CN103222177B - 功率转换装置 - Google Patents

功率转换装置 Download PDF

Info

Publication number
CN103222177B
CN103222177B CN201180055887.9A CN201180055887A CN103222177B CN 103222177 B CN103222177 B CN 103222177B CN 201180055887 A CN201180055887 A CN 201180055887A CN 103222177 B CN103222177 B CN 103222177B
Authority
CN
China
Prior art keywords
capacitor
inverter
stabilization circuit
voltage
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180055887.9A
Other languages
English (en)
Other versions
CN103222177A (zh
Inventor
木下雅博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Publication of CN103222177A publication Critical patent/CN103222177A/zh
Application granted granted Critical
Publication of CN103222177B publication Critical patent/CN103222177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/46Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明的功率转换装置包括:直流稳定电路(2),该直流稳定电路(2)使来自直流电源(1)的直流电压稳定;以及逆变器(3),该逆变器(3)将经直流稳定电路(2)稳定后的直流电压转换成交流电压。直流稳定电路(2)包含:铝电解电容器(4),该铝电解电容器(4)对直流电压进行平滑化;饱和电抗器(5),该饱和电抗器(5)防止直流稳定电路(2)产生振荡;以及薄膜电容器(6),该薄膜电容器(6)向逆变器(3)提供纹波电流。

