WO2012096342A1 - リチウム二次電池正極用添加剤及びリチウム二次電池用正極 - Google Patents

リチウム二次電池正極用添加剤及びリチウム二次電池用正極 Download PDF

Info

Publication number
WO2012096342A1
WO2012096342A1 PCT/JP2012/050484 JP2012050484W WO2012096342A1 WO 2012096342 A1 WO2012096342 A1 WO 2012096342A1 JP 2012050484 W JP2012050484 W JP 2012050484W WO 2012096342 A1 WO2012096342 A1 WO 2012096342A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thiophene
carbon atoms
additive
parts
Prior art date
Application number
PCT/JP2012/050484
Other languages
English (en)
French (fr)
Inventor
剛史 大高
文平 吉田
敦史 若月
拓馬 竹田
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to CN2012800129948A priority Critical patent/CN103430363A/zh
Priority to JP2012552756A priority patent/JPWO2012096342A1/ja
Priority to KR1020137020189A priority patent/KR20140018225A/ko
Priority to EP12734208.7A priority patent/EP2665116A4/en
Priority to US13/978,658 priority patent/US20140050978A1/en
Priority to SG2013052121A priority patent/SG191868A1/en
Publication of WO2012096342A1 publication Critical patent/WO2012096342A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an additive for a positive electrode of a lithium secondary battery and a positive electrode material.
  • the positive electrode material of a lithium secondary battery is configured by binding a current collector and an active material with a binder.
  • a binder polyvinylidene fluoride having a strong binding force is used.
  • polyvinylidene fluoride does not have electronic conductivity, and a conductive additive is mixed as a countermeasure.
  • the conductivity is still insufficient.
  • Patent Document 1 It has been proposed to use a conductive polymer compound such as polyaniline as a conductive aid for improving the conductivity of the binder (for example, Patent Document 1).
  • a conductive polymer compound such as polyaniline
  • Patent Document 1 the electrode material using the polyaniline of Patent Document 1 as a binder has a problem of poor electrochemical stability and insufficient storage stability and cycle characteristics.
  • Patent Document 2 an electrode material using polythiophene having excellent electrochemical stability as a binder has been proposed, and storage stability and cycle characteristics have been improved (for example, Patent Document 2).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an electrode additive and an electrode capable of increasing the output of a lithium secondary battery and maintaining cycle characteristics even during high-speed charge / discharge. To provide materials.
  • the present invention provides at least a group selected from the group consisting of groups (f1) to (f4) in which the hydrogen atom at the 3-position and / or 4-position of the thiophene ring is represented by the following general formulas (1) to (4), respectively.
  • An essential component is a substituted polythiophene (P) having a repeating unit (D) of thiophene substituted with one kind of group (f) (hereinafter also referred to as a repeating unit (D)) as at least a part of the thiophene repeating unit.
  • An additive for a lithium secondary battery positive electrode (hereinafter also referred to as an additive (A) for a lithium secondary battery positive electrode, an additive for a positive electrode (A), an additive (A), etc.); and the additive (A ), A positive electrode for a lithium secondary battery comprising the active material (B) and the current collector (C); a lithium secondary battery comprising the additive (A).
  • A an additive for a lithium secondary battery positive electrode
  • A an additive for a lithium secondary battery positive electrode
  • A A positive electrode for a lithium secondary battery comprising the active material (B) and the current collector (C)
  • a lithium secondary battery comprising the additive (A).
  • -OR 1 -R 2 (1)
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 2 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
  • -O-R 3 (2)
  • R 3 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
  • R 4 represents a linear or branched alkylene group having 1 to 6 carbon atoms
  • R 5 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
  • -R 6 -OR 7 -R 8 (4)
  • R 6 represents a linear or branched alkylene group having 1 to 6 carbon atoms
  • R 7 represents an alkylene group having 1 to 6 carbon atoms
  • R 8 represents a perfluoroalkyl group having 1 to 15 carbon atoms.
  • the additive for a lithium secondary battery positive electrode of the present invention has the effect of greatly improving the output characteristics of the battery and greatly improving the cycle characteristics during high-speed charge / discharge.
  • the additive (A) for a lithium secondary battery positive electrode of the present invention is a group (f1) to (f1)- A substituted polythiophene (P) having a repeating unit (D) of thiophene substituted with at least one group (f) selected from the group consisting of f4) is an essential component.
  • the elements listed with the symbols (f1), (f2), (f3), and (f4) are referred to as a perfluoroalkylalkoxy group (f1) and a perfluoroalkoxy group, respectively, in the present specification. Also referred to as (f2), a perfluoroalkoxyalkyl group (f3), and an alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1).
  • the additive (A) for a lithium secondary battery positive electrode according to the present invention is a contact point between a conductive additive and an active material by using a substituted polythiophene (P) having both electron conductivity and lithium ion conductivity as an essential component.
  • P substituted polythiophene
  • the positive electrode additive (A) of the present invention has the repeating unit (D), the lithium ion conductivity is improved as compared with the conventional additive, and as a result, the internal resistance and electrical resistance are greatly increased. Thus, the output characteristics can be improved and the cycle characteristics at high potential and high temperature can be improved.
  • Examples of the perfluoroalkylalkoxy group (f1) include a perfluoroalkylalkoxy group having an oxyalkylene group having 1 to 6 carbon atoms and one end of which is a perfluoroalkyl group having 1 to 15 carbon atoms.
  • R 1 in the general formula (1) examples include a methylene group, an ethylene group, a propylene group, an n-, sec-, an iso-butylene group, a pentylene group, a hexylene group, and a 1,4-cyclohexylene group.
  • R 2 in the general formula (1) is a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluoroisopropyl group, a perfluoro-n-, iso-, sec- or tert-butyl group, Fluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluoro-2-ethylhexyl group, perfluorononyl group, perfluorodecyl group, perfluoroundecyl group, perfluorododecyl group, perfluoro Examples include tridecyl group, perfluorotetradecyl group, and perfluoropentadecyl group.
  • (F1) is preferably a linear or branched perfluoroalkylethoxy group having 1 to 6 carbon atoms, and more preferably a linear or branched perfluoroalkylethoxy group having 1 to 4 carbon atoms.
  • Examples of the perfluoroalkoxy group (f2) include perfluoroalkoxy groups having 1 to 15 carbon atoms.
  • R 3 in the general formula (2) examples include the same as those exemplified for R 2 .
  • (F2) is preferably a linear or branched perfluoroalkoxy group having 1 to 6 carbon atoms, and more preferably a linear or branched perfluoroalkoxy group having 1 to 4 carbon atoms.
  • Examples of the perfluoroalkoxyalkyl group (f3) include alkyl groups having 1 to 6 carbon atoms substituted with perfluoroalkoxy groups having 1 to 15 carbon atoms.
  • R 4 in the general formula (3) is methylene group, ethylene group, n- or iso-propylene group, n-, sec-, iso-butylene group, pentylene group, hexylene group and 1,4-cyclohexylene. Groups and the like.
  • Examples of R 5 in the general formula (3) include the same as those exemplified for R 2 .
  • Preferred as (f3) is a linear or branched alkylene group having 1 to 3 carbon atoms as R 4 , and a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms as R 5 , More preferably, R 4 is an alkylene group having 1 or 2 carbon atoms, and R 5 is a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms.
  • the alkylene group (R 6 ) in the above general formula (4) in the alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1) of the thiophene repeating unit (D) is an alkyl group having 1 to 6 carbon atoms. An alkylene group is mentioned.
  • R 6 in the general formula (4) examples include the same as those exemplified for R 4 .
  • R 7 in the general formula (4) examples include the same as those exemplified for R 1 .
  • R ⁇ 8 > in the said General formula (4) the thing similar to what was illustrated by said R ⁇ 2 > is mentioned.
  • R 6 is preferably a linear or branched alkylene group having 1 to 3 carbon atoms
  • R 7 is an ethylene group
  • R 8 is linear or branched having 1 to 6 carbon atoms. More preferably, R 6 is an alkylene group having 1 or 2 carbon atoms, and R 8 is a linear or branched perfluoroalkyl group having 1 to 4 carbon atoms.
  • the group (f) is preferably (f1) from the viewpoint of battery output characteristics, more preferably 2,2,2-trifluoroethoxy group, 2,2,3,3,3-pentafluoro.
  • the substituted polythiophene (P) in the present invention is at least one group selected from the group consisting of a group (h1) represented by the following general formula (10) and a group (h2) represented by the following general formula (11).
  • the repeating unit (F) of thiophene substituted with (h) may be included.
  • r is an integer of 0 to 5.
  • R 9 is a linear or branched alkylene group having 2 to 4 carbon atoms
  • R 10 is a linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 12 is a linear or branched alkylene group having 2 to 4 carbon atoms
  • R 13 is a linear or branched alkyl group having 1 to 12 carbon atoms
  • R 11 is a linear or branched alkylene group having 1 to 4 carbon atoms.
  • OR 9 and OR 12 in the general formula (10) or (11) each independently represent an oxyethylene group, an oxypropylene group, or an oxybutylene group, and an oxyethylene group is preferable from the viewpoint of conductivity.
  • R 10 and R 13 in the general formula (10) or (11) are, for example, methyl group, n- or iso-propyl group, n-, iso-, sec- or tert-butyl group, n- or iso- Pentyl group, cyclopentyl group, n- or iso-hexyl group, cyclohexyl group, n- or iso-heptyl group, n- or iso-octyl group, 2-ethylhexyl group, n- or iso-nonyl group, n- or iso -Represents a decyl group, an n- or iso-undecyl group and an n- or iso-dodecyl group.
  • R 10 when r is 1 or more, R 10 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, from the viewpoint of conductivity.
  • R 10 is preferably a linear or branched alkyl group having 3 to 12 carbon atoms, more preferably a linear or branched alkyl group having 6 to 12 carbon atoms, from the viewpoint of conductivity. It is.
  • R 13 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, from the viewpoint of conductivity.
  • R 13 is preferably a linear or branched alkyl group having 3 to 12 carbon atoms, more preferably a linear or branched alkyl group having 6 to 12 carbon atoms, from the viewpoint of conductivity. It is.
  • R 11 in the general formula (11) is, for example, a methylene group, 1,2- or 1,3-propylene group and 1,2-, 1,3-, 2,3- or 1,4-butylene group.
  • a linear or branched alkylene group having 1 to 3 carbon atoms is preferable, and an alkylene group having 1 or 2 carbon atoms is more preferable.
  • r and s are each independently an integer of 0 to 5. From the viewpoint of solvent solubility and conductivity, r is preferably 1 to 5, and more preferably 2 to 5. s is preferably 0 to 4, more preferably 0 to 3, from the viewpoint of solvent solubility and conductivity.
  • the content of the repeating unit (D) of the thiophene in the substituted polythiophene (P) is preferably 30 to 100 mol%, more preferably 35 to 100 mol%, particularly preferably 40 to 100, from the viewpoint of solvent solubility. Mol%.
  • the content of the repeating unit (F) of the thiophene substituted with the group (h) in the substituted polythiophene (P) is preferably 0 to 50 mol%, more preferably from the viewpoint of withstand voltage and cycle characteristics at high temperature. Is from 10 to 40 mol%, particularly preferably from 10 to 30 mol%.
  • the substituted polythiophene (P) in the present invention may contain an unsubstituted thiophene repeating unit.
  • a group bonded to the 3-position and 4-position of the thiophene ring is a combination of a hydrogen atom and a group (f), a combination of different groups (f) or a group (f) Combination with group (h).
  • the thiophene repeating unit (D) is preferably a thiophene repeating unit (D1) represented by the following general formula (5) or a thiophene represented by the general formula (6) from the viewpoint of conductivity and solvent solubility.
  • a substituted polythiophene having at least one selected from the group consisting of (D1) to (D4) as a repeating unit is defined as (P1).
  • Preferred as (P1) is (D1) or (D4) from 50 to 100 mol%, more preferably from 60 to 100 mol%, particularly preferably from 70 to 100 mol, from the viewpoint of solvent solubility and ease of synthesis. % Content.
  • the substituted polythiophene (P) in the present invention can be synthesized by a known method such as anionic polymerization or oxidation polymerization of a monomer corresponding to each thiophene repeating unit.
  • anionic polymerization or oxidation polymerization of a monomer corresponding to each thiophene repeating unit.
  • Examples of the monomer corresponding to the substituted thiophene repeating unit (D) include a perfluoroalkylalkoxy group (f1), a perfluoroalkoxy group (f2), and a perfluoroalkoxyalkyl group at the 3-position and / or 4-position of the thiophene ring. (F3), or a thiophene substituted with the alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1) and substituted with a halogen atom at the 2- and 5-positions.
  • Specific examples of the monomer in which the 3-position of the thiophene ring is substituted with a perfluoroalkylalkoxy group (f1) include thiophene in which the 2-position and 5-position of the following thiophene (d1) are substituted with a halogen atom.
  • Thiophene (d1) includes 3- (3,3,4,4,5,5,6,6,6-nonafluoro-1-hexyloxy) thiophene, 3- (3,3,4,4,5, 5,6,6,7,7,8,8,8-tridecafluoro-1-octyloxy) thiophene, 3- (3,3,4,4,5,5,6,6,7,7, 8,8,9,9,10,10,10-heptadecafluoro-1-decyloxy) thiophene, 3- (4,4,5,5,5-pentafluoro-1-pentyloxy) thiophene, 3- ( 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene, 3- (4,4,5,5,6,6,7,7,8,8, 9,9,9-tridecafluoro-1-nonyloxy) thiophene or 3- (4,4,5,5,6,6,7,7,8, , 9,9,10,10,11,11,
  • Specific examples of the monomer in which the 3-position of the thiophene ring is substituted with a perfluoroalkoxy group (f2) include thiophene in which the 2-position and 5-position of the following thiophene (d2) are substituted with a halogen atom.
  • thiophene (d2) 3-perfluoromethoxythiophene, 3-perfluoroethoxythiophene, 3-perfluoropropoxythiophene, 3-perfluorobutoxythiophene, 3-perfluoropentyloxythiophene, 3-perfluorohexyloxythiophene , 3-perfluoroheptyloxythiophene, 3-perfluorooctyloxythiophene, 3-perfluorononyloxythiophene, 3-perfluorodecyloxythiophene, 3-perfluoroundecyloxythiophene and 3-perfluorododecyloxythiophene Is mentioned.
  • thiophene examples include 3-perfluoromethoxymethylthiophene, 3-perfluoroethoxymethylthiophene, 3-perfluoropropoxymethylthiophene, 3-perfluorobutoxymethylthiophene, 3-perfluoropentyloxymethylthiophene, 3- Perfluorohexyloxymethylthiophene, 3-perfluoroheptyloxymethylthiophene, 3-perfluorooctyloxymethylthiophene, 3-perfluorononyloxymethylthiophene, 3-perfluorodecyloxymethylthiophene, 3-perfluoroundecyloxy Methylthiophene, 3-perfluorododecyloxymethylthiophene
  • the monomer substituted with the alkyl group (f4) substituted with the perfluoroalkylalkoxy group (f1) include the following thiophene substituted with a halogen atom at the 2-position and 5-position of the thiophene (d4): Can be mentioned.
  • Examples of thiophene (d4) include 3- (4,4,5,5,5-pentafluoro-2-oxapentyl) thiophene, 3- (4,4,5,5,6,6,6-heptafluoro- 2-oxahexyl) thiophene, 3- (5,5,6,6,7,7,8,8,8-nonafluoro-2-oxaoctyl) thiophene, 3- (5,5,6,6,7, 7,8,8,9,9,10,10,10-tridecafluoro-2-oxadecyl) thiophene and 3- (5,5,6,6,7,7,8,8,9,9,10) , 10, 11, 11, 12, 12, 12-heptadecafluoro-2-oxadodecyl) thiophene and the like.
  • Specific examples of the monomer in which the 3rd and 4th positions of the thiophene ring are substituted with the group (f) include the following thiophenes in which the 2nd and 5th positions of the following thiophene (d5) are substituted with halogen atoms.
  • Examples of the monomer corresponding to the unsubstituted thiophene repeating unit include thiophenes in which the 2-position and 5-position are substituted with halogen atoms.
  • Monomers corresponding to the repeating unit (F) of thiophene substituted with the group (h) include 3-hexyloxythiophene, 3- (2,5-dioxaheptyl) thiophene, 3- (1,3-dioxo A pentyl) -4-methoxythiophene monomer having 2- and 5-positions substituted with a halogen atom.
  • the stereoregularity (RR) of the substituted polythiophene (P) in the present invention is usually 50% or more, preferably 80% or more, more preferably 90% or more from the viewpoint of conductivity.
  • RR is based on the substituent (f), and the groups bonded to the 3-position and 4-position of the thiophene ring of the substituted polythiophene (P) are different from each other in combination of the hydrogen atom and the group (f). This is applied to a combination of groups (f), a combination of groups (f) and (h), or a combination of groups (f) and groups (g) described later.
  • stereoregularity (RR) in the present invention will be described below.
  • an HT-HT bond (B1), a TT-HT bond (B2) There are four types: HT-HH bond (B3) and TT-HH bond (B4).
  • HT is an abbreviation for head to tail
  • TT is an abbreviation for tail to tail
  • HH is an abbreviation for head to head.
  • R in the chemical formulas of the above four bond types is substituted with a perfluoroalkylalkoxy group (f1), a perfluoroalkoxy group (f2), a perfluoroalkoxyalkyl group (f3), and the perfluoroalkylalkoxy group (f1).
