WO2012093670A1 - 磁気ギヤ及びそれを有する回転機 - Google Patents

磁気ギヤ及びそれを有する回転機 Download PDF

Info

Publication number
WO2012093670A1
WO2012093670A1 PCT/JP2012/050021 JP2012050021W WO2012093670A1 WO 2012093670 A1 WO2012093670 A1 WO 2012093670A1 JP 2012050021 W JP2012050021 W JP 2012050021W WO 2012093670 A1 WO2012093670 A1 WO 2012093670A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic gear
rotating machine
magnetic
drive system
Prior art date
Application number
PCT/JP2012/050021
Other languages
English (en)
French (fr)
Inventor
裕 森田
啓紀 松本
中津川 潤之介
大嶽 敦
菊地 聡
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2012093670A1 publication Critical patent/WO2012093670A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle

Definitions

  • the present invention relates to a magnetic gear and a rotating machine.
  • Non-Patent Document 1 the material technology of magnets has improved, so that magnetic gears that transmit force by magnetism have been studied.
  • an inner rotor installed on the input shaft and a magnet arranged around it, an outer rotor installed on a load side shaft and arranged around the magnet, and a magnetic material arranged between the inner rotor and the outer rotor.
  • the characteristics of the magnetic gear composed of the intermediate rotor are described.
  • the gear ratio can be freely set by devising the arrangement of the magnet and the magnetic material.
  • there are features such as no need for lubricating oil and non-contact and excellent soundproofing.
  • a magnetic gear including an inner rotor, an outer rotor, and an intermediate rotor in which a magnetic material is disposed between the inner rotor and the outer rotor, the inner rotor, the outer rotor, What is necessary is just to comprise so that the hole used as a cooling air path may be provided in either of the said intermediate rotors.
  • the rotating machine system including the magnetic gear can be reduced in size, and the heat generated by the rotating machine and the magnetic gear can be efficiently cooled.
  • FIG. 1 shows a cooling mechanism of a general rotating machine.
  • the heat generated by the rotating machine 1 is cooled by the air flow in the cooling air passage 3 generated by the centrifugal blower 2 attached to the rotating shaft of the rotating machine.
  • FIG. 2 shows the structure of the magnetic gear of this example.
  • the structure of the magnetic gear shown in FIG. 2 is composed of a plurality of annular structures, and the center direction of the circle of the annular structure is defined as the inside and the opposite direction is defined as the outside.
  • the magnetic gear includes a first rotor or inner rotor 11, an inner magnet 12, a third rotor or intermediate rotor 13, a magnetic body 14, a second rotor or outer rotor 15, an outer magnet 16, and a magnetic gear case 22.
  • the magnetic gear case 22 covers the inner rotor 11, the inner magnet 12, the intermediate rotor 13, the magnetic body 14, the outer rotor 15, and the outer magnet 16.
  • the inner magnet 12 is incorporated in the inner rotor 11, the magnetic body 14 is incorporated in the intermediate rotor 13, and the outer magnet 16 is incorporated in the outer rotor 15 by adhesion, pressure bonding, resin embedding, or the like.
  • the inner rotor 11, the intermediate rotor 13, and the outer rotor 15 are coaxial and can freely rotate about the central axis.
  • the adjacent magnets have N poles and S poles alternately arranged.
  • the magnetic body 14 is in contact with the adjacent magnetic body via a non-magnetic body having an appropriate thickness.
  • the outer rotor 15 can rotate at a constant gear ratio.
  • FIG. 3 shows an example of a drive system using a rotating machine connected to the magnetic gear as described above.
  • the rotating machine includes a rotating machine case 31, a stator 32 and a rotor 33.
  • a rotating shaft 34 of a rotor 33 of a rotating machine is connected to the inner rotor 11, and the rotor 33 is rotated by electromagnetic force of a stator 32 attached to the rotating machine case 31.
  • the left side of the drawing is the magnetic gear side, and the right side is the rotating machine side.
  • the inner rotor 11, the intermediate rotor 13, the outer rotor 15, and the magnetic gear case 22 all have a horizontal surface in the axial direction and a vertical surface in the axial direction.
  • a centrifugal blower 21 is connected to the outer rotor 15, and air passages (cooling air passages 3) for cooling the surfaces of the inner rotor 11, the intermediate rotor 13, the outer rotor 15, and the magnetic gear case 22 to be perpendicular to the axial direction.
  • the constituting holes 17, 18, 19 and 23 are opened.
  • the holes 17, 18, 19 and 23 are opened in the axial direction so that the cooling air passage 3 is formed substantially in the axial direction.
  • the main heat generating part in this drive system is a rotating machine.
  • the rotating machine shown here does not supply cooling air from the outside between the stator and the rotor, but cools the heat generation from the outer surface of the rotating machine by heat conduction of the rotating machine and heat transfer by stirring of the internal air. It is a structure to do. Therefore, it is desirable to install a centrifugal blower or the like as in a conventional rotating machine as shown in FIG. However, if a sealed magnetic gear is attached to the rotating machine, an air flow as shown in FIG. 1 cannot be realized.
  • the magnetic gear with a hole through which air can pass through the magnetic gear case in order to create an air flow from the inside of the magnetic gear of the rotating machine toward the outer surface of the rotating machine, and a blower for flowing air.
  • heat generation is expected although the amount of heat generation is not as high as that of the main body of the rotating machine due to generation of eddy currents in the magnet and the magnetic body. With such a structure, the magnet and the magnetic body can also be cooled by the air flow.
  • a plurality of holes 17, 18, 19 and 23 are provided.
  • FIG. 3 for convenience, only one of the holes 17, 18, 19, and 23 is indicated using an instruction line.
  • the inner rotor 11, the intermediate rotor 13, the outer rotor 15, and the magnetic gear case 22 have surfaces perpendicular to the axial direction, but the present invention is not limited to this.
  • a structure in which any of the inner rotor 11, the intermediate rotor 13, the outer rotor 15, and the magnetic gear case 22 is slightly inclined in relation to other components is also conceivable.
  • the holes may be arranged so that the wind easily flows from the magnetic gear side to the rotating machine side (or vice versa).
  • a centrifugal blower 21 is attached to the outer rotor 15.
  • the centrifugal blower 21 has a drum-like structure in which a plurality of wings are vertically angled on a disk, and is a kind of multiblade fan. It is characterized by the wind coming out in the horizontal direction. Therefore, when the centrifugal blower 21 is attached to the outer rotor 15, the wind can be sent from the inside of the magnetic gear to the outside.
  • the heated air inside the magnetic gear can be released to the outside, and further, the air emitted from the centrifugal blower 21 is bent in a direction along the surface of the rotating machine case 31.
  • An effective cooling structure for the magnetic gear and the rotating machine can be realized.
  • the reason why the centrifugal blower 21 is provided only on the outer rotor as shown in FIG. 3 is that the outer rotor 15 is positioned outside the inner rotor 11 and the intermediate rotor 13 so that the attachment is easy. Furthermore, an effect of facilitating the flow of air to the outside of the magnetic gear and the rotating machine (outside of the drive system) is also produced, and further cooling effect can be expected.
  • the centrifugal blower 21 may be attached to any of them. Which rotor is to be attached can be appropriately determined in consideration of the positional relationship between the inner rotor 11, the intermediate rotor 13 and the outer rotor 15, the positional relationship with other devices, and the viewpoint of ease of mounting and air flow. Good.
  • the space between the magnetic gear case 22 and the outer rotor 15 serves as a main cooling air path, so that the outer magnet 16 can be efficiently cooled. 14. Since the inner magnet 12 installed in the inner rotor 11 is not directly exposed to the air flowing in from the outside, the cooling efficiency is deteriorated.
