WO2012093486A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2012093486A1
WO2012093486A1 PCT/JP2011/050141 JP2011050141W WO2012093486A1 WO 2012093486 A1 WO2012093486 A1 WO 2012093486A1 JP 2011050141 W JP2011050141 W JP 2011050141W WO 2012093486 A1 WO2012093486 A1 WO 2012093486A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
inverter
capacitor
terminal
Prior art date
Application number
PCT/JP2011/050141
Other languages
English (en)
French (fr)
Inventor
雅博 木下
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2012551778A priority Critical patent/JP5653458B2/ja
Priority to CN201180055887.9A priority patent/CN103222177B/zh
Priority to PCT/JP2011/050141 priority patent/WO2012093486A1/ja
Priority to KR1020137009277A priority patent/KR101452146B1/ko
Priority to US13/879,937 priority patent/US9438135B2/en
Publication of WO2012093486A1 publication Critical patent/WO2012093486A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/46Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • the present invention relates to a power converter, and more particularly, to a power converter that converts DC power into AC power.
  • a power conversion device that converts DC power into AC power includes a capacitor that stabilizes a DC voltage from a DC power source, and an inverter that converts the DC voltage stabilized by the capacitor into an AC voltage.
  • a ripple current is generated with the switching operation of the semiconductor switching element. The ripple current generated by the inverter is absorbed by the capacitor (see, for example, JP-A-2006-87212 (Patent Document 1)).
  • an aluminum electrolytic capacitor is generally used as a capacitor. While this aluminum electrolytic capacitor has an advantage of a large capacitance value, it has a disadvantage of a low ripple current supply capability (absorption capability). For this reason, in order to supply the ripple current required by the inverter, it is necessary to use a plurality of aluminum electrolytic capacitors connected in parallel, and there is a problem that the apparatus becomes large and expensive.
  • the ripple current is a high-frequency alternating current
  • the ripple current generated in the inverter is absorbed by the capacitor and the ripple current is supplied from the capacitor to the inverter.
  • a main object of the present invention is to provide a power conversion device that can be reduced in size and cost and has a high degree of design freedom.
  • a power converter according to the present invention is a power converter that converts DC power into AC power, a DC stabilization circuit that stabilizes a DC voltage from a DC power supply, and a DC that is stabilized by the DC stabilization circuit. And an inverter that converts the voltage into an AC voltage.
  • the DC stabilization circuit includes an input terminal that receives a DC voltage from a DC power supply, a DC output terminal that is connected to an inverter, a power storage device that is connected to the input terminal and smoothes the DC voltage of the input terminal, and one terminal that A reactor is connected to the input terminal, the other terminal is connected to the output terminal, and prevents a DC stabilizing circuit from oscillating, and a film capacitor is connected to the output terminal and supplies a ripple current to the inverter.
  • the power storage device is an electrolytic capacitor.
  • the power storage device is an electric double layer capacitor.
  • the power storage device is a battery.
  • the reactor is a saturable reactor.
  • the DC stabilizing circuit further includes a fuse interposed between the input terminal and one terminal of the reactor.
  • the DC voltage is smoothed by the power storage device, the ripple current is supplied by the film capacitor, and the oscillation is prevented by the reactor. Therefore, since the power storage device does not need to supply a ripple current, a small size and a low price are sufficient. Further, since only the film capacitor can be disposed close to the inverter and the power storage device can be disposed away from the inverter, the degree of freedom in design is increased, and the inverter portion can be reduced in size.
