WO2012091494A2 - 기판 검사방법 - Google Patents

기판 검사방법 Download PDF

Info

Publication number
WO2012091494A2
WO2012091494A2 PCT/KR2011/010316 KR2011010316W WO2012091494A2 WO 2012091494 A2 WO2012091494 A2 WO 2012091494A2 KR 2011010316 W KR2011010316 W KR 2011010316W WO 2012091494 A2 WO2012091494 A2 WO 2012091494A2
Authority
WO
WIPO (PCT)
Prior art keywords
observation area
height
substrate
measurement module
previous
Prior art date
Application number
PCT/KR2011/010316
Other languages
English (en)
French (fr)
Other versions
WO2012091494A3 (ko
Inventor
조수용
유희욱
황봉하
김희태
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100138104A external-priority patent/KR101169982B1/ko
Priority claimed from KR1020110143703A external-priority patent/KR101311809B1/ko
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to US13/977,499 priority Critical patent/US9885669B2/en
Priority to DE112011104658.8T priority patent/DE112011104658B4/de
Priority to JP2013547357A priority patent/JP5597774B2/ja
Priority to CN201180063483.4A priority patent/CN103299728B/zh
Publication of WO2012091494A2 publication Critical patent/WO2012091494A2/ko
Publication of WO2012091494A3 publication Critical patent/WO2012091494A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the present invention relates to a substrate inspection method, and more particularly, to a substrate inspection method for increasing the reliability of the inspection process for inspecting the formation state of the measurement object formed on the substrate.
  • At least one projection unit for irradiating pattern light to the measurement object including an illumination source and a grid element, and photographing the image of the measurement object through irradiation of the pattern light
  • a measurement module including a camera to be used.
  • the substrate inspection apparatus may measure the entire area of the substrate in one step. However, when the size of the substrate is larger than the field of view (FOV) of the camera, the substrate inspection apparatus divides the substrate into a plurality of observation regions. Can be measured sequentially over.
  • FOV field of view
  • the substrate loaded on the substrate inspection apparatus maintains both ends fixed by the stage. Accordingly, as the size of the substrate increases, warpage occurs in the substrate, and height deviation occurs for each of the plurality of observation regions. In general, since the substrate inspection apparatus has a measurable range in which the height can be measured, if the height deviation due to the warpage of the substrate exceeds the height measurable range, the height measurement may not be properly performed. have.
  • the displacement amount of each observation region is measured in advance through a separate laser rangefinder, and the height of the measurement module is reset for each observation region.
  • the board inspection time is increased according to the height displacement measurement in advance.
  • the present invention has been made in view of such a problem, and the present invention adjusts the height of the measurement module for the next observation region to be inspected by using the height trend information of at least one previous observation region that has been inspected.
  • a substrate inspection method that can shorten the measurement time.
  • the present invention provides a substrate inspection method that can increase the measuring range of the height in response to the bending of the substrate by performing the substrate inspection using the first pattern light and the second pattern light having different wavelengths.
  • the present invention provides a substrate inspection method capable of more accurately predicting the amount of height displacement with respect to the target observation region by setting a dummy observation region between the target observation region and the previous observation region when the observation regions are far apart.
  • the present invention when the substrate is carried through a substrate transfer mechanism such as a tray or a jig, by correcting the height of the camera by the amount of height displacement of the substrate by the substrate transfer mechanism, the substrate that can further improve the reliability of substrate inspection Provide inspection methods.
  • a region of interest (ROI) in which an object of measurement actually exists in the observation area is biased to one side, a dummy region of interest for confirming the bottom trend is set in the observation area, thereby providing Provides a substrate inspection method that can improve the reliability.
  • ROI region of interest
  • a method for inspecting a substrate includes a plurality of substrates using a measurement module including at least one projection unit for irradiating pattern illumination with a substrate fixed to a stage and a camera for capturing an image of the substrate.
  • the height displacement amount of the target observation area may be estimated using extrapolation from the trend information of the previous observation area.
  • estimating a height displacement amount of the target observation area may include height of the target observation area using height information of at least two previous observation areas existing on the same row corresponding to the longitudinal direction of the stage. Predict displacement.
  • estimating a height displacement amount of the target observation area may include: using the height information of at least three previous observation areas on the same row and the previous row corresponding to the longitudinal direction of the stage, to observe the target; Predict the height displacement of the area.
  • the trend information for the previous observation area may be calculated using a height information of at least one ROI existing in the previous observation area, and use the plane equation as trend information. Can be.
  • the height of the measuring module may be adjusted in any one of before, after, and during the transfer of the measuring module to the target observation area.
  • the height of the measurement module may be adjusted based on the height displacement of the center point of the target observation area and the previous observation area.
  • the measurement module may include at least one first projection unit irradiating a first pattern light having a first wavelength, and at least one second projection unit irradiating a second pattern light having a second wavelength different from the first wavelength. It may include. In contrast, the projection unit may sequentially irradiate the first and second pattern lights having different wavelengths.
  • Substrate inspection method a plurality of substrates by using a measurement module including at least one projection unit for irradiating pattern illumination to a substrate fixed to the stage and a camera for taking an image of the substrate
  • a method of inspecting a substrate by sequentially dividing the observation areas into FOVs comprising: setting an inspection order for the plurality of observation areas, at least one dummy observation between a target observation area and a previous observation area; Setting an area, estimating a height displacement with respect to the target observation area using trend information of at least one of the dummy observation area and the previous observation area, and calculating the estimated height displacement with respect to the target observation area.
  • Adjusting the height of the measuring module based on the height of the measuring module; Use comprises the step of inspecting the observation target region.
  • the planar equation may be used as trend information.
  • the measurement module may include at least one first projection unit irradiating a first pattern light having a first wavelength, and at least one second projection unit irradiating a second pattern light having a second wavelength different from the first wavelength. It may include. In contrast, the projection unit may sequentially irradiate the first and second pattern lights having different wavelengths.
  • a method for inspecting a substrate may include at least one of irradiating pattern illumination with a substrate mounted on the substrate transport mechanism when the substrate is fixed to the stage while the substrate transport mechanism is mounted on the substrate transport mechanism.
  • the substrate inspecting method may further include, in inspecting the plurality of observation regions according to the inspection order, using the trend information of at least one previous observation region that has been inspected for the next observation region to be inspected. Predicting the height displacement amount for the observation area, adjusting the height of the measurement module based on the predicted height displacement amount with respect to the target observation area, and using the measurement module in which the height adjustment is completed, the target observation area.
  • the method may further include checking.
  • the trend information for the previous observation area may be calculated using a height information of at least one ROI existing in the previous observation area, and use the plane equation as trend information. Can be.
  • the measurement module may include at least one first projection unit irradiating a first pattern light having a first wavelength, and at least one second projection unit irradiating a second pattern light having a second wavelength different from the first wavelength. It may include. In contrast, the projection unit may sequentially irradiate the first and second pattern lights having different wavelengths.
  • Substrate inspection method the substrate using a measurement module including at least one projection unit for irradiating the pattern light to the substrate fixed to the stage and a camera for taking an image of the substrate,
  • a method for inspecting a substrate by sequentially dividing a into a plurality of observation areas (FOV), and determining whether there is at least one previous observation area close to the target observation area to be inspected next. Adjusting the focus by moving the Z axis of the measurement module to an initial position if the previous observation region does not exist, and using the trend information of the previous observation region in the target observation region if the previous observation region exists. Estimating the Z axis transfer position of the measurement module, and transferring the Z axis of the measurement module to the estimated transfer position. Adjusting the focus, and using the measuring module, the focus adjustment is completed, and a step of inspecting the observation target region.
  • FOV observation areas
  • the measurement module may include at least one first projection unit irradiating a first pattern light having a first wavelength, and at least one second projection unit irradiating a second pattern light having a second wavelength different from the first wavelength. It may include. In contrast, the projection unit may sequentially irradiate the first and second pattern lights having different wavelengths.
  • a method for inspecting a substrate includes a plurality of substrates using a measurement module including at least one projection unit for irradiating pattern illumination with a substrate fixed to a stage and a camera for capturing an image of the substrate.
  • FOVs observation areas
  • Adjusting the height of the measuring module based on a predicted height displacement, and the side on which the height adjustment is completed Using the module comprises the step of inspecting the next observation area.
  • a planar equation of the observation area may be calculated using at least one height information of the actual ROI and the dummy ROI existing in the observation area, and the planar equation may be used as trend information.
  • the dummy region of interest may be manually set by a user.
  • the dummy ROI may be automatically set based on the location of the actual ROI.
  • Automatically setting the dummy region of interest may include identifying a position of the actual region of interest in the observation region, and setting the dummy region of interest at a location as far away from the actual region of interest as possible. have.
  • the measurement module may include at least one first projection unit irradiating a first pattern light having a first wavelength, and at least one second projection unit irradiating a second pattern light having a second wavelength different from the first wavelength. It may include. In contrast, the projection unit may sequentially irradiate the first and second pattern lights having different wavelengths.
  • the height of the measurement module for the target observation region is adjusted by using the height trend information of at least one previous observation region, thereby substantially measuring the substrate inspection apparatus. The effect of increasing the range possible is obtained.
  • the measurement range of the height compared to the case of using the pattern illumination of a single wavelength, the measurement range of the height As is increased, even if the substrate is severely bent, it is within the measurement range, thereby improving the reliability of the height measurement.
  • a dummy observation area is set between the target observation area and the previous observation area, and by using the trend information of the dummy observation area and the previous observation area, the amount of height displacement with respect to the target observation area is more accurate. It can be predicted.
  • the substrate is corrected by correcting the Z-axis height of the camera by the height displacement of the substrate by the substrate transfer mechanism prior to the inspection of the observation areas.
  • the reliability of the test can be further improved.
  • FIG. 1 is a conceptual diagram schematically showing a substrate inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a state in which a substrate is fixed to a stage.
  • FIG 3 is a side view illustrating a state in which a substrate is fixed to a stage.
  • FIG. 4 is a flow chart showing a substrate inspection method according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating a substrate inspection method according to an embodiment of the present invention.
  • 6 and 7 are plan views illustrating first and second pattern lights emitted from the projection unit.
  • FIG. 8 is a conceptual diagram illustrating a substrate inspection method according to another embodiment of the present invention.
  • FIG. 9 is a flow chart illustrating a substrate inspection method according to another embodiment of the present invention.
  • FIG. 10 is a plan view illustrating a state in which a substrate is fixed to a stage according to another embodiment of the present invention.
  • FIG. 11 is a flow chart showing a substrate inspection method according to another embodiment of the present invention.
  • FIG. 12 is a plan view illustrating a state in which a substrate is fixed to a stage according to another embodiment of the present invention.
  • FIG. 13 is a side view illustrating a state in which a substrate is fixed to a stage according to another embodiment of the present invention.
  • FIG. 14 is a flow chart showing a substrate inspection method according to another embodiment of the present invention.
  • 15 is a flow chart showing a substrate inspection method according to another embodiment of the present invention.
  • 16 is a plan view of one observation area.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a conceptual view schematically showing a substrate inspection apparatus according to an embodiment of the present invention
  • Figure 2 is a plan view showing a state in which the substrate is fixed to the stage
  • Figure 3 is a side view showing a state in which the substrate is fixed to the stage. .
  • the substrate inspection apparatus 100 is at least one projection unit for irradiating pattern light to the substrate 150 on which the measurement object 152 is formed (
  • the measurement module 120 includes a camera 130 for capturing an image of the 110 and the substrate 150.
  • the substrate inspection apparatus 100 may further include a stage 140 for supporting and fixing the substrate 150 on which the measurement object 152 is formed.
  • the projection unit 110 irradiates the substrate 150 with pattern light to measure the three-dimensional shape of the measurement object 152 formed on the substrate 150.
  • the projection unit 110 includes a light source 112 for generating light, a grating element 114 for converting light from the light source 112 into pattern illumination, and a grating for pitch conveying the grating element 114.
  • a projection lens 118 for projecting the patterned light converted by the transfer mechanism 116 and the grating element 114 onto the measurement object 152.
  • the grating element 114 may be transferred by 2 [pi] / N by a grating transfer mechanism 116 such as a piezo actuator (PZT) for the phase shift of pattern lighting.
  • PZT piezo actuator
  • Projection unit 110 having such a configuration may be provided in plurality so as to be spaced apart at a predetermined angle in the circumferential direction with respect to the camera 130 to increase the inspection accuracy.
  • the plurality of projections 110 are installed to be inclined at a predetermined angle with respect to the substrate 150 to irradiate pattern light onto the substrate 150 from a plurality of directions.
  • the substrate inspecting apparatus 100 may include only one projection unit 110.
  • the camera 130 captures an image of the substrate 150 through irradiation of the pattern light of the projection unit 110.
  • the camera 130 is installed at an upper portion perpendicular to the substrate 150.
  • the camera 130 may include a CCD camera or a CMOS camera for capturing an image.
  • the stage 140 is for supporting and fixing the substrate 150, and is configured to support and fix both ends of the substrate 150, for example.
  • the stage 140 may include a first stage 140a for supporting and fixing one end of the substrate 150 and a second stage 140b for supporting and fixing the other end of the substrate 150.
  • the first stage 140a and the second stage 140b each include a lower stage 142 in contact with the lower surface of the substrate 150 and an upper stage 144 in contact with the upper surface of the substrate 150. can do. Therefore, when the substrate 150 is carried between the lower stage 142 and the upper stage 144, the gap between the lower stage 142 and the upper stage 144 may be narrowed to fix the substrate 150.
  • the lower stage 142 may be raised to fix the substrate 150.
  • the substrate inspection apparatus 100 having such a configuration irradiates pattern light using the projection unit 110 to the substrate 150 fixed to the stage 140, and the image of the substrate 150 through the camera 130. By photographing, the three-dimensional shape of the substrate 150 on which the measurement object 152 is formed is inspected.
  • the substrate 150 may be a printed circuit board (PCB) on which conductive wires and pads are formed, and the measurement object 152 is mounted on the solder or substrate 150 formed on the pad. It may be an electronic component.
  • PCB printed circuit board
  • the substrate inspection apparatus 100 measures the entire area of the substrate 150 by dividing it into several steps. That is, as shown in FIG. 2, the substrate 150 is divided into a plurality of fields of view (FOVs), and the measurement module 120 sequentially views the fields of view according to a predetermined inspection order. By inspecting while moving, the whole area
  • the size of the observation area (FOV) is preferably substantially the same as the size of the measurement area that the camera 130 can measure at one time, and may be slightly smaller in some cases.
  • the upper surface of the substrate 150 may have different heights according to positions. That is, the substrate 150 may have different topography for each observation region FOV due to the warpage phenomenon. Therefore, in order to increase the reliability of the inspection of the substrate 150, it is necessary to adjust the focus of the substrate inspection apparatus 100 for each observation area FOV in response to the bending of the substrate 150. At this time, focus adjustment of the substrate inspection apparatus 100 may be performed by raising or lowering the measurement module 120 in the Z-axis direction.
  • FIG. 4 is a flowchart illustrating a substrate inspection method according to an embodiment of the present invention
  • FIG. 5 is a conceptual diagram illustrating a substrate inspection method according to an embodiment of the present invention.
  • an inspection order of the plurality of observation areas (FOVs) is set. (S100).
  • the inspection order of the plurality of observation areas FOV is set along the length direction of the stage 140. For example, as shown in FIG. 2, when the substrate 150 is divided into nine observation areas FOV1 to FOV9, the stage 150 starts with the first observation area FOV1 adjacent to the stage 140.
  • the inspection order (FOV1-FOV2-FOV3-FOV4-FOV5-FOV6-FOV7-FOV8-FOV9) is set up to the ninth observation area FOV9 along the longitudinal direction of 140.
  • the inspection order is set according to the length direction of the stage 140. Since the substrate 150 is fixed to the stage 140, the substrate 150 is relatively less affected by the bending of the substrate 150.
  • the height displacement of the target observation area FOV is predicted using the trend information of the previous observation area FOV (S110). That is, while sequentially examining a plurality of observation areas (FOV), the target observation area by using the trend information on the previous observation area (FOV) that the inspection is completed for the next target observation area (FOV) to be examined next Predict the height displacement for (FOV).
  • the height displacement amount for the target observation area FOV is determined by using extrapolation from trend information of the previous observation area FOV. Predict.
  • interpolation may be used in addition to extrapolation in some cases.
  • the first observation area FOV which is located near the fifth observation area FOV5 of FIG. 2
  • the first observation area FOV which is located near the fifth observation area FOV5
  • the Z-axis transfer position of the measurement module 120 in the fifth viewing area FOV5 may be calculated using the estimated terrain in the fifth viewing area FOV5.
  • the terrain information for all of the first, second, third and fourth observation areas FOV1, FOV2, FOV3, and FOV4 may be used, the first, second, third and fourth observation areas ( At least one of FOV1, FOV2, FOV3, and FOV4 may be selected and used. That is, before estimating the terrain in the fifth viewing area FOV5, the step of selecting at least one of the first, second, third and fourth viewing areas FOV1, FOV2, FOV3, and FOV4 is performed. May be
  • the linear trend information may be obtained.
  • the height displacement of the target observation area (FOV) is estimated by using the method. That is, the height displacement of the target observation area FOV is predicted using trend information of at least two or more previous observation areas FOV existing on the same row corresponding to the longitudinal direction of the stage 140. For example, the center of the target observation area FOV using height information of the center point of at least two or more previous observation areas FOV existing on the same row corresponding to the longitudinal direction of the stage 140. Predict the height displacement of the point. For example, when the target observation area FOV is the third observation area FOV3, the third observation area is obtained by using height trend information of the first observation area FOV1 and the second observation area FOV2 that have been inspected. Predict the height displacement of (FOV3).
  • the amount of displacement of the target observation area FOV is predicted using the trend information. That is, the height displacement of the target observation area FOV is determined by using trend information of at least three or more previous observation areas FOV on the same row and the previous row corresponding to the longitudinal direction of the stage 140. Predict.
  • the target observation area FOV may be obtained by using height information of a center point of at least three or more previous observation areas FOV on the same row and the previous row corresponding to the longitudinal direction of the stage 140. Predict the height displacement of the center point.
  • FOV previous observation area
  • the target observation area FOV is the fifth observation area FOV5
  • the height trends of the inspected second observation area FOV2, the third viewing area FOV3, and the fourth viewing area FOV4 are completed.
  • the height displacement of the fifth observation area FOV5 is estimated using the information.
  • the target observation area FOV is the sixth observation area FOV5
  • the first observation area FOV1 and the second observation area FOV2 which are adjacent to the sixth observation area FOV6 among the previous observation areas where the inspection is completed.
  • the height displacement information of the fifth observation area FOV5 is predicted.
  • the trend information on the previous observation area may be a change trend of heights of all areas of the previous observation area (FOV).
  • the change in the height of the entire area may include not only information on the three-dimensional shape of the measurement object 152 but also height information on the upper surface of the substrate 150.
  • the height data may be at some area or at some point of the previous observation area (FOV).
  • the plane equation of the corresponding observation area may be obtained by using height information of at least one Region of Interest (ROI) existing in the previous observation area (FOV).
  • ROI Region of Interest
  • a planar equation is calculated and obtained by using height information of at least one of an entire region of the ROI, a bottom region of the ROI, and an extended ROI, and a center point or at least one of the planar equations.
  • the height of the outer point of can be used as reference data for height displacement measurement.
  • the plane equation for the previous observation area FOV may be calculated using height information of at least three points in the previous observation area FOV.
  • the height displacement of the target observation area (FOV) may be predicted using the height trend information of one previous observation area (FOV).
  • the height of the measurement module 120 is adjusted based on the estimated height displacement amount of the target observation area FOV (S120). For example, the height adjustment of the measurement module 120 is performed based on the height displacement of the center point of the target observation area FOV. For example, as shown in FIG. 5, when the target viewing area is the fifth viewing area FOV5, the height of the center point of the fifth viewing area FOV5 is the fourth viewing area FOV4.
  • the measurement module 120 is lowered in the Z-axis direction by the height difference.
  • the measurement module 120 is raised in the Z-axis direction by the height difference.
  • it may be compared with the preset initial Z-axis height, not the previous observation area.
  • the initial Z-axis height for the measurement module 120 is set based on the height of the substrate 150 is fixed to the stage 140, for example, through the Z-axis calibration of the measurement module 120 The data obtained beforehand. Meanwhile, the height adjustment of the measurement module 120 may be performed before, after, or during the transfer of the measurement module 120 to the target observation area FOV.
  • the target observation area (FOV) is inspected using the measurement module 120 in which the height adjustment is completed (S130).
  • the focus for obtaining accurate measurement information is adjusted. I can adjust it.
  • the effect of substantially increasing the measurable range of the substrate inspection apparatus 100 may be obtained.
  • the height reliability and the size and position distortion of the measurement object 152 according to the perspective change of the measured substrate 150 due to the distance change between the camera 130 and the measurement object 152 can be measured more accurately.