Description

功率转换装置
技术领域
本发明涉及一种功率转换装置,特别涉及一种将直流电转换成交流电的功率转换装置。
背景技术
一般来说,将直流电转换成交流电的功率转换装置包括:电容器,该电容器使来自直流电源的直流电压稳定;以及逆变器,该逆变器将经电容器稳定后的直流电压转换成交流电压。另外,在逆变器中,随着半导体开关元件的开关动作,将产生纹波电流。逆变器所产生的纹波电流被电容器吸收(例如,参照日本专利特开2006-87212号公报(专利文献1))。
现有技术文献
专利文献
特許文献1:日本专利特开2006-87212号公报
发明内容
发明所要解决的技术问题
在这种功率转换装置中,一般使用铝电解电容器来作为电容器。这种铝电解电容器具有容量值较大的优点,但是具有纹波电流的提供能力(吸收能力)较差的缺点。因此,为了提供逆变器所需的纹波电流,需要并联连接多个铝电解电容器来使用,从而产生装置变大、成本变高的问题。
此外,由于纹波电流是高频的交流电流,因此由逆变器产生的纹波电流被电容器吸收等同于从电容器向逆变器提供纹波电流。
另外,在这种电流转换装置中,为了从电容器向逆变器提供纹波电流,需要以相互靠近的方式来配置电容器与逆变器,来减小电容器与逆变器之间的布线的电感成分。因此,还存在装置的设计自由度较小的问题。
因而,本发明的主要目的在于,提供一种功率转换装置,可以使装置变小、并降低成本,且设计的自由度较大。
解决技术问题所采用的技术方案
本发明所涉及的功率转换装置将直流电转换成交流电,包括:直流稳定电路,该直流稳定电路使来自直流电源的直流电压稳定;以及逆变器,该逆变器将经直流稳定电路稳定后的直流电转换成交流电。直流稳定电路包含:输入端子,该输入端子接收来自直流电源的直流电压;直流输出端子,该直流输出端子与逆变器相连接;蓄电装置,该蓄电装置与输入端子相连接,并对输入端子的直流电压进行平滑化;电抗器,该电抗器的一个端子与输入端子相连接,另一个端子与输出端子相连接,并防止直流稳定电路产生振荡;以及薄膜电容器,该薄膜电容器与输出端子相连接,并向逆变器提供纹波电流。
优选为,蓄电装置是电解电容器。
还优选为,蓄电装置是双电层电容器。
还优选为,蓄电装置是电池。
还优选为,电抗器是饱和电抗器。
还优选为,直流稳定电路还包含有熔断器,该熔断器被插在输入端子与电抗器的一个端子之间。
发明效果
在本发明所涉及的功率转换装置中,通过蓄电装置来平滑直流电压,通过薄膜电容器来提供纹波电流,通过电抗器来防止振荡。因此,蓄电装置无需提供纹波电流,所以其体积较小且较廉价。另外,由于可以仅将薄膜电容器配置在逆变器附近,而能将蓄电装置配置成远离逆变器,因此设计的自由度有所变大,且能够实现逆变器部分的小型化。
附图说明
图1是表示本发明的一个实施方式的功率转换装置的结构的电路框图。
图2是用于说明图1所示的饱和电抗器的效果的电路图。
图3是表示实施方式的变形例的电路图。
实施方式
如图1所示,本发明的一个实施方式的功率转换装置是将从直流电源1提供的直流电转换成交流电的装置,包括直流稳定电路2以及逆变器3。
直流电源1是提供直流电的装置,例如是将交流电转换成直流电的整流器。另外,直流电源1也可以是对交流电压进行整流的整流电路,也可以是存储直流电的电池,也可以是产生直流电的太阳能电池、燃料电池。
直流稳定电路2是使来自直流电源1的直流电压稳定的电路,包含:输入端子T1、T2、直流输出端子T3、T4、铝电解电容器4、饱和电抗器5、以及薄膜电容器6。
输入端子T1、T2分别与直流电源1的正极侧输出端子1a及负极侧输出端子1b相连接,并且接收从直流电源1输出的直流电压。铝电解电容器4连接于输入端子T1、T2之间,并利用来自直流电源1的直流电压进行充电。铝电解电容器4对从直流电源1输出的直流电压进行平滑化。如上所述,铝电解电容器4具有容量值较大的优点,但具有纹波电流的提供能力(吸收能力)较差的缺点。
薄膜电容器6连接于直流输出端子T3与T4之间。薄膜电容器6具有纹波电流的提供能力(吸收能力)较好、寿命较长的优点,但具有容量值较小的缺点。薄膜电容器6的容量值较小,因此不适合用作直流平滑用电容器,还因为其存储能量也较小,因此也不适合用作瞬间电压下降时等的备用电容器。另外,为了得到较大的容量值,需要并联连接多个电容器来使用,从而产生装置变大、成本变高的问题。
因此,在本发明申请中,使用铝电解电容器4及薄膜电容器6这两个电容器,从而利用一方的优点来弥补另一方的缺点。其中,如图2所示,若仅单纯地使铝电解电容器4与薄膜电容器6并联连接,则由它们之间的布线7的电感分量与电容器4、6来形成谐振电路。若该谐振电路的谐振频率接近于逆变器3的开关频率,则会有谐振纹波电流流过该谐振电路,使得电容器4、6变得过热。
因此,如图1所示,在本发明申请中,将薄膜电容器6配置于逆变器3的附近,并利用饱和电抗器5来连接该薄膜电容器6与铝电解电容器4。由此,能够增大电容器4、6之间的高频阻抗,从而抑制谐振现象。
另外,可以仅利用薄膜电容器6来向逆变器3提供高频纹波电流,并利用铝电解电容器4来对直流电压进行平滑化,因此可以将提供纹波电流与平滑电流分开进行设计。
另外,由于流过铝电解电容器4的纹波电流变小,因此能够使用内部电阻较大、且较廉价的铝电解电容器4。还有,由于薄膜电容器6体积较小,因此可以使包含电容器6及逆变器3的功率转换部较小,从而可以将铝电解电容器4配置于远离功率转换部的位置,并提高设计的自由度。
饱和电抗器5包含进行电磁耦合的2根线圈5a、5b。线圈5a的一个端子与直流输出端子T3相连,其另一个端子与输入端子T1相连。线圈5b的一个端子与输入端子T2相连,其另一个端子与直流输出端子T4相连。
饱和电抗器5的电抗L根据施加在饱和电抗器5的端子间的电压V与时间t的乘积V·t而发生变化,在V·t小于规定值的情况下、饱和电抗器5的电抗L为固定值,而在V·t超过规定值的情况下、饱和电抗器5的电抗L迅速变小。因此,饱和电抗器5的电抗L相对于高频电压来说是较大的值,而相对于低频电压及直流电压来说是较小的值。因此,经铝电解电容器4平滑后的直流电压通过饱和电抗器5并被提供给逆变器3,而随着逆变器3的开关动作而产生的高频纹波电压则不会通过饱和电抗器5。
逆变器3包含:IGBT(InsulatedGateBipolarTransistor:绝缘栅双极型晶体管)Q1~Q6、二级管D1~D6、以及交流输出端子T5~T7。
IGBTQ1~Q3的集电极均与直流输出端子T3相连,而它们的发射极分别与交流输出端子T5~T7相连。IGBTQ4~Q6的集电极分别与交流输出端子T5~T7相连,而它们的发射极均与直流输出端子T4相连。二级管D1~D6分别与IGBTQ1~Q6反向并联连接。控制电路(未图示)分别对IGBTQ1~Q6的栅极提供控制信号,并以规定的时序来使各个IGBTQ1~Q6导通/截止,从而将直流电压转换成三相交流电压。
例如,将三相负载(例如,三相电动机)连接于交流输出端子T5~T7,并以IGBTQ1、Q6、Q2、Q4、Q3、Q5的顺序、使其相位偏转60度,并每次导通120度,从而对三相负载提供三相交流电力。
此外,在本实施方式中,将铝电解电容器4用作为直流平滑用、能量存储用、备用的电容器,然而使用双电层电容器或各种电池以替代铝电解电容器4,也能得到相同的效果。
另外,也可以使用一般的电抗器、来替代饱和电抗器5。即使是一般的电抗器,电抗器的阻抗也会与频率成比例地增大,因此,可以通过电抗器来截断高频纹波电流,从而抑制谐振现象的发生。
图3是表示本实施方式的变形例的电路图,是与图1作对比的图。在图3中的该变形例中,在直流稳定电路2中添加有熔断器8。熔断器8被插在输入端子T1与饱和电抗器5的线圈5a的另一个端子之间。在该变形例中,在逆变器3的IGBT发生故障、从而处于短路状态时,熔断器8会熔断,因此能够使IGBT的短路故障的影响有所缓和。另外,熔断器8设于饱和电抗器5的铝电解电容器4一侧,因此能够方便地选用熔断器8,而不用考虑高频纹波电流会流过熔断器8。
应当认为:本次公开的实施方式的所有内容均为举例表示,而不具有限制性。本发明的范围并不是由上述说明表示,而是由权利要求的范围表示,包含与权利要求的范围同等的意义及范围内的所有变更。
标号说明
1直流电源
1a正极侧输出端子
1b负极侧输出端子
2直流稳定电路
3逆变器
4铝电解电容器
5饱和电抗器
5a、5b线圈
6薄膜电容器
7布线
8熔断器
Q1~Q6IGBT
D1~D6二极管
T1、T2输入端子
T3、T4直流输出端子
T5~T7交流输出端子。