  • FIG. 1 It is a circuit block diagram which shows the structure of the power converter device by one Embodiment of this invention. It is a circuit diagram for demonstrating the effect of the saturable reactor shown in FIG. It is a circuit diagram which shows the example of a change of embodiment.
  • a power conversion device is a device that converts DC power supplied from a DC power supply 1 into AC power, and includes a DC stabilization circuit 2 and an inverter 3. .
  • DC power supply 1 is a device that supplies DC power, for example, a converter that converts AC power into DC power. Further, the DC power source 1 may be a rectifier circuit that rectifies an AC voltage, a battery that stores DC power, a solar cell that generates DC power, or a fuel cell.
  • the DC stabilizing circuit 2 is a circuit that stabilizes the DC voltage from the DC power source 1 and includes input terminals T1, T2, DC output terminals T3, T4, an aluminum electrolytic capacitor 4, a saturable reactor 5, and a film capacitor 6. including.
  • the input terminals T1 and T2 are connected to the positive output terminal 1a and the negative output terminal 1b of the DC power supply 1, respectively, and receive the DC voltage output from the DC power supply 1.
  • the aluminum electrolytic capacitor 4 is connected between the input terminals T1 and T2 and is charged with a DC voltage from the DC power source 1.
  • the DC voltage output from the DC power source 1 is smoothed by the aluminum electrolytic capacitor 4.
  • the aluminum electrolytic capacitor 4 has an advantage of a large capacitance value, but has a disadvantage of a low ripple current supply capability (absorption capability).
  • the film capacitor 6 is connected between the DC output terminals T3 and T4.
  • the film capacitor 6 has the advantages that the ripple current supply capability (absorption capability) is high and the life is long, but the capacitance value is small.
  • the film capacitor 6 has a small capacitance value, so it is not suitable for a DC smoothing capacitor, and the stored energy is also small, so it is not suitable for a backup capacitor in the case of a momentary drop. Further, in order to obtain a large capacitance value, it is necessary to use a plurality of capacitors connected in parallel, and there is a problem that the apparatus is increased in size and cost.
  • both the aluminum electrolytic capacitor 4 and the film capacitor 6 are used, and one disadvantage is complemented by the other advantage.
  • a resonance circuit is formed by the inductance component of the wiring 7 between them and the capacitors 4 and 6.
  • the film capacitor 6 is disposed in the immediate vicinity of the inverter 3, and the film capacitor 6 and the aluminum electrolytic capacitor 4 are connected by the saturable reactor 5. Thereby, the high frequency impedance between the capacitors 4 and 6 can be increased, and the resonance phenomenon is suppressed.
  • the high frequency ripple current can be supplied to the inverter 3 only by the film capacitor 6 and the DC voltage can be smoothed by the aluminum electrolytic capacitor 4, and the ripple current supply and the DC smoothing are designed separately. Is possible.
  • the ripple current flowing through the aluminum electrolytic capacitor 4 is reduced, an inexpensive aluminum electrolytic capacitor 4 having high internal resistance can be used. Furthermore, since the film capacitor 6 is small, the power conversion unit including the capacitor 6 and the inverter 3 can be reduced in size, and the aluminum electrolytic capacitor 4 can be disposed at a position away from the power conversion unit. Increase.