  • the substrate 150 loaded on the substrate inspection apparatus 100 has a structure in which both sides are fixed by the stage 140, the length of the stage 140 is larger than the direction corresponding to the longitudinal direction of the stage 140.
  • the warpage of the substrate 150 in a direction perpendicular to the direction tends to be severe. Therefore, in setting the inspection order for the plurality of observation areas (FOV), by setting the inspection order along the longitudinal direction of the stage 140 with a relatively small amount of height displacement, the reliability of the height adjustment of the measurement module 120 Can improve.
  • the substrate inspection method according to the present embodiment may use a multi-wavelength inspection method to increase the height measurement range in response to the bending of the substrate 150.
  • FIG. 6 and 7 are plan views illustrating first and second pattern lights emitted from the projection unit
  • FIG. 8 is a conceptual diagram illustrating a substrate inspection method according to another exemplary embodiment of the present invention.
  • the projection unit 110 sequentially irradiates first and second pattern lights having different wavelengths, that is, pitches of different gratings.
  • the measurement module 120 may include at least one first projection unit 110a for irradiating the first pattern light 210 having the first wavelength ⁇ 1, as shown in FIG. 6. And at least one second projection unit 110b irradiating the second pattern light 220 having the second wavelength ⁇ 2 different from the first wavelength ⁇ 1 as shown in FIG. 7. .
  • a plurality of first projection unit 110a and second projection unit 110b may be alternately installed at regular intervals along the circumferential direction with respect to the camera 130.
  • one projection unit 110 and the first pattern light 210 and the second pattern light 220 having different wavelengths can be examined sequentially.
  • the lattice element 114 included in the projection unit 110 may include a first region having a lattice spacing for the first pattern light 210 and a lattice spacing for the second pattern light 220. By dividing into two areas, multi-wavelength inspection can be performed.
  • the measurement range of the height is higher than that of the pattern light of the single wavelength. Is increased.
  • the height measurement range of the substrate inspection apparatus 100 is determined by the least common multiple of the first wavelength ⁇ 1 and the second wavelength ⁇ 2. Therefore, as the measurement range of the height is increased, even if the substrate 150 is severely bent, it is within the measurement range, thereby improving the reliability of the height measurement.
  • FIG. 9 is a flowchart illustrating a method of inspecting a substrate according to another exemplary embodiment of the present invention
  • FIG. 10 is a plan view illustrating a state in which a substrate is fixed to a stage according to another exemplary embodiment of the present invention.
  • an inspection order of the plurality of observation areas (FOVs) is set (S200).
  • the inspection order of the plurality of observation areas FOV may be set in a zigzag manner along the length direction of the stage 140.
  • the substrate 150 is divided into six observation regions FOV1 to FOV6, the substrate 150 starts with the first observation region FOV1 adjacent to the first stage 140a.
  • the inspection order (FOV1-> FOV2-> FOV3-> FOV4-> FOV5 -FOV6 is set up to the 6th observation area
  • At least one dummy observation area DFOV is set between the target observation area FOV and the previous observation area FOV (S210).
  • the second observation area FOV2 is too far from the first observation area FOV1. Since the distance is far from each other, when the height displacement of the second observation area FOV2 is predicted using the trend information of the first observation area FOV1, the reliability of the prediction data may be deteriorated.
  • the first dummy observation area DFOV1 between the second observation area FOV2 and the first observation area FOV1 and utilizing the trend information measured from the first dummy observation area DFOV1, 2 It is possible to improve the prediction reliability of the height displacement amount for the observation area (FOV2).
  • the second dummy observation area DFOV2 is set between the third observation area FOV3 and the fourth observation area FOV4, and the second dummy observation area DFOV2 is set between the fifth observation area FOV5 and the sixth observation area FOV6.
  • the dummy observation area DFOV3 can be set.
  • the setting of the dummy observation area DFOV may be performed when setting the inspection order of the observation areas FOV, or may be made before the inspection of the target observation area FOV.
  • the height displacement of the target observation area FOV is predicted by using trend information on at least one of the dummy observation area DFOV adjacent to the target observation area FOV and the previous observation area FOV (S220). .
  • the target observation area using extrapolation from trend information of the dummy observation area (DFOV) and the previous observation area (FOV). It is possible to predict the height displacement with respect to (FOV).
  • interpolation may be used in addition to extrapolation in some cases.
  • the target observation area FOV is the fourth observation area FOV4 in FIG. 10
  • the first, second and third observation areas where the inspection is completed before the fourth observation area FOV4 is performed.
  • FOV1, FOV2, FOV3 and first and second dummy observation areas DFOV1, DFOV2 exist. Therefore, the fourth observation area is obtained from the trend information of the first, second and third observation areas FOV1, FOV2 and FOV3 and the first and second dummy observation areas DFOV1 and DFOV2 using the extrapolation method.
  • the Z-axis transfer position of the measurement module 120 in the fourth viewing area FOV4 is calculated using the estimated terrain in the fourth viewing area FOV4. Can be.
  • trend information for both the first, second and third observation areas FOV1, FOV2 and FOV3 and the first and second dummy observation areas DFOV1 and DFOV2 may be used, but the first and second observation areas FOV1 and FOV2 may be used. And at least one of the third viewing areas FOV1, FOV2, and FOV3 and the first and second dummy viewing areas DFOV1 and DFOV2. That is, before estimating the terrain in the fourth observation region FOV4, the first, second and third observation regions FOV1, FOV2, and FOV3 and the first and second dummy observation regions DFOV1 and DFOV2 are estimated. Selecting at least one of may be performed.
  • the linear Predicting the height displacement of the target observation area (FOV) by using the general trend information if the dummy observation area DFOV and the previous observation area FOV are on the same row corresponding to the length direction of the stage 140 based on the target observation area FOV to be examined next, the linear Predicting the height displacement of the target observation area (FOV) by using the general trend information. That is, the height displacement of the target observation area FOV is predicted using the trend information of the dummy observation area DFOV and the previous observation area FOV existing on the same row corresponding to the longitudinal direction of the stage 140. . For example, the target observation area using height information of at least two center points of the dummy observation area DFOV and the previous observation area FOV present on the same row corresponding to the longitudinal direction of the stage 140. Predict the height displacement of the center point of (FOV). For example, when the target observation area FOV is the second observation area FOV2, the second observation area FOV2 is formed using the height trend information of the first dummy observation area DFOV
  • the dummy viewing area DFOV and the previous viewing area FOV exist on the same row and the previous row corresponding to the length direction of the stage 140 based on the target viewing area FOV to be examined next. If so, the planar trend information is used to predict the height displacement of the target observation area (FOV). That is, the target observation area FOV is generated by using at least three or more trend information of the dummy observation area DFOV and the previous observation area FOV on the same row and the previous row corresponding to the longitudinal direction of the stage 140. Predict the amount of height displacement.
  • the height displacement of the center point of the target observation area is estimated.
  • the target viewing area FOV is the fourth viewing area FOV4
  • the first viewing area FOV1, the first dummy viewing area DFOV1, and the second dummy adjacent to the fourth viewing area FOV4 are provided.
  • the height displacement information of the fourth viewing area FOV4 may be estimated using the height trend information of the viewing area DFOV2.
  • Trend information on the dummy observation area DFOV and the previous observation area FOV is, in one embodiment, a change in height of all the areas of the dummy observation area DFOV and the previous observation area FOV.
  • the change in the height of the entire area may include not only information on the three-dimensional shape of the measurement object 152 but also height information on the upper surface of the substrate 150.
  • the height data may be the height data in some areas or some points of the dummy viewing area DFOV and the previous viewing area FOV.
  • the planar equation of the corresponding observation area may be calculated and obtained by using height information of a region of interest (ROI) existing in the dummy observation area DFOV or the previous observation area FOV. .
  • ROI region of interest
  • a planar equation is calculated and obtained by using height information of at least one of an entire region of the ROI, a bottom region of the ROI, and an extended ROI, and a center point or at least one of the planar equations.
  • the height of the outer point of can be used as reference data for height displacement measurement.
  • the planar equations for the dummy observation area DFOV and the previous observation area FOV may be calculated using height information of at least three points in the dummy observation area DFOV and the previous observation area FOV.
  • the height of the measurement module 120 is adjusted based on the estimated height displacement amount in the target observation area FOV (S230). For example, the height adjustment of the measurement module 120 is performed based on the height displacement of the center point of the target observation area FOV. Since the height adjustment of the measurement module 120 has been described above with reference to FIG. 5, duplicate description thereof will be omitted.
  • the target observation area (FOV) is inspected using the measurement module 120 in which the height adjustment is completed (S240).
  • the substrate inspection method according to the present embodiment may use a multi-wavelength inspection method to increase the height measurement range in response to the bending of the substrate 150. Since the multi-wavelength inspection method has been described above with reference to FIGS. 6 and 7, a redundant description thereof will be omitted.
  • the dummy observation area DFOV is set between the target observation area and the previous observation area, and the target observation is performed by using the trend information of the dummy observation area and the previous observation area.
  • the amount of height displacement over the area can be predicted more accurately.
  • FIG. 11 is a flowchart illustrating a substrate inspection method according to another embodiment of the present invention
  • FIG. 12 is a plan view illustrating a state in which a substrate is fixed to a stage according to another embodiment of the present invention
  • FIG. According to another embodiment is a side view showing a state in which the substrate is fixed to the stage.
  • At least one substrate 150 on which the measurement object 152 is formed is mounted on the substrate transfer mechanism 160.
  • the furnace is fixed to the stage 140.
  • an inspection order of the plurality of observation areas FOV is first set (S300).
  • the inspection order of the plurality of observation areas FOV may be set in a zigzag manner along the length direction of the stage 140.
  • the initial observation area FOV1 is measured according to the set inspection order, and the height displacement amount ⁇ H of the substrate 150 with respect to the initial measurement area FOV1 relative to the initial measurement reference plane H1 of the preset measurement module 120 is measured.
  • Measure (S310) the initial Z-axis height of the measurement module 120 is set based on a height at which the substrate 150 on which the measurement object 152 is formed is fixed to the stage 140.
  • the initial Z axis height of the measurement module 120 may be set based on the lower surface of the upper stage 144. That is, in the case of not using the substrate transfer mechanism 160, after the substrate 150 is loaded, the lower stage 142 is raised to move the substrate 150 between the upper stage 144 and the lower stage 142.
  • the Z-axis height of the camera 130 is set based on the substrate surface (that is, the initial Z-axis height reference plane of the camera) fixed to the lower surface of the upper stage 144.
  • the substrate transfer mechanism 160 such as a tray or a jig
  • the height of the substrate 150 by the substrate transfer mechanism 160 is increased. Since the displacement amount ⁇ H occurs, it is necessary to correct the Z-axis height of the measurement module 120 even when the initial observation area FOV1 is measured.
  • the height of the measurement module 120 is adjusted based on the height displacement ⁇ H measured in the initial observation area FOV1 (S320). For example, the height of the measurement module 120 is adjusted based on the height displacement amount ⁇ H between the initial Z axis height of the preset camera 130 and the measured initial observation area FOV1. That is, the measurement module 120 by the height displacement amount ⁇ H corresponding to the height difference between the upper surface of the substrate conveyance mechanism 160 fixed to the stage 140 and the upper surface of the substrate 150 fixed to the substrate conveyance mechanism 160. ) In the Z-axis direction.
  • the initial observation area FOV1 is inspected using the measurement module 120 in which the height adjustment is completed (S330).
  • the target observation area is applied to the target observation area using trend information on at least one previous observation area that has been inspected for the next observation area to be inspected.
  • the amount of height displacement is predicted (S340). Since the prediction of the height displacement with respect to the target observation area has been described above with reference to FIG. 2 or FIG. 10, a detailed description thereof will be omitted.
  • the height of the measurement module 120 is adjusted based on the estimated height displacement amount with respect to the target observation area (S350). For example, the height adjustment of the measurement module 120 is made based on the height displacement of the center point of the target observation area. Since the height adjustment of the measurement module 120 has been described above with reference to FIG. 5, a detailed description thereof will be omitted.
  • the target observation area (FOV) is inspected using the measurement module 120 in which the height adjustment is completed (S360).
  • the substrate inspection method according to the present embodiment may use a multi-wavelength inspection method to increase the height measurement range in response to the bending of the substrate 150. Since the multi-wavelength inspection method has been described above with reference to FIGS. 6 and 7, a redundant description thereof will be omitted.
  • the substrate 150 when the substrate 150 is carried through the substrate transfer mechanism 160 such as a tray or a jig, the substrate 150 may be caused by the substrate transfer mechanism 160 before the inspection of the observation areas.
  • the substrate transfer mechanism 160 By correcting the Z-axis height of the camera 130 by the height displacement ⁇ H of the substrate 150, the reliability of the substrate inspection can be improved.
  • FIG. 14 is a flow chart showing a substrate inspection method according to another embodiment of the present invention.
  • the Z axis of the measurement module 120 is moved to the initial position and is focused.
  • the step of transferring the Z axis of the measurement module 120 to the initial position may be said to be a process that is performed when the first inspection of the three-dimensional shape of the measurement object 152 formed on the substrate 150 is performed for the first time.
  • the Z-axis initial position of the measurement module 120 is set based on the height of the substrate 150 is fixed to the stage 140, for example, through the Z-axis calibration of the measurement module 120 The data obtained beforehand.
  • the estimation of the Z-axis transfer position of the measurement module 120 may be divided into two steps. First, extrapolation is used to estimate the terrain in the target observation area (FOV) from the trend information of the previous observation area (FOV), and then the estimated terrain in the target observation area (FOV) is estimated. Determine the Z axis feed position of the measurement module 120 by using. On the other hand, in estimating the terrain of the target observation area (FOV), interpolation may be used in addition to extrapolation in some cases.
  • the Z-axis transfer position estimating step S420 will be described below.
  • the target observation area FOV is referred to as the fifth observation area FOV5 in FIG. 5
  • the first, second, and first observation areas FOV are located near the fifth observation area FOV5.
  • the Z-axis transfer position of the measurement module 120 in the fifth viewing area FOV5 may be calculated using the estimated terrain in the fifth viewing area FOV5.
  • the terrain information for all of the first, second, third and fourth observation areas FOV1, FOV2, FOV3, and FOV4 may be used, the first, second, third and fourth observation areas ( At least one of FOV1, FOV2, FOV3, and FOV4 may be selected and used. That is, before estimating the terrain in the fifth viewing area FOV5, the step of selecting at least one of the first, second, third and fourth viewing areas FOV1, FOV2, FOV3, and FOV4 is performed. May be
  • the extrapolation in the Z-axis transfer position estimating step (S420) may mean a method of estimating the height in the target observation area (FOV) by using height information of the terrain information of the previous observation area (FOV).
  • the height information in the previous observation area (FOV) is preferably a trend of the change of the height of the entire area of the observation area (FOV), in contrast, in some areas or a part of the observation area (FOV) Height information at the point.
  • the height in the target viewing area (FOV) may be estimated through the height of the center point or at least one outer point in the previous viewing area (FOV).
  • the height in the previous observation area FOV and the height in the target observation area FOV may refer to the height of the substrate 150 in FIG. 5.
  • the Z-axis of the measurement module 120 is transferred to the estimated transfer position to adjust the focus (S430). For example, when the terrain height in the fifth viewing area FOV5 is lower than the terrain height in the fourth viewing area FOV4, the Z axis of the measurement module 120 is moved downward, and the fifth viewing area is moved. When the terrain height at FOV5 is higher than the terrain height at the fourth viewing area FOV4, the Z axis of the measurement module 120 is moved upward.
  • the measurement module 120 or the stage 140 is transferred to the XY axis to inspect the target observation area FOV.
  • the XY axis transfer process of the measurement module 120 or stage 140 has been described as being performed after the estimated focus adjustment step (S430), otherwise the XY axis transfer process is the estimation It may be performed before the focus adjusting step S430 or at the same time as the estimated focus adjusting step S430.
  • a multi-wavelength inspection method may be used to increase the height measurement range in response to the warpage of the substrate 150. Since the multi-wavelength inspection method has been described above with reference to FIGS. 6 and 7, a redundant description thereof will be omitted.
  • the inspection step is increased in order to inspect the target observation area FOV to be inspected next (S460). For example, when the substrate 150 is divided into nine observation regions FOV1 to FOV9, and inspection is performed to the fifth observation region FOV5, the inspection step is increased from 5 to 6. Then, the inspection process for the sixth observation area FOV6 is performed again. On the other hand, when the inspection of all the observation areas (FOV) is completed, the inspection of the substrate 150 is terminated.
  • the step of adjusting the focus of the substrate inspection apparatus 100 by using a laser rangefinder may be selectively performed. For example, when the terrain estimation in the target observation area (FOV) using the extrapolation method exceeds the actual height and the error range, the adjustment of the focus of the substrate inspection apparatus 100 is incorrect. It is preferable to further perform the step of refocusing the substrate inspection apparatus 100 by using.
  • FOV target observation area
  • the measurement time can be shortened. That is, in the related art, the process of adjusting the focus of the substrate inspection apparatus 100 by measuring the separation distance between the camera 130 and the substrate 150 for each observation area FOV is essentially performed. As this is omitted, the substrate inspection time can be greatly reduced.
  • FIG. 15 is a flowchart illustrating a method of inspecting a substrate according to another exemplary embodiment of the present invention
  • FIG. 16 is a plan view of one observation area.
  • the measurement object is actually measured in the observation area FOVs.
  • the region of interest ROI in which 152 is formed may be set to be biased in either direction. That is, in the inspection of the substrate 150, the measurement object 152 that requires substantially inspection is not performed to perform data processing for the entire area of the observation area (FOV) in order to reduce the amount of data to be processed and increase the inspection speed. Only the formed region is set as the region of interest ROI and the substrate 152 is inspected through data processing of only the region of interest ROI. However, when the set ROI is not uniformly distributed in the observation area FOV and is deviated in one direction as shown in FIG. 16, the entire observation area FOV is based on only the data in the ROI. It may be difficult to obtain accurate floor trend information for.
  • the dummy ROI is set up separately from the ROI in one observation area FOV, so that the substrate can acquire more accurate bottom trend information for the observation area FOV. Provide inspection methods.
  • the ROI in which the measurement object 152 is formed, and the dummy ROI DROI for identifying the bottom trend are set for the at least one observation area FOV (S500).
  • the actual ROI is set based on an area in which the measurement object 152 on which the inspection is to be performed is formed.
  • the substrate inspection apparatus 100 automatically sets the actual ROI according to the position of the measurement object 152 existing in the observation area FOV by using the information about the substrate 150 which is previously held. .
  • the dummy region of interest DROI is set separately from the actual region of interest ROI in order to obtain bottom trend information of the corresponding observation region FOV.
  • the dummy region of interest DROI is preferably set as far from the actual region of interest ROI as possible in order to identify a more accurate bottom trend for the entire area of the field of view. For example, as shown in FIG. 16, when the actual ROI is located in one quadrant of the observation area FOV, the dummy ROI DROI is 3 which is a diagonal direction of the actual ROI. Is set in quadrant.
  • the dummy ROI may be manually set by a user. That is, when it is determined that the actual ROI existing in the observation area FOV is not evenly distributed in the observation area FOV, the user sets a dummy ROI separately from the actual ROI. Can be. According to the manual setting of the dummy region of interest DROI, the measurement module 120 performs data processing on the actual region of interest ROI and the dummy region of interest DROI in the observation area FOV.
  • the dummy region of interest DROI may be automatically set based on location information of the actual region of interest ROI. That is, after checking the position of the actual ROI existing in the observation area FOV, the substrate inspection apparatus 100 determines that the actual ROI is not evenly distributed in the observation area FOV.
  • the dummy ROI may be automatically set at a position as far from the ROI as possible.
  • the height displacement of the next observation area FOV is predicted using the bottom trend information acquired from at least one of the actual ROI and the dummy ROI (S510).
  • the trend information of the observation area ROI may be obtained by using at least one height information of the actual ROI and the dummy ROI existing in the observation area FOV.
  • the planar equation of can be calculated, and the planar equation can be used as trend information.
  • the bottom trend of the observation area FOV can be more accurately identified. Through this, the accuracy of height displacement prediction for the next observation area (FOV) can be improved.
  • the height of the measurement module 120 is adjusted based on the predicted height displacement before the inspection for the next observation area FOV (S520). For example, the height adjustment of the measurement module 120 is made based on the height displacement of the center point of the next observation area (FOV). For example, as shown in FIG. 5, when the next viewing area is the fifth viewing area FOV5, the height of the center point of the fifth viewing area FOV5 is the fourth viewing area FOV4.
  • the measurement module 120 is lowered in the Z-axis direction by the height difference.
  • the measurement module 120 is raised in the Z-axis direction by the height difference.
  • it may be compared with the preset initial Z-axis height, not the previous observation area.
  • the initial Z-axis height for the measurement module 120 is set based on the height of the substrate 150 is fixed to the stage 140, for example, through the Z-axis calibration of the measurement module 120 The data obtained beforehand. Meanwhile, the height adjustment of the measurement module 120 may be performed before, after, or during the transfer of the measurement module 120 to the next observation area FOV.
  • the height of the measurement module 120 for the next observation area to be inspected is adjusted by using the bottom trend information of the at least one previous observation area.
  • the focus can be adjusted for acquisition of measurement information.
  • the bottom trend information of the actual ROI and the dummy ROI may be used together, thereby improving reliability of the bottom trend information.
  • the substrate inspection method according to the present embodiment may use a multi-wavelength inspection method to increase the height measurement range in response to the bending of the substrate 150. Since the multi-wavelength inspection method has been described above with reference to FIGS. 6 and 7, a redundant description thereof will be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

