JP2019004590A - パワーコントロールユニット - Google Patents
パワーコントロールユニット Download PDFInfo
- Publication number
- JP2019004590A JP2019004590A JP2017116917A JP2017116917A JP2019004590A JP 2019004590 A JP2019004590 A JP 2019004590A JP 2017116917 A JP2017116917 A JP 2017116917A JP 2017116917 A JP2017116917 A JP 2017116917A JP 2019004590 A JP2019004590 A JP 2019004590A
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- inverter
- switching circuit
- capacity
- dcdc converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
【課題】共通のコンデンサモジュールから異なる周波数でそれぞれ動作する複数のスイッチング回路に平滑化された電力を適切に供給する。【解決手段】インバータ3とDCDCコンバータ5とに供給する高電圧バッテリの高電圧の直流電力を平滑化するコンデンサモジュール7に、静電容量の異なる大容量、中容量、低容量の各コンデンサCl,Cm,Csを、静電容量毎にまとめてそれぞれ複数設けてバスバ7a,7bに並列接続した。そして、大容量のコンデンサClがまとめて並列接続されたバスバ7a,7bの一端側をインバータ3に接続し、小容量のコンデンサCsがまとめて並列接続されたバスバ7a,7bの他端側をDCDCコンバータ5に接続した。よって、インバータ3が低周波で動作する際には大容量のコンデンサClが専ら充放電され、DCDCコンバータ5が高周波で動作する際には自己共振周波数が高い小容量のコンデンサCsが専ら充放電される。【選択図】図2
Description
本発明は、異なる周波数で動作する複数のスイッチング回路に平滑化された電力を供給するパワーコントロールユニットに関する。
電気自動車(EV)やハイブリッド車(HEV)等の電動車両に搭載されるパワーコントロールユニットとして、コンデンサモジュールをインバータとDCDCコンバータとに接続したものが知られている。このコンデンサモジュールはバッテリにも接続されており、バッテリからの電力を平滑化してインバータやDCDCコンバータに供給する(例えば、特許文献1)。
インバータは、DCDCコンバータに比べて低い周波数でスイッチング回路のオンオフを行う。このため、インバータに接続する平滑化コンデンサには、DCDCコンバータに接続する平滑化コンデンサに比べて容量が大きいコンデンサが用いられる。そこで、上述したパワーコントロールユニットのコンデンサモジュールには、インバータの仕様に合わせた大容量のコンデンサを用いることが考えられる。
ところで、コンデンサには、容量成分の他に抵抗や寄生インダクタンスが存在する。このため、コンデンサの特性は、コンデンサと寄生インダクタンスとの自己共振周波数よりも低周波の容量性領域ではC性となり、自己共振周波数よりも高周波の誘導性領域ではL性となる。また、自己共振周波数は、コンデンサの容量が大きいほど低くなる。
したがって、大容量のコンデンサをコンデンサモジュールに用いると、インバータよりも高周波で動作するDCDCコンバータに接続した場合にL性となる高周波の誘導性領域でコンデンサを使うことになる。しかし、誘導性領域ではコンデンサがバッテリからの電力を平滑化する機能を果たすことができない。
そこで、大容量のコンデンサをコンデンサモジュールに用い、これに合わせて、DCDCコンバータをインバータ並みに低周波で動作させることが考えられる。そうすれば、C性となる低周波の容量性領域でコンデンサを使うことになるので、バッテリからの電力をコンデンサで平滑化してDCDCコンバータに供給することができる。その代わり、スイッチング回路のオンオフ間隔が長くなって電流不足が生じることから、DCDCコンバータの出力に良好な負荷過渡応答が得られなくなる恐れがある。
一方、インバータよりも高周波で動作するDCDCコンバータに合わせて、コンデンサモジュールに小容量のコンデンサを用いると、バッテリからの電力を平滑化してインバータに供給する際に、コンデンサの容量不足で電力を十分に平滑化することができなくなる。
この種の問題は、電気自動車(EV)やハイブリッド車(HEV)等の電動車両に搭載されたインバータ及びDCDCコンバータへの電力供給の場合に限るものではない。即ち、異なる周波数で動作する複数のスイッチング回路に共通のコンデンサモジュールから平滑化された電力を供給する場合にも、上述した問題は起こり得る。
本発明は前記事情に鑑みなされたもので、本発明の目的は、共通のコンデンサモジュールから異なる周波数でそれぞれ動作する複数のスイッチング回路に平滑化された電力を適切に供給することができるパワーコントロールユニットを提供することにある。