  • the saturable reactor 5 includes two coils 5a and 5b that are electromagnetically coupled. One terminal of the coil 5a is connected to the DC output terminal T3, and the other terminal is connected to the input terminal T1. One terminal of the coil 5b is connected to the input terminal T2, and the other terminal is connected to the DC output terminal T4.
  • the reactance L of the saturable reactor 5 changes according to the product V ⁇ t of the voltage V applied between the terminals of the saturable reactor 5 and time t, and has a constant value when V ⁇ t is lower than a predetermined value. However, when V ⁇ t exceeds a predetermined value, it rapidly decreases. Therefore, the reactance L of the saturable reactor 5 has a high value for a high frequency voltage and a low value for a low frequency voltage and a DC voltage. For this reason, the DC voltage smoothed by the aluminum electrolytic capacitor 4 passes through the saturable reactor 5 and is supplied to the inverter 3, but the high-frequency ripple voltage generated by the switching operation of the inverter 3 is saturable. Do not pass through reactor 5.
  • the inverter 3 includes IGBTs (Insulated Gate Bipolar Transistors) Q1 to Q6, diodes D1 to D6, and AC output terminals T5 to T7.
  • IGBTs Insulated Gate Bipolar Transistors
  • the collectors of IGBTs Q1 to Q3 are all connected to a DC output terminal T3, and their emitters are connected to AC output terminals T5 to T7, respectively.
  • the collectors of IGBTs Q4 to Q6 are connected to AC output terminals T5 to T7, respectively, and their emitters are all connected to DC output terminal T4.
  • the diodes D1 to D6 are connected in antiparallel to the IGBTs Q1 to Q6, respectively.
  • a control circuit applies a control signal to each of the gates of IGBTs Q1 to Q6, turns on / off each of IGBTs Q1 to Q6 at a predetermined timing, and converts a DC voltage into a three-phase AC voltage.
  • a three-phase load for example, a three-phase motor
  • the phase is shifted by 60 degrees in the order of IGBTs Q1, Q6, Q2, Q4, Q3, and Q5 and turned on by 120 degrees
  • three-phase AC power can be supplied to the three-phase load.
  • the aluminum electrolytic capacitor 4 is used as a capacitor for direct current smoothing, energy storage, and backup.
  • an electric double layer capacitor or various batteries may be used in place of the aluminum electrolytic capacitor 4. An effect is obtained.
  • a normal reactor may be used in place of the saturable reactor 5. Even in a normal reactor, the impedance of the reactor increases in proportion to the frequency, so that the high frequency ripple current can be cut off by the reactor, and the occurrence of a resonance phenomenon can be suppressed.
  • FIG. 3 is a circuit diagram showing a modified example of this embodiment, and is a diagram to be compared with FIG.
  • a fuse 8 is added to the direct current stabilization circuit 2.
  • the fuse 8 is inserted between the input terminal T1 and the other terminal of the coil 5a of the saturable reactor 5.
  • the fuse 8 is blown when the IGBT of the inverter 3 fails and is short-circuited, so that the influence of the IGBT short-circuit failure can be mitigated.
  • the fuse 8 since the fuse 8 is provided on the aluminum electrolytic capacitor 4 side of the saturable reactor 5, the fuse 8 can be easily selected without considering that a high-frequency ripple current flows through the fuse 8.
  • 1 DC power supply 1a positive output terminal, 1b negative output terminal, 2 DC stabilization circuit, 3 inverter, 4 aluminum electrolytic capacitor, 5 saturable reactor, 5a, 5b coil, 6 film capacitor, 7 wiring, 8 fuse, Q1-Q6 IGBT, D1-D6 diode, T1, T2 input terminal, T3, T4 DC output terminal, T5-T7 AC output terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 この電力変換装置は、直流電源(1)からの直流電圧を安定化させる直流安定化回路(2)と、直流安定化回路(2)によって安定化された直流電圧を交流電圧に変換するインバータ(3)とを備える。直流安定化回路(2)は、直流電圧を平滑化するアルミ電解コンデンサ(4)と、直流安定化回路(2)が発振するのを防止する可飽和リアクトル(5)と、インバータ(3)にリプル電流を供給するフィルムコンデンサ(6)とを含む。