본 발명은 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 대한 것으로서, 검사 순서에 따라 복수의 관측영역들을 검사함에 있어, 다음으로 검사할 대상 관측영역에 대하여 검사가 완료된 적어도 하나의 이전 관측영역에 대한 추세 정보를 이용하여 대상 관측영역에 대한 높이 변위량을 예측하는 단계, 대상 관측영역에 대하여 예측된 높이 변위량을 기초로 측정 모듈의 높이를 조정하는 단계, 및 높이 조정이 완료된 측정 모듈을 이용하여 대상 관측영역을 검사하는 단계를 포함한다. 이와 같이, 검사가 완료된 적어도 하나의 이전 관측영역의 높이 추세 정보를 이용하여 다음으로 검사할 대상 관측영역에 대한 측정 모듈의 높이를 조정하여 줌으로써, 측정 시간을 단축시킬 수 있다.

Description

기판 검사방법
본 발명은 기판 검사방법에 관한 것으로, 보다 상세하게는 기판에 형성된 측정대상물의 형성 상태를 검사하는 검사공정의 신뢰성을 높이기 위한 기판 검사방법에 관한 것이다.
일반적으로, 전자 부품이 실장된 기판의 신뢰성을 검증하기 위하여 전자 부품의 실장 전후에 기판의 제조가 제대로 이루어졌는지를 검사할 필요가 있다. 예를 들어, 전자 부품을 기판에 실장하기 전에 기판의 패드 영역에 납이 제대로 도포되었는 지를 검사하거나, 전자 부품을 기판에 실장한 후 전자 부품이 제대로 실장되었는 지를 검사할 필요가 있다.
최근 들어, 기판에 형성된 측정대상물에 대한 정밀한 측정을 위하여, 조명원 및 격자소자를 포함하여 측정대상물로 패턴조명을 조사하는 적어도 하나의 투영부와, 패턴조명의 조사를 통해 측정대상물의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여 측정대상물의 3차원 형상을 측정하는 기술이 사용되고 있다.
상기 기판 검사장치는 기판의 전 영역을 한 번의 스텝으로 측정할 수도 있지만, 기판의 크기가 카메라의 관측영역(Field of View : FOV)보다 넓을 경우, 기판을 복수의 관측영역들로 분할하여 여러 스텝에 걸쳐 순차적으로 측정할 수 있다.
한편, 기판 검사장치에 로딩되는 기판은 스테이지에 의해 양단이 고정된 상태를 유지한다. 이에 따라, 기판의 크기가 커질수록 기판에 휨(warpage)이 발생되고, 복수의 관측영역별로 높이의 편차가 발생되게 된다. 일반적으로, 기판 검사장치는 높이 측정이 가능한 측정가능 범위가 설정되어 있기 때문에, 기판의 휨에 의한 높이 편차가 상기 높이 측정가능 범위를 넘어설 경우, 높이 측정이 제대로 이루어지지 못하는 문제가 발생될 수 있다.
또한, 기판의 휨에 따라 관측영역별로 높이의 편차가 발생될 경우, 별도의 레이저 거리계 등을 통해 각 관측영역별로 높이의 변위량을 사전에 측정하고, 이를 통해 각 관측영역별로 측정 모듈의 높이를 재설정해주는 방법이 있으나, 이러한 높이 변위량 사전 측정에 따라 기판 검사 시간이 증가되는 문제가 발생된다.
따라서, 본 발명은 이와 같은 문제점을 감안한 것으로써, 본 발명은 검사가 완료된 적어도 하나의 이전 관측영역의 높이 추세 정보를 이용하여 다음으로 검사할 대상 관측영역에 대한 측정 모듈의 높이를 조정하여 줌으로써, 측정 시간을 단축할 수 있는 기판 검사방법을 제공한다.
또한, 본 발명은 서로 다른 파장을 갖는 제1 패턴조명 및 제2 패턴조명을 이용하여 기판 검사를 수행함으로써, 기판의 휘어짐에 대응하여 높이의 측정범위를 증가시킬 수 있는 기판 검사방법을 제공한다.
또한, 본 발명은 관측영역들이 멀리 떨어져 있는 경우, 대상 관측영역과 이전 관측영역 사이에 더미 관측영역을 설정함으로써, 대상 관측영역에 대한 높이 변위량을 보다 정확히 예측할 수 있는 기판 검사방법을 제공한다.
또한, 본 발명은 기판이 트레이나 지그 등의 기판 반송 기구를 통해 반입될 경우, 기판 반송 기구에 의한 기판의 높이 변위량만큼 카메라의 높이를 보정하여 줌으로써, 기판 검사의 신뢰성을 더욱 향상시킬 수 있는 기판 검사방법을 제공한다.
또한, 본 발명은 관측영역 내에서 실제로 측정대상물이 존재하는 관심영역(Resion of Interest : ROI)이 한쪽으로 치우쳐 있는 경우, 관측영역 내에 바닥 추세를 확인하기 위한 더미 관심영역을 설정함으로써, 추세 정보의 신뢰성을 향상시킬 수 있는 기판 검사방법을 제공한다.
본 발명의 일 특징에 따른 기판 검사방법은, 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 대한 것으로서, 상기 복수의 관측영역들에 대하여 상기 스테이지의 길이 방향을 따라 검사 순서를 설정하는 단계, 대상 관측영역에 대하여 검사가 완료된 적어도 하나의 이전 관측영역에 대한 추세 정보를 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계, 상기 대상 관측영역에 대하여 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계, 및 높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 포함한다.
상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계는, 상기 이전 관측영역의 추세 정보로부터 외삽법(extrapolation)을 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측할 수 있다. 일 예로, 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계는, 상기 스테이지의 길이 방향에 대응되는 동일 행 상에 존재하는 적어도 2개의 상기 이전 관측영역들의 높이 정보들을 이용하여 상기 대상 관측영역의 높이 변위량을 예측한다. 다른 예로, 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계는, 상기 스테이지의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재하는 적어도 3개의 상기 이전 관측영역들의 높이 정보들을 이용하여 상기 대상 관측영역의 높이 변위량을 예측한다.
상기 이전 관측영역에 대한 추세 정보는, 상기 이전 관측영역에 존재하는 적어도 하나의 관심영역(ROI)의 높이 정보들을 이용하여 상기 이전 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용할 수 있다.
상기 측정 모듈의 높이를 조정하는 단계는, 상기 대상 관측영역으로 상기 측정 모듈을 이송하기 전, 이송 후 및 이송 도중 중 어느 하나에서 상기 측정 모듈의 높이를 조정할 수 있다.
상기 측정 모듈의 높이를 조정하는 단계에서는, 상기 대상 관측영역 및 상기 이전 관측영역의 센터 지점의 높이 변위량을 기준으로 상기 측정 모듈의 높이를 조정할 수 있다.
상기 측정 모듈은 제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부, 및 상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함할 수 있다. 이와 달리, 상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사할 수 있다.
본 발명의 다른 실시예에 따른 기판 검사방법은, 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 대한 것으로서, 상기 복수의 관측영역들에 대하여 검사 순서를 설정하는 단계, 대상 관측영역과 이전 관측영역 사이에 적어도 하나의 더미 관측영역을 설정하는 단계, 상기 더미 관측영역 및 상기 이전 관측영역 중 적어도 하나에 대한 추세 정보를 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계, 상기 대상 관측영역에 대하여 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계, 및 높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 포함한다.
*상기 더미 관측영역 및 상기 이전 관측영역에 대한 추세 정보는, 상기 더미 관측영역 및 상기 이전 관측영역에 각각 존재하는 적어도 하나의 관심영역(ROI)의 높이 정보들을 이용하여 해당 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용할 수 있다.
상기 측정 모듈은 제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부, 및 상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함할 수 있다. 이와 달리, 상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사할 수 있다.
본 발명의 또 다른 실시예에 따른 기판 검사방법은, 적어도 하나의 기판이 기판 반송 기구에 실장된 상태로 스테이지에 고정된 경우, 상기 기판 반송 기구에 실장된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여, 상기 기판 반송 기구에 실장된 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 대한 것으로서, 상기 복수의 관측영역들에 대하여 검사 순서를 설정하는 단계, 상기 검사 순서에 따른 최초 관측영역을 측정하여 기 설정된 상기 측정 모듈의 측정 기준면 대비 상기 최초 관측영역에 대한 상기 기판의 높이 변위량을 측정하는 단계, 상기 측정된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계, 및 높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 최초 관측영역을 검사하는 단계를 포함한다.
또한, 상기 기판 검사방법은, 상기 검사 순서에 따라 상기 복수의 관측영역들을 검사함에 있어, 다음으로 검사할 대상 관측영역에 대하여 검사가 완료된 적어도 하나의 이전 관측영역에 대한 추세 정보를 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계, 상기 대상 관측영역에 대하여 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계, 및 높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 더 포함할 수 있다.
상기 이전 관측영역에 대한 추세 정보는, 상기 이전 관측영역에 존재하는 적어도 하나의 관심영역(ROI)의 높이 정보들을 이용하여 상기 이전 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용할 수 있다.
상기 측정 모듈은 제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부, 및 상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함할 수 있다. 이와 달리, 상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사할 수 있다.
본 발명의 또 다른 실시예에 따른 기판 검사방법은, 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여, 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 대한 것으로서, 다음으로 검사할 대상 관측영역의 근처에 검사가 완료된 적어도 하나의 이전 관측영역이 존재하는지 판단하는 단계, 상기 이전 관측영역이 존재하지 않을 경우, 상기 측정 모듈의 Z축을 초기위치로 이송하여 초점을 조정하는 단계, 상기 이전 관측영역이 존재할 경우, 상기 이전 관측영역의 추세 정보를 이용하여 상기 대상 관측영역에서의 상기 측정 모듈의 Z축 이송위치를 추정하는 단계, 상기 측정 모듈의 Z축을 상기 추정된 이송위치로 이송하여 초점을 조정하는 단계, 및 상기 초점 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 포함한다.
상기 측정 모듈은 제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부, 및 상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함할 수 있다. 이와 달리, 상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사할 수 있다.
본 발명의 또 다른 특징에 따른 기판 검사방법은, 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 대한 것으로서, 적어도 하나의 상기 관측영역에 대하여, 측정대상물이 형성된 실제 관심영역(ROI) 및 바닥 추세를 확인하기 위한 더미 관심영역(DROI)을 설정하는 단계, 상기 실제 관심영역 및 상기 더미 관심영역 중 적어도 하나로부터 획득된 추세 정보를 이용하여 다음 관측영역에 대한 높이 변위량을 예측하는 단계, 상기 다음 관측영역에 대한 검사에 앞서 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계, 및 높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 다음 관측영역을 검사하는 단계를 포함한다.
상기 관측영역에 존재하는 상기 실제 관심영역 및 상기 더미 관심영역의 적어도 하나의 높이 정보를 이용하여 상기 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용할 수 있다.
상기 더미 관심영역은 사용자에 의해 수동으로 설정될 수 있다.
이와 달리, 상기 더미 관심영역은 상기 실제 관심영역의 위치를 기초로 자동으로 설정될 수 있다. 상기 더미 관심영역을 자동으로 설정하는 단계는, 상기 관측영역 내의 상기 실제 관심영역의 위치를 확인하는 단계, 및 상기 실제 관심영역과 가능한 멀리 떨어진 위치에 상기 더미 관심영역을 설정하는 단계를 포함할 수 있다.
상기 측정 모듈은 제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부, 및 상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함할 수 있다. 이와 달리, 상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사할 수 있다.
이와 같은 기판 검사방법에 따르면, 대상 관측영역을 검사하기 전에, 적어도 하나의 이전 관측영역의 높이 추세 정보를 이용하여 대상 관측영역에 대한 측정 모듈의 높이를 조정하여 줌으로써, 실질적으로 기판 검사장치의 측정 가능한 범위를 높여주는 효과를 얻을 수 있다.
또한, 복수의 관측영역들에 대한 검사 순서를 설정함에 있어, 높이 변위량이 상대적으로 적은 스테이지의 길이 방향을 따라 검사 순서를 설정함으로써, 측정 모듈의 높이 조정의 신뢰성을 향상시킬 수 있다.
또한, 레이저 거리계 등을 통해 각 관측영역 별로 높이의 변위량을 측정하는 과정을 제거할 수 있어 측정 시간을 단축시킬 수 있다.
또한, 서로 다른 파장을 갖는 제1 패턴조명 및 제2 패턴조명을 이용하여 기판 검사를 수행함으로써, 단일 파장의 패턴조명을 사용하는 경우에 비하여 높이의 측정범위를 증가시킬 수 있으며, 높이의 측정범위가 증가됨에 따라, 기판이 심하게 휘어졌다 하더라도 측정범위 내에 들어오게 되어 높이 측정의 신뢰성을 향상시킬 수 있다.
또한, 관측영역들이 멀리 떨어져 있는 경우, 대상 관측영역과 이전 관측영역 사이에 더미 관측영역을 설정하고, 더미 관측영역 및 이전 관측영역의 추세 정보를 이용함으로써, 대상 관측영역에 대한 높이 변위량을 보다 정확히 예측할 수 있다.
또한, 기판이 트레이나 지그 등의 기판 반송 기구를 통해 반입될 경우, 관측영역들에 대한 검사를 수행하기에 앞서 기판 반송 기구에 의한 기판의 높이 변위량만큼 카메라의 Z축 높이를 보정하여 줌으로써, 기판 검사의 신뢰성을 더욱 향상시킬 수 있다.
또한, 하나의 관측영역(FOV)에 대하여 실제 관심영역(ROI) 뿐만 아니라, 더미 관심영역(DROI)의 바닥 추세 정보를 활용함으로써, 해당 관측영역(FOV)에 대한 바닥 추세를 보다 정확히 확인할 수 있으며, 이를 통해 다음 관측영역(FOV)에 대한 높이 변위량 예측의 정밀도를 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 기판 검사장치를 개략적으로 나타낸 개념도이다.
도 2는 기판이 스테이지에 고정된 상태를 나타낸 평면도이다.
도 3은 기판이 스테이지에 고정된 상태를 나타낸 측면도이다.
