WO2013180394A1 - 단일주기격자를 이용한 멀티 모아레 비전검사장치 - Google Patents
단일주기격자를 이용한 멀티 모아레 비전검사장치 Download PDFInfo
- Publication number
- WO2013180394A1 WO2013180394A1 PCT/KR2013/003609 KR2013003609W WO2013180394A1 WO 2013180394 A1 WO2013180394 A1 WO 2013180394A1 KR 2013003609 W KR2013003609 W KR 2013003609W WO 2013180394 A1 WO2013180394 A1 WO 2013180394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- inspection object
- inspection
- grid
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/254—Projection of a pattern, viewing through a pattern, e.g. moiré
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N21/95607—Inspecting patterns on the surface of objects using a comparative method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
- G01N2021/8829—Shadow projection or structured background, e.g. for deflectometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N2021/95638—Inspecting patterns on the surface of objects for PCB's
Definitions
- the present invention relates to a vision inspection apparatus, and more particularly, to a multi-moire vision inspection apparatus using a single periodic grating configured to exert an effect of using a plurality of periodic gratings using one single periodic grating.
- SMT Surface Mounting Technology
- PCB printed circuit board
- SMD surface-mounting components
- the surface mount line includes a surface mounter and a vision inspection device.
- the surface mounter is a device for mounting surface-mounted parts on a printed circuit board.
- the surface mounter receives various surface-mounted parts supplied in the form of tape, stick, and tray from a feeder and places them on the mounting position on the printed circuit board. Perform.
- the vision inspection apparatus inspects the mounting state of the surface mount component before or after the soldering process of the surface mount component is completed and transfers the printed circuit board to the next process according to the inspection result.
- a typical vision inspection apparatus includes a lighting unit to which light is irradiated using a lamp, and a camera unit which is installed on an upper portion of the lighting unit to photograph image information of various parts mounted on an inspection object.
- the lighting unit is arranged in the housing by arranging a plurality of various lamps, when irradiating light to the inspection object to supply power to the plurality of lamps to irradiate light.
- All of the above inspection methods measure the two-dimensional shadow shape and calculate the three-dimensional height by using a trigonometric function.
- the height of the grid In order to remove the 2 ⁇ ambiguity, the height of the grid must be measured by measuring the height of the component by increasing the period of the grid, or by measuring the height of the component by combining two different grids using the beat phenomenon. Increasing the resolution reduces the resolution of the part height measurement, and using two different periods of grating can be very cumbersome and expensive.
- An object of the present invention is to provide a multi-moire vision inspection apparatus using a single periodic grating that can achieve the same effect as using a plurality of gratings while using one single periodic grating.
- Still another object of the present invention is to provide a multi-moire vision inspection apparatus using a single periodic grating capable of measuring the height of an inspection object quickly and accurately.
- a vision inspection apparatus for determining good or bad of an inspection object comprising: a stage unit for fixing or transferring the inspection object to an inspection position, an illumination unit positioned at an upper portion of the stage unit, and providing illumination to the inspection object; A camera unit for acquiring an image of an inspection object positioned at the center of an illumination unit, a grid pattern irradiation unit disposed at a side of the camera unit, and an image photographed by the central camera unit are read to determine whether the inspection object is good or bad.
- the grid pattern irradiation unit may be configured to include a grid of any one of a printing grid or a liquid crystal panel or a digital micromirror display.
- the multi-moire vision inspection apparatus using a single periodic grating by taking a test object assembled or mounted during the assembly of the parts with a camera to compare the photographed image with the previously input target image
- a vision inspection apparatus for determining good or bad of an inspection object comprising: a stage unit for fixing or transferring the inspection object to an inspection position, an illumination unit positioned at an upper portion of the stage unit, and providing illumination to the inspection object; A camera unit for acquiring an image of an inspection object positioned at the center of an illumination unit, a grid pattern irradiation unit disposed at a side of the camera unit, and an image photographed by the central camera unit are read to determine whether the inspection object is good or bad.
- a vision processor and a controller for controlling the components, The check block is characterized in that each other, and a plurality of arranged in different positions, that is of the same periodic interval grid installed, the plurality of grid check block.