  • f1 perfluoroalkylalkoxy group
  • f2 perfluoroalkoxy group
  • f3 perfluoroalkoxyalkyl group
  • f1 Represents an alkyl group (f4).
  • the stereoregularity (RR) in the present invention is defined by the ratio (%) of HT-HT bonds (head-to-tail-head-to-tail bonds) in the substituted polythiophene (P), and is calculated by the following formula (1).
  • Stereoregularity (RR) b1 ⁇ 100 / (b1 + b2 + b3 + b4)
  • Formula (1) Where b1: HT-HT bond number, b2: TT-HT bond number, b3: HT-HH bond number, b4: TT-HH bond number.
  • the protons possessed by these bonds each show a unique chemical shift ( ⁇ ) by nuclear magnetic resonance ( 1 H-NMR), and are calculated from the integrated values of chemical shifts corresponding to the four types of bonds. can do.
  • D1 thiophene repeating unit
  • B1: ⁇ 6.98
  • B2: ⁇ 7.00
  • B3: ⁇ 7. 02
  • B4: ⁇ 7.05.
  • the integral values S1, S2, S3, S4 in the chemical shifts unique to B1, B2, B3, B4 are calculated
  • the stereoregulation rule is calculated from the ratio (%) of the integral value S1 in the chemical shift unique to B1 to the sum of the integral values.
  • the property (RR) is calculated using the following mathematical formula (2).
  • Stereoregularity (RR) S1 ⁇ 100 / (S1 + S2 + S3 + S4)
  • the substituted polythiophene (P) becomes solvent-soluble by having the repeating unit (D1), (D2), (D3) or (D4) of thiophene, but one or more of (P)
  • a sulfonium group (g) represented by the following general formula (9) into the thiophene repeating unit, the affinity with water is increased, and a water-dispersible substituted polythiophene (P2) can be obtained.
  • Preferred as such a substituted polythiophene is a repeating unit of at least one thiophene selected from the group consisting of repeating units (E1) to (E4) of thiophene represented by the following general formulas (12) to (15) ( E) and substituted polythiophene (P2) having a repeating unit (D).
  • M + is an alkali metal cation or a proton.
  • M + in the general formula (9) represents an alkali metal cation (such as a lithium cation ion, a sodium ion, or a potassium ion) or a proton.
  • M + is preferably an alkali metal cation from the viewpoint of dispersibility in water, and more preferably lithium ion from the viewpoint of stability to the electrolyte.
  • the substituted polythiophene (P2) having the thiophene repeating unit (D) and the thiophene repeating unit (E) can be produced by sulfonating the substituted polythiophene (P1) with a sulfonation reagent.
  • a sulfonation reagent include, but are not limited to, monochlorosulfuric acid, fuming sulfuric acid, and concentrated sulfuric acid.
  • the content of the repeating unit (E) of thiophene in the substituted polythiophene (P2) is usually from 5 to 70 mol%, preferably from 30 to 60 mol%, from the viewpoint of water dispersibility, conductivity and ease of synthesis. More preferably, it is 50 to 60 mol%.
  • the content of the repeating unit (D) of thiophene in the substituted polythiophene (P2) is usually 30 to 95 mol%, preferably 40 to 70 mol%, from the viewpoint of water dispersibility, conductivity and ease of synthesis. Preferably, it is 40 to 50 mol%.
  • the substituted polythiophene (P1) is preferable from the viewpoint of conductivity, and the substituted polythiophene (P2) is preferable from the viewpoint of environmental load that does not use an organic solvent.
  • the additive (A) in the present invention may be mixed with a polymer compound or a conductive aid that assists the binding force as necessary.
  • a polymer compound that assists the binding force when the substituted polythiophene (P) is dissolved in an organic solvent to be described later a polymer compound that is soluble in the organic solvent can be mixed.
  • polythiophene (P) is used by dispersing in water, a water-soluble polymer compound can be mixed.
  • polystyrene resin examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
  • PTFE polytetrafluoroethylene
  • polyvinylidene fluoride examples include polyvinylidene fluoride, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
  • FEP tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EPF tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EPF tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EPF resin ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • vinylidene fluoride-pentafluoropropylene copolymer propylene-tetrafluoroethylene copolymer
  • ECTFE ethylene-chloro Li fluoroethylene copolymer
  • ECTFE vinylidene fluoride - hexafluoropropylene - tetrafluoroethylene copolymer
  • water-soluble polymer compound examples include cellulose derivatives, poly (meth) acrylic acids, polyvinyl alcohol, polyvinyl sulfonic acid, polyvinylidene fluoride, polyvinyl pyrrolidone, polyethylene oxide, polyacrylamide, poly-N-isopropylacrylamide, poly- N, N-dimethylacrylamide, polyoxyethylene, polyethyleneimine and the like can be mentioned.
  • cellulose derivatives include carboxymethyl cellulose (including Li salt, Na salt, K salt or NH 4 salt), methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, cellulose acetate butyrate, oxidized starch and phosphorylated starch.
  • carboxymethyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or NH 4 salt
  • methyl cellulose including Li salt, Na salt, K salt or
  • Poly (meth) acrylic acids include (meth) acrylic acid homopolymers, copolymers of (meth) acrylic acid and itaconic acid and / or maleic acid, and their Li salts, Na salts, K Salt or NH 4 salt.
  • a cellulose derivative is preferable, a carboxymethyl cellulose is more preferable, and a carboxymethyl cellulose salt is particularly preferable.
  • the content of the polymer compound that assists the binding force in the additive (A) is usually 0 to 80% by weight, preferably 1 to 50% by weight. If the content of the polymer compound is too large, the output is reduced, which is not preferable.
  • the conductive auxiliary agent that can be mixed with the additive (A) of the present invention is not particularly limited as long as it is an electron conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode material used.
  • the conductive assistant include graphites such as natural graphite (flaky graphite etc.) and artificial graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, carbon nanotubes, and the like.
  • Conductive fibers such as carbon fibers and metal fibers, metal powders such as carbon fluoride, copper, nickel, aluminum and silver, conductive whiskers such as zinc oxide and potassium titanate, conductive metals such as titanium oxide Examples thereof include organic conductive materials such as oxides and polyphenylene derivatives, and mixtures thereof. Of these conductive agents, artificial graphite, acetylene black and nickel powder are particularly preferred.
  • the content of the conductive assistant in the additive (A) is not particularly limited, but is preferably 1 to 50% by weight, more preferably 1 to 30% by weight. In the case of carbon or graphite, 2 to 15% by weight is particularly preferable.
  • the positive electrode for a lithium secondary battery of the present invention contains an additive (A), an active material (B), and a current collector (C).
  • the positive electrode for a lithium secondary battery of the present invention is obtained by kneading an additive (A), an active material (B), and a solvent, and then applying the kneaded material to a current collector (C) and drying it. Can do.
  • the additive (A) and the active material (B) are mixed in a desired ratio, and a solvent is added thereto to obtain a slurry-like kneaded product.
  • the obtained kneaded material is applied to a current collector (C) such as an aluminum foil and dried, and further pressed at a predetermined pressure as necessary to obtain an electrode.
  • the drying temperature for drying the kneaded product is preferably 100 to 150 ° C., more preferably 120 to 140 ° C. When the drying temperature is less than 100 ° C., the amount of the solvent remaining in the electrode material may increase, which may adversely affect the characteristics of the battery. On the other hand, when the temperature exceeds 150 ° C., the additive (A) is likely to be decomposed (carbonized), which may adversely affect the characteristics of the battery.
  • a lithium transition metal composite oxide can be used as the active material (B).
  • a lithium transition metal composite oxide can be used as the active material (B).
  • Li x FePO 4 Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- y My O z , Li x Mn 2 O 4 , Li x Mn 2- y My O 4 (where M is Na, At least one atom selected from Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B, x is a number from 0 to 1.2, and y is from 0 to 0.9 and z is a number from 2.0 to 2.3).
  • the value of x described above is a value before the start of charge / discharge, and increases or decreases due to charge / discharge.
  • Li x FePO 4, or Li x CoO 2 in terms of cost preferably Li x FePO 4, or Li x CoO 2 in terms of cost, further Li x FePO 4 are preferable in view of safety of not exothermic decomposition even at a high temperature of over 160 degrees.
  • the amount of the additive (A) relative to the active material (B) is usually 1 to 20% by weight.
  • the amount is preferably 3 to 10% by weight, more preferably 3 to 5% by weight. If the amount of the binder is too small, the active material cannot be sufficiently bonded, and if the amount is too large, the energy density of the battery is lowered, which is not preferable.
  • the solvent for kneading the additive (A) and the active material (B) of the present invention has a boiling point of 150 when the substituted polythiophene (P) contained in the additive (A) is a substituted polythiophene (P1).
  • An organic solvent having a temperature of less than 0 ° C. is preferred, and water is preferred when it is a substituted polythiophene (P2).
  • the organic solvent preferably has a boiling point of less than 150 ° C. If the boiling point is 150 ° C. or higher, the amount of the solvent remaining in the electrode material in the drying process may increase, which may adversely affect the battery characteristics.
  • examples of such an organic solvent include 1-methyl-2-pyrrolidone, dimethylformamide, chloroform, tetrahydrofuran (hereinafter abbreviated as THF), 1,3-dioxolane, 1,4-dioxane and toluene. Of these, 1-methyl-2-pyrrolidone and 1,3-dioxolane are preferred from the viewpoint of the solubility of the substituted polythiophene (P).
  • the amount of the solvent when producing the positive electrode of the present invention is 50 to 300% by weight, preferably 50 to 100% by weight, based on the active material (B). If the amount of the solvent is too small, the active material (B) and the additive (A) cannot be sufficiently kneaded. If the amount is too large, the amount of the solvent remaining in the electrode material may increase, which adversely affects the battery characteristics. Since it may affect, it is not preferable.
  • the current collector (C) used in the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change at the charge / discharge potential of the positive electrode used.
  • the material is stainless steel, aluminum, titanium, carbon.
  • an alloy or the like obtained by treating carbon or titanium on the surface of aluminum or stainless steel is used.
  • aluminum and aluminum alloys are particularly preferable. These materials can be used by oxidizing the surface thereof. Further, it is desirable to make the current collector surface uneven by surface treatment.
  • Examples of the shape of the current collector (C) include foils, films, sheets, nets, punched ones, lath bodies, porous bodies, foams, fiber groups, and nonwoven fabric shaped bodies.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the lithium secondary battery of the present invention can be obtained by using such a positive electrode.
  • a part shows a weight part.
  • the reaction solution was allowed to cool to room temperature, and 5 parts of methanol was added.
  • the reaction mixture was transferred to a Soxhlet extractor and washed sequentially with 150 parts of methanol, 150 parts of chloroform and 150 parts of acetone. Finally, the residue is extracted with 150 parts of 1-methyl-2-pyrrolidone, and the solvent is distilled off to remove poly ⁇ 3- (4,4,5,5,6,6,7,7,7-nonafluoro-1 -Heptyloxy) thiophene ⁇ (P1-1) 2.95 parts (yield 40%, total yield 28%) were obtained.
  • the stereoregularity calculated by the above-described method using 1 H-NMR was 96.3%.
  • reaction mixture was allowed to cool to room temperature, 30 parts of distilled water was added and the mixture was transferred to a separatory funnel, and the aqueous layer was separated. Further, the organic layer was washed twice with 30 parts of distilled water, THF was distilled off, and the resulting mixture was purified with a silica gel column to give 3- (4,4,5,5,5-pentafluoro-2 There was obtained 7.47 parts (30.35 mmol) (yield 85%) of -oxapentyl) thiophene.
  • the dispersion was settled using a centrifuge, the supernatant was removed, and then washed twice with 800 parts of distilled water using a centrifuge.
  • the obtained precipitate was put into 6000 parts of distilled water and dispersed by irradiating with ultrasonic waves for 30 minutes.
  • the obtained dispersion was passed through a column packed with 30 parts of an ion exchange resin (Amberjet 4400, manufactured by Aldrich). After removing residual sulfonic acid, water was distilled off under reduced pressure to obtain sulfonated poly ⁇ 3- ( 4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene ⁇ 3.16 parts (yield 96%).
  • the reaction mixture was depressurized to distill off water, and sulfonated poly ⁇ 3- (4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene ⁇ lithium salt (P2 -1) 3.19 parts (99% yield, 95% overall yield) were obtained.
  • the obtained sulfonated poly ⁇ 3- (4,4,5,5,6,6,7,7,7-nonafluoro-1-heptyloxy) thiophene ⁇ lithium salt was analyzed by NMR.
  • the content of (D1) was 49 mol%
  • the content of the repeating unit (E1) of thiophene was 51 mol%.
  • the obtained sulfonated poly ⁇ 3- (4,4,5,5,5-pentafluoro-2-oxapentyl) thiophene ⁇ lithium salt was analyzed by NMR.
  • the content of the repeating unit (D4) of thiophene was The content of 52 mol% of thiophene repeating units (E4) was 48 mol%.
  • ⁇ Production Example 12 Production of negative electrode: 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd.) are thoroughly mixed in a mortar to obtain a slurry. Obtained. The obtained slurry was applied to one side of a 20 ⁇ m thick copper foil, dried at 120 ° C. for 15 minutes to evaporate the solvent, punched out to 12 mm ⁇ , and made a negative electrode with a thickness of 30 ⁇ m using a press.
  • Drying was performed at a temperature of 5 ° C. for 5 minutes to form a layer made of an active material and an additive having a thickness of 10 ⁇ m on the aluminum electrolytic night, and a positive electrode having a total film thickness of 30 ⁇ m was produced.
  • Binding power (%) (Number of remaining squares / 100) ⁇ 100
  • the substituted polythiophene (P) in the prepared test sample was gas-phase dyed with ruthenium tetroxide, and in a polyvinylidene fluoride using a transmission electron microscope (TEM) "H-7100 type manufactured by Hitachi, Ltd.”
  • TEM transmission electron microscope
  • the dispersed particle size (nm) of the substituted polythiophene (P) was measured.
  • the additives of Examples 11 and 12 and Comparative Example 3 are not measured because they do not dissolve in polyvinylidene fluoride.
  • the additive of the comparative examples 4 and 5 does not contain substituted polythiophene, it has not measured.
  • Cycle characteristic deterioration rate during high-speed charge / discharge is calculated based on the following formula. The larger the value, the better the cycle characteristics during high-speed charge / discharge compared with the normal charge / discharge.
  • Cycle characteristic deterioration rate during high-speed charge / discharge (%) (high-speed charge / discharge capacity retention ratio / capacity retention ratio) ⁇ 100
  • the additive of Example 1 has a larger battery output and superior output characteristics than the additive of Comparative Example 1, and also has good cycle characteristics even during high-speed charge / discharge. It can be seen that the additives of Examples 4 to 10, 13 and 14 have larger battery output and superior output characteristics than the additive of Comparative Example 2, and also have good cycle characteristics even during high-speed charge / discharge.
  • the additives of Examples 4 to 10, 13 and 14 were substituted with the substituted polythiophene (P) in polyvinylidene fluoride from the binder of Comparative Example 2.
  • the dispersibility of the additives of Examples 11 and 12 have larger battery output and better output characteristics than the additive of Comparative Example 3, and also have good cycle characteristics even during high-speed charge / discharge.
  • the additive for positive electrode of the present invention can sufficiently withstand the binding force of the coating film applied to the aluminum electrolytic foil surface, and the positive electrode produced using these positive electrode additives has excellent output characteristics, and It can be seen that the cycle characteristics are good even during high-speed charge / discharge.
  • the positive electrode additive for lithium secondary batteries of the present invention is useful as an additive for batteries other than lithium secondary batteries because it has excellent electron conductivity and ion conductivity. Moreover, since the lithium secondary battery using the additive of the present invention is excellent in output and safety, it is useful for electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウム二次電池の高出力化が可能で、かつ高速充放電時でもサイクル特性が維持できる正極用添加剤及びリチウム二次電池用正極を提供する。該添加剤は、チオフェン環の3位及び/又は4位の水素原子がパーフルオロアルキルアルコキシ基(f1)、パーフルオロアルコキシ基(f2)、パーフルオロアルコキシアルキル基(f3)、及び前記(f1)で置換されたアルキル基(f4)からなる群から選ばれる少なくとも1つの基(f)で置換された繰り返し単位(D)をチオフェン繰り返し単位のうちの少なくとも一部として有する置換ポリチオフェン(P)を必須成分とするリチウム二次電池正極用添加剤である。