도 4는 본 발명의 일 실시예에 따른 기판 검사방법을 나타낸 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 기판 검사방법을 나타낸 개념도이다.
도 6 및 도 7은 투영부로부터 출사되는 제1 및 제2 패턴조명을 나타낸 평면도이다.
도 8은 본 발명의 다른 실시예에 따른 기판 검사방법을 나타낸 개념도이다.
도 9는 본 발명의 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이다.
도 10은 본 발명의 다른 실시예에 따라 기판이 스테이지에 고정된 상태를 나타낸 평면도이다.
도 11은 본 발명의 또 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이다.
도 12는 본 발명의 또 다른 실시예에 따라 기판이 스테이지에 고정된 상태를 나타낸 평면도이다.
도 13은 본 발명의 또 다른 실시예에 따라 기판이 스테이지에 고정된 상태를 나타낸 측면도이다.
도 14는 본 발명의 또 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이다.
도 15는 본 발명의 또 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이다.
도 16은 하나의 관측영역에 대한 평면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 기판 검사장치를 개략적으로 나타낸 개념도이며, 도 2는 기판이 스테이지에 고정된 상태를 나타낸 평면도이며, 도 3은 기판이 스테이지에 고정된 상태를 나타낸 측면도이다.
도 1, 도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 기판 검사장치(100)는 측정대상물(152)이 형성된 기판(150)으로 패턴조명을 조사하는 적어도 하나의 투영부(110) 및 기판(150)의 이미지를 촬영하는 카메라(130)를 포함하는 측정 모듈(120)을 포함한다. 또한, 기판 검사장치(100)는 측정대상물(152)이 형성된 기판(150)을 지지 및 고정하기 위한 스테이지(140)를 더 포함한다.
투영부(110)는 기판(150)에 형성된 측정대상물(152)의 3차원 형상을 측정하기 위하여 패턴조명을 기판(150)에 조사한다. 예를 들어, 투영부(110)는 광을 발생시키는 광원(112), 광원(112)으로부터의 광을 패턴조명으로 변환시키기 위한 격자소자(114), 격자소자(114)를 피치 이송시키기 위한 격자이송기구(116) 및 격자소자(114)에 의해 변환된 패턴조명을 측정대상물(152)에 투영시키기 위한 투영 렌즈(118)를 포함한다. 격자소자(114)는 패턴조명의 위상천이를 위해 페이조 엑추에이터(piezo actuator : PZT) 등의 격자이송기구(116)를 통해 2π/N 만큼씩 이송될 수 있다. 여기서, N은 2 이상의 자연수이다. 이러한 구성을 갖는 투영부(110)는 검사 정밀도를 높이기 위하여 카메라(130)를 중심으로 원주 방향을 따라 일정한 각도로 이격되도록 복수개가 설치될 수 있다. 복수의 투영부들(110)은 기판(150)에 대하여 일정한 각도로 기울어지게 설치되어, 복수의 방향으로부터 기판(150)에 패턴조명을 조사한다. 한편, 기판 검사장치(100)는 하나의 투영부(110)만을 포함할 수도 있다.
카메라(130)는 투영부(110)의 패턴조명의 조사를 통해 기판(150)의 이미지를 촬영한다. 예를 들어, 카메라(130)는 기판(150)으로부터 수직한 상부에 설치된다. 카메라(130)는 이미지 촬영을 위한 CCD 카메라 또는 CMOS 카메라를 포함할 수 있다.
스테이지(140)는 기판(150)을 지지 및 고정하기 위한 것으로서, 예를 들어 기판(150)의 양쪽 단부를 지지 및 고정하도록 구성된다. 이를 위해, 스테이지(140)는 기판(150)의 일단부를 지지 및 고정하는 제1 스테이지(140a) 및 기판(150)의 타단부를 지지 및 고정하는 제2 스테이지(140b)를 포함할 수 있다. 또한, 제1 스테이지(140a) 및 제2 스테이지(140b)는 각각 기판(150)의 하부면에 접촉되는 하부 스테이지(142) 및 기판(150)의 상부면에 접촉되는 상부 스테이지(144)를 포함할 수 있다. 따라서, 기판(150)이 하부 스테이지(142)와 상부 스테이지(144) 사이에 반입되면 하부 스테이지(142)와 상부 스테이지(144)의 간격을 좁혀 기판(150)을 고정시킬 수 있다. 일 예로, 하부 스테이지(142)를 상승시켜 기판(150)을 고정시킬 수 있다.
이와 같은 구성을 갖는 기판 검사장치(100)는 스테이지(140)에 고정된 기판(150)으로 투영부(110)를 이용하여 패턴조명을 조사하고, 카메라(130)를 통해 기판(150)의 이미지를 촬영함으로써, 측정대상물(152)이 형성된 기판(150)의 3차원적 형상을 검사한다. 예를 들어, 기판(150)은 도전 배선 및 패드 등이 형성된 인쇄회로기판(printed circuit board : PCB) 일 수 있으며, 측정대상물(152)은 패드 상에 형성된 솔더 또는 기판(150) 상에 실장된 전자부품일 수 있다.
한편, 카메라(130)가 한 번에 측정할 수 있는 측정영역보다 기판(150)의 크기가 큰 경우, 기판 검사장치(100)는 기판(150)의 전 영역을 여러 스텝으로 나누어서 측정한다. 즉, 도 2에 도시된 바와 같이, 기판(150)을 복수의 관측영역(Field of View : FOV)들로 분할하고, 측정 모듈(120)이 관측영역(FOV)들을 일정한 검사 순서에 따라 순차적으로 이동하면서 검사함으로써, 기판(150)의 전 영역을 검사할 수 있다. 이때, 관측영역(FOV)의 크기는 카메라(130)가 한 번에 측정할 수 있는 측정영역의 크기와 실질적으로 동일한 것이 바람직하고, 경우에 따라서 약간 작을 수도 있다.
한편, 기판(150)의 크기나 실장된 전자부품의 무게에 따라 기판(150)의 휘어짐이 발생될 수 있기 때문에, 기판(150)의 상면은 위치에 따라 서로 다른 높이를 가질 수 있다. 즉, 기판(150)은 휘어짐 현상에 의해 관측영역(FOV) 별로 서로 다른 지형을 가질 수 있다. 따라서, 기판(150) 검사의 신뢰성을 높이기 위해서는 기판(150)의 휘어짐에 대응하여 각 관측영역(FOV) 별로 기판 검사장치(100)의 초점을 조정해 줄 필요가 있다. 이때, 기판 검사장치(100)의 초점 조정은 측정 모듈(120)을 Z축 방향으로 상승 또는 하강함으로써 이루어질 수 있다.
이하, 상기한 측정 모듈(120)을 이용하여 스테이지(140)에 고정된 기판(150)을 복수의 관측영역들(FOV)로 분할하여 순차적으로 검사하는 기판 검사방법에 대하여 자세하게 설명한다.
도 4는 본 발명의 일 실시예에 따른 기판 검사방법을 나타낸 흐름도이며, 도 5는 본 발명의 일 실시예에 따른 기판 검사방법을 나타낸 개념도이다.
도 2, 도 4 및 도 5를 참조하면, 기판(150)을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사함에 있어서, 우선 복수의 관측영역(FOV)들에 대한 검사 순서를 설정한다(S100). 이때, 복수의 관측영역들(FOV)에 대한 검사 순서는 스테이지(140)의 길이 방향을 따라 설정된다. 예를 들어, 도 2에 도시된 바와 같이, 기판(150)이 9개의 관측영역(FOV1~FOV9)들로 분할되는 경우, 스테이지(140)에 인접한 제1 관측영역(FOV1)을 시작으로 스테이지(140)의 길이 방향을 따라 제9 관측영역(FOV9)까지 검사 순서(FOV1→FOV2→FOV3→FOV4→FOV5→FOV6→FOV7→FOV8→FOV9)가 설정된다.
이때, 이전 관측영역(FOV)에 대한 추세 정보가 없는 제1 관측영역(FOV1) 및 추세 정보가 부족한 제2 관측영역(FOV2)의 경우, 스테이지(140)의 길이 방향에 따라 검사 순서를 설정하면 기판(150)이 스테이지(140)에 고정되어 있어 기판(150)의 휘어짐에 의한 영향을 상대적으로 적게 받게 된다.
이후, 설정된 검사 순서에 따라 복수의 관측영역들(FOV)을 검사함에 있어, 이전 관측영역(FOV)에 대한 추세 정보를 이용하여 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다(S110). 즉, 복수의 관측영역들(FOV)을 순차적으로 검사해 나가는 중에, 다음으로 검사할 대상 관측영역(FOV)에 대하여 검사가 완료된 이전 관측영역(FOV)에 대한 추세 정보를 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다.
구체적으로, 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측함에 있어, 상기 이전 관측영역(FOV)의 추세 정보로부터 외삽법(extarpolation)을 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다. 한편, 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측함에 있어, 경우에 따라서는 외삽법 이외에도 내삽법(interpolation)을 이용할 수도 있다.
예를 들어, 상기 대상 관측영역(FOV)이 도 2에서의 제5 관측영역(FOV5)이라고 할 경우, 상기 제5 관측영역(FOV5)의 근처에 존재하는 이전 관측영역(FOV)에는 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4)이 있다. 따라서, 상기 외삽법을 이용하여 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4)의 추세 정보로부터 상기 제5 관측영역(FOV5)에서의 지형을 추정한 후, 상기 제5 관측영역(FOV5)에서의 추정된 지형을 이용하여 상기 제5 관측영역(FOV5)에서의 측정 모듈(120)의 Z축 이송위치를 계산해낼 수 있다. 여기서, 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4) 모두에 대한 지형 정보를 이용할 수도 있지만, 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4) 중 적어도 하나를 선택하여 이용할 수도 있다. 즉, 상기 제5 관측영역(FOV5)에서의 지형을 추정하기 전에, 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4) 중 적어도 하나를 선별하는 단계가 수행될 수도 있다.
일 실시예로, 다음으로 검사할 대상 관측영역(FOV)을 기준으로 검사가 완료된 이전 관측영역(FOV)이 스테이지(140)의 길이 방향에 대응되는 동일 행 상에 존재한다면, 선형적인 추세 정보를 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다. 즉, 스테이지(140)의 길이 방향에 대응되는 동일 행 상에 존재하는 적어도 2개 이상의 상기 이전 관측영역들(FOV)의 추세 정보를 이용하여 상기 대상 관측영역(FOV)의 높이 변위량을 예측한다. 예를 들어, 스테이지(140)의 길이 방향에 대응되는 동일 행 상에 존재하는 적어도 2개 이상의 상기 이전 관측영역들(FOV)의 센터 지점의 높이 정보들을 이용하여 상기 대상 관측영역(FOV)의 센터 지점의 높이 변위량을 예측한다. 예를 들어, 대상 관측영역(FOV)이 제3 관측영역(FOV3)일 경우, 검사가 완료된 제1 관측영역(FOV1) 및 제2 관측영역(FOV2)의 높이 추세 정보를 이용하여 제3 관측영역(FOV3)의 높이 변위량을 예측한다.
다른 실시예로, 다음으로 검사할 대상 관측영역(FOV)을 기준으로 검사가 완료된 이전 관측영역(FOV)이 스테이지(140)의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재한다면, 평면적인 추세 정보를 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다. 즉, 스테이지(140)의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재하는 적어도 3개 이상의 상기 이전 관측영역들(FOV)의 추세 정보를 이용하여 상기 대상 관측영역(FOV)의 높이 변위량을 예측한다. 예를 들어, 스테이지(140)의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재하는 적어도 3개 이상의 상기 이전 관측영역들(FOV)의 센터 지점의 높이 정보들을 이용하여 상기 대상 관측영역(FOV)의 센터 지점의 높이 변위량을 예측한다. 이때, 대상 관측영역(FOV)에 인접한 이전 관측영역들(FOV)의 추세 정보를 이용하는 것이 바람직하다. 예를 들어, 대상 관측영역(FOV)이 제5 관측영역(FOV5)일 경우, 검사가 완료된 제2 관측영역(FOV2), 제3 관측영역(FOV3) 및 제4 관측영역(FOV4)의 높이 추세 정보를 이용하여 제5 관측영역(FOV5)의 높이 변위량을 예측한다. 또한, 대상 관측영역(FOV)이 제6 관측영역(FOV5)일 경우, 검사가 완료된 이전 관측영역들 중에서 제6 관측영역(FOV6)과 인접한 제1 관측영역(FOV1), 제2 관측영역(FOV2) 및 제5 관측영역(FOV5)의 높이 추세 정보를 이용하여 제6 관측영역(FOV6)의 높이 변위량을 예측한다.
상기 이전 관측영역(FOV)에 대한 추세 정보는 일 실시예로, 상기 이전 관측영역(FOV)의 전 영역에 대한 높이의 변화추이 일 수 있다. 여기서, 상기 전 영역에 대한 높이의 변화추이는 상기 측정대상물(152)의 3차원 형상에 대한 정보뿐만 아니라 상기 기판(150)의 상면의 높이정보까지도 포함될 수 있다. 이와 다르게, 이전 관측영역(FOV)의 일부 영역 또는 일부 포인트에서의 높이 데이터일 수 있다. 예를 들어, 상기 이전 관측영역(FOV) 내에 존재하는 적어도 하나의 관심영역(Region of Interest : ROI)의 높이 정보들을 이용하여 해당 관측영역의 평면방정식을 산출하여 획득할 수 있다. 예를 들어, 상기 관심영역(ROI)의 전체영역, 상기 관심영역의 바닥영역 및 확장 관심영역 중 적어도 하나의 높이정보들을 이용하여 평면방정식을 산출하여 획득하고, 상기 평면방정식의 센터 지점 또는 적어도 하나의 외곽 지점의 높이를 높이 변위량 측정의 기준 데이터로 사용할 수 있다. 상기 이전 관측영역(FOV)에 대한 평면방정식은 상기 이전 관측영역(FOV) 내의 적어도 3 지점의 높이 정보들을 이용하여 산출될 수 있다.
한편, 대상 관측영역(FOV)을 기준으로 이전 관측영역(FOV)이 하나만 존재할 경우, 하나의 이전 관측영역(FOV)에 대한 높이 추세 정보를 이용하여 대상 관측영역(FOV)의 높이 변위량을 예측할 수도 있다.
대상 관측영역(FOV)에 대한 높이 변위량을 예측한 후, 상기 대상 관측영역(FOV)에 대하여 상기 예측된 높이 변위량을 기초로 측정 모듈(120)의 높이를 조정한다(S120). 예를 들어, 측정 모듈(120)의 높이 조정은 상기 대상 관측영역(FOV)의 센터 지점의 높이 변위량을 기준으로 이루어진다. 예를 들어, 도 5에 도시된 바와 같이, 대상 관측영역이 제5 관측영역(FOV5)일 경우, 제5 관측영역(FOV5)의 센터 지점의 높이를 이전 관측영역인 제4 관측영역(FOV4)의 센터 지점의 높이와 비교하고, 비교 결과, 제5 관측영역(FOV5)의 높이가 제4 관측영역(FOV4)의 높이보다 낮으면 높이 차이만큼 측정 모듈(120)을 Z축 방향으로 하강시키고, 제5 관측영역(FOV5)의 높이가 제4 관측영역(FOV4)의 높이보다 높으면 높이 차이만큼 측정 모듈(120)을 Z축 방향으로 상승시킨다. 또는, 상기 대상 관측영역에 대한 높이 변위량을 비교함에 있어, 상기 이전 관측영역이 아닌 기 설정된 초기 Z축 높이와 비교할 수도 있다. 이때, 측정 모듈(120)에 대한 상기 초기 Z축 높이는 기판(150)이 스테이지(140)에 고정되는 높이를 기준으로 설정되는 것으로써, 예를 들어, 측정 모듈(120)의 Z축 캘리브레이션을 통해 사전에 획득된 데이터이다. 한편, 측정 모듈(120)의 높이 조정은 대상 관측영역(FOV)으로 측정 모듈(120)을 이송하기 전, 이송 후 또는 이송 도중에 이루어질 수 있다.
이후, 높이 조정이 완료된 측정 모듈(120)을 이용하여 상기 대상 관측영역(FOV)을 검사한다(S130).