Description

電力変換装置
 この発明は電力変換装置に関し、特に、直流電力を交流電力に変換する電力変換装置に関する。
 一般に、直流電力を交流電力に変換する電力変換装置は、直流電源からの直流電圧を安定化させるコンデンサと、コンデンサで安定化された直流電圧を交流電圧に変換するインバータとを備えている。また、インバータでは、半導体スイッチング素子のスイッチング動作に伴い、リプル電流が発生する。インバータで発生したリプル電流はコンデンサに吸収される(たとえば、特開2006-87212号公報(特許文献1)参照)。
特開2006-87212号公報
 このような電力変換装置では、一般に、コンデンサとしてアルミ電解コンデンサが使用されている。このアルミ電解コンデンサには、容量値が大きいという長所がある一方、リプル電流の供給能力(吸収能力)が低いという短所がある。このため、インバータが必要とするリプル電流を供給するには、複数のアルミ電解コンデンサを並列接続して使用する必要があり、装置が大型化、コスト高になるという問題がある。
 なお、リプル電流は高周波の交流電流であるので、インバータで発生したリプル電流はコンデンサに吸収されるということと、コンデンサからインバータにリプル電流が供給されるということとは、同義である。
 また、このような電力変換装置では、コンデンサからインバータにリプル電流を供給するため、コンデンサとインバータを近接して配置し、コンデンサとインバータの間の配線のインダクタンス成分を小さくする必要がある。このため、装置設計の自由度が小さいという問題もある。
 それゆえに、この発明の主たる目的は、装置の小型化、低コスト化が可能で、設計の自由度が大きな電力変換装置を提供することである。
 この発明に係る電力変換装置は、直流電力を交流電力に変換する電力変換装置であって、直流電源からの直流電圧を安定化させる直流安定化回路と、直流安定化回路によって安定化された直流電圧を交流電圧に変換するインバータとを備えたものである。直流安定化回路は、直流電源からの直流電圧を受ける入力端子と、インバータに接続される直流出力端子と、入力端子に接続され、入力端子の直流電圧を平滑化する蓄電装置と、一方端子が入力端子に接続され、他方端子が出力端子に接続され、直流安定化回路が発振するのを防止するリアクトルと、出力端子に接続され、インバータにリプル電流を供給するフィルムコンデンサとを含む。
 好ましくは、蓄電装置は電解コンデンサである。
 また好ましくは、蓄電装置は電気二重層コンデンサである。
 また好ましくは、蓄電装置は電池である。
 また好ましくは、リアクトルは可飽和リアクトルである。
 また好ましくは、直流安定化回路は、さらに、入力端子とリアクトルの一方端子との間に介挿されたヒューズを含む。
 この発明に係る電力変換装置では、蓄電装置によって直流電圧を平滑化し、フィルムコンデンサによってリプル電流を供給し、リアクトルによって発振を防止する。したがって、蓄電装置はリプル電流を供給する必要が無いので、小型で低価格のもので足りる。また、フィルムコンデンサのみをインバータに近接配置し、蓄電装置はインバータから離間させて配置できるので、設計の自由度が大きくなり、インバータ部分の小型化を図ることができる。
この発明の一実施の形態による電力変換装置の構成を示す回路ブロック図である。 図1に示した可飽和リアクトルの効果を説明するための回路図である。 実施の形態の変更例を示す回路図である。
 本発明の一実施の形態による電力変換装置は、図1に示すように、直流電源1から供給される直流電力を交流電力に変換する装置であって、直流安定化回路2およびインバータ3を備える。
 直流電源1は、直流電力を供給する装置であり、たとえば、交流電力を直流電力に変換するコンバータである。また、直流電源1は、交流電圧を整流する整流回路でもよいし、直流電力を蓄えたバッテリでもよいし、直流電力を発生する太陽電池、燃料電池でもよい。
 直流安定化回路2は、直流電源1からの直流電圧を安定化させる回路であって、入力端子T1,T2、直流出力端子T3,T4、アルミ電解コンデンサ4、可飽和リアクトル5、およびフィルムコンデンサ6を含む。
 入力端子T1,T2は、それぞれ直流電源1の正側出力端子1aおよび負側出力端子1bに接続され、直流電源1から出力された直流電圧を受ける。アルミ電解コンデンサ4は、入力端子T1,T2間に接続され、直流電源1からの直流電圧に充電される。直流電源1から出力された直流電圧は、アルミ電解コンデンサ4によって平滑化される。上述したように、アルミ電解コンデンサ4には、容量値が大きいという長所がある一方、リプル電流の供給能力(吸収能力)が低いという短所がある。
 フィルムコンデンサ6は、直流出力端子T3とT4の間に接続される。フィルムコンデンサ6は、リプル電流の供給能力(吸収能力)が高く、寿命が長いという長所を有するが、容量値が小さいという短所を有する。フィルムコンデンサ6は、容量値が小さいので直流平滑用コンデンサには不向きであり、また蓄積エネルギーも小さいので瞬低時などのバックアップ用コンデンサとしても不向きである。また、大きな容量値を得るためには、複数のコンデンサを並列接続して使用する必要があり、装置の大型化、高コスト化を招くという問題がある。