Description

リチウム二次電池正極用添加剤及びリチウム二次電池用正極
 本発明は、リチウム二次電池正極用添加剤及び正極材料に関する。
 近年、電気自動車のニーズに応えるため、リチウム二次電池の高出力化が急務となっている。一般に、電池の高出力化には2つの重要な要素が考えられる。ひとつは電極材料において電子伝導性が高いこと、もうひとつはリチウムイオンの伝導性が高いことである。いずれか一方が劣る場合は、電池の内部抵抗が高くなり十分な出力特性は得られない。内部抵抗の主な原因となる箇所は、イオン伝導と電子伝導の反応界面が集中する電極材料である。
 一般に、リチウム二次電池の正極材料は、集電体と活物質を結着剤によって結着することで構成されている。結着剤としては結着力の強いポリフッ化ビニリデンが使用されている。しかし、ポリフッ化ビニリデンには電子伝導性がなく、その対策として導電助剤を混合しているが、それでも尚導電性は十分ではない。またリチウムイオンの伝導性もないため高出力化の妨げとなっている。
 結着剤の導電性を改善するための導電助剤として、ポリアニリン等の導電性高分子化合物を用いることが提案されている(例えば特許文献1)。しかしながら、特許文献1のポリアニリンを結着剤として使用した電極材料は電気化学的安定性に乏しく、保存安定性及びサイクル特性が充分でないという問題点を有していた。
 この問題点を解決するために、電気化学的安定性に優れたポリチオフェンを結着剤として使用した電極材料が提案され、保存安定性及びサイクル特性が改善されている(例えば特許文献2)。
特開2007-52940号公報 特開2010-135310号公報
 しかしながら、特許文献2の電極材料は、電気化学的安定性、保存安定性及びサイクル特性が改善されているものの、耐電圧、高温でのサイクル特性に改善の余地がある。
 本発明は上記問題点に鑑みてなされたものであり、本発明の目的は、リチウム二次電池の高出力化が可能で、かつ高速充放電時でもサイクル特性が維持できる電極用添加剤及び電極材料を提供することにある。
 本発明者らは、上記の目的を達成すべく検討を行った結果、本発明に到達した。
 即ち、本発明は、チオフェン環の3位及び/又は4位の水素原子が下記一般式(1)~(4)でそれぞれ表される基(f1)~(f4)からなる群から選ばれる少なくとも1種の基(f)で置換されたチオフェンの繰り返し単位(D)(以下、繰り返し単位(D)ともいう。)をチオフェン繰り返し単位のうちの少なくとも一部として有する置換ポリチオフェン(P)を必須成分とするリチウム二次電池正極用添加剤(以下、リチウム二次電池正極用添加剤(A)、正極用添加剤(A)、添加剤(A)などともいう。);及び該添加剤(A)、活物質(B)及び集電体(C)を含有してなるリチウム二次電池用正極;該添加剤(A)を含有してなるリチウム二次電池である。
-OR-R  (1)
 式中、Rは炭素数1~6のアルキレン基を表し、Rは炭素数1~15のパーフルオロアルキル基を表す。
-O-R  (2)
 式中、Rは炭素数1~15のパーフルオロアルキル基を表す。
-R-O-R  (3)
 式中、Rは直鎖又は分岐の炭素数1~6のアルキレン基を表し、Rは炭素数1~15のパーフルオロアルキル基を表す。
-R-OR-R  (4)
 式中、Rは直鎖又は分岐の炭素数1~6のアルキレン基を表し、Rは炭素数1~6のアルキレン基を表し、Rは炭素数1~15のパーフルオロアルキル基を表す。
 本発明のリチウム二次電池正極用添加剤は、電池の出力特性を大幅に向上させ、かつ高速充放電時でのサイクル特性を大幅に改善するという効果を奏する。
 本発明のリチウム二次電池正極用添加剤(A)は、チオフェンの3位及び/又は4位の水素原子が上記一般式(1)~(4)で各表される基(f1)~(f4)からなる群より選ばれる少なくとも1種の基(f)で置換されたチオフェンの繰り返し単位(D)を有する置換ポリチオフェン(P)を必須成分とする。尚、上記(f1)、(f2)、(f3)及び(f4)の記号を付けて列挙される各要素を、本明細書中、それぞれ、パーフルオロアルキルアルコキシ基(f1)、パーフルオロアルコキシ基(f2)、パーフルオロアルコキシアルキル基(f3)、及び前記パーフルオロアルキルアルコキシ基(f1)で置換されたアルキル基(f4)ともいう。
 本発明のリチウム二次電池正極用添加剤(A)は、電子伝導性とリチウムイオン伝導性を兼ね備えた置換ポリチオフェン(P)を必須成分とすることにより従来、導電助剤と活物質の接触点を介して行われていた電子伝導が、添加剤全体を通して行うことができるようになる。
 また、本発明の正極用添加剤(A)は、上記繰り返し単位(D)を有するため、従来の添加剤に比べてリチウムイオン伝導性が改善され、その結果として、内部抵抗と電気抵抗が大幅に改善されることにより、出力特性の向上と高電位、高温でのサイクル特性が向上できる。
 上記パーフルオロアルキルアルコキシ基(f1)としては、炭素数1~6のオキシアルキレン基を有し、片末端が炭素数1~15のパーフルオロアルキル基であるパーフルオロアルキルアルコキシ基が挙げられる。
 上記一般式(1)におけるRとしては、メチレン基、エチレン基、プロピレン基、n-、sec-、iso-ブチレン基、ペンチレン基、へキシレン基及び1,4-シクロヘキシレン基等が挙げられる。
 上記一般式(1)におけるRとしては、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロイソプロピル基、パーフルオロ-n-、iso-、sec-又はtert-ブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロ-2-エチルヘキシル基、パーフルオロノニル基、パーフルオロデシル基、パーフルオロウンデシル基、パーフルオロドデシル基、パーフルオロトリデシル基、パーフルオロテトラデシル基及びパーフルオロペンタデシル基等が挙げられる。
 (f1)として好ましいものは、炭素数1~6の直鎖又は分岐のパーフルオロアルキルエトキシ基、更に好ましいものは、炭素数1~4の直鎖又は分岐のパーフルオロアルキルエトキシ基である。
 上記パーフルオロアルコキシ基(f2)としては、炭素数1~15のパーフルオロアルコキシ基が挙げられる。
 上記一般式(2)におけるRとしては、前記Rで例示したものと同様のものが挙げられる。
 (f2)として好ましいものは、炭素数1~6の直鎖又は分岐のパーフルオロアルコキシ基、更に好ましいのは、炭素数1~4の直鎖又は分岐のパーフルオロアルコキシ基である。
 上記パーフルオロアルコキシアルキル基(f3)としては、炭素数1~15のパーフルオロアルコキシ基で置換された炭素数1~6のアルキル基が挙げられる。
 上記一般式(3)におけるRとしては、メチレン基、エチレン基、n-又はiso-プロピレン基、n-、sec-、iso-ブチレン基、ペンチレン基、へキシレン基及び1,4-シクロヘキシレン基等が挙げられる。上記一般式(3)におけるRとしては、前記Rで例示したものと同様のものが挙げられる。
 (f3)として好ましいものは、Rとしては、炭素数1~3の直鎖又は分岐のアルキレン基、Rとしては、炭素数1~6の直鎖又は分岐のパーフルオロアルキル基であり、更に好ましいのは、Rとしては、炭素数1又は2のアルキレン基、Rとしては、炭素数1~4の直鎖又は分岐のパーフルオロアルキル基である。
 チオフェンの繰り返し単位(D)が有する前記パーフルオロアルキルアルコキシ基(f1)で置換されたアルキル基(f4)における上記一般式(4)におけるアルキレン基(R)としては、炭素数1~6のアルキレン基が挙げられる。
 上記一般式(4)におけるRとしては、前記Rで例示したものと同様のものが挙げられる。
 上記一般式(4)におけるRとしては、前記Rで例示したものと同様のものが挙げられる。
 上記一般式(4)におけるRとしては、前記Rで例示したものと同様のものが挙げられる。
 (f4)として好ましいものは、Rとしては、炭素数1~3の直鎖又は分岐のアルキレン基、Rとしては、エチレン基、Rとしては、炭素数1~6の直鎖又は分岐のパーフルオロアルキル基であり、更に好ましいのは、Rとしては、炭素数1又は2のアルキレン基、Rとしては、炭素数1~4の直鎖又は分岐のパーフルオロアルキル基である。
 基(f)としては、電池出力特性の観点から、(f1)であることが好ましく、更に好ましくは、2,2,2-トリフルオロエトキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、2,2,3,3,4,4,4-ヘプタフルオロブトキシ基、2,2,3,3,4,4,5,5,5-ノナフルオロペントキシ基、3,3,3-トリフルオロ-1-プロポキシ基、4,4,4-トリフルオロ-1-ブトキシ基又は5,5,5-トリフルオロ-1-ペントキシ基である。
 本発明における置換ポリチオフェン(P)は、下記一般式(10)で表される基(h1)及び下記一般式(11)で表される基(h2)からなる群から選ばれる少なくとも1種の基(h)で置換されたチオフェンの繰り返し単位(F)を含んでいても良い。
-(OR-OR10 (10)
 式中、rは0~5の整数である。Rは直鎖又は分岐の炭素数2~4のアルキレン基、R10は直鎖又は分岐の炭素数1~12のアルキル基である。
-R11-(OR12-OR13 (11)
 式中、sは0~5の整数である。R12は直鎖又は分岐の炭素数2~4のアルキレン基、R13は直鎖又は分岐の炭素数1~12のアルキル基である。R11は直鎖又は分岐の炭素数1~4のアルキレン基である。
 上記一般式(10)又は(11)におけるOR及びOR12は、それぞれ独立にオキシエチレン基、オキシプロピレン基又はオキシブチレン基を表し、導電性の観点から好ましいのはオキシエチレン基である。
 上記一般式(10)又は(11)におけるR10及びR13は、例えば、メチル基、n-又はiso-プロピル基、n-、iso-、sec-又はtert-ブチル基、n-又はiso-ペンチル基、シクロペンチル基、n-又はiso-ヘキシル基、シクロヘキシル基、n-又はiso-ヘプチル基、n-又はiso-オクチル基、2-エチルヘキシル基、n-又はiso-ノニル基、n-又はiso-デシル基、n-又はiso-ウンデシル基及びn-又はiso-ドデシル基を表す。
 一般式(10)においてrが1以上の場合、R10として導電性の観点から好ましいのは、炭素数1~6の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数1~4の直鎖又は分岐のアルキル基である。rが0の場合、R10として導電性の観点から好ましいのは、炭素数3~12の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数6~12の直鎖又は分岐のアルキル基である。
 一般式(11)においてsが1以上の場合、R13として導電性の観点から好ましいのは、炭素数1~6の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数1~4の直鎖又は分岐のアルキル基である。sが0の場合、R13として導電性の観点から好ましいのは、炭素数3~12の直鎖又は分岐のアルキル基、更に好ましいのは、炭素数6~12の直鎖又は分岐のアルキル基である。
 上記一般式(11)におけるR11は、例えば、メチレン基、1,2-又は1,3-プロピレン基及び1,2-、1,3-、2,3-又は1,4-ブチレン基を表し、溶剤溶解性及び導電性の観点から好ましいのは、炭素数1~3の直鎖又は分岐のアルキレン基、更に好ましいのは、炭素数1又は2のアルキレン基である。
 上記一般式(10)又は一般式(11)におけるr及びsはそれぞれ独立に0~5の整数である。rは、溶剤溶解性及び導電性の観点から、1~5であることが好ましく、更に好ましくは、2~5である。sは、溶剤溶解性及び導電性の観点から、0~4であることが好ましく、更に好ましくは、0~3である。
 置換ポリチオフェン(P)中の上記チオフェンの繰り返し単位(D)の含有量は、溶剤溶解性の観点から、好ましくは30~100モル%、更に好ましくは35~100モル%、特に好ましくは40~100モル%である。
 置換ポリチオフェン(P)中の上記基(h)で置換されたチオフェンの繰り返し単位(F)の含有量は、耐電圧、高温でのサイクル特性の観点から、好ましくは0~50モル%、更に好ましくは10~40モル%、特に好ましくは10~30モル%である。
 本発明における置換ポリチオフェン(P)は、置換されていないチオフェンの繰り返し単位を含んでいてもよい。
 チオフェンの繰り返し単位(D)としては、チオフェン環の3位及び4位に結合した基が、水素原子と基(f)との組み合せ、互いに異なる基(f)同士の組み合せ又は基(f)と基(h)との組み合わせである。
 チオフェンの繰り返し単位(D)として、導電性及び溶剤溶解性の観点から好ましいのは、下記一般式(5)で表されるチオフェンの繰り返し単位(D1)、一般式(6)で表されるチオフェンの繰り返し単位(D2)、一般式(7)で表されるチオフェンの繰り返し単位(D3)一般式(8)で表されるチオフェンの繰り返し単位(D4)である。(D1)~(D4)からなる群から選ばれる少なくとも1種を繰り返し単位として有する置換ポリチオフェンを(P1)とする。(P1)として好ましいものは、溶剤溶解性及び合成の容易性の観点から、(D1)又は(D4)を50~100モル%、更に好ましくは60~100モル%、特に好ましくは70~100モル%含有するものである。
Figure JPOXMLDOC01-appb-C000002
 本発明における置換ポリチオフェン(P)は、それぞれのチオフェンの繰り返し単位に相当するモノマーのアニオン重合や酸化重合等、公知の方法等で合成することができる。以下、合成のためのこれらのモノマーを説明する。