Claims (5)

1.一种功率转换装置,该功率转换装置将直流电转换成交流电,包括:
直流稳定电路(2),该直流稳定电路(2)使来自直流电源(1)的直流电压稳定;以及
逆变器(3),该逆变器(3)将经所述直流稳定电路(2)稳定后的直流电压转换成交流电压,
所述直流稳定电路(2)包含:
第一及第二输入端子(T1、T2),该第一及第二输入端子(T1、T2)接收来自所述直流电源(1)的直流电压;
第一及第二直流输出端子(T3、T4),该第一及第二直流输出端子(T3、T4)与所述逆变器(3)相连接;
平滑电容器(4),该平滑电容器(4)连接在所述第一及第二输入端子(T1、T2)之间,并对所述第一及第二输入端子(T1、T2)之间的直流电压进行平滑化;
饱和电抗器(5),该饱和电抗器(5)连接在所述第一及第二输入端子(T1、T2)与第一及第二直流输出端子(T3、T4)之间,该饱和电抗器(5)的电抗相对于高频电压是较大的值,相对于低频电压及直流电压是较小的值,该饱和电抗器(5)防止所述直流稳定电路(2)产生振荡;以及
薄膜电容器(6),该薄膜电容器(6)连接在所述第一及第二直流输出端子(T3、T4)之间,并向所述逆变器(3)提供纹波电流,
所述饱和电抗器(5)具有连接在所述第一直流输出端子(T3)与所述第一输入端子(T1)之间的第一线圈(5a)、以及连接在所述第二输入端子(T2)与所述第二直流输出端子(T4)之间的第二线圈(5b)。
2.如权利要求1所述的功率转换装置,其特征在于,
所述平滑电容器(4)是电解电容器。
3.如权利要求1所述的功率转换装置,其特征在于,
所述平滑电容器(4)是双电层电容器。
4.如权利要求1所述的功率转换装置,其特征在于,
所述平滑电容器(4)的电容值大于所述薄膜电容器(6)的电容值。
5.如权利要求1所述的功率转换装置,其特征在于,
所述直流稳定电路(2)还包含熔断器(8),该熔断器(8)的一个端子与所述第一输入端子(T1)相连,另一个端子经由所述第一线圈(5a)与所述第一直流输出端子(T3)相连。
CN201180055887.9A 2011-01-07 2011-01-07 功率转换装置 Active CN103222177B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/050141 WO2012093486A1 (ja) 2011-01-07 2011-01-07 電力変換装置