- the grid pattern irradiation unit may be configured to include a grid of any one of a printing grid or a liquid crystal panel or a digital micromirror display.
- the grids of the same main period included in the plurality of grid pattern irradiation unit may be installed in a state rotated relative to each other.
- the same effect as using a plurality of gratings can be achieved while using one single periodic grating.
- the height of the inspection object can be measured quickly and accurately.
- FIG. 1 (a) is a perspective view showing a state in which a lattice pattern is irradiated to the part
- Fig. 1 (b) is a plan view showing a state in which a lattice pattern is irradiated to the part;
- FIG. 2 is a side cross-sectional view of a vision inspection apparatus according to the present invention
- FIG. 3 illustrates a principle of obtaining a phase having a large period by using grids having different periods.
- FIG. 4 is a diagram illustrating a principle of obtaining a phase of a large period using a grid of the same period.
- FIG. 5 is a side cross-sectional view of a vision inspection apparatus according to another embodiment of the present invention.
- FIG. 2 is a side cross-sectional view of a vision inspection apparatus according to the present invention.
- the multi-moire vision inspection apparatus using a single periodic grating includes a photographed image of an inspection object 5 assembled or mounted in a process of assembling the camera with a previously input target image.
- a vision inspection apparatus for comparing good or bad of an inspection object (5) comprising: a stage portion (10) for fixing or conveying the inspection object (5) to an inspection position and an upper portion of the stage portion (10).
- the illumination unit 20 for providing illumination to the inspection object the camera unit 30 for acquiring an image of the inspection object 5 is located in the center of the illumination unit 20, and the camera unit 30
- Vision inspection apparatus is installed to perform the vision inspection before moving to the next process through the conveyor of the preceding equipment, when inspecting the surface-mounted parts of the printed circuit board after the work in the surface mounting line.
- Such a vision inspection apparatus may be installed in a manner that is arranged in a space formed between the conveyor of the line and the trailing equipment, or may be used in the form of a single table without being connected to the line or the trailing equipment.
- the stage unit 10 is a component for seating the inspection object 5, such as a PCB substrate to be subjected to vision inspection, for example, a robot arm, a transfer roller or a motor and a conveyor belt through the control of the control unit 60.
- the inspection object 5 conveyed by a conveying means such as is seated.
- the lighting unit 20 is configured to illuminate the inspection object 5, and includes a plurality of LED bulbs disposed in the circumferential direction on the upper portion of the inspection object 5.
- the lighting unit 20 is configured to include an inclined light portion disposed obliquely with the upper light portion disposed in the horizontal circumferential direction from the upper portion of the inspection object (5).
- the camera unit 30 is a configuration for photographing the deformation degree of the inspection object 5 and the pattern pattern 42, it is provided on the upper portion of the stage (10).
- the image sensing unit included in the camera unit 30 includes an imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS).
- an imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS).
- CCD charge coupled device
- CMOS complementary metal-oxide semiconductor
- the grid pattern irradiation unit 40 is configured to irradiate the grid pattern 42 pattern on the surface of the inspection object, and is installed at a side inclined at a predetermined angle from the camera unit 30 installed on the stage unit 10. do.
- the grid pattern irradiator 40 includes a grid 75 formed of a printing grid or a liquid crystal panel or a digital micromirror display (DMD), and a light source unit (not shown) for irradiating light to the grid 75. It is configured to include.
- the grid pattern irradiation part 40 is irradiated with the grid pattern pattern 42 to the surface of the inspection object 5 in a state in which the grid pattern irradiation unit 40 is disposed on the side inclined at a predetermined angle with respect to the camera unit 30, and the pattern pattern irradiated The 42 is photographed through the camera unit 30.
- the grid pattern pattern 42 is appropriately deformed according to the surface height of the inspection object 5, and the height of the part can be measured by grasping the degree of such deformation.
- the pattern pattern 42 is gradually shifted from the surface of the inspection object.
- the pattern pattern 42 is made to transition about three to four times in one cycle of the pattern pattern 42.
- the grid 75 itself must be displaced little by little, and the grid pattern irradiator 40 displaces the grid 75 as described above.
- Lattice displacement driving unit (not shown) is included.