 そこで、本願発明では、アルミ電解コンデンサ4およびフィルムコンデンサ6の両方を使用し、一方の短所を他方の長所で補完する。ただし、図2に示すように、アルミ電解コンデンサ4とフィルムコンデンサ6を単に並列接続しただけでは、それらの間の配線7のインダクタンス成分とコンデンサ4,6によって共振回路が形成される。その共振回路の共振周波数とインバータ3のスイッチング周波数とが近接すると、その共振回路に共振リプル電流が流れ、コンデンサ4,6が過熱してしまう。
 そこで、本願発明では、図1に示すように、フィルムコンデンサ6をインバータ3の直近に配置し、このフィルムコンデンサ6とアルミ電解コンデンサ4を可飽和リアクトル5で接続する。これにより、コンデンサ4,6間の高周波インピーダンスを高くすることができ、共振現象が抑制される。
 また、インバータ3への高周波リプル電流の供給はフィルムコンデンサ6のみで行ない、直流電圧の平滑化はアルミ電解コンデンサ4で行なうことが可能となり、リプル電流供給と直流平滑化を分離して設計することが可能となる。
 また、アルミ電解コンデンサ4に流れるリプル電流が小さくなるので、内部抵抗の高い安価なアルミ電解コンデンサ4を使用することができる。さらには、フィルムコンデンサ6は小型であるので、コンデンサ6およびインバータ3を含む電力変換部を小型にし、アルミ電解コンデンサ4を電力変換部から離れた位置に配置することが可能となり、設計の自由度が増す。
 可飽和リアクトル5は、電磁結合された2本のコイル5a,5bを含む。コイル5aの一方端子は直流出力端子T3に接続され、その他方端子は入力端子T1に接続される。コイル5bの一方端子は入力端子T2に接続され、その他方端子は直流出力端子T4に接続される。
 可飽和リアクトル5のリアクタンスLは、可飽和リアクトル5の端子間に印加される電圧Vと時間tの積V・tによって変化し、V・tが所定値よりも低い場合は一定の値を有し、V・tが所定値を越えると急激に低下する。したがって、可飽和リアクトル5のリアクタンスLは、高周波電圧に対しては高い値になり、低周波電圧および直流電圧に対しては低い値になる。このため、アルミ電解コンデンサ4で平滑化された直流電圧は、可飽和リアクトル5を通過してインバータ3に供給されるが、インバータ3のスイッチング動作に伴って発生する高周波のリプル電圧は、可飽和リアクトル5を通過しない。
 インバータ3は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)Q1~Q6、ダイオードD1~D6、および交流出力端子T5~T7を含む。
 IGBTQ1~Q3のコレクタはともに直流出力端子T3に接続され、それらのエミッタはそれぞれ交流出力端子T5~T7に接続される。IGBTQ4~Q6のコレクタはそれぞれ交流出力端子T5~T7に接続され、それらのエミッタはともに直流出力端子T4に接続される。ダイオードはD1~D6は、それぞれIGBTQ1~Q6に逆並列に接続される。制御回路(図示せず)は、IGBTQ1~Q6のゲートの各々に制御信号を与え、IGBTQ1~Q6の各々を所定のタイミングでオン/オフさせて、直流電圧を三相交流電圧に変換する。
 たとえば、交流出力端子T5~T7に三相負荷(たとえば、三相モータ)を接続し、IGBTQ1,Q6,Q2,Q4,Q3,Q5の順序で60度ずつ位相をずらせて120度ずつオンさせることにより、三相負荷に三相交流電力を供給することができる。
 なお、この実施の形態では、直流平滑用、エネルギー蓄積用、バックアップ用のコンデンサとしてアルミ電解コンデンサ4を使用したが、アルミ電解コンデンサ4の代わりに電気二重層コンデンサや各種電池を使用しても同じ効果が得られる。
 また、可飽和リアクトル5の代わりに通常のリアクトルを使用してもよい。通常のリアクトルであっても、リアクトルのインピーダンスは周波数に比例して増大するので、リアクトルによって高周波リプル電流を遮断することができ、共振現象の発生を抑制することができる。
 図3は、この実施の形態の変更例を示す回路図であって、図1と対比される図である。図3において、この変更例では、直流安定化回路2にヒューズ8が追加される。ヒューズ8は、入力端子T1と可飽和リアクトル5のコイル5aの他方端子との間に介挿される。この変更例では、インバータ3のIGBTが故障して短絡状態になったとき、ヒューズ8がブローされるので、IGBTの短絡故障の影響を緩和することができる。また、ヒューズ8を可飽和リアクトル5のアルミ電解コンデンサ4側に設けたので、ヒューズ8に高周波リプル電流が流れることを考慮せずに、ヒューズ8を容易に選定することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 直流電源、1a 正側出力端子、1b 負側出力端子、2 直流安定化回路、3 インバータ、4 アルミ電解コンデンサ、5 可飽和リアクトル、5a,5b コイル、6 フィルムコンデンサ、7 配線、8 ヒューズ、Q1~Q6 IGBT、D1~D6 ダイオード、T1,T2 入力端子、T3,T4 直流出力端子、T5~T7 交流出力端子。