上記目的を達成するため、本発明の1つの態様によるパワーコントロールユニットは、
第1スイッチング回路と、
前記第1スイッチング回路よりも高周波で動作する第2スイッチング回路と、
コンデンサと寄生インダクタンスとの自己共振周波数が異なる複数種類のコンデンサ素子を有し、前記第1スイッチング回路及び前記第2スイッチング回路に接続されたコンデンサモジュールと、
を備える。
第1スイッチング回路と、
前記第1スイッチング回路よりも高周波で動作する第2スイッチング回路と、
コンデンサと寄生インダクタンスとの自己共振周波数が異なる複数種類のコンデンサ素子を有し、前記第1スイッチング回路及び前記第2スイッチング回路に接続されたコンデンサモジュールと、
を備える。
本発明によれば、共通のコンデンサモジュールから異なる周波数でそれぞれ動作する複数のスイッチング回路に平滑化された電力を適切に供給することができる。
以下、本発明の実施形態について図面を参照して説明する。図1は本発明の一実施形態に係るパワーコントロールユニットの要部を示す説明図である。図1に示す本実施形態のパワーコントロールユニット1は、電気自動車(EV)やハイブリッド車(HEV)等の電動車両に搭載される。
本実施形態のパワーコントロールユニット1は、インバータ3(請求項中の第1スイッチング回路に相当)及びDCDCコンバータ5(請求項中の第2スイッチング回路に相当)と、これらに平滑化された電力を供給するコンデンサモジュール7とを備えている。
インバータ3は、不図示の高電圧バッテリからコンデンサモジュール7を介して供給される高電圧の直流電力を、三相交流電力に変換して不図示の推進用モータに出力する。そのために、インバータ3は、IGBT(絶縁ゲートバイポーラトランジスタ)やパワーMOSFET等の半導体素子を上アームと下アームとにそれぞれ用いたU,V,Wの3相のスイッチング回路のスイッチングにより、直流から交流への電力変換を行う。
DCDCコンバータ5は、コンデンサモジュール7を介して供給される高電圧バッテリからの高電圧の直流電力を、低電圧の直流電力に変換して不図示の低電圧バッテリに出力する。DCDCコンバータ5は、MOSFET等の半導体素子を用いたスイッチング回路のスイッチングにより、高電圧から低電圧への直流電力の変圧を行う。
なお、スイッチング回路のスイッチングは、インバータ3(例えば10KHz程度)に比べてDCDCコンバータ5(例えば100KHz程度)の方が高周波で行われる。
コンデンサモジュール7は、高電圧バッテリからの高電圧の直流電力を平滑化してインバータ3やDCDCコンバータ5に供給する他、不図示の急速充電器からの高電圧の直流電力を平滑化して高電圧バッテリに出力する。
図2の説明図に概念的に示すように、コンデンサモジュール7は、P(+)側のバスバ7aとN(−)側のバスバ7bとの間に並列に接続された複数のコンデンサCl,Cm,Csを有している。
一般的に、コンデンサには、容量成分の他に抵抗や寄生インダクタンスが存在する。そして、コンデンサの特性は、図3(a)のグラフに示すように、コンデンサと寄生インダクタンスとの自己共振周波数よりも低周波の容量性領域ではC性となり、自己共振周波数よりも高周波の誘導性領域ではL性となる。
なお、自己共振周波数は、図3(a)のグラフに示す静電容量が相対的に大きいコンデンサの方が、図3(b)のグラフに示す静電容量が相対的に小さいコンデンサよりも、低い周波数となる。また、自己共振周波数は、コンデンサの容量が大きいほど低くなる。
そこで、本実施形態のコンデンサモジュール7では、図2に示すように、静電容量が互いに異なる大容量のコンデンサCl(請求項中の第1コンデンサ素子に相当)、中容量のコンデンサCm(請求項中の第1コンデンサ素子に相当)、小容量のコンデンサCs(請求項中の第2コンデンサ素子に相当)を、容量毎に分けてバスバ7a,7bに並列に接続している。
そして、大容量のコンデンサClがまとめて並列接続されたバスバ7a,7bの一端側をインバータ3に接続し、小容量のコンデンサCsがまとめて並列接続されたバスバ7a,7bの他端側をDCDCコンバータ5に接続している。
なお、不図示の高電圧バッテリは、コンデンサモジュール7の各バスバ7a,7bの中点付近に接続される。
このように構成されたコンデンサモジュール7では、インバータ3のスイッチング回路がDCDCコンバータ5よりも低周波でスイッチング動作した際に、コンデンサモジュール7のバスバ7a,7bのうち、高電圧バッテリが接続された中点付近からインバータ3に接続された一端側までの間を、高電圧バッテリの放電電流が流れる。
このため、インバータ3が低周波で動作している間は、コンデンサモジュール7のコンデンサCl,Cm,Csが、インバータ3が接続されたバスバ7a,7bの一端側にまとめて接続されている大容量のコンデンサClから先に、高電圧バッテリの放電電流によって充放電される。
ここで、大容量のコンデンサClは、自己共振周波数よりも低い周波数で充放電される。したがって、大容量のコンデンサClは、C性となる容量性領域で使われることになる。よって、高電圧バッテリからの高電圧の直流電力は、十分な静電容量を持った大容量のコンデンサClにより十分に平滑化されてインバータ3に供給される。
一方、DCDCコンバータ5のスイッチング回路がインバータ3よりも高周波でスイッチング動作した際には、コンデンサモジュール7のバスバ7a,7bのうち、高電圧バッテリが接続された中点付近からDCDCコンバータ5に接続された他端側までの間を、高電圧バッテリの放電電流が流れる。
このため、DCDCコンバータ5が高周波で動作している間は、コンデンサモジュール7のコンデンサCl,Cm,Csが、DCDCコンバータ5が接続されたバスバ7a,7bの他端側にまとめて接続されている小容量のコンデンサCsから先に、高電圧バッテリの放電電流によって充放電される。
ここで、小容量のコンデンサCsは、大容量のコンデンサClよりも高周波で充放電される。仮に、この充放電が小容量のコンデンサCsの自己共振周波数よりも高い周波数で行われると、小容量のコンデンサCsがL性となる誘導性領域で使われて、高電圧バッテリからの高電圧の直流電力が平滑化されずにDCDCコンバータ5に供給される可能性がある。
しかし、小容量のコンデンサCsは大容量のコンデンサClよりも自己共振周波数が高いので、高電圧バッテリの放電電流によって高周波で充放電される際に、小容量のコンデンサCsは、C性となる容量性領域で使われる。
しかも、小容量のコンデンサCsはDCDCコンバータ5の動作に合わせて高周波で充放電されるので、大容量のコンデンサClよりも静電容量が小さい小容量のコンデンサCsでも、高電圧バッテリからDCDCコンバータ5に供給される高電圧の直流電力を平滑化するには十分な静電容量を有している。
よって、高電圧バッテリからの高電圧の直流電力は、小容量のコンデンサCsにより十分に平滑化されてDCDCコンバータ5に供給される。
このように、高電圧バッテリからインバータ3やDCDCコンバータ5に供給される電力を、いずれもコンデンサモジュール7によって十分に平滑化できると、インバータ3やDCDCコンバータ5に入力側の平滑コンデンサを個別に持たせる必要がなくなる。
例えば、一般的なLLC方式のDCDCコンバータでは、図4の回路図に示すように、トランスTの一次側に、入力側の平滑コンデンサC1、MOSFET等の半導体素子Q1,Q2(請求項中のスイッチ素子に相当)を用いたスイッチング回路Q(請求項中のスイッチ回路部に相当)、共振コイル(共振L)L1、整流用ダイオードD1,D2等を含むLLC回路を設ける。そして、スイッチング回路Qをスイッチングさせることで、入力側の平滑コンデンサC1で平滑化された直流電力を交流に変換する。
一方、トランスTの二次側では、トランスTにより電圧変換した交流電力を整流用ダイオードD3,D4で直流に変換し、出力側の平滑コンデンサC2で平滑化した後に負荷等に出力する。
このLLC方式のDCDCコンバータでは、図5(a)の説明図に示すように、基板上のスイッチング回路Qの隣りに前段の入力側の平滑コンデンサC1を配置しなければならない。このため、半導体素子Q1,Q2のゲート(ベース)駆動回路G(請求項中の駆動回路部に相当)をスイッチング回路Qの隣りに配置できず、平滑コンデンサC1を跨いでゲート駆動回路Gをスイッチング回路Qに接続する必要がある。
この配置では、図5(c)の等価回路図に配線抵抗R1と共に示す、ゲート駆動回路Gとスイッチング回路Qとの配線長に応じたインダクタンスL2により、半導体素子Q1,Q2がスイッチングを繰り返す振動状態を起こす可能性がある。
一方、本実施形態のコンデンサモジュール7を、パワーコントロールユニット1のDCDCコンバータ5として用いると、図4の回路図に示す入力側の平滑コンデンサC1を、インバータ3の入力側の平滑コンデンサ(図示せず)と兼用にして省略することができる。
すると、図5(b)の説明図に示すように、スイッチング回路Qとゲート駆動回路Gとを基板上に隣り合わせで配置することができる。この配置により、ゲート駆動回路Gとスイッチング回路Qとの配線長を短縮して図5(c)のインダクタンスL2を減らし、半導体素子Q1,Q2が振動状態を起こしにくいようにすることができる。
以上に説明した本実施形態のパワーコントロールユニット1によれば、インバータ3とDCDCコンバータ5とに供給する高電圧バッテリの高電圧の直流電力を平滑化するコンデンサモジュール7に、静電容量の異なる大容量、中容量、低容量の各コンデンサCl,Cm,Csを、静電容量毎にまとめてそれぞれ複数設けてバスバ7a,7bに並列接続した。
そして、大容量のコンデンサClがまとめて並列接続されたバスバ7a,7bの一端側をインバータ3に接続して、インバータ3がDCDCコンバータ5よりも低周波で動作する際には、コンデンサモジュール7における静電容量が大きい大容量のコンデンサClが専ら、高電圧バッテリの放電電流により充放電されるようにした。
また、小容量のコンデンサCsがまとめて並列接続されたバスバ7a,7bの他端側をDCDCコンバータ5に接続して、DCDCコンバータ5がインバータ3よりも高周波で動作する際には、コンデンサモジュール7における自己共振周波数が高い小容量のコンデンサCsが専ら、高電圧バッテリの放電電流により充放電されるようにした。
このため、インバータ3の動作時とDCDCコンバータ5の動作時とに、それぞれのスイッチング周波数に応じた静電容量を有し容量性領域で使われるコンデンサCl,Cm,Csが優先して充放電されるようにして、共通のコンデンサモジュール7からインバータ3とDCDCコンバータ5とにそれぞれ平滑化された電力を適切に供給することができる。
なお、DCDCコンバータ5の各構成要素の基板上におけるレイアウトは、図5(b)の説明図に示す例のレイアウトに限定されない。また、コンデンサモジュール7に設ける静電容量違いのコンデンサは、同数ずつであってもよく、静電容量毎に設ける数が異なっていてもよい。
さらに、本実施形態では、コンデンサモジュール7に大容量、中容量、小容量の3種類のコンデンサCl,Cm,Csを設けたが、コンデンサモジュール7に設ける静電容量違いのコンデンサは2種類でも4種類以上であってもよい。また、コンデンサモジュール7の各コンデンサCl,Cm,Csの並列接続にはバスバ7a,7b以外の結線部品を用いてもよい。
さらに、大容量のコンデンサClはインバータ3の近くに配置しなくてもよく、小容量のコンデンサCsは、DCDCコンバータ5の近くに配置しなくてもよい。その場合、インバータ3の動作時に専ら大容量のコンデンサClが充放電され、かつ、DCDCコンバータ5の動作時に専ら小容量のコンデンサCsが充放電される回路構成とすれば、共通のコンデンサモジュール7からインバータ3やDCDCコンバータ5への平滑化された電力の適切な供給を、より効率的に実現することができる。
そして、上述した実施形態では、インバータ3とDCDCコンバータ5とを有するパワーコントロールユニット1に本発明を適用したが、本発明は、互いに異なる周波数で動作する複数のスイッチング回路を有するパワーコントロールユニットに広く適用可能である。
本発明は、異なる周波数で動作する複数のスイッチング回路に平滑化された電力を供給するパワーコントロールユニットにおいて利用することができる。
1 パワーコントロールユニット
3 インバータ(第1スイッチング回路)
5 DCDCコンバータ(第2スイッチング回路)
7 コンデンサモジュール
7a,7b バスバ
C1,C2 平滑コンデンサ
Cl 大容量のコンデンサ(第1コンデンサ素子)
Cm 中容量のコンデンサ(第1コンデンサ素子)
Cs 小容量のコンデンサ(第2コンデンサ素子)
D1〜D4 整流用ダイオード
G ゲート駆動回路(駆動回路部)
L2 インダクタンス
Q スイッチング回路(スイッチ回路部)
Q1,Q2 半導体素子(スイッチ素子)
R1 配線抵抗
T トランス
3 インバータ(第1スイッチング回路)
5 DCDCコンバータ(第2スイッチング回路)
7 コンデンサモジュール
7a,7b バスバ
C1,C2 平滑コンデンサ
Cl 大容量のコンデンサ(第1コンデンサ素子)
Cm 中容量のコンデンサ(第1コンデンサ素子)
Cs 小容量のコンデンサ(第2コンデンサ素子)
D1〜D4 整流用ダイオード
G ゲート駆動回路(駆動回路部)
L2 インダクタンス
Q スイッチング回路(スイッチ回路部)
Q1,Q2 半導体素子(スイッチ素子)
R1 配線抵抗
T トランス
Claims (5)
- 第1スイッチング回路(3)と、
前記第1スイッチング回路(3)よりも高周波で動作する第2スイッチング回路(5)と、
コンデンサと寄生インダクタンスとの自己共振周波数が異なる複数種類のコンデンサ素子(Cl,Cm,Cs)を有し、前記第1スイッチング回路(3)及び前記第2スイッチング回路(5)に接続されたコンデンサモジュール(7)と、
を備えるパワーコントロールユニット(1)。 - 前記複数種類のコンデンサ素子(Cl,Cm,Cs)は、バスバ(7a,7b)によって並列接続されている請求項1記載のパワーコントロールユニット(1)。
- 前記複数種類のコンデンサ素子(Cl,Cm,Cs)は、第1コンデンサ素子(Cl,Cm)と、該第1コンデンサ素子(Cl,Cm)よりも静電容量が小さく前記自己共振周波数が高い第2コンデンサ素子(Cs)とを含み、該第2コンデンサ素子(Cs)は前記第1コンデンサ素子(Cl,Cm)よりも、前記コンデンサモジュール(7)における前記第2スイッチング回路(5)に近い箇所に配置されている請求項1又は2記載のパワーコントロールユニット(1)。
- 前記第1スイッチング回路(3)はインバータであり、前記第2スイッチング回路(5)はDCDCコンバータである請求項1、2又は3記載のパワーコントロールユニット(1)。
- 前記第1スイッチング回路(3)はインバータであり、前記第2スイッチング回路(5)はDCDCコンバータであり、該DCDCコンバータ(5)は、スイッチ素子(Q1,Q2)を有するスイッチ回路部(Q)と、前記スイッチ素子(Q1,Q2)に制御信号を出力する駆動回路部(G)とを有し、前記複数種類のコンデンサ素子(Cl,Cm,Cs)が並列接続されたバスバ(7a,7b)の前記第2コンデンサ素子(Cs)が接続された箇所が前記スイッチ素子(Q1,Q2)に接続され、前記駆動回路部(G)が前記スイッチ回路部(Q)に隣接して配置されている請求項3記載のパワーコントロールユニット(1)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017116917A JP2019004590A (ja) | 2017-06-14 | 2017-06-14 | パワーコントロールユニット |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017116917A JP2019004590A (ja) | 2017-06-14 | 2017-06-14 | パワーコントロールユニット |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019004590A true JP2019004590A (ja) | 2019-01-10 |
Family
ID=65006278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017116917A Withdrawn JP2019004590A (ja) | 2017-06-14 | 2017-06-14 | パワーコントロールユニット |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019004590A (ja) |
-
2017
- 2017-06-14 JP JP2017116917A patent/JP2019004590A/ja not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4910078B1 (ja) | Dc/dc変換器およびac/dc変換器 | |
US7746669B2 (en) | Bidirectional battery power inverter | |
US10491103B2 (en) | Step-up converter, corresponding inverter and method of operation | |
JP6736370B2 (ja) | 電力変換システム | |
WO2013118274A1 (ja) | 双方向非接触給電システム | |
US20080205109A1 (en) | Energy distribution system for vehicle | |
JP2015159711A (ja) | スイッチング電源装置、電力変換装置 | |
JP6710976B2 (ja) | 電力変換装置及び電力変換装置の制御方法 | |
US9487098B2 (en) | Power conversion apparatus | |
JP6736369B2 (ja) | 電力変換システム | |
US8559194B2 (en) | Converter circuit and unit and system comprising such converter circuit | |
US11296607B2 (en) | DC-DC converter | |
EP2639950A1 (en) | Filter circuit, and bidirectional power conversion apparatus provided with same | |
US8817492B2 (en) | DC-DC converter having partial DC input conversion | |
JP2012075210A (ja) | 直流電源装置 | |
KR101994572B1 (ko) | 전원 시스템 | |
US10917000B2 (en) | Driver unit, electric power converter, vehicle and method for operating an electric power converter | |
KR100911541B1 (ko) | 연료전지 차량용 양방향 3상 pwm dc-dc 컨버터 | |
KR101558770B1 (ko) | 차량용 충전 장치 | |
JP2019004590A (ja) | パワーコントロールユニット | |
KR102348019B1 (ko) | 커패시터 절연 방식의 대칭형 컨버터 | |
JP6019804B2 (ja) | 双方向電力変換装置、及び、充放電システム | |
JP2015139312A (ja) | スイッチング電源装置、電力変換装置 | |
JP6293242B1 (ja) | 電力変換装置 | |
JP2014003827A (ja) | 充放電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210428 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20210517 |