 置換されたチオフェンの繰り返し単位(D)に相当するモノマーとしては、チオフェン環の3位及び/又は4位がパーフルオロアルキルアルコキシ基(f1)、パーフルオロアルコキシ基(f2)、パーフルオロアルコキシアルキル基(f3)、又は前記パーフルオロアルキルアルコキシ基(f1)で置換されたアルキル基(f4)で置換され、2位と5位がハロゲン原子で置換されたチオフェン等が挙げられる。
 チオフェン環の3位がパーフルオロアルキルアルコキシ基(f1)で置換されたモノマーの具体例としては、以下のチオフェン(d1)の2位と5位をハロゲン原子で置換したチオフェン等が挙げられる。チオフェン(d1)としては、3-(3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキシルオキシ)チオフェン、3-(3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクチルオキシ)チオフェン、3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ-1-デシルオキシ)チオフェン、3-(4,4,5,5,5-ペンタフルオロ-1-ペンチルオキシ)チオフェン、3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン、3-(4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロ-1-ノニルオキシ)チオフェン又は3-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロ-1-ウンデシルオキシ)チオフェン等が挙げられる。
 チオフェン環の3位がパーフルオロアルコキシ基(f2)で置換されたモノマーの具体例としては、以下のチオフェン(d2)の2位と5位をハロゲン原子で置換したチオフェン等が挙げられる。チオフェン(d2)としては、3-パーフルオロメトキシチオフェン、3-パーフルオロエトキシチオフェン、3-パーフルオロプロポキシチオフェン、3-パーフルオロブトキシチオフェン、3-パーフルオロペンチルオキシチオフェン、3-パーフルオロヘキシルオキシチオフェン、3-パーフルオロヘプチルオキシチオフェン、3-パーフルオロオクチルオキシチオフェン、3-パーフルオロノニルオキシチオフェン、3-パーフルオロデシルオキシチオフェン、3-パーフルオロウンデシルオキシチオフェン及び3-パーフルオロドデシルオキシチオフェン等が挙げられる。
 パーフルオロアルコキシアルキル基(f3)で置換されたモノマーの具体例としては、以下のチオフェン(d3)の2位と5位をハロゲン原子で置換したチオフェン等が挙げられる。チオフェン(d3)としては、3-パーフルオロメトキシメチルチオフェン、3-パーフルオロエトキシメチルチオフェン、3-パーフルオロプロポキシメチルチオフェン、3-パーフルオロブトキシメチルチオフェン、3-パーフルオロペンチルオキシメチルチオフェン、3-パーフルオロヘキシルオキシメチルチオフェン、3-パーフルオロヘプチルオキシメチルチオフェン、3-パーフルオロオクチルオキシメチルチオフェン、3-パーフルオロノニルオキシメチルチオフェン、3-パーフルオロデシルオキシメチルチオフェン、3-パーフルオロウンデシルオキシメチルチオフェン、3-パーフルオロドデシルオキシメチルチオフェン、3-パーフルオロトリデシルオキシメチルチオフェン、3-パーフルオロテトラデシルオキシメチルチオフェン、3-パーフルオロペンタデシルオキシメチルチオフェン、3-(2-パーフルオロヘキシルオキシエチル)チオフェン、3-(3-パーフルオロヘキシルオキシプロピル)チオフェン及び3-(4-パーフルオロヘプチルオキシブチル)チオフェン等が挙げられる。
 前記パーフルオロアルキルアルコキシ基(f1)で置換されたアルキル基(f4)で置換されたモノマーの具体例としては、以下のチオフェン(d4)の2位と5位をハロゲン原子で置換したチオフェン等が挙げられる。チオフェン(d4)としては、3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン、3-(4,4,5,5,6,6,6-ヘプタフルオロ-2-オキサヘキシル)チオフェン、3-(5,5,6,6,7,7,8,8,8-ノナフルオロ-2-オキサオクチル)チオフェン、3-(5,5,6,6,7,7,8,8,9,9,10,10,10-トリデカフルオロ-2-オキサデシル)チオフェン及び3-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-ヘプタデカフルオロ-2-オキサドデシル)チオフェン等が挙げられる。
 チオフェン環の3位及び4位が基(f)で置換されたモノマーの具体例としては、以下のチオフェン(d5)の2位と5位をハロゲン原子で置換した以下のチオフェン等が挙げられる。チオフェン(d5)としては、3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)-4-パーフルオロエトキシチオフェン、3-パーフルオロエトキシメチル-4-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン、3-(4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロ-1-ノニルオキシ)-4-(5,5,6,6,7,7,8,8,9,9,10,10,10-トリデカフルオロ-2-オキサデシル)チオフェン等が挙げられる。
 置換されていないチオフェンの繰り返し単位に相当するモノマーとしては、2位と5位がハロゲン原子で置換されたチオフェンが挙げられる。
 基(h)で置換されたチオフェンの繰り返し単位(F)に相当するモノマーとしては、3-ヘキシルオキシチオフェン、3-(2,5-ジオキサヘプチル)チオフェン、3-(1,3-ジオキソペンチル)-4-メトキシチオフェンの2位と5位がハロゲン原子で置換されたモノマー等が挙げられる。
 本発明における置換ポリチオフェン(P)の立体規則性(RR)は、通常50%以上、導電性の観点から好ましくは80%以上、更に好ましくは90%以上である。なお、RRは、置換基(f)に基づくものであって、置換ポリチオフェン(P)のチオフェン環の3位及び4位に結合した基が、水素原子と基(f)との組み合わせ、互いに異なる基(f)同士の組み合わせ、基(f)と基(h)との組み合わせ又は基(f)と後述する基(g)との組み合わせの場合に適用される。
 本発明における立体規則性(Regioregularity:RR)の定義を以下に説明する。
 置換ポリチオフェン(P)の結合の種類は代表例として水素原子と基(f)との組み合わせを表す下記の一般式に示すように、HT-HT結合(B1)、TT-HT結合(B2)、HT-HH結合(B3)、TT-HH結合(B4)の4種類ある。尚ここで、HTはヘッドtoテール、TTはテールtoテール、HHはヘッドtoヘッドの略称である。
Figure JPOXMLDOC01-appb-C000003
 上記4つの結合形式の化学式中のRは、パーフルオロアルキルアルコキシ基(f1)、パーフルオロアルコキシ基(f2)、パーフルオロアルコキシアルキル基(f3)、及び前記パーフルオロアルキルアルコキシ基(f1)で置換されたアルキル基(f4)を表す。
 本発明における立体規則性(RR)は、置換ポリチオフェン(P)中のHT-HT結合(ヘッドtoテール-ヘッドtoテール結合)の割合(%)で定義され、下記数式(1)により算出される。
立体規則性(RR)=b1×100/(b1+b2+b3+b4)  数式(1)
 ただし、b1:HT-HT結合の個数、b2:TT-HT結合の個数、b3:HT-HH結合の個数、b4:TT-HH結合の個数を表す。
 具体的には、これらの結合が有するプロトンは、核磁気共鳴法(H-NMR)でそれぞれ特有のケミカルシフト(δ)を示すので、4種類の結合に該当するケミカルシフトの積分値から算出することができる。一般式(5)で表されるチオフェンの繰り返し単位(D1)を有する置換ポリチオフェンの場合、具体的には、B1:δ=6.98、B2:δ=7.00、B3:δ=7.02、B4:δ=7.05を示す。よってB1、B2、B3、B4特有のケミカルシフトにおける積分値S1、S2、S3、S4を計算し、その積分値の和に対するB1特有のケミカルシフトにおける積分値S1の割合(%)から立体規規則性(RR)を下記数式(2)を用いて算出する。
立体規則性(RR)=S1×100/(S1+S2+S3+S4)    数式(2)
 上述の通り、置換ポリチオフェン(P)は、チオフェンの繰り返し単位(D1)、(D2)、(D3)又は(D4)を有することにより溶剤可溶となるが、(P)中の一つ又は複数のチオフェン繰り返し単位に、更に下記一般式(9)で表されるスルホニウム基(g)を導入することにより、水との親和性が高まり、水分散性の置換ポリチオフェン(P2)とすることができる。このような置換ポリチオフェンとして好ましいのは、下記一般式(12)~(15)で表されるチオフェンの繰り返し単位(E1)~(E4)からなる群から選ばれる少なくとも1種のチオフェンの繰り返し単位(E)及び繰り返し単位(D)を有する置換ポリチオフェン(P2)が挙げられる。
-SO  M (9)
 式中、Mは、アルカリ金属カチオン又はプロトンである。
Figure JPOXMLDOC01-appb-C000004
 一般式(9)におけるMは、アルカリ金属カチオン(リチウムカチオンイオン、ナトリウムイオン及びカリウムイオン等)又はプロトンを表す。Mは水への分散性の観点からアルカリ金属カチオンであることが好ましく、電解質に対する安定性の観点から更に好ましいのはリチウムイオンである。
 チオフェンの繰り返し単位(D)とチオフェンの繰り返し単位(E)とを有する置換ポリチオフェン(P2)は、置換ポリチオフェン(P1)をスルホン化試薬によりスルホン化することにより製造することができる。スルホン化試薬としては、モノクロロ硫酸、発煙硫酸及び濃硫酸等を挙げることができるがこれらに限定されない。
 置換ポリチオフェン(P2)中のチオフェンの繰り返し単位(E)の含有量は、水分散性、導電性及び合成の容易性の観点から、通常5~70モル%であり、好ましくは30~60モル%、更に好ましくは50~60モル%である。
 置換ポリチオフェン(P2)中のチオフェンの繰り返し単位(D)の含有量は、水分散性、導電性及び合成の容易性の観点から、通常30~95モル%、好ましくは40~70モル%、更に好ましくは40~50モル%である。
 本発明における置換ポリチオフェン(P)として、導電性の観点から好ましいのは、置換ポリチオフェン(P1)であり、有機溶剤を使用しないという環境負荷の観点から好ましいのは、置換ポリチオフェン(P2)である。
 本発明における添加剤(A)には、必要に応じて結着力を補助する高分子化合物や導電助剤を混合してもよい。結着力を補助する高分子化合物を使用する際、置換ポリチオフェン(P)を後述の有機溶剤に溶解して使用する場合は、有機溶剤に可溶性の高分子化合物を混合することができ、また、置換ポリチオフェン(P)を水に分散させて使用する場合は、水溶性高分子化合物を混合することができる。
 有機溶剤に可溶性の高分子化合物としては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体及びフッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体等を挙げる事ができる。これらの中で特に好ましいのは、高分子化合物中での本発明における置換ポリチオフェン(P)の分散性の観点から、ポリフッ化ビニリデン、ポリテトラフルオロエチレン(PTFE)である。
 水溶性高分子化合物としては、例えば、セルロース誘導体、ポリ(メタ)アクリル酸類、ポリビニルアルコール、ポリビニルスルホン酸、ポリビニリデンフルオライド、ポリビニルピロリドン、ポリエチレンオキシド、ポリアクリルアミド、ポリ-N-イソプロピルアクリルアミド、ポリ-N,N-ジメチルアクリルアミド及びポリオキシエチレン及びポリエチレンイミン等が挙げられる。
 特にセルロース誘導体としては、カルボキシメチルセルロース(Li塩、Na塩、K塩又はNH塩を含む)、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、セルロースアセテートブチレート、酸化スターチ及びりん酸化スターチが挙げられる。
 また、ポリ(メタ)アクリル酸類としては、(メタ)アクリル酸の単独重合体、(メタ)アクリル酸とイタコン酸及び/又はマレイン酸等の共重合体、並びにこれらのLi塩、Na塩、K塩又はNH塩等が挙げられる。
 これらの中で好ましいのはセルロース誘導体、更に好ましいのはカルボキシメチルセルロース、特に好ましいのはカルボキシメチルセルロース塩である。
 添加剤(A)中の結着力を補助する高分子化合物の含有量は、通常0~80重量%であり、好ましくは1~50重量%である。高分子化合物の含有量が多すぎると出力の低下等が起こるため好ましくない。
 本発明の添加剤(A)に混合することができる導電助剤は、用いる正極材料の充放電電位において、化学変化を起こさない電子伝導性材料であれば特に限定されない。導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラック等のカーボンブラック類、カーボンナノチューブ、炭素繊維及び金属繊維等の導電性繊維類、フッ化カーボン、銅、ニッケル、アルミニウム及び銀等の金属粉末類、酸化亜鉛及びチタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、ポリフェニレン誘導体等の有機導電性材料等並びにこれらの混合物が挙げられる。これらの導電剤の内、人造黒鉛、アセチレンブラック及びニッケル粉末が特に好ましい。
 添加剤(A)中の導電助剤の含有量は、特に限定されないが、1~50重量%が好ましく、更に好ましくは1~30重量%である。カーボンやグラファイトでは、2~15重量%が特に好ましい。