Claims (6)

  1.  直流電力を交流電力に変換する電力変換装置であって、
     直流電源(1)からの直流電圧を安定化させる直流安定化回路(2)と、
     前記直流安定化回路(2)によって安定化された直流電圧を交流電圧に変換するインバータ(3)とを備え、
     前記直流安定化回路(2)は、
     前記直流電源(1)からの直流電圧を受ける入力端子(T1)と、
     前記インバータ(3)に接続される直流出力端子(T3)と、
     前記入力端子(T1)に接続され、前記入力端子(T1)の直流電圧を平滑化する蓄電装置(4)と、
     一方端子が前記入力端子(T1)に接続され、他方端子が前記直流出力端子(T3)に接続され、前記直流安定化回路(2)が発振するのを防止するリアクトル(5)と、
     前記直流出力端子(T3)に接続され、前記インバータ(3)にリプル電流を供給するフィルムコンデンサ(6)とを含む、電力変換装置。
  2.  前記蓄電装置は電解コンデンサ(4)である、請求項1に記載の電力変換装置。
  3.  前記蓄電装置は電気二重層コンデンサである、請求項1に記載の電力変換装置。
  4.  前記蓄電装置は電池である、請求項1に記載の電力変換装置。
  5.  前記リアクトルは可飽和リアクトル(5)である、請求項1に記載の電力変換装置。
  6.  前記直流安定化回路(2)は、さらに、前記入力端子(T1)と前記リアクトル(5)の一方端子との間に介挿されたヒューズ(8)を含む、請求項1に記載の電力変換装置。
PCT/JP2011/050141 2011-01-07 2011-01-07 電力変換装置 WO2012093486A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012551778A JP5653458B2 (ja) 2011-01-07 2011-01-07 電力変換装置
CN201180055887.9A CN103222177B (zh) 2011-01-07 2011-01-07 功率转换装置
PCT/JP2011/050141 WO2012093486A1 (ja) 2011-01-07 2011-01-07 電力変換装置
KR1020137009277A KR101452146B1 (ko) 2011-01-07 2011-01-07 전력 변환 장치
US13/879,937 US9438135B2 (en) 2011-01-07 2011-01-07 Electric power converter including a stabilization circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050141 WO2012093486A1 (ja) 2011-01-07 2011-01-07 電力変換装置

Publications (1)

Publication Number Publication Date
WO2012093486A1 true WO2012093486A1 (ja) 2012-07-12

Family

ID=46457351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050141 WO2012093486A1 (ja) 2011-01-07 2011-01-07 電力変換装置

Country Status (5)

Country Link
US (1) US9438135B2 (ja)
JP (1) JP5653458B2 (ja)
KR (1) KR101452146B1 (ja)
CN (1) CN103222177B (ja)
WO (1) WO2012093486A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452642B1 (ko) * 2013-09-02 2014-10-22 엘에스산전 주식회사 역률 보상 회로
US9554431B2 (en) * 2014-01-06 2017-01-24 Garrity Power Services Llc LED driver
DE102014211206B3 (de) * 2014-06-12 2015-09-10 Continental Automotive Gmbh Vorrichtung mit einer Leiterplatte und einer darauf angeordneten elektronischen Schaltung, die einen Elektrolytkondensator aufweist, dessen Betriebstemperatur mittels der elektronischen Schaltung regelbar ist
DE102015107676A1 (de) * 2015-05-15 2016-11-17 Avl Trimerics Gmbh Hochvoltantriebssystem
KR101848611B1 (ko) * 2015-11-23 2018-04-13 현대자동차주식회사 역률 개선 회로 및 이를 적용한 자동차용 충전기
DE202017000338U1 (de) * 2016-11-15 2018-02-16 Liebherr-Components Biberach Gmbh Leistungselektronik mit Trennsicherung
US10218262B1 (en) * 2017-09-25 2019-02-26 Otis Elevator Company Hybrid direct current link system for a regenerative drive
CN112067865A (zh) * 2020-09-14 2020-12-11 南方电网科学研究院有限责任公司 一种电流源装置及直流充电桩校验仪检定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265088U (ja) * 1988-11-02 1990-05-16
JPH03277180A (ja) * 1990-03-23 1991-12-09 Fuji Electric Co Ltd 電圧形インバータ
JP2001016866A (ja) * 1999-06-28 2001-01-19 Toshiba Corp 多レベル中性点電位固定型電力変換装置
JP2002094348A (ja) * 2000-09-13 2002-03-29 Soshin Electric Co Ltd Dcラインフィルタ
JP2003143873A (ja) * 2001-08-21 2003-05-16 Hitachi Ltd 電力変換装置
WO2009037782A1 (ja) * 2007-09-21 2009-03-26 Mitsubishi Electric Corporation 電気車用電力変換装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480298A (en) * 1983-01-25 1984-10-30 Westinghouse Electric Corp. Multiple output DC-to-DC voltage converter apparatus
JP2523809B2 (ja) 1988-08-30 1996-08-14 松下電器産業株式会社 高周波加熱装置
US5550697A (en) * 1994-03-18 1996-08-27 Holophane Corporation System and method for controlling DC to AC voltage inverter
US6873240B2 (en) 2001-08-21 2005-03-29 Hitachi, Ltd. Power converter
US6984963B2 (en) * 2002-08-01 2006-01-10 Stmicroelectronics S.R.L. Device for the correction of the power factor in power supply units with forced switching operating in transition mode
JP4567405B2 (ja) 2004-09-16 2010-10-20 東芝三菱電機産業システム株式会社 電力変換装置
WO2006129795A1 (ja) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. 誘導加熱装置
JP4811917B2 (ja) * 2005-12-27 2011-11-09 三菱電機株式会社 電力変換装置
US7710747B2 (en) * 2006-12-11 2010-05-04 Fuji Electric Systems Co., Ltd. Voltage-source inverter apparatus utilizing ripple voltage
BRPI0909363A2 (pt) * 2008-03-10 2015-09-29 Techtium Ltd fonte de alimentação amigável ao ambiente
WO2010013322A1 (ja) 2008-07-30 2010-02-04 東芝三菱電機産業システム株式会社 電力変換装置
JP5085742B2 (ja) 2008-10-16 2012-11-28 東芝三菱電機産業システム株式会社 電力変換装置
JP5589301B2 (ja) * 2009-04-16 2014-09-17 日産自動車株式会社 電力変換装置
TWI454028B (zh) * 2010-01-13 2014-09-21 Toshiba Kk System interconnection converter
JP5800130B2 (ja) * 2011-06-20 2015-10-28 富士電機株式会社 直流電源システム
US8929110B2 (en) * 2011-12-20 2015-01-06 Atmel Corporation Pulse width modulation controller architectures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265088U (ja) * 1988-11-02 1990-05-16
JPH03277180A (ja) * 1990-03-23 1991-12-09 Fuji Electric Co Ltd 電圧形インバータ
JP2001016866A (ja) * 1999-06-28 2001-01-19 Toshiba Corp 多レベル中性点電位固定型電力変換装置
JP2002094348A (ja) * 2000-09-13 2002-03-29 Soshin Electric Co Ltd Dcラインフィルタ
JP2003143873A (ja) * 2001-08-21 2003-05-16 Hitachi Ltd 電力変換装置
WO2009037782A1 (ja) * 2007-09-21 2009-03-26 Mitsubishi Electric Corporation 電気車用電力変換装置