- the grid displacement driving unit is configured to move the grid pattern irradiated on the surface of the inspection object 5, the grid rotation member for rotating the grid pattern reflected on the surface of the inspection object 5 by rotating the grid itself ( 70).
- FIG. 3 is a diagram illustrating a principle of obtaining a phase having a large period by using grids having different periods.
- the lattice having p3 has the same effect as that of calculating the height of the component.
- This principle is due to the moiré pattern of pulsation, which results in the same effect as measuring the height of a component with a larger period grating when two different period gratings are used simultaneously.
- Figure 4 is a diagram showing the principle of obtaining a phase of a large period using the grid of the same period using the beat of the moire pattern.
- the effect is that the period is increased to p1 / cos ⁇ , that is, p2 in the vertical direction up and down in the period p1 between the first lattice patterns.
- the height of the component is measured by the lattice of p3 having a larger period.
- the lattice of periods p1 is provided simultaneously with the lattice of periods p2 and p3.
- the height of the part can be measured by the phase according to the larger period p3 in which the periods p1 and p2 are combined for the large part.
- the grid pattern irradiator 40 includes a grid rotating member 70 to rotate the grid 75 as described above.
- the vision processor 50 compares the image of the inspection object photographed by the camera unit 30 and the image of the grid pattern pattern reflected on the inspection object 5 with a pre-stored reference (standard) image. By doing so, it is possible to determine the good defect of the height of the inspection object 5 and the installation state.
- the vision processing unit 50 calculates the image information of the inspection object 5 obtained from the camera unit 30 through mathematical processing such as Fourier transform, and compares the image information with a previously input reference value. Judging whether the inspection object is good or bad.
- the grid pattern pattern 42 is irradiated onto the inspection object 5 under the control of the controller 60, and the degree of deformation of the grid pattern pattern 42 is determined by the camera unit 30. ), The height of the part can be calculated.
- the control unit 60 is a component for controlling the driving and operation of the camera unit 30, the grid pattern irradiation unit 40, etc., may be provided to control the driving of the entire inspection apparatus according to the present invention.
- the controller 60 is responsible for physical control such as position control of the inspection apparatus, processing of photographed images, and control of a light source unit according to a system control program, as well as performing data operation.
- control unit 60 is responsible for the overall control of the inspection apparatus, such as output device control for outputting the test results to the monitor and input device control for the operator to set and input various items.
- FIG. 5 is a side cross-sectional view of a vision inspection apparatus according to another embodiment of the present invention.
- the multi-moire vision inspection apparatus using a single periodic grating after taking the inspection object (5) assembled or mounted in the part assembly process with a camera and the image taken in advance
- a vision inspection device for determining the good or bad of the inspection object (5) in comparison with the stage comprising: a stage portion (10) for fixing or conveying the inspection object (5) at an inspection position, and an upper portion of the stage portion (10)
- the illumination unit 20 for providing illumination to the inspection object 5 the camera unit 30 for obtaining an image of the inspection object 5 is located at the center of the illumination unit 20, and
- the grid pattern irradiation unit 40 disposed on the side of the camera unit 30, the vision processing unit 50 for reading the image taken by the camera unit 30 to determine the good or bad of the inspection object (5) and
- the grid pattern irradiator 40 is disposed at different positions so that the grid 75 is rotated as a result. do.
- the grid pattern irradiation unit 40 in FIG. 5 is fixedly installed in a state in which the grids 75 in the grid pattern irradiation unit 40 are rotated relative to each other in a state where they are disposed at opposite positions. .
- the gratings 75 are fixedly installed in a state of being rotated relative to each other.
- the gratings 42 are formed on the surface of the inspection object 5 through the gratings 75, the gratings formed This means that the gratings 75 are installed such that 42 is rotated (twisted) relative to each other as in FIG.
- the height of the component can be inspected by the phases of various periods of the periods p1, p2, and p3, so that the grating installed in the vision inspection apparatus is easily processed and the configuration is simplified.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Engineering & Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
본 발명에 따른 단일주기격자를 이용한 멀티 모아레 비전검사장치는 부품 조립과정에서 조립 또는 실장된 검사대상물을 카메라로 촬영한 후 촬영된 이미지를 미리 입력된 대상 이미지와 비교하여 검사대상물의 양호 또는 불량을 판별하기 위한 비전검사장치로서, 상기 검사대상물을 검사위치에 고정 또는 이송시키는 스테이지부와, 상기 스테이지부의 상부에 위치하며, 상기 검사대상물에 조명을 제공하는 조명부와, 상기 조명부의 중심에 위치되어 검사대상물의 영상을 획득하기 위한 카메라부와, 상기 카메라부의 측부에 배치되는 격자무늬조사부와, 상기 중앙카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부와, 상기 구성들을 제어하기 위한 제어부와, 상기 격자무늬조사부의 격자회전부재를 포함한다. 본 발명에 의해, 하나의 단일 주기 격자를 이용하면서도 복수 개의 격자를 이용하는 것과 동일한 효과를 발휘할 수 있다. 또한, 검사대상물의 높이를 신속하고도 정확하게 측정가능하다.
Description
본 발명은 비전검사장치에 관한 것으로서, 보다 상세하게는 하나의 단일 주기의 격자를 이용하여 복수 개의 주기 격자를 이용하는 효과를 발휘하도록 구성되는 단일주기격자를 이용한 멀티 모아레 비전검사장치에 관한 것이다.
일반적으로, 인쇄회로기판(PCB) 등에 표면실장부품을 조립하는 표면실장기술(SMT; Surface Mounting Technology)은 표면실장부품(SMD; Surface Mounting Device)을 소형화/집적화하는 기술과, 이러한 표면실장부품을 정밀하게 조립하기 위한 정밀조립장비의 개발 및 각종 조립장비를 운용하는 기술을 포함한다.
표면실장라인은 표면실장기와 비전검사장치를 포함하여 구성된다.
상기 표면실장기는 표면실장부품을 인쇄회로기판상에 실장하는 장비로서 Tape, Stick, Tray 형태로 공급되는 각종 표면실장부품을 부품공급기(Feeder)로부터 공급받아 인쇄회로기판 상의 실장위치에 올려놓는 작업을 수행한다.
그리고, 상기 비전검사장치는 표면실장부품의 납땜공정 완료전 또는 완료 후, 표면실장부품의 실장상태를 검사하며 검사결과에 따라 다음공정으로 인쇄회로기판을 이송시키게 된다.
통상적인 비전검사장치는 램프 등을 이용하여 광이 조사되는 조명부와, 상기 조명부의 상부에 설치되어 검사대상물에 실장된 각종 부품의 영상정보를 촬영하기 위한 카메라부를 포함하여 구성된다.
여기서, 상기 조명부는 각종의 램프를 복수 개 배열하여 하우징 내에 배치되며, 검사 대상물에 조명을 조사할 경우에는 상기 복수 개의 램프에 전원을 공급하여 빛을 조사하게 된다.
통상적인 비전검사방법은, 컨베이어를 통해 검사대상물이 수평 이송되면 위치조절장치에서 초기 위치를 조절하고, 조절이 완료된 후 엘이디 부품 또는 인쇄회로기판 상에 격자를 통해 광을 조사하면, 조사된 광이 검사대상물의 표면에 비쳐 형성된 그림자 형상을 분석함으로써, 3차원적 높이를 측정하게 된다.
이후 촬영 부분을 연산하고 기준값과 비교함으로써, 높이와 연관되는 부품 실장의 양호/불량을 검사하거나, 표면실장부품의 실장 유/무를 검사하게 된다.
상기와 같은 검사방법은 모두 2차원적 그림자 형상을 측정하여 삼각함수를 이용함으로써 3차원적 높이를 계산한다.
그런데, 도 1 에서와 같이, 높이를 가지는 검사대상물에 격자 무늬광을 조사하고 이를 평면적으로 촬영할 경우, 상기 검사대상물의 높이가 격자 무늬의 간격(주기)보다 상대적으로 매우 높으면, 검사대상물 상부에 조사된 격자무늬(1, 2, 3)와 바닥면의 격자무늬(1-1, 2-1, 3-1) 중 어느 것이 애초 동일한 격자 무늬인지를 구분할 수 없게 된다.
상기와 같이 검사대상물의 높이가 격자 무늬의 주기를 초과하여 높이 측정에 혼란을 야기하는 것을 2π 모호성이라 하며, 이러한 요인은 높이 검사에 있어 오차를 유발할 수 있는 요인으로서, 이러한 오차의 제거를 위해 높이 측정에 요구되는 영상 사진의 수를 증가시키고, 영상 사진을 기초로한 높이 계산 과정을 복잡하게 하여 검사에 소요되는 전체 시간을 지연시키는 요인이 된다.
상기와 같은 2π 모호성을 제거하기 위해서는 격자 무늬의 주기를 크게 하여 부품의 높이를 측정하거나, 서로 다른 두 주기의 격자 무늬를 맥놀이 현상을 이용하여 조합함으로써 부품의 높이를 측정해야 하지만, 격자 무늬의 주기를 크게할 경우 부품 높이 측정의 해상도를 저하시킬 있으며, 서로 다른 두 주기의 격자를 이용할 경우 두가지 격자를 가공 및 설치하기가 매우 번거롭고 비용 상승의 요인이 된다.
본 발명의 목적은 하나의 단일 주기 격자를 이용하면서도 복수 개의 격자를 이용하는 것과 동일한 효과를 발휘할 수 있는 단일주기격자를 이용한 멀티 모아레 비전검사장치를 제공하는 것이다.
본 발명의 또 다른 목적은, 검사대상물의 높이를 신속하고도 정확하게 측정가능한 단일주기격자를 이용한 멀티 모아레 비전검사장치를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 단일주기격자를 이용한 멀티 모아레 비전검사장치는, 부품 조립과정에서 조립 또는 실장된 검사대상물을 카메라로 촬영한 후 촬영된 이미지를 미리 입력된 대상 이미지와 비교하여 검사대상물의 양호 또는 불량을 판별하기 위한 비전검사장치로서, 상기 검사대상물을 검사위치에 고정 또는 이송시키는 스테이지부와, 상기 스테이지부의 상부에 위치하며, 상기 검사대상물에 조명을 제공하는 조명부와, 상기 조명부의 중심에 위치되어 검사대상물의 영상을 획득하기 위한 카메라부와, 상기 카메라부의 측부에 배치되는 격자무늬조사부와, 상기 중앙카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부와, 상기 구성들을 제어하기 위한 제어부와, 상기 격자무늬조사부의 격자를 회전시키기 위한 격자회전부재를 포함한다.
여기서, 상기 격자무늬조사부는 프린팅 격자 또는 액정패널 또는 디지털 마이크로미러 디스플레이 중의 어느 하나의 격자를 포함하여 구성될 수 있다.
한편, 본 발명의 또 다른 실시예에 따른 단일주기격자를 이용한 멀티 모아레 비전검사장치는 부품 조립과정에서 조립 또는 실장된 검사대상물을 카메라로 촬영한 후 촬영된 이미지를 미리 입력된 대상 이미지와 비교하여 검사대상물의 양호 또는 불량을 판별하기 위한 비전검사장치로서, 상기 검사대상물을 검사위치에 고정 또는 이송시키는 스테이지부와, 상기 스테이지부의 상부에 위치하며, 상기 검사대상물에 조명을 제공하는 조명부와, 상기 조명부의 중심에 위치되어 검사대상물의 영상을 획득하기 위한 카메라부와, 상기 카메라부의 측부에 배치되는 격자무늬조사부와, 상기 중앙카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부와, 상기 구성들을 제어하기 위한 제어부를 포함하며, 상기 격자무늬조사부는 서로 다른 위치에 복수 개 배치되며, 상기 복수개의 격자무늬조사부에는 동일 주기간격의 격자가 설치되는 것을 특징으로 한다.
여기서, 상기 격자무늬조사부는 프린팅 격자 또는 액정패널 또는 디지털 마이크로미러 디스플레이 중의 어느 하나의 격자를 포함하여 구성될 수 있다.
또한, 상기 복수개의 격자무늬조사부에 포함되는 동일 주기간격의 격자들은 서로에 대해 상대적으로 회전된 상태로 설치될 수 있다.
본 발명에 의해, 하나의 단일 주기 격자를 이용하면서도 복수 개의 격자를 이용하는 것과 동일한 효과를 발휘할 수 있다.
또한, 검사대상물의 높이를 신속하고도 정확하게 측정가능하다.
도 1(a) 는 부품에 격자 무늬를 조사한 상태를 도시한 사시도이며,
도 1(b) 는 부품에 격자 무늬를 조사한 상태를 도시한 평면도이며,
도 2 는 본 발명에 따른 비전검사장치의 측단면도이며,
도 3 은 서로 다른 주기의 격자를 이용하여 큰 주기의 위상을 구하는 원리를
도시한 도면이며,
도 4 는 동일한 주기의 격자를 이용하여 큰 주기의 위상을 구하는 원리를 도
시한 도면이며,
도 5 는 본 발명의 또 다른 실시예에 따른 비전검사장치의 측단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 구성을 상세히 설명하기로 한다.
첨부된 도면들은, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 이해시키기 위한 것이므로, 본 발명은 하기 도면에 도시된 사항에 한정 해석되어서는 아니 된다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어는 사전적인 의미로 한정 해석되어서는 아니되며, 발명자는 자신의 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절히 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예 및 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 표현하는 것은 아니므로, 본 출원 시점에 있어 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 존재할 수 있음을 이해하여야 한다.
도 2 는 본 발명에 따른 비전검사장치의 측단면도이다.
도 2 를 참조하면, 본 발명에 따른 단일주기격자를 이용한 멀티 모아레 비전검사장치는 부품 조립과정에서 조립 또는 실장된 검사대상물(5)을 카메라로 촬영한 후 촬영된 이미지를 미리 입력된 대상 이미지와 비교하여 검사대상물(5)의 양호 또는 불량을 판별하기 위한 비전검사장치로서, 상기 검사대상물(5)을 검사위치에 고정 또는 이송시키는 스테이지부(10)와, 상기 스테이지부(10)의 상부에 위치하며, 상기 검사대상물에 조명을 제공하는 조명부(20)와, 상기 조명부(20)의 중심에 위치되어 검사대상물(5)의 영상을 획득하기 위한 카메라부(30)와, 상기 카메라부(30)의 측부에 배치되는 격자무늬조사부(40)와, 상기 카메라부(30)에서 촬영된 영상을 판독하여 상기 검사대상물(5)의 양호 또는 불량을 판별하는 비전처리부(50)와, 상기 구성들을 제어하기 위한 제어부(60)와, 상기 격자무늬조사부(40)의 격자(75)를 회전시키기 위한 격자회전부재(70)를 포함한다.
본 발명에 따른 비전검사장치는 표면실장라인에서 작업을 마친 인쇄회로기판의 표면실장부품을 검사할 경우, 선행장비의 컨베이어를 통해 다음 공정으로 이동되기 이전에 비전검사를 실시할 수 있도록 설치된다.
이와 같은 비전검사장치는 선, 후행 장비의 컨베이어와 컨베이어 사이에 형성되는 공간에 배치되는 방식으로 설치되거나, 또는 선, 후행장비와 연계되지 않고 단독 테이블 형태로도 사용될 수 있다.
상기 스테이지부(10)는 비전 검사의 대상이 되는 PCB 기판 등의 검사대상물(5)을 안착시키기 위한 구성으로서, 예를 들어 제어부(60)의 제어를 통한 로봇 암, 이송롤러 또는 모터 및 컨베이어벨트 등의 이송 수단에 의해 이송된 상기 검사대상물(5)이 안착된다.
상기 조명부(20)는 검사대상물(5)에 조명을 비추기 위한 구성으로서, 상기 검사대상물(5)의 상부에서 원주방향을 따라 복수 개 배치되는 엘이디 전구를 포함하여 구성된다.
바람직하게는, 상기 조명부(20)는 상기 검사대상물(5)의 상부에서 수평 원주방향으로 배치되는 상부조명부와 경사지게 배치되는 경사조명부를 포함하여 구성된다.
한편, 상기 카메라부(30)는 검사대상물(5) 및 패턴무늬(42)의 변형 정도를 촬영하기 위한 구성이며, 상기 스테이지부(10)의 상부에 설치된다.