  • the space between the outer rotor 15 and the intermediate rotor 13 is the main cooling air path, so that the outer magnet 16 and the magnetic body 14 can be efficiently cooled. Since it is not directly exposed to the air flowing in from the outside, the cooling efficiency is deteriorated.
  • the space between the intermediate rotor 13 and the inner rotor 11 is a main cooling air path, so that the magnetic body 14 and the inner magnet 12 can be efficiently cooled.
  • the outer magnet 16 is also directly exposed to the air flowing from the outside, it is a desirable structure.
  • FIG. 4 shows an example of the hole structure of the outer rotor 15. This structure can also be applied to the inner rotor 11 and the intermediate rotor 13.
  • FIG. 5 is an external view of the outer rotor as seen from the rotating machine side. Holes 19 are formed radially around the rotation shaft 41 of the outer rotor 15. The hole 19 has a substantially fan shape in which a part of the fan shape is cut out. By making such a hole having a substantially sector shape, there is an effect of contributing to weight reduction of the magnetic gear itself.
  • the hole 19 may be a round hole or the like, and the shape is not limited as long as the structure can maintain strength.
  • the hole 19 may be processed to form the axial blower 42.
  • An axial blower is shaped like a general fan, ventilation fan or ship screw, and has a structure with a large number of blades with an inclination around the shaft, and it can send wind in the axial direction by rotating the shaft. it can.
  • the axial blower 42 flows in the direction opposite to the arrow indicating the cooling air passage 3 (FIG. 3), and thus the direction of the wind flow of the centrifugal fan 21 is reversed.
  • FIG. 6 shows an embodiment in which the centrifugal blower 21 is connected to the outer rotor 15 and the holes 35 and 36 are opened in the rotating machine case 31.
  • holes 36 are provided on a surface perpendicular to the rotation axis of the rotating machine case 31, and the centrifugal fan 21 is provided on the outer rotor 15, so that holes or rotors provided on the rotor side when the rotating machine rotates. Since the wind flows along the cooling air passage 3 formed between the stator and the stator, the heat generated by the rotating machine can be efficiently cooled from the inside of the rotating machine.
  • FIG. 7 shows an example in which an axial blower 42 is attached to the outer rotor 15 and holes 23, 17, 18, 35 and 36 are opened in the magnetic gear case 22, the intermediate rotor 13, the outer rotor 15, and the rotating machine case 31. Show.
  • a plurality of holes 35 and 36 are provided, but in FIG. 7, for convenience, only one hole is indicated using an instruction line.
  • the axial blower 42 may be attached to any of them.
  • the axial blower 42 may have the same structure as that shown in FIG. Further, a centrifugal blower may be installed in place of the axial flow blower 42.
  • the rotor to which the axial blower 42 is not attached has a hole.
  • a rotating shaft 34 of a rotor 33 of a rotating machine is connected to the inner rotor 11, and the rotor 33 is rotated by electromagnetic force of a stator 32 attached to the rotating machine case 31.
  • FIG. 8 shows an embodiment in which the centrifugal blower 21 is connected to the outer rotor 15 and the holes 35 and 36 are formed in the rotating machine case 31.
  • the centrifugal blower 21 may be attached to any of them.
  • a rotating shaft 34 of a rotor 33 of a rotating machine is connected to the inner rotor 11, and the rotor 33 is rotated by an electromagnetic force of a stator 32 attached to a rotating machine case 31. Further, cooling fins 24 are attached to the inner rotor 11.
  • the cooling fin 24 in this case has a structure in which a plurality of heat conductive plates such as metals are attached to the inner rotor 11 substantially vertically with a gap through which air passes. Therefore, if the cooling air passage is configured as shown in FIG. 8, the air is exposed to the cooling fins 24.
  • the rotor can be directly cooled from the inner rotor 11 that is close to the rotor, and the cooling efficiency of the rotating machine is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • General Details Of Gearings (AREA)