 本発明のリチウム二次電池用正極は、添加剤(A)、活物質(B)及び集電体(C)を含有する。
 本発明のリチウム二次電池用正極は、添加剤(A)と活物質(B)と溶媒とを混練した後、この混練物を集電体(C)に塗布して乾燥させることにより得ることができる。
 具体的には、添加剤(A)と活物質(B)とを所望の比率で混合し、これに溶媒を加えてスラリー状の混練物を得る。得られた混練物を、アルミ箔等の集電体(C)に塗工して乾燥させ、更に必要に応じて所定の圧力でプレスして、電極とする。尚、混練物を乾燥する際の乾燥温度は、100~150℃とすることが好ましく、120~140℃とすることが更に好ましい。乾燥温度が100℃未満の場合は、電極材料中に残存する溶媒の分量が多くなる場合があり、電池の特性に悪影響を及ぼすことがある。また、150℃を超えると、添加剤(A)の分解(炭化)が生じ易く、やはり電池の特性に悪影響を及ぼすことがある。
 活物質(B)としては、リチウム遷移金属複合酸化物を用いることができ、例えば、LiFePO、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y(但し、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBから選ばれる少なくとも1種の原子、xは0~1.2の数、yは0~0.9の数、zは2.0~2.3の数である。)等が挙げられる。ここで、上記のxの値は、充放電開始前の値であり、充放電により増減する。この中でも、コストの観点からLiFePO又はLiCoOが好ましく、更に160度以上の高温であっても発熱分解しないという安全性の観点からLiFePOが好ましい。
 本発明における活物質(B)に対する添加剤(A)の量は、通常1~20重量%であり。好ましくは3~10重量%、更に好ましくは3~5重量%である。結着剤が少なすぎると活物質を十分に接着することができず、多すぎると電池のエネルギー密度が低下するため好ましくない。
 本発明の添加剤(A)と活物質(B)を混錬するときの溶媒は、添加剤(A)に含まれる置換ポリチオフェン(P)が置換ポリチオフェン(P1)であるときは、沸点が150℃未満の有機溶剤が好ましく、置換ポリチオフェン(P2)であるときは水であることが好ましい。
 有機溶媒としては、沸点が150℃未満のものが好ましい。沸点が150℃以上であると乾燥工程で電極材料中に残存する溶媒の分量が多くなる場合があり、電池の特性に悪影響を及ぼすことがある。このような有機溶剤としては、1-メチル-2-ピロリドン、ジメチルホルムアミド、クロロホルム、テトラヒドロフラン(以下、THFと略記)、1,3-ジオキソラン、1,4-ジオキサン及びトルエン等が上げられる。この中でも置換ポリチオフェン(P)の溶解性の観点から1-メチル-2-ピロリドン及び1,3-ジオキソランが好ましい。
 本発明の正極を作製するときの溶媒の量としては活物質(B)に対して50~300重量%であり、好ましくは50~100重量%である。溶媒が少なすぎると活物質(B)と添加剤(A)を十分混練することができず、多すぎると電極材料中に残存する溶媒の分量が多くなる場合があり、電池の特性に悪影響を及ぼすことがあるため好ましくない。
 本発明で使用される集電体(C)としては、用いる正極の充放電電位において化学変化を起こさない電子伝導体であれば特に限定されず、例えば、材料としてステンレス鋼、アルミニウム、チタン、炭素及び導電性樹脂等の他に、アルミニウムやステンレス鋼の表面にカーボン、あるいはチタンを処理した合金等が用いられる。これらの内、特に好ましいのは、アルミニウム及びアルミニウム合金である。これらの材料は、その表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることが望ましい。
 集電体(C)の形状としては、箔の他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群及び不織布体の成形体等が挙げられる。
 集電体の厚みは、特に限定されないが、1~500μmであることが好ましい。
 このような正極を用いることにより、本発明のリチウム二次電池を得ることができる。
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、部は重量部を示す。
<製造例1>
ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}(P1-1)の合成:
(1)3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェンの合成;
 N,N-ジメチルホルムアミド7部に水素化ナトリウム(60%パラフィン分散)2.41部を分散させ、そこに3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール[アルドリッチ社製]15.92部を滴下した。反応溶液は発泡し白濁した。発泡が収まったところで、反応溶液に3-ブロモチオフェン(アルドリッチ社製)4.91部とヨウ化銅(I)0.115部を順に加えた。
 反応溶液を110℃まで加熱し2時間反応させた。反応終了後、室温まで放冷し1Mの塩化アンモニウム水溶液30部を加え、酢酸エチル30部を使って分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、酢酸エチルを留去し、3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン9.39部(収率90%)を得た。
(2)2,5-ジブロモ-3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェンの合成;
 上記の3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン9.39部とN-ブロモスクシンミド9.90部をTHF30部に溶解させ、室温で2時間反応させた。
 酢酸エチル50部を使ってグラスフィルターで沈殿物を除去し、THFと酢酸エチルを留去した。得られた混合物をシリカゲルカラムで精製することにより2,5-ジブロモ-3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン10.80部(収率79%)を得た。
(3)ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}(P1-1)の合成;
 上記の2,5-ジブロモ-3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン10.80部をTHF30部に溶かした後、メチルマグネシウムブロマイドTHF溶液21.21部を加え、75℃で30分反応させた。その反応溶液に[1,3-ビス(ジフェニルホスフィノ)プロパン]-ジクロロニッケル(II)0.116部を加え75℃のまま更に2時間反応させた。
 反応溶液を室温まで放冷した後、メタノール5部を加えた。反応混合物をソックスレー抽出機に移し、メタノール150部とクロロホルム150部とアセトン150部で順に洗浄した。最後に残留物を1-メチル-2-ピロリドン150部で抽出し、溶剤を留去してポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}(P1-1)2.95部(収率40%、全収率28%)を得た。前述のH-NMRを用いた方法で算出した立体規則性は96.3%であった。
<製造例2>
ポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロ-1-ノニルオキシ)チオフェン}(P1-2)の合成:
 3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール15.92部の代わりに3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール[東京化成工業(株)製]20.23部を使用したこと以外は製造例1と同様にして立体規則性が95.6%であるポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロ-1-ノニルオキシ)チオフェン}(P1-2)3.05部を得た(全収率25%)。
 尚、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノールを3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノールに変更するに際して、反応成分のモル比及び非反応成分(溶剤等)の重量比が、製造例1における場合と同等となるように各原料の量を調整して操作を行った。以下の製造例3、5~7及び9~11についても同様に行った。
<製造例3>
ポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロ-1-ウンデシルオキシ)チオフェン}(P1-3)の合成:
 3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール15.92部の代わりに3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ-1-デカノール[東京化成工業(株)製]23.55部を使用したこと以外は製造例1と同様にして立体規則性が96.6%であるポリ{3-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロ-1-ウンデシルオキシ)チオフェン}(P1-3)3.51部を得た(全収率25%)。
<製造例4>
ポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}(P1-4)の合成:
(1)3-ブロモメチルチオフェンの合成;
 3-メチルチオフェン[東京化成工業(株)製]5部(50.9mmol)、N-ブロモスクシンイミド9.97部(56.0mmol)、ジベンゾイルパーオキサイド[東京化成工業(株)製]0.12部(0.50mmol)をベンゼン30部に溶解させた後100℃まで昇温し、4時間反応させた。反応終了後、室温まで放冷し、1Mのチオ硫酸ナトリウム水溶液30部を加え分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、ベンゼンを留去し、3-ブロモメチルチオフェン6.32部(35.7mmol)(収率70.1%)を得た。
(2)3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェンの合成;
 2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部(39.3mmol)をTHF15部に溶解させ、そこに水素化ナトリウム(60%パラフィン分散)1.57部(39.3mmmol)を加えた。上記の3-ブロモメチルチオフェン6.32部(35.7mmol)をTHF15部に溶かし2時間かけて滴下した後、100℃まで昇温し4時間反応させた。反応終了後、室温まで放冷し、蒸留水30部を加え分液ロートに移した後、水層を分離した。更に有機層を蒸留水30部で2回洗浄した後、THFを留去し、得られた混合物をシリカゲルカラムで精製することにより3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン7.47部(30.35mmol)(収率85%)を得た。
(3)2,5-ジブロモ-3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェンの合成;
 上記の3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン7.47部(30.35mmol)とN-ブロモスクシンイミド11.07部(62.21mmol)をTHF30部に溶解させ、室温で2時間反応させた。
 酢酸エチル50部を使ってグラスフィルターで沈殿物を除去し、THFと酢酸エチルを留去した。得られた混合物をシリカゲルカラムで精製することにより2,5-ジブロモ-3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン9.44部(23.37mmol)(収率77%)を得た。
(4)ポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}の合成;
 上記の2,5-ジブロモ-3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン9.44部(23.37mmol)をTHF30部に溶かした後、メチルマグネシウムブロマイドTHF溶液23.14部(23.37mmol)を加え、75℃で30分反応させた。その反応溶液に[1,3-ビス(ジフェニルホスフィノ)プロパン]-ジクロロニッケル(II)0.127部(0.234mmol)を加え75℃のまま更に2時間反応させた。反応溶液を室温まで放冷した後、メタノール5部を加えた。反応混合物をソックスレー抽出機に移し、メタノール150部とクロロホルム150部とアセトン150部で順に洗浄した。最後に残留物を1-メチル-2-ピロリドン150部で抽出し、溶剤を留去して、立体規則性が96.7%であるポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}(P1-4)2.28部(収率40%、全収率18%)を得た。
<製造例5>
ポリ{3-(4,4,5,5,6,6,6-ヘプタフルオロ-2-オキサヘキシル)チオフェン}(P1-5)の合成:
 2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部の代わりに2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール7.86部[東京化成工業(株)製]を使用したこと以外は製造例4と同様にして立体規則性が97.4%である(P1-5)2.51部を得た(全収率17%)。
<製造例6>
ポリ{3-(5,5,6,6,7,7,8,8,8-ノナフルオロ-2-オキサオクチル)チオフェン}(P1-6)の合成:
 2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部の代わりに3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール10.37部を使用したこと以外は製造例4と同様にして立体規則性が95.9%である(P1-6)2.97部を得た(全収率16%)。
<製造例7>
ポリ{3-(5,5,6,6,7,7,8,8,9,9,10,10,10-トリデカフルオロ-2-オキサデシル)チオフェン}(P1-7)の合成:
 2,2,3,3,3-ペンタフルオロ-1-プロパノール5.89部の代わりに3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール14.30部を使用したこと以外は製造例4と同様にして立体規則性が95.8%である(P1-7)3.79部を得た(全収率16%)。
<製造例8>
スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}リチウム塩(P2-1)の合成:
(1)スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}の合成;
 製造例1で得られた(P1-1)2.95部に発煙硫酸180部を混合し、85℃で24時間反応させた。反応混合物を蒸留水6000部で希釈した後、室温で1時間攪拌し分散させた。遠心分離機を使って分散体を沈降させ、上澄みを除いた後、遠心分離機で蒸留水800部を使って2回洗浄した。得られた沈殿物を蒸留水6000部に入れ、超音波を30分照射して分散させた。
 得られた分散液を、イオン交換樹脂(Anberjet 4400,アルドリッチ社製)30部を充填したカラムに通して、残留するスルホン酸を取り除いたのち、水を減圧留去しスルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}3.16部(収率96%)を得た。
(2)スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}リチウム塩の合成;
 上記スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}3.16部を蒸留水50部に分散させた後、炭酸リチウム0.60部を加えて室温で1時間反応させた。反応混合物を減圧して水を留去し、スルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}リチウム塩(P2-1)3.19部(収率99%、全収率95%)を得た。
 得られたスルホン化ポリ{3-(4,4,5,5,6,6,7,7,7-ノナフルオロ-1-ヘプチルオキシ)チオフェン}リチウム塩をNMRにより分析した結果、チオフェンの繰り返し単位(D1)の含有量は49モル%、チオフェンの繰り返し単位(E1)の含有量は51モル%であった。
<製造例9>
スルホン化ポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}リチウム塩(P2-2)の合成:
 (P1-1)2.95部の代わりに製造例4で得られた(P1-4)2.28部を使用したこと以外は製造例8と同様にしてスルホン化ポリ{3-(2,5-ジオキサペンチルヘプチル)チオフェン}リチウム塩(P2-2)2.46部を得た(全収率91%)。得られたスルホン化ポリ{3-(4,4,5,5,5-ペンタフルオロ-2-オキサペンチル)チオフェン}リチウム塩をNMRにより分析した結果、チオフェンの繰り返し単位(D4)の含有量は52モル%、チオフェンの繰り返し単位(E4)の含有量は48モル%であった。
<比較製造例10>
ポリ(3-ヘキシルオキシチオフェン)(P’-1)の合成:
 3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール15.92部の代わりに1-ヘキサノール10.65部を使用したこと以外は製造例1と同様にして立体規則性が96.7%であるポリ(3-ヘキシルオキシチオフェン)(P’-1)2.85部を得た(全収率30%)。
<比較製造例11>
スルホン化ポリ(3-ヘキシルオキシチオフェン)リチウム塩(P’-2)の合成:
 (P1-1)2.95部の代わりに製造例10で得られた(P’-1)2.85部を使用したこと以外は製造例8と同様にしてスルホン化ポリ(3-ヘキシルオキシチオフェン)リチウム塩(P’-2)3.23部を得た(全収率91%)。得られたスルホン化ポリ(3-ヘキシルオキシチオフェン)リチウム塩をNMRにより分析した結果、チオフェンの繰り返し単位(F)の含有量は52モル%、チオフェンの繰り返し単位(E)の含有量は48モル%であった。
<製造例12>
負極の作製:
 平均粒径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部及び1-メチル-2-ピロリドン[東京化成工業(株)製]200部を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、120℃で15分間乾燥して溶媒を蒸発させた後、12mmφに打ち抜き、プレス機で厚さ30μmにして負極を作製した。
<製造例13>
リチウム二次電池電解質の調製:
 エチレンカーボネート:ジエチルカーボネート:ビニレンカーボネート=48.5:48.5:3(重量比)混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解し、電解質溶液を調製した。
実施例1~14及び比較例1~5
<添加剤の作製>
 上記の製造例1~11で得られた置換ポリチオフェン、結着力補助高分子化合物としてのポリフッ化ビニリデン、カルボキシメチルセルロース及びポリアニリンスルホン酸を表1及び2に示した重量比率で混合して、それぞれ実施例1~14及び比較例1~5用の添加剤を作製した。
<正極の作製>
 実施例1~10、13、14及び比較例1、2、4、5用の添加剤0.25部と、LiFePO粉末9.5部、導電助剤としてのアセチレンブラック(電気化学工業社製、平均粒径:1.0μm)0.25部と、1-メチル-2-ピロリドン[東京化成工業(株)製]7.0部を乳鉢で十分に混練して、それぞれ実施例1~10、13、14及び比較例1、2、4、5用のスラリーを得た。
 得られたスラリーを、大気中でワイヤーコーティングバーを用いて厚さ20μmのアルミニウム電解箔集電体上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、アルミニウム電解泊上に厚さ10μmの活物質と添加剤からなる層を形成させ、全体膜厚30μmの正極を作製した。
 また、実施例11、12及び比較例3用の添加剤0.25部と、LiFePO粉末9.5部、導電助剤としてのアセチレンブラック(電気化学工業社製、平均粒径:1.0μm)0.25部と、水7.0部を乳鉢で十分に混練して、それぞれ実施例11、12及び比較例3用のスラリーを得た。
 得られたスラリーを、大気中でワイヤーコーティングバーを用いて厚さ20μmのアルミニウム電解箔集電体上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、アルミニウム電解泊上に厚さ10μmの活物質と添加剤からなる層を形成させ、全体膜厚30μmの正極を作製した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<二次電池評価用セルの作製>
 2032型コインセル内の両端に、実施例1~14及び比較例1~5用の正極と、製造例12で得られた負極を、それぞれの塗布面が向き合うように配置して二次電池用セルを作製した。製造例13で作製した電解質溶液をセル内に注入し評価用セルとした。
[評価]
 得られた添加剤、正極及び評価用セルを用いて、以下の評価方法により、結着力、ポリフッ化ビニリデン中での分散性、耐電圧、電池出力、容量保持率、高速充放電時の容量保持率及び高速充放電時のサイクル特性劣化率を評価した結果を表1及び2に示す。
<結着力の評価>
 碁盤目試験法JIS K5400に準じて正極膜表面に10×10マスの碁盤目状の傷をつけて、その上にセロハン粘着テープ(ニチバン(株)製)を貼り付け、剥がした後に正極合剤層の残ったマス目の数を目視により計数し、下記式から結着力を算出する。
結着力(%)=(残ったマス目の数/100)×100
<ポリフッ化ビニリデン中での置換ポリチオフェン(P)の分散性の評価>
 添加剤1.0部と、1-メチル-2-ピロリドン[東京化成工業(株)製]7.0部を乳鉢で十分に混練して得られたスラリーをアルミ箔に塗布し、大気中で、100℃で15分間乾燥させた後、更に減圧下(1.5kPa)、80℃で5分間乾燥して被検サンプルを作成した。作成した被検サンプル中の置換ポリチオフェン(P)を四酸化ルテニウムで気相染色し、透過型電子顕微鏡(TEM)「(株)日立製作所製 H-7100型」を用いて、ポリフッ化ビニリデン中での置換ポリチオフェン(P)の分散粒径(nm)を計測した。ただし、実施例11、12及び比較例3の添加剤はポリフッ化ビニリデンに溶解しないため計測していない。また、比較例4、5の添加剤は、置換ポリチオフェンを含有していないので計測していない。
<耐電圧の評価>
 アルミ箔に置換ポリチオフェン(P)5mgを塗布した電極が作用極であり、リチウム箔が対極及び参照極であり、電解液がエチレンカーボネート:ジエチルカーボネート=50:50(体積比)の割合で混合した溶媒に、1mol/Lの割合で六フッ化リン酸リチウムを溶解させたものである三極式セルを用いて、ポテンショスタット/ガルバノスタット(Bio Logic社製)で65℃、3.0~5.0Vの電圧範囲、1mV/secのスイープ速度でサイクリックボルタンメトリー(CV)を行い、置換ポリチオフェン(P)のクーロン効率を求める。クーロン効率の数値が高い程、耐電圧性能が良好であることを示す。
<電池出力の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、SOC(State of charge、満充電状態における容量と所定時点における容量との比)が60%になるように充電を行った後、一定電流で放電し、10秒後の電圧を読み取る。この操作をいくつかの電流値で行い、横軸に電流値、縦軸に10秒後の電圧値をプロットして近似直線を作成し、近似直線が3Vと交差する際の電流値(I3.0Vと表記する)を読み取り、下記数式から電池出力を算出する。
電池出力(W)=I3.0V×3.0
<容量保持率の評価>
 充放電測定装置「バッテリーアナライザー1470型」を用いて、0.2mA/cmの電流で電圧0Vから2Vまで充電し、10分間の休止後、0.2mA/cmの電流で電池電圧を0Vまで放電し、この充放電を50サイクル繰り返す。
 この時の初回充電時の電池容量と、50サイクル目充電時の電池容量を測定し、下記数式から容量保持率を算出する。数値が大きい程、充放電サイクル特性が良好であることを示す。
容量保持率(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<高速充放電時の容量保持率の評価>
 充放電測定装置「バッテリーアナライザー1470型」を用いて、0.5mA/cmの電流で電圧0Vから2Vまで充電し、10分間の休止後、0.5mA/cmの電流で電池電圧を0Vまで放電し、この充放電を繰り返す。
 この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記数式から高速充放電時の容量保持率を算出する。数値が大きい程、高速充放電サイクル特性が良好であることを示す。
高速充放電容量保持率(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<高速充放電時のサイクル特性劣化率の評価>
 高速充放電時のサイクル特性劣化率を下記数式に基づいて算出する。数値が大きいほど通常充放電時に比べて高速充放電時のサイクル特性が劣化せず良好であることを示す。
高速充放電時のサイクル特性劣化率(%)=(高速充放電容量保持率/容量保持率)×100
 表1及び2より、実施例1の添加剤は、比較例1の添加剤より、電池出力が大きく出力特性に優れ、かつ高速充放電時にもサイクル特性が良好であることが分かる。
 実施例4~10、13及び14の添加剤は、比較例2の添加剤より、電池出力が大きく出力特性に優れ、かつ高速充放電時にもサイクル特性が良好であることが分かる。
 また、正極用添加剤中におけるポリフッ化ビニリデンを使用した場合は、実施例4~10、13及び14の添加剤は、比較例2の結着剤より、ポリフッ化ビニリデン中での置換ポリチオフェン(P)の分散性が良好であることが分かる。
 実施例11、12の添加剤は、比較例3の添加剤より、電池出力が大きく出力特性に優れ、かつ高速充放電時にもサイクル特性が良好であることが分かる。
 本発明の正極用添加剤は、アルミニウム電解箔面に塗布した塗膜の結着力も使用に十分耐えうるものであり、これらの正極用添加剤を用いて作製した正極は出力特性に優れ、しかも高速充放電時にもサイクル特性が良好であることが分かる。
 本発明のリチウム二次電池正極用添加剤は、電子伝導性及びイオン伝導性が優れているため、リチウム二次電池以外の電池用添加剤としても有用である。また、本発明の添加剤用いたリチウム二次電池は、出力及び安全性に優れるため電気自動車用として有用である。