이와 같이, 대상 관측영역을 검사하기 전에, 적어도 하나의 이전 관측영역의 높이 추세 정보를 이용하여 상기 대상 관측영역에 대한 측정 모듈(120)의 높이를 조정하여 줌으로써, 정확한 측정정보 획득을 위한 초점을 조정할 수 있다. 또한, 실질적으로 기판 검사장치(100)의 측정 가능한 범위를 높여주는 효과를 얻을 수 있다. 또한, 초점이 유지되는 거리의 차가 생길 경우 카메라(130)와 측정대상물(152)간의 거리 변화로 인해 측정된 기판(150)의 원근 변화에 따른 높이 신뢰성 및 측정대상물(152)의 크기 및 위치 왜곡이 발생하게 되나, 상기 대상 관측영역에 대한 측정모듈(120)의 높이를 조정하여 줌으로써 보다 정확한 측정을 할 수 있다. 또한, 기판 검사장치(100)에 로딩되는 기판(150)은 스테이지(140)에 의해 양측이 고정된 구조를 가지므로, 스테이지(140)의 길이 방향에 대응되는 방향에 비하여 스테이지(140)의 길이 방향에 수직한 방향으로의 기판(150)의 휘어짐이 심해지는 경향을 갖는다. 따라서, 복수의 관측영역들(FOV)에 대한 검사 순서를 설정함에 있어, 높이 변위량이 상대적으로 적은 스테이지(140)의 길이 방향을 따라 검사 순서를 설정함으로써, 측정 모듈(120)의 높이 조정의 신뢰성을 향상시킬 수 있다. 또한, 레이저 거리계 등을 통해 각 관측영역 별로 높이의 변위량을 측정하는 과정을 제거할 수 있어 측정 시간을 단축시킬 수 있다.
한편, 본 실시예에 따른 기판 검사방법은 기판(150)의 휘어짐에 대응하여 높이 측정의 범위를 증가시키기 위하여, 다파장 검사 방식을 사용할 수 있다.
도 6 및 도 7은 투영부로부터 출사되는 제1 및 제2 패턴조명을 나타낸 평면도이며, 도 8은 본 발명의 다른 실시예에 따른 기판 검사방법을 나타낸 개념도이다.
도 5, 도 6 및 도 7을 참조하면, 다파장 검사를 위하여, 투영부(110)는 서로 다른 파장을 갖는 즉, 격자 간의 피치가 서로 다른 제1 및 제2 패턴조명을 순차적으로 조사한다. 다파장 검사를 위한 일 실시예로, 측정 모듈(120)은 도 6에 도시된 바와 같이 제1 파장(λ1)을 갖는 제1 패턴조명(210)을 조사하는 적어도 하나의 제1 투영부(110a) 및 도 7에 도시된 바와 같이 제1 파장(λ1)과 다른 제2 파장(λ2)을 갖는 제2 패턴조명(220)을 조사하는 적어도 하나의 제2 투영부(110b)를 포함할 수 있다. 제1 투영부(110a) 및 제2 투영부(110b)는 카메라(130)를 중심으로 원주 방향을 따라 일정한 간격으로 교대로 복수개가 설치될 수 있다.
도 6, 도 7 및 도 8을 참조하면, 다파장 검사를 위한 다른 실시예로, 하나의 투영부(110)가 서로 다른 파장을 갖는 제1 패턴조명(210) 및 제2 패턴조명(220)을 순차적으로 조사할 수 있다. 예를 들어, 투영부(110) 내에 포함된 격자소자(114)를, 제1 패턴조명(210)을 위한 격자간격을 갖는 제1 영역과 제2 패턴조명(220)을 위한 격자간격을 갖는 제2 영역으로 분리하여 구성함으로써, 다파장 검사를 수행할 수 있다.
이와 같이, 서로 다른 파장을 갖는 상기 제1 패턴조명(210) 및 제2 패턴조명(220)을 이용하여 기판 검사를 수행할 경우, 단일 파장의 패턴조명을 사용하는 경우에 비하여 높이의 측정범위가 증가된다. 이때, 기판 검사장치(100)의 높이 측정범위는 제1 파장(λ1) 및 제2 파장(λ2)의 최소공배수로 결정된다. 따라서, 높이의 측정범위가 증가됨에 따라, 기판(150)이 심하게 휘어졌다 하더라도 측정범위 내에 들어오게 되어 높이 측정의 신뢰성을 향상시킬 수 있다.
도 9는 본 발명의 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이며, 도 10은 본 발명의 다른 실시예에 따라 기판이 스테이지에 고정된 상태를 나타낸 평면도이다.
도 9 및 도 10을 참조하면, 기판(150)을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사함에 있어서, 우선 복수의 관측영역들(FOV)에 대한 검사 순서를 설정한다(S200). 예를 들어, 복수의 관측영역들(FOV)에 대한 검사 순서는 스테이지(140)의 길이 방향을 따라 지그재그 방식으로 설정하는 것이 바람직하다. 예를 들어, 도 9에 도시된 바와 같이, 기판(150)이 6개의 관측영역들(FOV1~FOV6)로 분할되는 경우, 제1 스테이지(140a)에 인접한 제1 관측영역(FOV1)을 시작으로 스테이지(140)의 길이 방향을 따라 지그재그 방식으로 제6 관측영역(FOV6)까지 검사 순서(FOV1→FOV2→FOV3→FOV4→FOV5→FOV6)가 설정된다.
이후, 설정된 검사 순서에 따라 복수의 관측영역들(FOV)을 검사함에 있어, 다음으로 검사할 대상 관측영역(FOV)을 기준으로 인접한 영역에 검사가 완료된 이전 관측영역(FOV)이 없을 경우, 상기 대상 관측영역(FOV)과 상기 이전 관측영역(FOV)의 사이에 적어도 하나의 더미 관측영역(DFOV)을 설정한다(S210). 예를 들어, 제1 관측영역(FOV1)을 검사한 후 다음으로 검사할 대상 관측영역이 제2 관측영역(FOV2)일 경우, 제2 관측영역(FOV2)이 제1 관측영역(FOV1)과 너무 멀리 떨어져 있기 때문에, 제1 관측영역(FOV1)의 추세 정보를 이용하여 제2 관측영역(FOV2)의 높이 변위량을 예측할 경우, 예측 데이터의 신뢰성이 떨어지는 문제가 발생될 수 있다. 따라서, 제2 관측영역(FOV2)과 제1 관측영역(FOV1)의 사이에 제1 더미 관측영역(DFOV1)을 설정하고, 제1 더미 관측영역(DFOV1)으로부터 측정된 추세 정보를 활용함으로써, 제2 관측영역(FOV2)에 대한 높이 변위량의 예측 신뢰성을 향상시킬 수 있다. 이와 마찬가지로, 제3 관측영역(FOV3)과 제4 관측영역(FOV4) 사이에 제2 더미 관측영역(DFOV2)을 설정하고, 제5 관측영역(FOV5)과 제6 관측영역(FOV6) 사이에 제3 더미 관측영역(DFOV3)을 설정할 수 있다.
한편, 더미 관측영역(DFOV)의 설정은 관측영역들(FOV)에 대한 검사 순서를 설정할 때 같이 이루어지거나, 또는 대상 관측영역(FOV)의 검사 전에 이루어질 수 있다.
이후, 대상 관측영역(FOV)에 인접한 더미 관측영역(DFOV) 및 이전 관측영역(FOV) 중 적어도 하나에 대한 추세 정보를 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다(S220).
구체적으로, 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측함에 있어, 상기 더미 관측영역(DFOV) 및 상기 이전 관측영역(FOV)의 추세 정보로부터 외삽법(extarpolation)을 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측할 수 있다. 한편, 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측함에 있어, 경우에 따라서는 외삽법 이외에도 내삽법(interpolation)을 이용할 수도 있다.
예를 들어, 상기 대상 관측영역(FOV)이 도 10에서의 제4 관측영역(FOV4)이라고 할 경우, 상기 제4 관측영역(FOV4)에 앞서 검사가 완료된 제1, 제2 및 제3 관측영역(FOV1, FOV2, FOV3)과 제1 및 제2 더미 관측영역(DFOV1, DFOV2)이 존재한다. 따라서, 상기 외삽법을 이용하여 상기 제1, 제2 및 제3 관측영역(FOV1, FOV2, FOV3)과 상기 제1 및 제2 더미 관측영역(DFOV1, DFOV2)의 추세 정보로부터 상기 제4 관측영역(FOV4)에서의 지형을 추정한 후, 상기 제4 관측영역(FOV4)에서의 추정된 지형을 이용하여 상기 제4 관측영역(FOV4)에서의 측정 모듈(120)의 Z축 이송위치를 계산해낼 수 있다. 여기서, 상기 제1, 제2 및 제3 관측영역(FOV1, FOV2, FOV3)과 제1 및 제2 더미 관측영역(DFOV1, DFOV2) 모두에 대한 추세 정보를 이용할 수도 있지만, 상기 제1, 제2 및 제3 관측영역(FOV1, FOV2, FOV3)과 제1 및 제2 더미 관측영역(DFOV1, DFOV2) 중 적어도 하나를 선택하여 이용할 수도 있다. 즉, 상기 제4 관측영역(FOV4)에서의 지형을 추정하기 전에, 상기 제1, 제2 및 제3 관측영역(FOV1, FOV2, FOV3)과 제1 및 제2 더미 관측영역(DFOV1, DFOV2) 중 적어도 하나를 선별하는 단계가 수행될 수도 있다.
일 실시예로, 다음으로 검사할 대상 관측영역(FOV)을 기준으로 더미 관측영역(DFOV) 및 이전 관측영역(FOV)이 스테이지(140)의 길이 방향에 대응되는 동일 행 상에 존재한다면, 선형적인 추세 정보를 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다. 즉, 스테이지(140)의 길이 방향에 대응되는 동일 행 상에 존재하는 더미 관측영역(DFOV) 및 이전 관측영역(FOV)의 추세 정보를 이용하여 상기 대상 관측영역(FOV)의 높이 변위량을 예측한다. 예를 들어, 스테이지(140)의 길이 방향에 대응되는 동일 행 상에 존재하는 더미 관측영역(DFOV) 및 이전 관측영역(FOV) 중 적어도 2개 이상의 센터 지점의 높이 정보들을 이용하여 상기 대상 관측영역(FOV)의 센터 지점의 높이 변위량을 예측한다. 예를 들어, 대상 관측영역(FOV)이 제2 관측영역(FOV2)일 경우, 제1 더미 관측영역(DFOV1) 및 제1 관측영역(FOV1)의 높이 추세 정보를 이용하여 제2 관측영역(FOV2)의 높이 변위량을 예측한다.
다른 실시예로, 다음으로 검사할 대상 관측영역(FOV)을 기준으로 더미 관측영역(DFOV) 및 이전 관측영역(FOV)이 스테이지(140)의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재한다면, 평면적인 추세 정보를 이용하여 상기 대상 관측영역(FOV)에 대한 높이 변위량을 예측한다. 즉, 스테이지(140)의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재하는 더미 관측영역(DFOV) 및 이전 관측영역(FOV) 중 적어도 3개 이상의 추세 정보를 이용하여 상기 대상 관측영역(FOV)의 높이 변위량을 예측한다. 예를 들어, 스테이지(140)의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재하는 더미 관측영역(DFOV) 및 이전 관측영역(FOV) 중 적어도 3개 이상의 센터 지점의 높이 정보들을 이용하여 상기 대상 관측영역(FOV)의 센터 지점의 높이 변위량을 예측한다. 이때, 대상 관측영역(FOV)에 인접한 더미 관측영역(DFOV) 및 이전 관측영역들(FOV)의 추세 정보를 이용하는 것이 바람직하다. 예를 들어, 대상 관측영역(FOV)이 제4 관측영역(FOV4)일 경우, 제4 관측영역(FOV4)에 인접한 제1 관측영역(FOV1), 제1 더미 관측영역(DFOV1) 및 제2 더미 관측영역(DFOV2)의 높이 추세 정보를 이용하여 제4 관측영역(FOV4)의 높이 변위량을 예측할 수 있다.
상기 더미 관측영역(DFOV) 및 상기 이전 관측영역(FOV)에 대한 추세 정보는 일 실시예로, 상기 더미 관측영역(DFOV) 및 상기 이전 관측영역(FOV)의 전 영역에 대한 높이의 변화추이 일 수 있다. 여기서, 상기 전 영역에 대한 높이의 변화추이는 상기 측정대상물(152)의 3차원 형상에 대한 정보뿐만 아니라 상기 기판(150)의 상면의 높이정보까지도 포함될 수 있다. 이와 다르게, 상기 더미 관측영역(DFOV) 및 상기 이전 관측영역(FOV)의 일부 영역 또는 일부 포인트에서의 높이 데이터일 수 있다. 예를 들어, 상기 더미 관측영역(DFOV) 또는 상기 이전 관측영역(FOV) 내에 존재하는 관심영역(Region of Interest : ROI)의 높이 정보들을 이용하여 해당 관측영역의 평면방정식을 산출하여 획득할 수 있다. 예를 들어, 상기 관심영역(ROI)의 전체영역, 상기 관심영역의 바닥영역 및 확장 관심영역 중 적어도 하나의 높이정보들을 이용하여 평면방정식을 산출하여 획득하고, 상기 평면방정식의 센터 지점 또는 적어도 하나의 외곽 지점의 높이를 높이 변위량 측정의 기준 데이터로 사용할 수 있다. 상기 더미 관측영역(DFOV) 및 상기 이전 관측영역(FOV)에 대한 평면방정식은 상기 더미 관측영역(DFOV) 및 상기 이전 관측영역(FOV) 내의 적어도 3 지점의 높이 정보들을 이용하여 산출될 수 있다.
대상 관측영역(FOV)에 대한 높이 변위량을 예측한 후, 상기 대상 관측영역(FOV)에 대하여 상기 예측된 높이 변위량을 기초로 측정 모듈(120)의 높이를 조정한다(S230). 예를 들어, 측정 모듈(120)의 높이 조정은 상기 대상 관측영역(FOV)의 센터 지점의 높이 변위량을 기준으로 이루어진다. 측정 모듈(120)의 높이 조정은 앞서 도 5를 참조하여 설명한 바 있으므로, 이에 대한 중복되는 설명은 생략하기로 한다.
이후, 높이 조정이 완료된 측정 모듈(120)을 이용하여 상기 대상 관측영역(FOV)을 검사한다(S240).
한편, 본 실시예에 따른 기판 검사방법은 기판(150)의 휘어짐에 대응하여 높이 측정의 범위를 증가시키기 위하여, 다파장 검사 방식을 사용할 수 있다. 다파장 검사 방식에 대해서는 앞서 도 6 및 도 7을 참조하여 설명한 바 있으므로, 이에 대한 중복되는 설명은 생략하기로 한다.
이와 같이, 관측영역들(FOV)이 멀리 떨어져 있는 경우, 대상 관측영역과 이전 관측영역 사이에 더미 관측영역(DFOV)을 설정하고, 더미 관측영역 및 이전 관측영역의 추세 정보를 이용함으로써, 대상 관측영역에 대한 높이 변위량을 보다 정확히 예측할 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이며, 도 12는 본 발명의 또 다른 실시예에 따라 기판이 스테이지에 고정된 상태를 나타낸 평면도이며, 도 13은 본 발명의 또 다른 실시예에 따라 기판이 스테이지에 고정된 상태를 나타낸 측면도이다.
도 1, 도 11, 도 12 및 도 13을 참조하면, 본 발명의 또 다른 실시예에 따르면, 측정대상물(152)이 형성된 적어도 하나의 기판(150)이 기판 반송 기구(160)에 실장된 상태로 스테이지(140)에 고정된다. 기판 반송 기구(160)에 실장된 기판(150)을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사함에 있어서, 우선 복수의 관측영역들(FOV)에 대한 검사 순서를 설정한다(S300). 예를 들어, 복수의 관측영역들(FOV)에 대한 검사 순서는 스테이지(140)의 길이 방향을 따라 지그재그 방식으로 설정하는 것이 바람직하다.
이후, 설정된 검사 순서에 따른 최초 관측영역(FOV1)을 측정하여 기 설정된 측정 모듈(120)의 최초 측정 기준면(H1) 대비 최초 관측영역(FOV1)에 대한 기판(150)의 높이 변위량(ΔH)을 측정한다(S310). 일반적으로, 측정 모듈(120)의 최초 Z축 높이는 상기 측정대상물(152)이 형성된 기판(150)이 상기 스테이지(140)에 고정되는 높이를 기준으로 설정되어 있다. 예를 들면, 측정 모듈(120)의 최초 Z축 높이는 상부 스테이지(144)의 하부면을 기준으로 설정될 수 있다. 즉, 기판 반송 기구(160)를 사용하지 않는 통상의 경우, 기판(150)이 반입된 후 하부 스테이지(142)를 상승시켜 상부 스테이지(144)와 하부 스테이지(142) 사이에 기판(150)을 고정시키기 때문에, 상부 스테이지(144)의 하면에 고정되는 기판면(즉, 카메라의 최초 Z축 높이 기준면)을 기준으로 카메라(130)의 Z축 높이가 설정되어 있다. 그러나, 본 실시예와 같이, 기판(150)이 트레이(tray)나 지그(jig) 등의 기판 반송 기구(160)를 통해 반입될 경우, 기판 반송 기구(160)에 의한 기판(150)의 높이 변위량(ΔH)이 발생하기 때문에, 최초 관측영역(FOV1)의 측정 시에도 측정 모듈(120)의 Z축 높이를 보정해 줄 필요가 있다.
이를 위해, 최초 관측영역(FOV1)에서 측정된 높이 변위량(ΔH)을 기초로 측정 모듈(120)의 높이를 조정한다(S320). 예를 들어, 기 설정된 카메라(130)의 최초 Z축 높이와 측정된 최초 관측영역(FOV1)과의 높이 변위량(ΔH)을 기초로 측정 모듈(120)의 높이를 조정한다. 즉, 스테이지(140)에 고정된 기판 반송 기구(160)의 상면과 상기 기판 반송 기구(160)에 고정된 기판(150)의 상면 간의 높이차에 해당하는 높이 변위량(ΔH) 만큼 측정 모듈(120)을 Z축 방향으로 이송시킨다.
이후, 높이 조정이 완료된 측정 모듈(120)을 이용하여 최초 관측영역(FOV1)을 검사한다(S330).
이후, 설정된 검사 순서에 따라 복수의 관측영역들(FOV)을 검사함에 있어, 다음으로 검사할 대상 관측영역에 대하여 검사가 완료된 적어도 하나의 이전 관측영역에 대한 추세 정보를 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측한다(S340). 상기 대상 관측영역에 대한 높이 변위량의 예측은 앞서 도 2 또는 도 10을 참조하여 설명한 바 있으므로, 이와 관련된 중복되는 상세한 설명은 생략하기로 한다.
이후, 대상 관측영역에 대한 높이 변위량을 예측한 후, 상기 대상 관측영역에 대하여 상기 예측된 높이 변위량을 기초로 측정 모듈(120)의 높이를 조정한다(S350). 예를 들어, 측정 모듈(120)의 높이 조정은 상기 대상 관측영역의 센터 지점의 높이 변위량을 기준으로 이루어진다. 측정 모듈(120)의 높이 조정은 앞서 도 5를 참조하여 설명한 바 있으므로, 이에 대한 중복되는 상세한 설명은 생략하기로 한다.
이후, 높이 조정이 완료된 측정 모듈(120)을 이용하여 상기 대상 관측영역(FOV)을 검사한다(S360).
한편, 본 실시예에 따른 기판 검사방법은 기판(150)의 휘어짐에 대응하여 높이 측정의 범위를 증가시키기 위하여, 다파장 검사 방식을 사용할 수 있다. 다파장 검사 방식에 대해서는 앞서 도 6 및 도 7을 참조하여 설명한 바 있으므로, 이에 대한 중복되는 설명은 생략하기로 한다.
이와 같이, 기판(150)이 트레이(tray)나 지그(jig) 등의 기판 반송 기구(160)를 통해 반입될 경우, 관측영역들에 대한 검사를 수행하기에 앞서 기판 반송 기구(160)로 인한 기판(150)의 높이 변위량(ΔH) 만큼 카메라(130)의 Z축 높이를 보정하여 줌으로써, 기판 검사의 신뢰성을 향상시킬 수 있다.
도 14는 본 발명의 또 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이다.
도 1, 도 5 및 도 14를 참조하면, 기판(150)을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사함에 있어서, 우선 다음으로 검사할 대상 관측영역(FOV)의 근처에 검사가 완료된 적어도 하나의 이전 관측영역(FOV)이 존재하는지 판단한다(S400).
상기 이전 관측영역(FOV)의 존재를 판단한 결과, 상기 대상 관측영역(FOV)의 근처에 상기 이전 관측영역(FOV)이 존재하지 않을 경우, 측정 모듈(120)의 Z축을 초기위치로 이송하여 초점을 조정한다(S410). 여기서, 상기 측정 모듈(120)의 Z축을 초기위치로 이송하는 단계는 기판(150)에 형성된 측정대상물(152)의 3차원 형상의 검사를 처음으로 수행하고자 할 때 이루어지는 과정이라고 말할 수 있다. 이때, 상기 측정 모듈(120)의 Z축 초기위치는 기판(150)이 스테이지(140)에 고정되는 높이를 기준으로 설정되는 것으로써, 예를 들어, 측정 모듈(120)의 Z축 캘리브레이션을 통해 사전에 획득된 데이터이다.
반면, 상기 이전 관측영역(FOV)의 존재를 판단한 결과, 상기 대상 관측영역(FOV)의 근처에 이전 관측영역(FOV)이 존재할 경우, 이전 관측영역(FOV)의 추세 정보(또는 지형 정보)를 이용하여 상기 대상 관측영역(FOV)에서의 측정 모듈(120)의 Z축 이송위치를 추정한다(S420).
구체적으로, 상기 측정 모듈(120)의 Z축 이송위치의 추정은 두 단계로 구분되어 이루어질 수 있다. 우선, 외삽법(extrapolation)을 이용하여 상기 이전 관측영역(FOV)의 추세 정보로부터 상기 대상 관측영역(FOV)에서의 지형을 추정하고, 이어서, 상기 대상 관측영역(FOV)에서의 추정된 지형을 이용하여 측정 모듈(120)의 Z축 이송위치를 결정한다. 한편, 대상 관측영역(FOV)의 지형을 추정함에 있어, 경우에 따라서는 외삽법 이외에도 내삽법(interpolation)이 이용될 수도 있다.
상기 Z축 이송위치 추정단계(S420)를 예를 들어 설명하면 다음과 같다. 상기 대상 관측영역(FOV)이 도 5에서의 제5 관측영역(FOV5)이라고 할 경우, 상기 제5 관측영역(FOV5)의 근처에 존재하는 이전 관측영역(FOV)에는 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4)이 있다. 따라서, 상기 외삽법을 이용하여 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4)의 지형 정보로부터 상기 제5 관측영역(FOV5)에서의 지형을 추정한 후, 상기 제5 관측영역(FOV5)에서의 추정된 지형을 이용하여 상기 제5 관측영역(FOV5)에서의 측정 모듈(120)의 Z축 이송위치를 계산해낼 수 있다. 여기서, 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4) 모두에 대한 지형 정보를 이용할 수도 있지만, 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4) 중 적어도 하나를 선택하여 이용할 수도 있다. 즉, 상기 제5 관측영역(FOV5)에서의 지형을 추정하기 전에, 상기 제1, 제2, 제3 및 제4 관측영역(FOV1, FOV2, FOV3, FOV4) 중 적어도 하나를 선별하는 단계가 수행될 수도 있다.
한편, 상기 Z축 이송위치 추정단계(S420)에서의 외삽법은 상기 이전 관측영역(FOV)의 지형 정보 중 높이 정보를 이용하여 상기 대상 관측영역(FOV)에서의 높이를 추정하는 방법을 의미할 수 있다. 본 실시예에서, 상기 이전 관측영역(FOV)에서의 높이 정보는 해당 관측영역(FOV)의 전 영역에 대한 높이의 변화추이인 것이 바람직하지만, 이와 다르게 해당 관측영역(FOV)의 일부 영역 또는 일부 포인트에서의 높이 정보일 수 있다. 예를 들어, 상기 대상 관측영역(FOV)에서의 높이는 상기 이전 관측영역(FOV)에서의 중심 포인트 또는 적어도 하나의 외곽 포인트의 높이를 통해 추정될 수 있다. 여기서, 상기 이전 관측영역(FOV)에서의 높이 및 상기 대상 관측영역(FOV)에서의 높이는 도 5에서의 기판(150)의 높이를 의미할 수 있다.
측정 모듈(120)의 Z축 이송위치를 추정한 이후, 측정 모듈(120)의 Z축을 추정된 이송위치로 이송하여 초점을 조정한다(S430). 예를 들어, 제5 관측영역(FOV5)에서의 지형 높이가 제4 관측영역(FOV4)에서의 지형 높이보다 낮을 경우, 상기 측정 모듈(120)의 Z축을 아래로 이동시키고, 상기 제5 관측영역(FOV5)에서의 지형 높이가 상기 제4 관측영역(FOV4)에서의 지형 높이보다 높을 경우, 상기 측정 모듈(120)의 Z축을 위로 이동시킨다.
상기 초기초점 조정단계(S410) 또는 상기 추정초점 조정단계(S430) 이후, 상기 측정 모듈(120) 또는 스테이지(140)를 XY축 이송시켜, 대상 관측영역(FOV)을 검사한다(S440). 한편, 본 실시예에서, 상기 측정 모듈(120) 또는 스테이지(140)의 XY축 이송과정은 상기 추정초점 조정단계(S430) 이후에 수행되는 것으로 설명하였으나, 이와 다르게 상기 XY축 이송과정은 상기 추정초점 조정단계(S430)보다 먼저 수행되거나 또는 상기 추정초점 조정단계(S430)와 동시에 수행될 수 있다. 또한, 본 실시예에 따라 대상 관측영역(FOV)을 검사함에 있어, 기판(150)의 휘어짐에 대응하여 높이 측정의 범위를 증가시키기 위하여, 다파장 검사 방식을 사용할 수 있다. 다파장 검사 방식에 대해서는 앞서 도 6 및 도 7을 참조하여 설명한 바 있으므로, 이에 대한 중복되는 설명은 생략하기로 한다.
상기 대상 관측영역(FOV)의 검사 이후, 복수의 관측영역들(FOV) 모두에 대해 검사가 이루어졌는지를 판단한다(S450). 이때, 복수의 관측영역들(FOV) 모두에 대해 검사가 이루어지지 않았을 경우, 다음으로 검사할 대상 관측영역(FOV)을 검사하기 위하여 검사스텝을 증가시킨다(S460). 예를 들어, 기판(150)이 9개의 관측영역들(FOV1~FOV9)로 분할되고, 이들 중 제5 관측영역(FOV5)까지 검사가 이루어졌다고 할 때, 상기 검사스텝을 5에서 6으로 증가시켜, 제6 관측영역(FOV6)에 대한 검사과정을 다시 수행하게 된다. 반면, 모든 관측영역들(FOV)에 대한 검사가 완료된 경우, 상기 기판(150)의 검사를 종료한다.
한편, 상기 기판 검사방법에는 레이저 거리계(미도시)를 이용하여 상기 기판 검사장치(100)의 초점을 조정하는 단계가 선택적으로 더 수행될 수도 있다. 예를 들어, 상기 외삽법을 이용한 상기 대상 관측영역(FOV)에서의 지형 추정이 실제 높이와 오차범위 이상으로 벌어져서, 상기 기판 검사장치(100)의 초점의 조정이 잘못되었을 경우, 상기 레이저 거리계를 이용하여 상기 기판 검사장치(100)의 초점을 재조정하는 단계를 더 수행하는 것이 바람직하다.
이와 같이, 다음으로 검사할 대상 관측영역의 검사를 수행하기 전에, 상기 대상 관측영역의 근처에 검사가 완료된 이전 관측영역이 존재하는 지를 검색하고, 상기 이전 관측영역이 존재할 경우, 상기 이전 관측영역의 지형정보를 이용하여 기판 검사장치의 초점을 미리 조정함으로써, 측정시간을 단축시킬 수 있다. 즉, 종래에는 관측영역(FOV) 별로 카메라(130)와 기판(150) 사이의 이격 거리를 측정하여 기판 검사장치(100)의 초점을 조정해주는 과정이 필수적으로 수행되었지만, 본 실시예에서는 이러한 과정이 생략됨에 따라 기판 검사시간이 대폭 감소될 수 있다.
도 15는 본 발명의 또 다른 실시예에 따른 기판 검사방법을 나타낸 흐름도이며, 도 16은 하나의 관측영역에 대한 평면도이다.
도 15 및 도 16을 참조하면, 대형 사이즈의 기판(150)을 복수의 영역으로 분할하여 관측영역(FOV)들을 설정하다 보면, 도 16에 도시된 바와 같이, 관측영역(FOV) 내에 실제로 측정대상물(152)이 형성된 관심영역(ROI)이 어느 한 방향으로 치우쳐 설정될 수 있다. 즉, 기판(150)을 검사함에 있어, 처리해야할 데이터량을 줄이고 검사속도를 높이기 위하여 관측영역(FOV)의 전체 영역에 대한 데이터 처리를 수행하는 것이 아니라, 실질적으로 검사가 필요한 측정대상물(152)이 형성된 영역만을 관심영역(ROI)으로 설정하고 설정된 관심영역(ROI)만의 데이터 처리를 통해 기판(152)을 검사하게 된다. 그러나, 설정된 관심영역(ROI)이 관측영역(FOV) 내에 균일하게 분포되어 있지 못하고, 도 16에 도시된 바와 같이 일 방향으로 치우쳐 있는 경우, 관심영역(ROI) 내의 데이터만으로는 관측영역(FOV) 전체에 대한 정확한 바닥 추세 정보를 획득하기 어려운 문제가 있을 수 있다.
따라서, 본 실시예에서는 하나의 관측영역(FOV) 내에 관심영역(ROI)과는 별도로 더미 관심영역(DROI)를 설정함으로써, 관측영역(FOV)에 대한 보다 정확한 바닥 추세 정보를 획득할 수 있는 기판 검사방법을 제공한다.
이를 위해, 우선 적어도 하나의 관측영역(FOV)에 대하여, 측정대상물(152)이 형성된 실제 관심영역(ROI) 및 바닥 추세를 확인하기 위한 더미 관심영역(DROI)을 설정한다(S500).
상기 실제 관심영역(ROI)은 실질적으로 검사가 수행되어 져야할 측정대상물(152)이 형성되어 있는 영역을 중심으로 설정된다. 기판 검사장치(100)는 사전에 갖고 있는 기판(150)에 대한 정보를 이용하여, 관측영역(FOV) 내에 존재하는 측정대상물(152)의 위치에 따라 자동적으로 실제 관심영역(ROI)을 설정한다.
상기 더미 관심영역(DROI)은 해당 관측영역(FOV)의 바닥 추세 정보를 획득하기 위하여 실제 관심영역(ROI)과는 별도로 설정된다. 상기 더미 관심영역(DROI)은 관측영역(FOV)의 전체 영역에 대한 보다 정확한 바닥 추세를 확인하기 위하여 가능한 한 실제 관심영역(ROI)과 멀리 떨어진 위치에 설정되는 것이 바람직하다. 예를 들어, 도 16에 도시된 바와 같이, 실제 관심영역(ROI)이 관측영역(FOV)의 1 사분면에 위치할 경우, 더미 관심영역(DROI)은 실제 관심영역(ROI)의 대각선 방향인 3 사분면에 설정된다.
상기 더미 관심영역(DROI)은 사용자에 의해 수동으로 설정될 수 있다. 즉, 사용자는 관측영역(FOV) 내에 존재하는 실제 관심영역(ROI)이 관측영역(FOV) 안에 고르게 분포되어 있지 않다고 판단되면, 실제 관심영역(ROI)과는 별도로 더미 관심영역(DROI)을 설정할 수 있다. 이와 같은 더미 관심영역(DROI)의 수동 설정에 따라, 측정 모듈(120)은 관측영역(FOV) 내의 실제 관심영역(ROI) 및 더미 관심영역(DROI)에 대한 데이터 처리를 수행한다.
한편, 상기 더미 관심영역(DROI)은 실제 관심영역(ROI)의 위치 정보를 기초로 자동으로 설정될 수 있다. 즉, 기판 검사장치(100)는 관측영역(FOV) 내에 존재하는 실제 관심영역(ROI)의 위치를 확인한 후, 실제 관심영역(ROI)이 관측영역(FOV) 안에 고르게 분포되어 있지 않다고 판단되면, 실제 관심영역(ROI)과 가능한 멀리 떨어진 위치에 더미 관심영역(DROI)을 자동으로 설정할 수 있다.
이후, 실제 관심영역(ROI) 및 더미 관심영역(DROI) 중 적어도 하나로부터 획득된 바닥 추세 정보를 이용하여 다음 관측영역(FOV)에 대한 높이 변위량을 예측한다(S510). 예를 들어, 관측영역(ROI)의 추세 정보는, 관측영역(FOV)에 존재하는 실제 관심영역(ROI) 및 더미 관심영역(DROI)의 적어도 하나의 높이 정보를 이용하여 상기 관측영역(FOV)의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용할 수 있다.
이와 같이, 하나의 관측영역(FOV)에 대하여 실제 관심영역(ROI) 뿐만 아니라, 더미 관심영역(DROI)의 바닥 추세 정보를 활용함으로써, 해당 관측영역(FOV)에 대한 바닥 추세를 보다 정확히 확인할 수 있으며, 이를 통해 다음 관측영역(FOV)에 대한 높이 변위량 예측의 정밀도를 향상시킬 수 있다.
다음 관측영역(FOV)에 대한 높이 변위량을 예측한 후, 상기 다음 관측영역(FOV)에 대한 검사에 앞서 상기 예측된 높이 변위량을 기초로 측정 모듈(120)의 높이를 조정한다(S520). 예를 들어, 측정 모듈(120)의 높이 조정은 상기 다음 관측영역(FOV)의 센터 지점의 높이 변위량을 기준으로 이루어진다. 예를 들어, 도 5에 도시된 바와 같이, 다음 관측영역이 제5 관측영역(FOV5)일 경우, 제5 관측영역(FOV5)의 센터 지점의 높이를 이전 관측영역인 제4 관측영역(FOV4)의 센터 지점의 높이와 비교하고, 비교 결과, 제5 관측영역(FOV5)의 높이가 제4 관측영역(FOV4)의 높이보다 낮으면 높이 차이만큼 측정 모듈(120)을 Z축 방향으로 하강시키고, 제5 관측영역(FOV5)의 높이가 제4 관측영역(FOV4)의 높이보다 높으면 높이 차이만큼 측정 모듈(120)을 Z축 방향으로 상승시킨다. 또는, 상기 다음 관측영역(FOV)에 대한 높이 변위량을 비교함에 있어, 상기 이전 관측영역이 아닌 기 설정된 초기 Z축 높이와 비교할 수도 있다. 이때, 측정 모듈(120)에 대한 상기 초기 Z축 높이는 기판(150)이 스테이지(140)에 고정되는 높이를 기준으로 설정되는 것으로써, 예를 들어, 측정 모듈(120)의 Z축 캘리브레이션을 통해 사전에 획득된 데이터이다. 한편, 측정 모듈(120)의 높이 조정은 다음 관측영역(FOV)으로 측정 모듈(120)을 이송하기 전, 이송 후 또는 이송 도중에 이루어질 수 있다.
이후, 높이 조정이 완료된 측정 모듈(120)을 이용하여 상기 다음 관측영역(FOV)을 검사한다(S530).
이와 같이, 검사 순서에 따라 복수의 관측영역들을 검사함에 있어, 적어도 하나의 이전 관측영역의 바닥 추세 정보를 이용하여 다음으로 검사할 관측영역에 대한 측정 모듈(120)의 높이를 조정하여 줌으로써, 정확한 측정정보 획득을 위한 초점을 조정할 수 있다. 또한, 관측영역의 바닥 추세 정보를 획득함에 있어, 실제 관심영역(ROI) 및 더미 관심영역(DROI)의 바닥 추세 정보를 함께 이용함으로써, 바닥 추세 정보의 신뢰성을 보다 향상시킬 수 있다.
한편, 본 실시예에 따른 기판 검사방법은 기판(150)의 휘어짐에 대응하여 높이 측정의 범위를 증가시키기 위하여, 다파장 검사 방식을 사용할 수 있다. 다파장 검사 방식에 대해서는 앞서 도 6 및 도 7을 참조하여 설명한 바 있으므로, 이에 대한 중복되는 설명은 생략하기로 한다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (28)

  1. 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여, 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 있어서,
    상기 복수의 관측영역들에 대하여 상기 스테이지의 길이 방향을 따라 검사 순서를 설정하는 단계;
    대상 관측영역에 대하여 검사가 완료된 적어도 하나의 이전 관측영역에 대한 추세 정보를 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계;
    상기 대상 관측영역에 대하여 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계; 및
    높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 포함하는 기판 검사방법.
  2. 제1항에 있어서, 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계는,
    상기 이전 관측영역의 추세 정보로부터 외삽법(extrapolation)을 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측하는 것을 특징으로 하는 기판 검사방법.
  3. 제1항에 있어서, 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계는,
    상기 스테이지의 길이 방향에 대응되는 동일 행 상에 존재하는 적어도 2개의 상기 이전 관측영역들의 높이 정보들을 이용하여 상기 대상 관측영역의 높이 변위량을 예측하는 것을 특징으로 하는 기판 검사방법.
  4. 제1항에 있어서, 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계는,
    상기 스테이지의 길이 방향에 대응되는 동일 행 및 이전 행 상에 존재하는 적어도 3개의 상기 이전 관측영역들의 높이 정보들을 이용하여 상기 대상 관측영역의 높이 변위량을 예측하는 것을 특징으로 하는 기판 검사방법.
  5. 제1항에 있어서, 상기 이전 관측영역에 대한 추세 정보는,
    상기 이전 관측영역에 존재하는 적어도 하나의 관심영역(ROI)의 높이 정보들을 이용하여 상기 이전 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용하는 것을 특징으로 하는 기판 검사방법.
  6. 제1항에 있어서, 상기 측정 모듈의 높이를 조정하는 단계는,
    상기 대상 관측영역으로 상기 측정 모듈을 이송하기 전, 이송 후 및 이송 도중 중 어느 하나에서 상기 측정 모듈의 높이를 조정하는 것을 특징으로 하는 기판 검사방법.
  7. 제1항에 있어서, 상기 측정 모듈의 높이를 조정하는 단계에서는,
    상기 대상 관측영역 및 상기 이전 관측영역의 센터 지점의 높이 변위량을 기준으로 상기 측정 모듈의 높이를 조정하는 것을 특징으로 하는 기판 검사방법.
  8. 제1항에 있어서, 상기 측정 모듈은
    제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부; 및
    상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함하는 것을 특징으로 하는 기판 검사방법.
  9. 제1항에 있어서,
    상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사하는 것을 특징으로 하는 기판 검사방법.
  10. 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여, 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 있어서,
    상기 복수의 관측영역들에 대하여 검사 순서를 설정하는 단계;
    대상 관측영역과 이전 관측영역 사이에 적어도 하나의 더미 관측영역을 설정하는 단계;
    상기 더미 관측영역 및 상기 이전 관측영역 중 적어도 하나에 대한 추세 정보를 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계;
    상기 대상 관측영역에 대하여 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계; 및
    높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 포함하는 기판 검사방법.
  11. 제10항에 있어서, 상기 더미 관측영역 및 상기 이전 관측영역에 대한 추세 정보는,
    상기 더미 관측영역 및 상기 이전 관측영역에 각각 존재하는 적어도 하나의 관심영역(ROI)의 높이 정보들을 이용하여 해당 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용하는 것을 특징으로 하는 기판 검사방법.
  12. 제10항에 있어서, 상기 측정 모듈은
    제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부; 및
    상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함하는 것을 특징으로 하는 기판 검사방법.
  13. 제10항에 있어서,
    상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사하는 것을 특징으로 하는 기판 검사방법.
  14. 적어도 하나의 기판이 기판 반송 기구에 실장된 상태로 스테이지에 고정된 경우, 상기 기판 반송 기구에 실장된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여, 상기 기판 반송 기구에 실장된 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 있어서,
    상기 복수의 관측영역들에 대하여 검사 순서를 설정하는 단계;
    상기 검사 순서에 따른 최초 관측영역을 측정하여 기 설정된 상기 측정 모듈의 측정 기준면 대비 상기 최초 관측영역에 대한 상기 기판의 높이 변위량을 측정하는 단계;
    상기 측정된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계; 및
    높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 최초 관측영역을 검사하는 단계를 포함하는 기판 검사방법.
  15. 제14항에 있어서,
    상기 검사 순서에 따라 상기 복수의 관측영역들을 검사함에 있어, 다음으로 검사할 대상 관측영역에 대하여 검사가 완료된 적어도 하나의 이전 관측영역에 대한 추세 정보를 이용하여 상기 대상 관측영역에 대한 높이 변위량을 예측하는 단계;
    상기 대상 관측영역에 대하여 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계; 및
    높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 더 포함하는 것을 특징으로 하는 기판 검사방법.
  16. 제15항에 있어서, 상기 이전 관측영역에 대한 추세 정보는,
    상기 이전 관측영역에 존재하는 적어도 하나의 관심영역(ROI)의 높이 정보들을 이용하여 상기 이전 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용하는 것을 특징으로 하는 기판 검사방법.
  17. 제15항에 있어서, 상기 측정 모듈은
    제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부; 및
    상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함하는 것을 특징으로 하는 기판 검사방법.
  18. 제15항에 있어서,
    상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사하는 것을 특징으로 하는 기판 검사방법.
  19. 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여, 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 있어서,
    다음으로 검사할 대상 관측영역의 근처에 검사가 완료된 적어도 하나의 이전 관측영역이 존재하는지 판단하는 단계;
    상기 이전 관측영역이 존재하지 않을 경우, 상기 측정 모듈의 Z축을 초기위치로 이송하여 초점을 조정하는 단계;
    상기 이전 관측영역이 존재할 경우, 상기 이전 관측영역의 추세 정보를 이용하여 상기 대상 관측영역에서의 상기 측정 모듈의 Z축 이송위치를 추정하는 단계;
    상기 측정 모듈의 Z축을 상기 추정된 이송위치로 이송하여 초점을 조정하는 단계; 및
    상기 초점 조정이 완료된 상기 측정 모듈을 이용하여 상기 대상 관측영역을 검사하는 단계를 포함하는 기판 검사방법.
  20. 제19항에 있어서, 상기 측정 모듈은
    제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부; 및
    상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함하는 것을 특징으로 하는 기판 검사방법.
  21. 제19항에 있어서,
    상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사하는 것을 특징으로 하는 기판 검사방법.
  22. 스테이지에 고정된 기판으로 패턴조명을 조사하는 적어도 하나의 투영부 및 상기 기판의 이미지를 촬영하는 카메라를 포함하는 측정 모듈을 이용하여, 상기 기판을 복수의 관측영역(FOV)들로 분할하여 순차적으로 검사하는 기판 검사방법에 있어서,
    적어도 하나의 상기 관측영역에 대하여, 측정대상물이 형성된 실제 관심영역(ROI) 및 바닥 추세를 확인하기 위한 더미 관심영역(DROI)을 설정하는 단계;
    상기 실제 관심영역 및 상기 더미 관심영역 중 적어도 하나로부터 획득된 추세 정보를 이용하여 다음 관측영역에 대한 높이 변위량을 예측하는 단계;
    상기 다음 관측영역에 대한 검사에 앞서 상기 예측된 높이 변위량을 기초로 상기 측정 모듈의 높이를 조정하는 단계; 및
    높이 조정이 완료된 상기 측정 모듈을 이용하여 상기 다음 관측영역을 검사하는 단계를 포함하는 기판 검사방법.
  23. 제22항에 있어서, 상기 추세 정보는
    상기 관측영역에 존재하는 상기 실제 관심영역 및 상기 더미 관심영역의 적어도 하나의 높이 정보를 이용하여 상기 관측영역의 평면방정식을 산출하고, 상기 평면방정식을 추세 정보로 사용하는 것을 특징으로 하는 기판 검사방법.
  24. 제22항에 있어서,
    상기 더미 관심영역은 사용자에 의해 수동으로 설정되는 것을 특징으로 하는 기판 검사방법.
  25. 제22항에 있어서,
    상기 더미 관심영역은 상기 실제 관심영역의 위치를 기초로 자동으로 설정되는 것을 특징으로 하는 기판 검사방법.
  26. 제25항에 있어서, 상기 더미 관심영역을 자동으로 설정하는 단계는,
    상기 관측영역 내의 상기 실제 관심영역의 위치를 확인하는 단계; 및
    상기 실제 관심영역과 가능한 멀리 떨어진 위치에 상기 더미 관심영역을 설정하는 단계를 포함하는 것을 특징으로 하는 기판 검사방법.
  27. 제22항에 있어서, 상기 측정 모듈은
    제1 파장을 갖는 제1 패턴조명을 조사하는 적어도 하나의 제1 투영부; 및
    상기 제1 파장과 다른 제2 파장을 갖는 제2 패턴조명을 조사하는 적어도 하나의 제2 투영부를 포함하는 것을 특징으로 하는 기판 검사방법.
  28. 제22항에 있어서,
    상기 투영부는 서로 다른 파장을 갖는 제1 및 제2 패턴조명을 순차적으로 조사하는 것을 특징으로 하는 기판 검사방법.
PCT/KR2011/010316 2010-12-29 2011-12-29 기판 검사방법 WO2012091494A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/977,499 US9885669B2 (en) 2010-12-29 2011-12-29 Method of inspecting a substrate
DE112011104658.8T DE112011104658B4 (de) 2010-12-29 2011-12-29 Verfahren zum Prüfen eines Substrats
JP2013547357A JP5597774B2 (ja) 2010-12-29 2011-12-29 基板検査方法
CN201180063483.4A CN103299728B (zh) 2010-12-29 2011-12-29 基板检查方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100138104A KR101169982B1 (ko) 2010-12-29 2010-12-29 기판 검사방법
KR10-2010-0138104 2010-12-29
KR10-2011-0143703 2011-12-27
KR1020110143703A KR101311809B1 (ko) 2011-12-27 2011-12-27 기판 검사방법

Publications (2)

Publication Number Publication Date
WO2012091494A2 true WO2012091494A2 (ko) 2012-07-05
WO2012091494A3 WO2012091494A3 (ko) 2012-11-08

Family

ID=46383754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010316 WO2012091494A2 (ko) 2010-12-29 2011-12-29 기판 검사방법

Country Status (5)

Country Link
US (1) US9885669B2 (ko)
JP (1) JP5597774B2 (ko)
CN (1) CN103299728B (ko)
DE (1) DE112011104658B4 (ko)
WO (1) WO2012091494A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055812A (ja) * 2012-09-11 2014-03-27 Keyence Corp 形状測定装置、形状測定方法および形状測定プログラム
CN104427853A (zh) * 2013-09-10 2015-03-18 Juki株式会社 检查方法、安装方法以及安装装置
JP2015129703A (ja) * 2014-01-08 2015-07-16 富士通株式会社 基板の反り測定方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243899B2 (en) * 2012-05-22 2016-01-26 Koh Young Technology Inc. Method of measuring a height of 3-dimensional shape measurement apparatus
US9816940B2 (en) 2015-01-21 2017-11-14 Kla-Tencor Corporation Wafer inspection with focus volumetric method
KR101784276B1 (ko) * 2015-02-27 2017-10-12 주식회사 고영테크놀러지 기판 검사 방법 및 시스템
KR101659302B1 (ko) * 2015-04-10 2016-09-23 주식회사 고영테크놀러지 3차원 형상 측정장치
JP6109255B2 (ja) * 2015-07-14 2017-04-05 Ckd株式会社 三次元計測装置
US9733067B2 (en) * 2015-11-12 2017-08-15 Taiwan Nano-Technology Application Corp Apparatus for detecting heights of defects on optical glass
JP6792369B2 (ja) * 2016-07-28 2020-11-25 株式会社サキコーポレーション 回路基板の検査方法及び検査装置
KR20180044157A (ko) * 2016-10-21 2018-05-02 주식회사 고영테크놀러지 복수의 상이한 패턴 광원의 설치가 가능한 패턴 광 조사 장치 및 검사 장치
JP6392922B1 (ja) * 2017-03-21 2018-09-19 ファナック株式会社 検査システムの検査対象外となる領域を算出する装置、および検査対象外となる領域を算出する方法
KR102249225B1 (ko) 2017-12-28 2021-05-10 주식회사 고영테크놀러지 기판에 삽입된 커넥터에 포함된 복수의 핀의 삽입 상태를 검사하는 방법 및 기판 검사 장치
US11375124B2 (en) * 2019-02-25 2022-06-28 Advanced Semiconductor Engineering, Inc. Optical measurement equipment and method for measuring warpage of a workpiece
JP7000380B2 (ja) 2019-05-29 2022-01-19 Ckd株式会社 三次元計測装置及び三次元計測方法
US11624606B2 (en) 2020-02-20 2023-04-11 Cognex Corporation Methods and apparatus for using range data to predict object features
KR102635249B1 (ko) * 2020-08-31 2024-02-08 세메스 주식회사 이미지 획득 방법, 이미지 획득 장치 및 웨이퍼 검사 장치
JP2022069905A (ja) * 2020-10-26 2022-05-12 日本電産サンキョー株式会社 撮像装置および検査装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237344A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 欠陥検査方法およびその装置
JP2000266691A (ja) * 1999-03-16 2000-09-29 Olympus Optical Co Ltd 外観検査装置
JP2003177101A (ja) * 2001-09-13 2003-06-27 Hitachi Ltd 欠陥検査方法及びその装置並びに撮像方法及びその装置
KR20070019752A (ko) * 2004-06-04 2007-02-15 도쿄 세이미츄 코퍼레이션 리미티드 반도체 외관 검사 장치 및 조명 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303280B2 (ja) * 1993-09-14 2002-07-15 株式会社ニコン 位置検出装置、露光装置、及び露光方法
JP3143038B2 (ja) * 1994-11-18 2001-03-07 株式会社日立製作所 自動焦点合わせ方法及び装置並びに三次元形状検出方法及びその装置
US7127098B2 (en) * 2001-09-13 2006-10-24 Hitachi, Ltd. Image detection method and its apparatus and defect detection method and its apparatus
JP2003188084A (ja) * 2001-12-21 2003-07-04 Canon Inc 面位置検出装置、面位置検出方法及び露光装置
JP2003269920A (ja) * 2002-03-13 2003-09-25 Olympus Optical Co Ltd 高さ測定装置
JP3872007B2 (ja) * 2002-12-16 2007-01-24 シーケーディ株式会社 計測装置及び検査装置
JP4200763B2 (ja) * 2003-01-08 2008-12-24 株式会社ニコン 画像測定機および画像測定方法
JP4996856B2 (ja) * 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
US8059280B2 (en) 2008-01-31 2011-11-15 Cyberoptics Corporation Method for three-dimensional imaging using multi-phase structured light
KR101237497B1 (ko) 2009-03-30 2013-02-26 주식회사 고영테크놀러지 검사영역의 설정방법
KR20110061001A (ko) 2009-12-01 2011-06-09 주식회사 고영테크놀러지 기판 검사방법 및 이를 이용한 기판 검사장치
NL2005821A (en) * 2009-12-23 2011-06-27 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and method of applying a pattern to a substrate.
KR101196219B1 (ko) 2010-02-01 2012-11-05 주식회사 고영테크놀러지 3차원 형상 측정장치의 높이 측정방법 및 이를 이용한 3차원 형상 측정장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237344A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 欠陥検査方法およびその装置
JP2000266691A (ja) * 1999-03-16 2000-09-29 Olympus Optical Co Ltd 外観検査装置
JP2003177101A (ja) * 2001-09-13 2003-06-27 Hitachi Ltd 欠陥検査方法及びその装置並びに撮像方法及びその装置
KR20070019752A (ko) * 2004-06-04 2007-02-15 도쿄 세이미츄 코퍼레이션 리미티드 반도체 외관 검사 장치 및 조명 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055812A (ja) * 2012-09-11 2014-03-27 Keyence Corp 形状測定装置、形状測定方法および形状測定プログラム
CN104427853A (zh) * 2013-09-10 2015-03-18 Juki株式会社 检查方法、安装方法以及安装装置
CN104427853B (zh) * 2013-09-10 2019-02-22 Juki株式会社 检查方法、安装方法以及安装装置
JP2015129703A (ja) * 2014-01-08 2015-07-16 富士通株式会社 基板の反り測定方法

Also Published As

Publication number Publication date
DE112011104658T5 (de) 2013-09-26
CN103299728A (zh) 2013-09-11
CN103299728B (zh) 2016-02-17
DE112011104658B4 (de) 2020-06-18
JP2014504721A (ja) 2014-02-24
JP5597774B2 (ja) 2014-10-01
US20140009601A1 (en) 2014-01-09
WO2012091494A3 (ko) 2012-11-08
US9885669B2 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2012091494A2 (ko) 기판 검사방법
WO2012050378A2 (ko) 기판 검사방법
WO2012050375A2 (ko) 측정장치 및 이의 보정방법
KR101024266B1 (ko) 촬상 위치 보정 방법, 촬상 방법, 기판 촬상 장치 및, 컴퓨터 프로그램이 기록된 기록 매체
WO2014163375A1 (ko) 기판의 이물질 검사방법
WO2016200096A1 (ko) 3차원 형상 측정장치
WO2016163840A1 (ko) 3차원 형상 측정장치
KR101081538B1 (ko) 3차원 형상 측정장치 및 측정방법
JP2009524073A5 (ko)
JP6522344B2 (ja) 高さ検出装置、塗布装置および高さ検出方法
WO2013176482A1 (ko) 3차원 형상 측정장치의 높이 측정 방법
WO2013009065A2 (ko) 엘이디 부품의 3차원비전검사장치 및 비전검사방법
KR20120052087A (ko) 기판 검사방법
TW200538007A (en) Inspection device of component mounting substrate
WO2012134146A1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
JP2013250225A (ja) 外観検査装置及び外観検査方法
KR20110088967A (ko) 소자의 불량 검사방법
KR101121992B1 (ko) 실장 검사 데이터 형성방법, 이를 저장한 저장매체 및 이를 이용하는 검사장치
WO2018074755A1 (ko) 기판 검사장치 및 이를 이용한 기판 검사방법
WO2017183923A1 (ko) 물품의 외관 검사장치 및 이를 이용한 물품의 외관 검사방법
WO2013100223A1 (ko) 기판 검사장치의 높이정보 생성 방법
JP5653724B2 (ja) 位置合わせ装置、位置合わせ方法および位置合わせプログラム
KR101169982B1 (ko) 기판 검사방법
JP4206393B2 (ja) パターン検査方法
WO2013180394A1 (ko) 단일주기격자를 이용한 멀티 모아레 비전검사장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180063483.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854062

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013547357

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111046588

Country of ref document: DE

Ref document number: 112011104658

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13977499

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11854062

Country of ref document: EP

Kind code of ref document: A2