Publications (2)

Publication Number Publication Date
CN103222177A CN103222177A (zh) 2013-07-24
CN103222177B true CN103222177B (zh) 2016-04-27

Family

ID=46457351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180055887.9A Active CN103222177B (zh) 2011-01-07 2011-01-07 功率转换装置

Country Status (5)

Country Link
US (1) US9438135B2 (zh)
JP (1) JP5653458B2 (zh)
KR (1) KR101452146B1 (zh)
CN (1) CN103222177B (zh)
WO (1) WO2012093486A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452642B1 (ko) * 2013-09-02 2014-10-22 엘에스산전 주식회사 역률 보상 회로
US9554431B2 (en) * 2014-01-06 2017-01-24 Garrity Power Services Llc LED driver
DE102014211206B3 (de) * 2014-06-12 2015-09-10 Continental Automotive Gmbh Vorrichtung mit einer Leiterplatte und einer darauf angeordneten elektronischen Schaltung, die einen Elektrolytkondensator aufweist, dessen Betriebstemperatur mittels der elektronischen Schaltung regelbar ist
DE102015107676A1 (de) * 2015-05-15 2016-11-17 Avl Trimerics Gmbh Hochvoltantriebssystem
KR101848611B1 (ko) * 2015-11-23 2018-04-13 현대자동차주식회사 역률 개선 회로 및 이를 적용한 자동차용 충전기
DE202017000338U1 (de) * 2016-11-15 2018-02-16 Liebherr-Components Biberach Gmbh Leistungselektronik mit Trennsicherung
US10218262B1 (en) * 2017-09-25 2019-02-26 Otis Elevator Company Hybrid direct current link system for a regenerative drive
CN112067865A (zh) * 2020-09-14 2020-12-11 南方电网科学研究院有限责任公司 一种电流源装置及直流充电桩校验仪检定装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279532A (zh) * 1999-06-28 2001-01-10 东芝株式会社 Npc逆变器控制系统
CN101803162A (zh) * 2007-09-21 2010-08-11 三菱电机株式会社 电车用功率转换装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480298A (en) * 1983-01-25 1984-10-30 Westinghouse Electric Corp. Multiple output DC-to-DC voltage converter apparatus
JP2523809B2 (ja) 1988-08-30 1996-08-14 松下電器産業株式会社 高周波加熱装置
JPH0265088U (zh) * 1988-11-02 1990-05-16
JPH03277180A (ja) * 1990-03-23 1991-12-09 Fuji Electric Co Ltd 電圧形インバータ
US5550697A (en) * 1994-03-18 1996-08-27 Holophane Corporation System and method for controlling DC to AC voltage inverter
JP2002094348A (ja) * 2000-09-13 2002-03-29 Soshin Electric Co Ltd Dcラインフィルタ
KR100555380B1 (ko) 2001-08-21 2006-02-24 가부시끼가이샤 히다치 세이사꾸쇼 전력변환장치
JP3817501B2 (ja) * 2001-08-21 2006-09-06 株式会社日立製作所 電力変換装置
US6946819B2 (en) * 2002-08-01 2005-09-20 Stmicroelectronics S.R.L. Device for the correction of the power factor in power supply units with forced switching operating in transition mode
JP4567405B2 (ja) 2004-09-16 2010-10-20 東芝三菱電機産業システム株式会社 電力変換装置
WO2006129795A1 (ja) * 2005-06-02 2006-12-07 Matsushita Electric Industrial Co., Ltd. 誘導加熱装置
JP4811917B2 (ja) * 2005-12-27 2011-11-09 三菱電機株式会社 電力変換装置
US7710747B2 (en) * 2006-12-11 2010-05-04 Fuji Electric Systems Co., Ltd. Voltage-source inverter apparatus utilizing ripple voltage
BRPI0909363A2 (pt) * 2008-03-10 2015-09-29 Techtium Ltd fonte de alimentação amigável ao ambiente
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
CN102187562B (zh) 2008-10-16 2014-09-03 东芝三菱电机产业系统株式会社 功率转换装置
JP5589301B2 (ja) * 2009-04-16 2014-09-17 日産自動車株式会社 電力変換装置
EP2525482A4 (en) * 2010-01-13 2018-02-28 Kabushiki Kaisha Toshiba Grid-tie inverter
JP5800130B2 (ja) * 2011-06-20 2015-10-28 富士電機株式会社 直流電源システム
US8929110B2 (en) * 2011-12-20 2015-01-06 Atmel Corporation Pulse width modulation controller architectures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279532A (zh) * 1999-06-28 2001-01-10 东芝株式会社 Npc逆变器控制系统
CN101803162A (zh) * 2007-09-21 2010-08-11 三菱电机株式会社 电车用功率转换装置