상기 카메라부(30) 내에 포함되는 이미지감지부는 씨씨디(CCD: Charge Coupled Device) 또는 씨모스(CMOS: Complementary metal-oxide semiconductor)와 같은 촬상소자로 구성된다.
상기 격자무늬조사부(40)는 검사대상물의 표면에 격자무늬(42) 패턴을 조사하기 위한 구성으로서, 상기 스테이지부(10)의 상부에 설치되는 카메라부(30)로부터 일정각도 기울어진 측부에 설치된다.
상기 격자무늬조사부(40)는 프린팅 격자 또는 액정패널 또는 디지털 마이크로미러 디스플레이(DMD: Digital Micromirror Display) 등으로 구성되는 격자(75)와 상기 격자(75)에 광을 조사하기 위한 광원부(미도시)를 포함하여 구성된다.
상기 격자무늬조사부(40)가 상기 카메라부(30)에 대해 일정 각도 기울어진 측부에 배치된 상태에서 검사대상물(5)의 표면으로 격자 형상의 패턴무늬(42)를 조사하고, 조사된 패턴무늬(42)를 상기 카메라부(30)를 통해 촬영한다.
이때, 검사 대상물(5)의 표면 높이에 따라 격자 패턴무늬(42)가 적절히 변형되며, 이러한 변형의 정도를 파악하여 부품의 높이를 측정할 수 있다.
상기와 같이 패턴무늬(42)를 검사대상물(5)의 표면에 조사하고 이를 촬영하여 검사대상물(5)의 높이를 측정하기 위해, 상기 패턴무늬(42)를 검사대상물의 표면에서 조금씩 천이시키며, 통상적으로는 상기 패턴무늬(42)의 1 주기에 대해 상기 패턴무늬(42)를 3번 내지 4번 정도 천이시킨다.
상기와 같이 패턴무늬(42)를 검사대상물(5)의 표면에서 천이시키기 위해서는 격자(75) 자체를 조금씩 변위시켜야 하며, 상기 격자무늬조사부(40)에는 상기와 같이 격자(75)를 변위시키기 위한 격자변위구동부(미도시)가 포함된다.
상기 격자변위구동부는 검사대상물(5)의 표면에 조사되는 격자무늬를 이동시키기 위한 구성으로서, 격자 자체를 회전시켜 검사대상물(5)의 표면에 비춰지는 격자무늬를 회전시키기 위한 상기 격자회전부재(70)와는 구분된다.
도 3 은 서로 다른 주기의 격자를 이용하여 큰 주기의 위상을 구하는 원리를 도시한 도면이다.
도 3 을 참조하면, 주기 p1 을 가지는 격자로써 부품의 높이를 계산하는 경우와, 주기 p1 보다 다소 큰 주기 p2 를 가지는 격자로써 부품의 높이를 계산하는 경우를 조합할 경우 상기 p1, p2 보다 큰 주기 p3 를 가지는 격자로써 부품의 높이를 계산하는 경우와 동일한 효과를 발휘하게 된다.
이때, 상기 주기 p3 는,
p3 = p1*p2/(p2-p1) 이 된다.
즉, 만약 p1 이 8의 주기이고, p2 가 9 의 주기일 경우, 주기 p3 는 72 가 된다.
이러한 원리는 모아레 무늬의 맥놀이 현상에 기인한 것으로서, 결과적으로 서로 다른 두 주기의 격자를 동시에 이용할 경우 보다 큰 주기의 격자로써 부품의 높이를 측정하는 것과 동일한 효과를 발휘하게 된다.
한편, 도 4 는 상기 모아레 무늬의 맥놀이 현상을 이용하여 동일한 주기의 격자를 이용하여 큰 주기의 위상을 구하는 원리를 도시한 도면이다.
보다 구체적으로는, 주기 p1 의 격자와 상기 주기 p1 의 격자를 각도 θ 만큼 회전시키면, 모아레 무늬와 무늬 사이의 수직 폭이 p2 로 증대된다.
즉, 상기와 같이 격자를 각도 θ 만큼 회전시킬 경우, 애초 격자 무늬 사이의 주기 p1 에서 상하의 수직방향으로는 p1/cosθ, 즉 p2 로 주기가 증대되는 효과가 발생된다.