Claims (10)

  1.  チオフェン環の3位及び/又は4位の水素原子が下記一般式(1)~(4)でそれぞれ表される基(f1)~(f4)からなる群から選ばれる少なくとも1つの基(f)で置換された繰り返し単位(D)をチオフェン繰り返し単位のうちの少なくとも一部として有する置換ポリチオフェン(P)を必須成分とするリチウム二次電池正極用添加剤。
    -OR-R  (1)
    [式中、Rは炭素数1~6のアルキレン基を表し、Rは炭素数1~15のパーフルオロアルキル基を表す。]
    -O-R  (2)
    [式中、Rは炭素数1~15のパーフルオロアルキル基を表す。]
    -R-O-R  (3)
    [式中、Rは直鎖又は分岐の炭素数1~6のアルキレン基を表し、Rは炭素数1~15のパーフルオロアルキル基を表す。]
    -R-OR-R  (4)
    [式中、Rは直鎖又は分岐の炭素数1~6のアルキレン基を表し、Rは炭素数1~6のアルキレン基を表し、Rは炭素数1~15のパーフルオロアルキル基を表す。]
  2.  繰り返し単位(D)が、下記一般式(5)~(8)でそれぞれ表される繰り返し単位(D1)~(D4)からなる群から選ばれる少なくとも1種の繰り返し単位である請求項1記載の添加剤。
    Figure JPOXMLDOC01-appb-C000001
  3.  繰り返し単位(D)が、2,2,2-トリフルオロエトキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、2,2,3,3,4,4,4-ヘプタフルオロブトキシ基、2,2,3,3,4,4,5,5,5-ノナフルオロペントキシ基、3,3,3-トリフルオロ-1-プロポキシ基、4,4,4-トリフルオロ-1-ブトキシ基及び5,5,5-トリフルオロ-1-ペントキシ基からなる群から選ばれる少なくとも1種の基で置換された繰り返し単位である請求項1又は2記載の添加剤。
  4.  繰り返し単位(D)の含有量が、置換ポリチオフェン(P)の重量に基づいて50~100モル%である請求項1~3のいずれか1項に記載の添加剤。
  5.  置換ポリチオフェン(P)中の一つ又は複数のチオフェン環の3位又は4位に下記一般式(9)で表される基(g)が結合した請求項1~4のいずれか1項に記載の添加剤。
    -SO  M (9)
    [式中、Mはアルカリ金属カチオン又はプロトンである。]
  6.  置換ポリチオフェン(P)のヘッドtoテール-ヘッドtoテール結合の百分率で定義される立体規則性が、90%以上である請求項1~5のいずれか1項に記載の添加剤。
  7.  更に、ポリフッ化ビニリデン及び/又はポリテトラフルオロエチレンを含有する請求項1~6のいずれか1項に記載の添加剤。
  8.  更に、カルボキシメチルセルロースを含有する請求項1~6のいずれか1項に記載の添加剤。
  9.  請求項1~8のいずれか1項に記載の添加剤、活物質(B)及び集電体(C)を含有するリチウム二次電池用正極。
  10.  請求項1~8のいずれか1項に記載の添加剤を含有する正極を用いたリチウム二次電池。
PCT/JP2012/050484 2011-01-12 2012-01-12 リチウム二次電池正極用添加剤及びリチウム二次電池用正極 WO2012096342A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2012800129948A CN103430363A (zh) 2011-01-12 2012-01-12 锂二次电池正极用添加剂和锂二次电池用正极
JP2012552756A JPWO2012096342A1 (ja) 2011-01-12 2012-01-12 リチウム二次電池正極用添加剤及びリチウム二次電池用正極
KR1020137020189A KR20140018225A (ko) 2011-01-12 2012-01-12 리튬 이차 전지 정극용 첨가제 및 리튬 이차 전지용 정극
EP12734208.7A EP2665116A4 (en) 2011-01-12 2012-01-12 ADDITIVE FOR POSITIVE ELECTRODES OF LITHIUM MEDICATION BATTERIES AND POSITIVE ELECTRODE FOR LITHIUM MEDICATION BATTERIES
US13/978,658 US20140050978A1 (en) 2011-01-12 2012-01-12 Additive for positive electrodes of lithium secondary batteries, and positive electrode for lithium secondary batteries
SG2013052121A SG191868A1 (en) 2011-01-12 2012-01-12 Additive for positive electrodes of lithium secondary batteries, and positive electrode for lithium secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011003864 2011-01-12
JP2011-003864 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012096342A1 true WO2012096342A1 (ja) 2012-07-19