Also Published As

Publication number Publication date
CN103222177B (zh) 2016-04-27
JPWO2012093486A1 (ja) 2014-06-09
US9438135B2 (en) 2016-09-06
KR101452146B1 (ko) 2014-10-16
CN103222177A (zh) 2013-07-24
KR20130058061A (ko) 2013-06-03
JP5653458B2 (ja) 2015-01-14
US20130208518A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5653458B2 (ja) 電力変換装置
Cao et al. Ripple eliminator to smooth DC-bus voltage and reduce the total capacitance required
JP6736369B2 (ja) 電力変換システム
Irfan et al. Current-sensorless power-decoupling phase-shift dual-half-bridge converter for DC–AC power conversion systems without electrolytic capacitor
US20090285005A1 (en) Space-saving inverter with reduced switching losses and increased life
US8559194B2 (en) Converter circuit and unit and system comprising such converter circuit
US20150162817A1 (en) Apparatus and method for controlling charge for battery
US20240332979A1 (en) Power conversion system including a second circuit being configured to control a current or power such that the current or the power is synchronized with power ripples caused by the ac power supply or the ac load
US11990830B2 (en) Power conversion system and virtual DC voltage generator circuit
US8787055B2 (en) Inverter device
US11165359B2 (en) Power conversion system configured to perform power conversion between direct current and three-phase alternating current
JP2017225322A (ja) 電力変換システム
CN105375742B (zh) 谐振电流限定设备
Rezaei et al. A new active power decoupling method for single phase PWM rectifiers
JP2016077102A (ja) 双方向dc−dcコンバータ
JP6706791B2 (ja) 電源回路
JP6568788B2 (ja) 変圧器及び電力変換装置
US20220239111A1 (en) On-board charger system with integrated auxiliary power supply
JP2014003827A (ja) 充放電システム
JP2012139083A (ja) 電源装置
Stepanek et al. Cost-effective solution of input voltage stabilizer of auxiliary drive converter for traction vehicles
Itoh et al. A control method to reduce a surge voltage of indirect matrix converter by using zero current and zero voltage switching
JP5347476B2 (ja) 電力変換装置
Gao et al. Design and Control of DC/AC Converters in Parallel with Diode Rectifiers for Regenerative Applications
JP2019004590A (ja) パワーコントロールユニット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180055887.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551778

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137009277

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879937

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855206

Country of ref document: EP

Kind code of ref document: A1