Also Published As

Publication number Publication date
US9438135B2 (en) 2016-09-06
KR101452146B1 (ko) 2014-10-16
US20130208518A1 (en) 2013-08-15
JPWO2012093486A1 (ja) 2014-06-09
WO2012093486A1 (ja) 2012-07-12
KR20130058061A (ko) 2013-06-03
JP5653458B2 (ja) 2015-01-14
CN103222177A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
CN103222177B (zh) 功率转换装置
Zhao et al. Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system
US8780593B2 (en) Power compensation apparatus and method for renewable energy system
Tan et al. Topology and application of bidirectional isolated dc-dc converters
Parashar et al. High power medium voltage converters enabled by high voltage SiC power devices
US11990830B2 (en) Power conversion system and virtual DC voltage generator circuit
Vadi et al. A review of control methods on suppression of 2ω ripple for single-phase quasi-Z-source inverter
Xu et al. Soft-Switching Technology for Three-phase Power Electronics Converters
Mazumder et al. A low-device-count single-stage direct-power-conversion solar microinverter for microgrid
Kolli et al. Design considerations of three phase active front end converter for 13.8 kv asynchronous microgrid power conditioning system enabled by series connection of gen-3 10 kv sic mosfets
Bi et al. An integrated power decoupling method for single-phase EV onboard charger in V2G application
Pan et al. A high power density integrated charger for electric vehicles with active ripple compensation
CN105164913A (zh) 旋转电机驱动装置
Fang et al. A single-phase AC power supply based on modified Quasi-Z-Source Inverter
Kroics et al. Design considerations of GaN transistor based capacitive wireless power transfer system
Dhanalakshmi et al. A Review on Two-Stage Back End DC-DC Converter in On-Board Battery Charger for Electric Vehicle
EP3916980A1 (en) Conversion device
US20220200480A1 (en) Power conversion system, method for controlling the power conversion system, and program
Bhattacharya et al. Power Conversion Systems Enabled by SiC BiDFET Device
CN104734531B (zh) 变频器
Narwal et al. Isolated Single-stage Three-phase AC/DC Converter using Bidirectional Switches
Hou et al. Topologies and operations of hybrid-type DC–DC converters interfacing DC-current bus and DC-voltage bus
Savage et al. A modular battery charger for electric vehicles
Reddy A ZVS-PWM THREE-PHASE CURRENT-FED PUSH–PULL DC–DC CONVERTER WITH FUEL CELL INPUT
Saravanan et al. Z Source Inverter Topologies-A Survey

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant