、カルボキシメチルセルロース及びポリアニリンスルホン酸を表1及び2に示した重量比率で混合して、それぞれ実施例1~14及び比較例1~5用の添加剤を作製した。
実施例1~10、13、14及び比較例1、2、4、5用の添加剤0.25部と、LiFePO4粉末9.5部、導電助剤としてのアセチレンブラック(電気化学工業社製、平均粒径:1.0μm)0.25部と、1-メチル-2-ピロリドン[東京化成工業(株)製]7.0部を乳鉢で十分に混練して、それぞれ実施例1~10、13、14及び比較例1、2、4、5用のスラリーを得た。
得られたスラリーを、大気中でワイヤーコーティングバーを用いて厚さ20μmのアルミニウム電解箔集電体上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、アルミニウム電解泊上に厚さ10μmの活物質と添加剤からなる層を形成させ、全体膜厚30μmの正極を作製した。
また、実施例11、12及び比較例3用の添加剤0.25部と、LiFePO4粉末9.5部、導電助剤としてのアセチレンブラック(電気化学工業社製、平均粒径:1.0μm)0.25部と、水7.0部を乳鉢で十分に混練して、それぞれ実施例11、12及び比較例3用のスラリーを得た。
得られたスラリーを、大気中でワイヤーコーティングバーを用いて厚さ20μmのアルミニウム電解箔集電体上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、アルミニウム電解泊上に厚さ10μmの活物質と添加剤からなる層を形成させ、全体膜厚30μmの正極を作製した。
2032型コインセル内の両端に、実施例1~14及び比較例1~5用の正極と、製造例12で得られた負極を、それぞれの塗布面が向き合うように配置して二次電池用セルを作製した。製造例13で作製した電解質溶液をセル内に注入し評価用セルとした。
得られた添加剤、正極及び評価用セルを用いて、以下の評価方法により、結着力、ポリフッ化ビニリデン中での分散性、耐電圧、電池出力、容量保持率、高速充放電時の容量保持率及び高速充放電時のサイクル特性劣化率を評価した結果を表1及び2に示す。
碁盤目試験法JIS K5400に準じて正極膜表面に10×10マスの碁盤目状の傷をつけて、その上にセロハン粘着テープ(ニチバン(株)製)を貼り付け、剥がした後に正極合剤層の残ったマス目の数を目視により計数し、下記式から結着力を算出する。
結着力(%)=(残ったマス目の数/100)×100
添加剤1.0部と、1-メチル-2-ピロリドン[東京化成工業(株)製]7.0部を乳鉢で十分に混練して得られたスラリーをアルミ箔に塗布し、大気中で、100℃で15分間乾燥させた後、更に減圧下(1.5kPa)、80℃で5分間乾燥して被検サンプルを作成した。作成した被検サンプル中の置換ポリチオフェン(P)を四酸化ルテニウムで気相染色し、透過型電子顕微鏡(TEM)「(株)日立製作所製 H-7100型」を用いて、ポリフッ化ビニリデン中での置換ポリチオフェン(P)の分散粒径(nm)を計測した。ただし、実施例11、12及び比較例3の添加剤はポリフッ化ビニリデンに溶解しないため計測していない。また、比較例4、5の添加剤は、置換ポリチオフェンを含有していないので計測していない。
アルミ箔に置換ポリチオフェン(P)5mgを塗布した電極が作用極であり、リチウム箔が対極及び参照極であり、電解液がエチレンカーボネート:ジエチルカーボネート=50:50(体積比)の割合で混合した溶媒に、1mol/Lの割合で六フッ化リン酸リチウムを溶解させたものである三極式セルを用いて、ポテンショスタット/ガルバノスタット(Bio Logic社製)で65℃、3.0~5.0Vの電圧範囲、1mV/secのスイープ速度でサイクリックボルタンメトリー(CV)を行い、置換ポリチオフェン(P)のクーロン効率を求める。クーロン効率の数値が高い程、耐電圧性能が良好であることを示す。
充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、SOC(State of charge、満充電状態における容量と所定時点における容量との比)が60%になるように充電を行った後、一定電流で放電し、10秒後の電圧を読み取る。この操作をいくつかの電流値で行い、横軸に電流値、縦軸に10秒後の電圧値をプロットして近似直線を作成し、近似直線が3Vと交差する際の電流値(I3.0Vと表記する)を読み取り、下記数式から電池出力を算出する。
電池出力(W)=I3.0V×3.0
充放電測定装置「バッテリーアナライザー1470型」を用いて、0.2mA/cm2の電流で電圧0Vから2Vまで充電し、10分間の休止後、0.2mA/cm2の電流で電池電圧を0Vまで放電し、この充放電を50サイクル繰り返す。
この時の初回充電時の電池容量と、50サイクル目充電時の電池容量を測定し、下記数式から容量保持率を算出する。数値が大きい程、充放電サイクル特性が良好であることを示す。
容量保持率(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
充放電測定装置「バッテリーアナライザー1470型」を用いて、0.5mA/cm2の電流で電圧0Vから2Vまで充電し、10分間の休止後、0.5mA/cm2の電流で電池電圧を0Vまで放電し、この充放電を繰り返す。
この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記数式から高速充放電時の容量保持率を算出する。数値が大きい程、高速充放電サイクル特性が良好であることを示す。
高速充放電容量保持率(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
高速充放電時のサイクル特性劣化率を下記数式に基づいて算出する。数値が大きいほど通常充放電時に比べて高速充放電時のサイクル特性が劣化せず良好であることを示す。
高速充放電時のサイクル特性劣化率(%)=(高速充放電容量保持率/容量保持率)×100
実施例4~10、13及び14の添加剤は、比較例2の添加剤より、電池出力が大きく出力特性に優れ、かつ高速充放電時にもサイクル特性が良好であることが分かる。
また、正極用添加剤中におけるポリフッ化ビニリデンを使用した場合は、実施例4~10、13及び14の添加剤は、比較例2の結着剤より、ポリフッ化ビニリデン中での置換ポリチオフェン(P)の分散性が良好であることが分かる。
実施例11、12の添加剤は、比較例3の添加剤より、電池出力が大きく出力特性に優れ、かつ高速充放電時にもサイクル特性が良好であることが分かる。
本発明の正極用添加剤は、アルミニウム電解箔面に塗布した塗膜の結着力も使用に十分耐えうるものであり、これらの正極用添加剤を用いて作製した正極は出力特性に優れ、しかも高速充放電時にもサイクル特性が良好であることが分かる。
Claims (10)
- チオフェン環の3位及び/又は4位の水素原子が下記一般式(1)~(4)でそれぞれ表される基(f1)~(f4)からなる群から選ばれる少なくとも1つの基(f)で置換された繰り返し単位(D)をチオフェン繰り返し単位のうちの少なくとも一部として有する置換ポリチオフェン(P)を必須成分とするリチウム二次電池正極用添加剤。
-OR1-R2 (1)
[式中、R1は炭素数1~6のアルキレン基を表し、R2は炭素数1~15のパーフルオロアルキル基を表す。]
-O-R3 (2)
[式中、R3は炭素数1~15のパーフルオロアルキル基を表す。]
-R4-O-R5 (3)
[式中、R4は直鎖又は分岐の炭素数1~6のアルキレン基を表し、R5は炭素数1~15のパーフルオロアルキル基を表す。]
-R6-OR7-R8 (4)
[式中、R6は直鎖又は分岐の炭素数1~6のアルキレン基を表し、R7は炭素数1~6のアルキレン基を表し、R8は炭素数1~15のパーフルオロアルキル基を表す。] - 繰り返し単位(D)が、2,2,2-トリフルオロエトキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、2,2,3,3,4,4,4-ヘプタフルオロブトキシ基、2,2,3,3,4,4,5,5,5-ノナフルオロペントキシ基、3,3,3-トリフルオロ-1-プロポキシ基、4,4,4-トリフルオロ-1-ブトキシ基及び5,5,5-トリフルオロ-1-ペントキシ基からなる群から選ばれる少なくとも1種の基で置換された繰り返し単位である請求項1又は2記載の添加剤。
- 繰り返し単位(D)の含有量が、置換ポリチオフェン(P)の重量に基づいて50~100モル%である請求項1~3のいずれか1項に記載の添加剤。
- 置換ポリチオフェン(P)中の一つ又は複数のチオフェン環の3位又は4位に下記一般式(9)で表される基(g)が結合した請求項1~4のいずれか1項に記載の添加剤。
-SO3 - M+ (9)
[式中、M+はアルカリ金属カチオン又はプロトンである。] - 置換ポリチオフェン(P)のヘッドtoテール-ヘッドtoテール結合の百分率で定義される立体規則性が、90%以上である請求項1~5のいずれか1項に記載の添加剤。
- 更に、ポリフッ化ビニリデン及び/又はポリテトラフルオロエチレンを含有する請求項1~6のいずれか1項に記載の添加剤。
- 更に、カルボキシメチルセルロースを含有する請求項1~6のいずれか1項に記載の添加剤。
- 請求項1~8のいずれか1項に記載の添加剤、活物質(B)及び集電体(C)を含有するリチウム二次電池用正極。
- 請求項1~8のいずれか1項に記載の添加剤を含有する正極を用いたリチウム二次電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012800129948A CN103430363A (zh) | 2011-01-12 | 2012-01-12 | 锂二次电池正极用添加剂和锂二次电池用正极 |
JP2012552756A JPWO2012096342A1 (ja) | 2011-01-12 | 2012-01-12 | リチウム二次電池正極用添加剤及びリチウム二次電池用正極 |
KR1020137020189A KR20140018225A (ko) | 2011-01-12 | 2012-01-12 | 리튬 이차 전지 정극용 첨가제 및 리튬 이차 전지용 정극 |
EP12734208.7A EP2665116A4 (en) | 2011-01-12 | 2012-01-12 | ADDITIVE FOR POSITIVE ELECTRODES OF LITHIUM MEDICATION BATTERIES AND POSITIVE ELECTRODE FOR LITHIUM MEDICATION BATTERIES |
US13/978,658 US20140050978A1 (en) | 2011-01-12 | 2012-01-12 | Additive for positive electrodes of lithium secondary batteries, and positive electrode for lithium secondary batteries |
SG2013052121A SG191868A1 (en) | 2011-01-12 | 2012-01-12 | Additive for positive electrodes of lithium secondary batteries, and positive electrode for lithium secondary batteries |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011003864 | 2011-01-12 | ||
JP2011-003864 | 2011-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012096342A1 true WO2012096342A1 (ja) | 2012-07-19 |
Family
ID=46507234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/050484 WO2012096342A1 (ja) | 2011-01-12 | 2012-01-12 | リチウム二次電池正極用添加剤及びリチウム二次電池用正極 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140050978A1 (ja) |
EP (1) | EP2665116A4 (ja) |
JP (1) | JPWO2012096342A1 (ja) |
KR (1) | KR20140018225A (ja) |
CN (1) | CN103430363A (ja) |
SG (1) | SG191868A1 (ja) |
WO (1) | WO2012096342A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014093139A (ja) * | 2012-11-01 | 2014-05-19 | Hitachi Ltd | 非水二次電池 |
WO2014079581A1 (en) * | 2012-11-26 | 2014-05-30 | Heraeus Precious Metals Gmbh & Co. Kg | Use of conductive polymers in battery electrodes |
WO2022163631A1 (ja) * | 2021-01-29 | 2022-08-04 | 株式会社クレハ | 非水電解質二次電池用バインダー、電極合剤、電極、および非水電解質二次電池 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6620816B2 (ja) * | 2014-12-15 | 2019-12-18 | 日産化学株式会社 | 正孔輸送材料とフルオロポリマーとを含有する組成物及びその使用 |
KR102586098B1 (ko) * | 2016-06-02 | 2023-10-05 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 |
CN109309208B (zh) * | 2017-07-28 | 2021-07-13 | 宁德时代新能源科技股份有限公司 | 正极浆料、正极片及电化学储能装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007052940A (ja) | 2005-08-16 | 2007-03-01 | Ngk Insulators Ltd | リチウム二次電池及びそれに用いる電極材料の製造方法 |
JP2007250993A (ja) * | 2006-03-17 | 2007-09-27 | Kaneka Corp | 粉体の導電性高分子を電極に用いた電気化学素子 |
JP2010135310A (ja) | 2008-10-29 | 2010-06-17 | Sanyo Chem Ind Ltd | リチウム二次電池正極用結着剤及び正極材料 |
JP2010257954A (ja) * | 2009-04-02 | 2010-11-11 | Sanyo Chem Ind Ltd | リチウムイオン二次電池正極用結着剤及び正極材料 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2640626B1 (fr) * | 1988-12-16 | 1991-02-08 | Solvay | Thiophenes substitues, polymeres conducteurs derives de ces thiophenes, procede pour leur obtention et dispositifs contenant ces polymeres |
FR2679905B1 (fr) * | 1991-07-29 | 1993-11-19 | Solvay Et Cie | Thiophenes fluores, polymeres derives de ces thiophenes, polymeres conducteurs contenant ces polymeres, procedes pour leur obtention et dispositifs contenant ces polymeres conducteurs. |
CN100497439C (zh) * | 2002-09-24 | 2009-06-10 | E.I.内穆尔杜邦公司 | 用聚合物酸胶体制备的可水分散的聚噻吩 |
US20080166564A1 (en) * | 2006-12-28 | 2008-07-10 | Vsevolod Rostovtsev | Derivatized monomers for making conductive polymers, and devices made with such polymers |
-
2012
- 2012-01-12 KR KR1020137020189A patent/KR20140018225A/ko not_active Application Discontinuation
- 2012-01-12 EP EP12734208.7A patent/EP2665116A4/en not_active Withdrawn
- 2012-01-12 CN CN2012800129948A patent/CN103430363A/zh active Pending
- 2012-01-12 US US13/978,658 patent/US20140050978A1/en not_active Abandoned
- 2012-01-12 JP JP2012552756A patent/JPWO2012096342A1/ja active Pending
- 2012-01-12 SG SG2013052121A patent/SG191868A1/en unknown
- 2012-01-12 WO PCT/JP2012/050484 patent/WO2012096342A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007052940A (ja) | 2005-08-16 | 2007-03-01 | Ngk Insulators Ltd | リチウム二次電池及びそれに用いる電極材料の製造方法 |
JP2007250993A (ja) * | 2006-03-17 | 2007-09-27 | Kaneka Corp | 粉体の導電性高分子を電極に用いた電気化学素子 |
JP2010135310A (ja) | 2008-10-29 | 2010-06-17 | Sanyo Chem Ind Ltd | リチウム二次電池正極用結着剤及び正極材料 |
JP2010257954A (ja) * | 2009-04-02 | 2010-11-11 | Sanyo Chem Ind Ltd | リチウムイオン二次電池正極用結着剤及び正極材料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2665116A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014093139A (ja) * | 2012-11-01 | 2014-05-19 | Hitachi Ltd | 非水二次電池 |
WO2014079581A1 (en) * | 2012-11-26 | 2014-05-30 | Heraeus Precious Metals Gmbh & Co. Kg | Use of conductive polymers in battery electrodes |
CN104956523A (zh) * | 2012-11-26 | 2015-09-30 | 赫劳斯贵金属有限两和公司 | 导电聚合物在电池组电极中的用途 |
JP2016504434A (ja) * | 2012-11-26 | 2016-02-12 | ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー | 電池電極における導電性ポリマーの使用 |
US9722249B2 (en) | 2012-11-26 | 2017-08-01 | Heraeus Deutschland GmbH & Co. KG | Use of conductive polymers in battery electrodes |
WO2022163631A1 (ja) * | 2021-01-29 | 2022-08-04 | 株式会社クレハ | 非水電解質二次電池用バインダー、電極合剤、電極、および非水電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN103430363A (zh) | 2013-12-04 |
EP2665116A4 (en) | 2014-10-08 |
KR20140018225A (ko) | 2014-02-12 |
SG191868A1 (en) | 2013-08-30 |
JPWO2012096342A1 (ja) | 2014-06-09 |
EP2665116A1 (en) | 2013-11-20 |
US20140050978A1 (en) | 2014-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4458117B2 (ja) | 非水系空気電池及びその触媒 | |
JP5516578B2 (ja) | 蓄電デバイス | |
JP5863204B2 (ja) | リチウムイオン二次電池正極用結着剤及び正極材料 | |
JP2010135310A (ja) | リチウム二次電池正極用結着剤及び正極材料 | |
WO2012096342A1 (ja) | リチウム二次電池正極用添加剤及びリチウム二次電池用正極 | |
JP6153124B2 (ja) | 非水電解液二次電池およびその製造方法 | |
CN104733785B (zh) | 电池 | |
IL261506B (en) | Rechargeable sodium cells for high energy density battery use | |
JP6247284B2 (ja) | リチウム二次電池用の電極材料として役立つポリマー | |
TW201414067A (zh) | 電極保護膜形成劑、電極、電解液、鋰二次電池、鋰離子電容器、電雙層電容器以及電極保護膜的製造方法 | |
CN116285298A (zh) | 一种基于酮基固态聚合物电解质及其制备方法与应用 | |
CN116646602A (zh) | 基于磷氧基含氮杂环化合物的电解液及钠离子电池 | |
JP5282259B2 (ja) | 分子クラスター二次電池 | |
JP2015103465A (ja) | リチウム二次電池用電極添加剤 | |
JP2009163918A (ja) | 共重合体と炭素材料との複合物およびその製造方法 | |
CN114050266B (zh) | 二硫化硒复合氮掺杂还原氧化石墨烯正极材料及其制备方法、锂-二硫化硒电池和涉电设备 | |
Rathinasamy et al. | Electrochemical benefits of conductive polymers as a cathode material in LFP battery technology | |
JP4733359B2 (ja) | 二次電池用複合可逆電極の製造方法 | |
JP2014116278A (ja) | 蓄電デバイス、およびそれに用いる電極並びに多孔質シート | |
CN116598509B (zh) | 电极及其制备方法、电池和电池应用 | |
JP2013239306A (ja) | デュアルモード型蓄電デバイス | |
WO2024197714A1 (zh) | 钠离子电池用电解液、钠离子电池单体和二次电池 | |
JP7288777B2 (ja) | 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス | |
JP2015109210A (ja) | リチウム二次電池電極用添加剤 | |
CN115403771A (zh) | 一种基于共轭羰基的聚酰亚胺的制备方法及其在铁离子电池负极材料方面的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12734208 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012552756 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012734208 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012734208 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137020189 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13978658 Country of ref document: US |