Abstract

 磁気ギヤの内側ロータ(11),外側ロータ(15),中間ロータ(13)のいずれかに送風機(2、21、42)を接続し、内側ロータ,外側ロータ,中間ロータのいずれかまたはすべてに冷却風路(3)となる孔(17,18,19,23,35,36)をあけることにより、全体を小型化でき、かつ、回転機を効率よく冷却できる。

Description

磁気ギヤ及びそれを有する回転機
 本発明は、磁気ギヤや回転機に関する。
 近年、下記の非特許文献1に記載されているように、磁石の材料技術が向上したため、磁気によって力を伝達する磁気ギヤが検討されるようになった。以下文献には、入力軸に設置され磁石を周囲に配置した内側ロータと、負荷側軸に設置され磁石を周囲に配置した外側ロータと、前記内側ロータと前記外側ロータの中間に磁性体を配置した中間ロータから構成される磁気ギヤの特性について述べられている。このような磁気ギヤでは、内側ロータ,外側ロータ又は中間ロータは独立して回転させることができるため、磁石と磁性体の配置を工夫することにより、自由にギヤ比を設定できる。また、機械式のギヤと比べると潤滑油が必要ないこと、非接触であるので防音性が優れていること等の特徴がある。
K. Atallah and D. Howe "A Nobel High-Performance Magnetic Gear", IEEE Trans. Mag., Vol. 37, No. 4, July 2001, p.2844 Journal of the Magnetics Society of Japan Vol.33, No.2,2009 「永久磁石式磁気ギヤの効率向上に関する一考察」 Journal of the Magnetics Society of Japan Vol.34, No.3,2010 「永久磁石式磁気ギヤの回転子構造に関する検討」
 しかしながら、上記非特許文献においては、近年小型化や高出力化が進んでいることにより重要性が増しているシステム全体の冷却(発熱の問題)については、一切考慮されていない。そのため、上記非特許文献に開示されているような構成において、通常の冷却機構をそのまま適用すれば、回転機,冷却機構,磁気ギヤそれぞれが独立しているため、全体の体積が大きくなってしまうという問題があった。また、機器から生じる熱を効率よく放熱することはできない。すなわち、上記非特許文献の技術では、小型化,高出力化及び高効率な冷却を実現することは困難になる。
 上記課題を解決するために、例えば、磁気ギヤ内部および回転機を冷却するために効率よく冷却風を導入することが重要である。本発明は上記の課題を解決するものであり、その手段を以下に記述する。本発明の第一の手段は、内側ロータと、外側ロータと、前記内側ロータと前記外側ロータの中間に磁性体を配置した中間ロータから構成される磁気ギヤにおいて、前記内側ロータ,前記外側ロータ,前記中間ロータのいずれかに冷却風路となる孔を設けるように構成すればよい。
 本発明によれば、磁気ギヤを含めた回転機システムを小型化できるとともに効率よく回転機および磁気ギヤの発熱を冷却することができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
一般的な回転機の冷却機構。 磁気ギヤの構造。 第一の実施例の構成図。 外側ロータの孔の構造例。 外側ロータを回転機側から見た外観。 第二の実施例の構成図。 第三の実施例の構成図。 第四の実施例の構成図。
 以下、図面を用いて本発明の実施例を詳述する。
 まず、本発明における第1の実施例について説明する。図1は、一般的な回転機の冷却機構を示す。回転機1は回転機の回転軸に取り付けられた遠心送風機2が発生する冷却風路3の空気流により、回転機1の発熱が冷却される。
 図2は、本実施例の磁気ギヤの構造を示す。図2に示される磁気ギヤの構造は、複数の環状構成物から構成され、当該環状構成物の円の中心方向を内側、その反対方向を外側と定義する。この磁気ギヤは、第1のロータ即ち内側ロータ11,内側磁石12,第3のロータ即ち中間ロータ13,磁性体14,第2のロータ即ち外側ロータ15,外側磁石16及び磁気ギヤケース22から構成される。磁気ギヤケース22は、内側ロータ11,内側磁石12,中間ロータ13,磁性体14,外側ロータ15,外側磁石16を覆う。内側磁石12は内側ロータ11に、磁性体14は中間ロータ13に、外側磁石16は外側ロータ15にそれぞれ接着,圧着,樹脂埋め込み等により組み込まれている。内側ロータ11,中間ロータ13及び外側ロータ15は同軸であり、それぞれ自由に中心軸を中心に回転できる。
 内側磁石12及び外側磁石16に関し、隣り合う磁石はN極・S極が交互に並んでいる。磁性体14は、隣り合う磁性体とは適度な厚みの非磁性体を介して接している。このような構成において、内側磁石12,磁性体14及び外側磁石16の数を調整すると、内側ロータ11を回転した時、外側ロータ15は一定のギヤ比で回転することができる。