Family

ID=46507234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050484 WO2012096342A1 (ja) 2011-01-12 2012-01-12 リチウム二次電池正極用添加剤及びリチウム二次電池用正極

Country Status (7)

Country Link
US (1) US20140050978A1 (ja)
EP (1) EP2665116A4 (ja)
JP (1) JPWO2012096342A1 (ja)
KR (1) KR20140018225A (ja)
CN (1) CN103430363A (ja)
SG (1) SG191868A1 (ja)
WO (1) WO2012096342A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093139A (ja) * 2012-11-01 2014-05-19 Hitachi Ltd 非水二次電池
WO2014079581A1 (en) * 2012-11-26 2014-05-30 Heraeus Precious Metals Gmbh & Co. Kg Use of conductive polymers in battery electrodes
WO2022163631A1 (ja) * 2021-01-29 2022-08-04 株式会社クレハ 非水電解質二次電池用バインダー、電極合剤、電極、および非水電解質二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620816B2 (ja) * 2014-12-15 2019-12-18 日産化学株式会社 正孔輸送材料とフルオロポリマーとを含有する組成物及びその使用
KR102586098B1 (ko) * 2016-06-02 2023-10-05 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN109309208B (zh) * 2017-07-28 2021-07-13 宁德时代新能源科技股份有限公司 正极浆料、正极片及电化学储能装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052940A (ja) 2005-08-16 2007-03-01 Ngk Insulators Ltd リチウム二次電池及びそれに用いる電極材料の製造方法
JP2007250993A (ja) * 2006-03-17 2007-09-27 Kaneka Corp 粉体の導電性高分子を電極に用いた電気化学素子
JP2010135310A (ja) 2008-10-29 2010-06-17 Sanyo Chem Ind Ltd リチウム二次電池正極用結着剤及び正極材料
JP2010257954A (ja) * 2009-04-02 2010-11-11 Sanyo Chem Ind Ltd リチウムイオン二次電池正極用結着剤及び正極材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640626B1 (fr) * 1988-12-16 1991-02-08 Solvay Thiophenes substitues, polymeres conducteurs derives de ces thiophenes, procede pour leur obtention et dispositifs contenant ces polymeres
FR2679905B1 (fr) * 1991-07-29 1993-11-19 Solvay Et Cie Thiophenes fluores, polymeres derives de ces thiophenes, polymeres conducteurs contenant ces polymeres, procedes pour leur obtention et dispositifs contenant ces polymeres conducteurs.
CN100497439C (zh) * 2002-09-24 2009-06-10 E.I.内穆尔杜邦公司 用聚合物酸胶体制备的可水分散的聚噻吩
US20080166564A1 (en) * 2006-12-28 2008-07-10 Vsevolod Rostovtsev Derivatized monomers for making conductive polymers, and devices made with such polymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052940A (ja) 2005-08-16 2007-03-01 Ngk Insulators Ltd リチウム二次電池及びそれに用いる電極材料の製造方法
JP2007250993A (ja) * 2006-03-17 2007-09-27 Kaneka Corp 粉体の導電性高分子を電極に用いた電気化学素子
JP2010135310A (ja) 2008-10-29 2010-06-17 Sanyo Chem Ind Ltd リチウム二次電池正極用結着剤及び正極材料
JP2010257954A (ja) * 2009-04-02 2010-11-11 Sanyo Chem Ind Ltd リチウムイオン二次電池正極用結着剤及び正極材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2665116A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093139A (ja) * 2012-11-01 2014-05-19 Hitachi Ltd 非水二次電池
WO2014079581A1 (en) * 2012-11-26 2014-05-30 Heraeus Precious Metals Gmbh & Co. Kg Use of conductive polymers in battery electrodes
CN104956523A (zh) * 2012-11-26 2015-09-30 赫劳斯贵金属有限两和公司 导电聚合物在电池组电极中的用途
JP2016504434A (ja) * 2012-11-26 2016-02-12 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー 電池電極における導電性ポリマーの使用
US9722249B2 (en) 2012-11-26 2017-08-01 Heraeus Deutschland GmbH & Co. KG Use of conductive polymers in battery electrodes
WO2022163631A1 (ja) * 2021-01-29 2022-08-04 株式会社クレハ 非水電解質二次電池用バインダー、電極合剤、電極、および非水電解質二次電池

Also Published As

Publication number Publication date
CN103430363A (zh) 2013-12-04
EP2665116A4 (en) 2014-10-08
KR20140018225A (ko) 2014-02-12
SG191868A1 (en) 2013-08-30
JPWO2012096342A1 (ja) 2014-06-09
EP2665116A1 (en) 2013-11-20
US20140050978A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP4458117B2 (ja) 非水系空気電池及びその触媒
JP5516578B2 (ja) 蓄電デバイス
JP5863204B2 (ja) リチウムイオン二次電池正極用結着剤及び正極材料
JP2010135310A (ja) リチウム二次電池正極用結着剤及び正極材料
WO2012096342A1 (ja) リチウム二次電池正極用添加剤及びリチウム二次電池用正極
JP6153124B2 (ja) 非水電解液二次電池およびその製造方法
CN104733785B (zh) 电池
IL261506B (en) Rechargeable sodium cells for high energy density battery use
JP6247284B2 (ja) リチウム二次電池用の電極材料として役立つポリマー
TW201414067A (zh) 電極保護膜形成劑、電極、電解液、鋰二次電池、鋰離子電容器、電雙層電容器以及電極保護膜的製造方法
CN116285298A (zh) 一种基于酮基固态聚合物电解质及其制备方法与应用
CN116646602A (zh) 基于磷氧基含氮杂环化合物的电解液及钠离子电池
JP5282259B2 (ja) 分子クラスター二次電池
JP2015103465A (ja) リチウム二次電池用電極添加剤
JP2009163918A (ja) 共重合体と炭素材料との複合物およびその製造方法
CN114050266B (zh) 二硫化硒复合氮掺杂还原氧化石墨烯正极材料及其制备方法、锂-二硫化硒电池和涉电设备
Rathinasamy et al. Electrochemical benefits of conductive polymers as a cathode material in LFP battery technology
JP4733359B2 (ja) 二次電池用複合可逆電極の製造方法
JP2014116278A (ja) 蓄電デバイス、およびそれに用いる電極並びに多孔質シート
CN116598509B (zh) 电极及其制备方法、电池和电池应用
JP2013239306A (ja) デュアルモード型蓄電デバイス
WO2024197714A1 (zh) 钠离子电池用电解液、钠离子电池单体和二次电池
JP7288777B2 (ja) 蓄電デバイス用水系電解液及びこの水系電解液を含む蓄電デバイス
JP2015109210A (ja) リチウム二次電池電極用添加剤
CN115403771A (zh) 一种基于共轭羰基的聚酰亚胺的制备方法及其在铁离子电池负极材料方面的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012734208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012734208

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137020189

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13978658

Country of ref document: US