 図3は、上述のような磁気ギヤと接続した回転機を用いた駆動システムの例を示す。回転機は、回転機ケース31,固定子32及び回転子33から構成される。内側ロータ11には回転機の回転子33の回転軸34が接続され、回転子33は回転機ケース31に取り付けられた固定子32の電磁力によって回転する。図面向かって左側を磁気ギヤ側、右側を回転機側とする。
 内側ロータ11,中間ロータ13,外側ロータ15及び磁気ギヤケース22は、いずれも軸方向に水平な面と軸方向に垂直な面を有している。外側ロータ15に遠心送風機21が接続され、内側ロータ11,中間ロータ13,外側ロータ15,磁気ギヤケース22のすべての軸方向と垂直な面に冷却するための風の通り道(冷却風路3)を構成する孔17,18,19及び23が開けられている。この孔17,18,19及び23は、冷却風路3が略軸方向に形成されるように軸方向に開けられている。
 この駆動システムにおける主な発熱個所は回転機である。ここに示した回転機は固定子と回転子の間に外部から冷却用の空気を供給せず、回転機の熱伝導と内部の空気の撹拌による伝熱により発熱を回転機の外表面から冷却する構造である。したがって、図1に示すような従来の回転機のように、遠心送風機等を設置し、それが発生する空気流を用いて冷却することが望ましい。しかし、回転機に密閉した磁気ギヤを取り付けると、図1に示すような空気流を実現できない。そこで、回転機の磁気ギヤ内部から回転機の外表面に向かう空気流を作るために磁気ギヤケースに空気が通過できる孔や、空気を流すための送風機を磁気ギヤに設けることが望ましい。また、磁気ギヤに関しても磁石および磁性体において渦電流の発生により回転機本体ほどの発熱量ではないものの、発熱が予想される。このような構造とすることにより、磁石および磁性体も空気流により冷却が可能である。
 なお、孔17,18,19及び23はそれぞれ複数個設けられている。図3においては、便宜上、孔17,18,19及び23のうちそれぞれ一つの孔のみ指示線を用いて指示している。図3では、内側ロータ11,中間ロータ13,外側ロータ15及び磁気ギヤケース22とが、軸方向と垂直な面を有することを前提にしたが、これに限定するものではない。例えば、他の構成部品との関係で、内側ロータ11,中間ロータ13,外側ロータ15及び磁気ギヤケース22のいずれかが若干傾いていたりする構造も考えられる。その場合であっても、磁気ギヤ側より回転機側(もしくはその逆)の方向へ風が流れやすいように孔を配置すればよい。
 図3においては、外側ロータ15に遠心送風機21が取り付けられている。
 遠心送風機21は円盤上に複数の羽を垂直状に角度を持たせて、ドラム状にした構造であり、多翼ファンの一種である。横方向に風が出ることが特徴である。したがって、外側ロータ15に遠心送風機21を取り付けると、磁気ギヤ内部から外部に向かって風を送ることができる。
 この遠心送風機21を設けることにより、磁気ギヤ内部の加熱された空気を外部に放出することができ、さらに、遠心送風機21から出た空気を回転機ケース31表面に沿うような向きに曲げることにより磁気ギヤおよび回転機の効果的な冷却構造を実現できる。
 また、図3のように外側ロータのみに遠心送風機21を設けるのは、外側ロータ15が内側ロータ11や中間ロータ13より外側に位置することにより取り付けが容易であるためである。また、更に、空気の流れを磁気ギヤや回転機外側(駆動システム外)へ流れやすくする作用効果も生じ、更なる冷却効果が期待できる。
 なお、この磁気ギヤは、内側ロータ11及び中間ロータ13も中心軸に対して回転するので、遠心送風機21はそれらのいずれに取り付けても構わない。どのロータに取り付けるかは、内側ロータ11,中間ロータ13及び外側ロータ15の位置関係や他の装置との位置関係を考慮したり、取り付けやすさや空気の流れやすさなどの観点により適宜判断すればよい。
 また、内側ロータ11,中間ロータ13,外側ロータ15及び磁気ギヤケース22の間は接触していないので、これらの非接触空間を冷却風路とすることも可能であり、図3のように孔17,18及び19全てを空ける必要はない。例えば、孔17,18又は19のいずれかの孔がない構造も考えられる。
 孔19がない場合では、磁気ギヤケース22と外側ロータ15の間が主な冷却風路となるため、外側磁石16を効率よく冷却することが可能であるが、中間ロータ13に設置された磁性体14、内側ロータ11に設置された内側磁石12には外部から流入する空気に直接さらされないため、冷却効率が悪くなる。
 孔18がない場合では、外側ロータ15と中間ロータ13の間が主な冷却風路となるため、外側磁石16と磁性体14を効率よく冷却することが可能であるが、内側磁石12には外部から流入する空気に直接さらされないため、冷却効率が悪くなる。
 孔17がない場合では、中間ロータ13,内側ロータ11の間が主な冷却風路となるため、磁性体14と内側磁石12を効率よく冷却することが可能である。ただし、外側磁石16も外部から流入する空気に直接さらされるため、望ましい構造である。
 しかし、孔17,18及び19全てが存在すると、回転機ケース31の磁気ギヤ側からの冷却も期待できるため、さらに理想的である。
 孔の設置については、外側磁石16,磁性体14,内側磁石12,回転機ケース31の磁気ギヤ側の発熱量を見込んで、設置/非設置を決定することが望ましい。
 図4に外側ロータ15の孔の構造例を示す。この構造は内側ロータ11,中間ロータ13にも適用できる。図5は外側ロータを回転機側から見た外観図である。外側ロータ15の回転軸41の周りには孔19が放射状に空けられている。孔19は扇形の一部をくり抜いたような略扇形状である。このような略扇形の形状のような孔にすることで、磁気ギヤ自体の軽量化に貢献するという効果がある。
 なお、孔19は、丸孔等でもよく、構造上強度を保つことが可能であれば形状は問わない。
 また、図5のように、孔19を加工し、軸流送風機42としてもよい。軸流送風機は一般的な扇風機,換気扇や船舶のスクリューのような形状であり、軸の周りに傾きを持った羽根を多数設けた構造であり、軸の回転によって軸方向に風を送ることができる。この場合、回転機の回転方向を逆転させると冷却風路3を示す矢印(図3)とは逆方向に軸流送風機42が風を流すので、遠心送風機21の風の流れと逆方向になる場合があるので、回転軸41の回転方向が一定とすることが望ましい。
 以上のような磁気ギヤを組み込んだ回転機とすることにより、回転機が回転すると冷却風路3に沿って風が流れ、回転機ケース31の表面から効率よく回転機の発熱を冷却することができる。
 次に、本発明の第2の実施例について説明する。磁気ギヤの基本構造は図2と同様である。
 以下、このような磁気ギヤを回転機といっしょに組み込んだ駆動システムについて説明する。
 図6は、外側ロータ15に遠心送風機21が接続され、回転機ケース31に孔35及び36が空けられた実施例を示す。
 図6のように回転機ケース31の回転軸と垂直な面に孔36を設け、外側ロータ15に遠心送風機21を設けることで、回転機が回転するとロータ側に設けられた空孔や回転子と固定子の間から構成される冷却風路3に沿って風が流れるため、回転機内部から効率よく回転機の発熱を冷却することができる。
 また、回転機ケース31に孔35及び36が空いていることから、磁気ギヤで発生した熱を、回転機を通じ孔35経由で駆動システム外に逃がすということができる。
 次に、本発明の第3の実施例について説明する。磁気ギヤの基本構造は図2と同様である。
 以下、第2の実施例同様に、このような磁気ギヤを回転機といっしょに組み込んだ駆動システムについて説明する。
 図7は、外側ロータ15に軸流送風機42が取り付けられ、磁気ギヤケース22,中間ロータ13,外側ロータ15,回転機ケース31には孔23,17,18,35及び36が空けられた例を示す。
 孔35及び36はそれぞれ複数設けられているが、図7においては、便宜上、それぞれ一つの孔のみ指示線を用いて指示している。
 図7では、磁気ギヤは内側ロータ11,中間ロータ13及び外側ロータ15がそれぞれ回転するので、軸流送風機42はそれらのいずれに取り付けても構わない。軸流送風機42は実施例1に関して説明した図5に示したものと同様の構造のものとすることができる。また、軸流送風機42に代えて遠心送風機を設置してもよい。
 軸流送風機42が取り付けられていないロータは孔が空いていることが望ましい。内側ロータ11には回転機の回転子33の回転軸34が接続され、回転子33は回転機ケース31に取り付けられた固定子32の電磁力によって回転する。
 以上のような磁気ギヤを組み込んだ回転機とすることにより、回転機が回転すると冷却風路3に沿って風が流れ、回転機内部から効率よく回転機の発熱を冷却することができる。
 次に、本発明の第4の実施例について説明する。磁気ギヤの構造は図2と同様である。
 以下、第2及び第3の実施例同様に、このような磁気ギヤを回転機といっしょに組み込んだ駆動システムについて説明する。
 図8は、外側ロータ15に遠心送風機21が接続され、回転機ケース31には孔35,36が空けられた実施例を示す。
 前述してきたように、この磁気ギヤは内側ロータ11及び中間ロータ13も回転するので、遠心送風機21はそれらのいずれに取り付けても構わない。
 内側ロータ11には回転機の回転子33の回転軸34が接続され、回転子33は回転機ケース31に取り付けられた固定子32の電磁力によって回転する。さらに、内側ロータ11には冷却フィン24が取り付けられている。
 この場合の冷却フィン24は、複数の金属等の良熱伝導体の板が、風が通る間隙を持って内側ロータ11に概略垂直に取り付けられた構造である。したがって、図8のように冷却風路が構成されれば、冷却フィン24に風がさらされる構造である。
 以上のように、内側ロータ11に冷却フィン24を備えることにより、回転子と位置的に近い内側ロータ11から直接的に回転子を冷却することができ、回転機の冷却効率が向上する。
 ここでは、内側ロータ11に冷却フィン24を取り付けた場合を説明したが、この構造は、他の実施例においても適用可能であることは言うまでもない。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。

Claims (14)

  1.  第1のロータと、第2のロータと、前記第1のロータと前記第2のロータの間に設置され磁性体が配置された第3のロータと、第1、第2及び第3のロータを覆う磁気ギヤケースから構成される磁気ギヤであって、
     前記第1のロータ,前記第2のロータ,前記第3のロータのうちいずれか2つ以上のロータ及び前記磁気ギヤケースに孔があけられていることを特徴とする磁気ギヤ。
  2.  請求項1記載の磁気ギヤにおいて、
     前記孔の形状が、略扇形の形状であることを特徴とする磁気ギヤ。
  3.  請求項1記載の磁気ギヤにおいて、
     前記第1のロータ,前記第2のロータ,前記第3のロータのいずれかに送風機が備えられたことを特徴とする磁気ギヤ。
  4.  請求項1記載の磁気ギヤにおいて、
     前記孔が、前記第1のロータ,前記第2のロータ,前記第3のロータ及び前記磁気ギヤケースの軸方向に開けられていることを特徴とする磁気ギヤ。
  5.  請求項1記載の磁気ギヤにおいて、
     前記第2のロータに、冷却フィンが備えられることを特徴とする磁気ギヤ。
  6.  入力軸に設置され周囲に磁石が配置された内側ロータと、負荷側軸に設置され周囲に磁石が配置された外側ロータと、前記内側ロータと前記外側ロータの中間に設置され磁性体が配置された中間ロータから構成される磁気ギヤであって、
     前記磁気ギヤを覆う磁気ギヤケースを設け、
     前記内側ロータ,前記外側ロータ,前記中間ロータ及び前記磁気ギヤケースの全てに冷却用の孔が設けられていることを特徴とする磁気ギヤを有する回転機。
  7.  請求項6記載の磁気ギヤにおいて、
     前記孔の形状が、略扇形の形状であることを特徴とする磁気ギヤ。
  8.  請求項6記載の磁気ギヤにおいて、
     前記内側ロータに送風機が備えられたことを特徴とする磁気ギヤ。
  9.  請求項6記載の磁気ギヤにおいて、
     前記孔が、前記外側ロータ,前記内側ロータ,前記中間ロータ及び前記磁気ギヤケースの軸方向に開けられていることを特徴とする磁気ギヤ。
  10.  磁気ギヤと回転機からなる駆動システムにおいて、
     前記磁気ギヤは、第1のロータと、第2のロータと、前記第1のロータと前記第2のロータの間に設置され磁性体が配置された第3のロータとを備え、前記内側ロータ,前記外側ロータ及び前記中間ロータに冷却用の孔があけられており、
     前記回転機は、固定子と回転子の外側に回転機ケースを備え、前記回転機ケースにも孔が設けられ、
     前記磁気ギヤの各ロータに備えられた孔と前記回転機ケースに備えられた孔とで冷却風路を構成することを特徴とする駆動システム。
  11.  請求項10記載の駆動システムにおいて、
     前記孔の形状が、略扇形の形状であることを特徴とする駆動システム。
  12.  請求項10記載の駆動システムにおいて、
     前記第1のロータ,前記第2のロータ,前記第3のロータのいずれかに送風機が備えられたことを特徴とする駆動システム。
  13.  請求項10記載の駆動システムにおいて、
     前記孔が、前記第1のロータ,前記第2のロータ,前記第3のロータ及び前記回転機ケースの軸方向と垂直な面において設けられていることを特徴とする駆動システム。
  14.  請求項10記載の駆動システムにおいて、
     前記第2のロータに冷却フィンが備えられることを特徴とする駆動システム。
PCT/JP2012/050021 2011-01-07 2012-01-04 磁気ギヤ及びそれを有する回転機 WO2012093670A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-001593 2011-01-07
JP2011001593A JP2012147513A (ja) 2011-01-07 2011-01-07 磁気ギヤ及びそれを有する回転機

Publications (1)

Publication Number Publication Date
WO2012093670A1 true WO2012093670A1 (ja) 2012-07-12

Family

ID=46457521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050021 WO2012093670A1 (ja) 2011-01-07 2012-01-04 磁気ギヤ及びそれを有する回転機

Country Status (2)

Country Link
JP (1) JP2012147513A (ja)
WO (1) WO2012093670A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2516643A (en) * 2013-07-26 2015-02-04 Ricardo Uk Ltd A Magnetic Gear
JP2015061423A (ja) * 2013-09-19 2015-03-30 株式会社デンソー 回転電機および車両用動力装置
JP2017166467A (ja) * 2016-03-18 2017-09-21 株式会社荏原製作所 流体機械及び変速装置
CN109940562A (zh) * 2017-12-21 2019-06-28 盖多·瓦伦蒂尼 手导和/或手持电动或气动动力工具
EP3598613A1 (en) * 2018-07-17 2020-01-22 Guido Valentini Electric motor with magnetic gear arrangement
CN111416480A (zh) * 2018-07-19 2020-07-14 山东理工大学 一种高效散热电机
CN112491241A (zh) * 2020-11-23 2021-03-12 江苏博淮科技有限公司 一种散热性能好的磁齿轮
EP3817201A1 (fr) * 2019-11-04 2021-05-05 ALSTOM Transport Technologies Moteur électrique de traction d'un véhicule
JP2021129370A (ja) * 2020-02-13 2021-09-02 株式会社ミツバ 磁気ギヤ装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789554B2 (ja) * 2012-03-30 2015-10-07 株式会社日立産機システム 電動機
CN104811013A (zh) * 2015-05-12 2015-07-29 江苏银茂控股(集团)有限公司 永磁节能调速一体化电机
CN113615057B (zh) * 2019-03-29 2024-05-07 本田技研工业株式会社 马达装置、电动动力单元以及作业机
WO2023022007A1 (ja) * 2021-08-17 2023-02-23 住友重機械工業株式会社 磁気変調ギヤ及びギヤモータ
JPWO2023022006A1 (ja) * 2021-08-17 2023-02-23

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981753A (ja) * 1972-12-13 1974-08-07
JPS50136559A (ja) * 1974-04-18 1975-10-29
JPS55156581U (ja) * 1979-04-24 1980-11-11
JPS5671085U (ja) * 1979-11-06 1981-06-11
JPH0515659U (ja) * 1991-08-02 1993-02-26 株式会社東芝 渦電流継手付回転電機
JPH1164043A (ja) * 1997-08-22 1999-03-05 Yaskawa Electric Corp 多回転式アブソリュートエンコーダ
JP2007515147A (ja) * 2003-12-19 2007-06-07 テルマ 通気を行うための手段を備える電磁制動機
JP2007182872A (ja) * 2005-11-16 2007-07-19 Delphi Technologies Inc カム駆動装置および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981753A (ja) * 1972-12-13 1974-08-07
JPS50136559A (ja) * 1974-04-18 1975-10-29
JPS55156581U (ja) * 1979-04-24 1980-11-11
JPS5671085U (ja) * 1979-11-06 1981-06-11
JPH0515659U (ja) * 1991-08-02 1993-02-26 株式会社東芝 渦電流継手付回転電機
JPH1164043A (ja) * 1997-08-22 1999-03-05 Yaskawa Electric Corp 多回転式アブソリュートエンコーダ
JP2007515147A (ja) * 2003-12-19 2007-06-07 テルマ 通気を行うための手段を備える電磁制動機
JP2007182872A (ja) * 2005-11-16 2007-07-19 Delphi Technologies Inc カム駆動装置および方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2516643B (en) * 2013-07-26 2017-03-15 Ricardo Uk Ltd A Magnetic Gear
GB2516643A (en) * 2013-07-26 2015-02-04 Ricardo Uk Ltd A Magnetic Gear
JP2015061423A (ja) * 2013-09-19 2015-03-30 株式会社デンソー 回転電機および車両用動力装置
JP2017166467A (ja) * 2016-03-18 2017-09-21 株式会社荏原製作所 流体機械及び変速装置
CN109940562A (zh) * 2017-12-21 2019-06-28 盖多·瓦伦蒂尼 手导和/或手持电动或气动动力工具
US11165297B2 (en) 2018-07-17 2021-11-02 Guido Valentini Electric motor with magnetic gear arrangement
EP3598613A1 (en) * 2018-07-17 2020-01-22 Guido Valentini Electric motor with magnetic gear arrangement
CN111416480A (zh) * 2018-07-19 2020-07-14 山东理工大学 一种高效散热电机
EP3817201A1 (fr) * 2019-11-04 2021-05-05 ALSTOM Transport Technologies Moteur électrique de traction d'un véhicule
FR3102896A1 (fr) * 2019-11-04 2021-05-07 Alstom Transport Technologies Moteur électrique de traction d’un véhicule
JP2021129370A (ja) * 2020-02-13 2021-09-02 株式会社ミツバ 磁気ギヤ装置
JP7273744B2 (ja) 2020-02-13 2023-05-15 株式会社ミツバ 磁気ギヤ装置
CN112491241A (zh) * 2020-11-23 2021-03-12 江苏博淮科技有限公司 一种散热性能好的磁齿轮

Also Published As

Publication number Publication date
JP2012147513A (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
WO2012093670A1 (ja) 磁気ギヤ及びそれを有する回転機
US10630157B2 (en) Axial flux machine
CN103098346B (zh) 使用转子磁通屏障作为冷却通道的同步磁阻电机
JP5250692B2 (ja) 永久磁石式回転電機
JP6059906B2 (ja) アキシャルギャップ型回転電機
EP2843812A2 (en) Axial gap-type power generator
JP6376981B2 (ja) 回転装置
JP2011155720A (ja) 全閉型電動機
JP2008148367A (ja) 回転電機
TW201216595A (en) Reinforcement structure for thin-plate motor
US20210194303A1 (en) Rotor of a Permanent-Magnet Dynamoelectric Rotary Machine
JP2014033584A (ja) 回転電機の風冷構造
JP2012010565A (ja) 永久磁石回転電機
US9065320B2 (en) Passive drive motors and passive fans for use therewith
JP4209885B2 (ja) モーターの固定子構造
JP5334529B2 (ja) 永久磁石モータ
JP2024008993A (ja) 回転機器
WO2015037069A1 (ja) 回転電機
CN108155756B (zh) 外转型旋转电机
JP5484586B2 (ja) ファンモータ及びこれを備えた空気調和機
JP2018026920A (ja) モータ
AU2011255229B2 (en) Improved apparatus for transferring torque magnetically
WO2022210366A1 (ja) モータ、送風装置、圧縮装置、および冷凍装置
WO2022210434A1 (ja) モータ、送風装置、および冷凍装置
JP3186600U (ja) 磁気浮上式ファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12732296

Country of ref document: EP

Kind code of ref document: A1