따라서, 상기 주기 p1 과 p2 를 조합할 경우 보다 큰 주기의 p3 의 격자로써 부품의 높이를 측정하는 효과를 발휘하게 된다.
따라서, 주기 p1 의 격자로써 주기 p2 및 p3 의 격자를 동시에 구비
하는 효과를 발휘하게 된다.
그리하여, 주기 p1 에 따른 해상도와 주기 p2 에 따른 해상도를 유지하면서도, 높이가 큰 부품에 대해서는 주기 p1 과 p2 를 조합한 보다 큰 주기 p3에 따른 위상으로써 부품의 높이를 측정할 수 있다.
상기와 같이 격자(75)를 회전시키기 위해 상기 격자무늬조사부(40)에는 격자회전부재(70)가 포함된다.
한편, 상기 비전처리부(50)는 상기 카메라부(30)에 의해 촬영된 검사대상물의 영상 및 격자 형상의 패턴무늬가 검사대상물(5) 상에 비춰지는 영상을 미리 저장된 기준(표준) 영상과 비교함으로써, 검사대상물(5)의 높이 및 설치 상태의 양호 불량을 판단할 수도 있다.
상기 비전처리부(50)는 상기 카메라부(30)로부터 획득된 검사대상물(5)의 영상정보를 푸리에 변환(Fourier Transform) 등의 수학적인 처리를 통해 계산하여, 미리 입력된 기준 값과 비교함으로써 상기 검사대상물의 양호 불량을 판단한다.
그리하여, 상기 제어부(60)의 제어에 의해 격자 형상의 패턴 무늬(42)가 검사대상물(5) 상에 조사되도록 하고, 상기 격자 형상의 패턴 무늬(42)가 변형된 정도를 상기 카메라부(30)를 통해 촬영함으로써, 부품의 높이를 계산할 수 있다.
상기 제어부(60)는 상기 카메라부(30), 격자무늬조사부(40) 등의 구동 및 동작을 제어하는 구성요소로써, 본 발명에 따른 검사장치 전체의 구동을 제어하도록 마련될 수 있다.
상기 제어부(60)는 시스템 제어 프로그램에 따라 검사장치의 위치제어와 촬영된 영상의 처리와 광원부 제어 등의 물리적인 제어를 담당함은 물론 데이터 연산 작업을 수행한다.
아울러, 상기 제어부(60)는 검사결과를 모니터에 출력하기 위한 출력장치 제어와 작업자가 제반사항을 설정 및 입력할 수 있는 입력장치 제어 등 검사장치의 총괄적인 제어를 담당한다.
도 5 는 본 발명의 또 다른 실시예에 따른 비전검사장치의 측단면도이다.
한편, 본 발명의 또 다른 실시예에 따른 단일주기격자를 이용한 멀티 모아레 비전검사장치는 부품 조립과정에서 조립 또는 실장된 검사대상물(5)을 카메라로 촬영한 후 촬영된 이미지를 미리 입력된 대상 이미지와 비교하여 검사대상물(5)의 양호 또는 불량을 판별하기 위한 비전검사장치로서, 상기 검사대상물(5)을 검사위치에 고정 또는 이송시키는 스테이지부(10)와, 상기 스테이지부(10)의 상부에 위치하며, 상기 검사대상물(5)에 조명을 제공하는 조명부(20)와, 상기 조명부(20)의 중심에 위치되어 검사대상물(5)의 영상을 획득하기 위한 카메라부(30)와, 상기 카메라부(30)의 측부에 배치되는 격자무늬조사부(40)와, 상기 카메라부(30)에서 촬영된 영상을 판독하여 상기 검사대상물(5)의 양호 또는 불량을 판별하는 비전처리부(50)와, 상기 구성들을 제어하기 위한 제어부(60)를 포함하며, 상기 격자무늬조사부(40)는 서로 다른 위치에 복수 개 배치되며, 상기 복수개의 격자무늬조사부(40)에는 동일 주기간격의 격자(75)가 설치되는 것을 특징으로 한다.
상기 실시예에서는 동일한 주기를 가지는 격자(75)를 격자무늬조사부(40) 내에 설치한 상태에서, 상기 격자무늬조사부(40)를 서로 다른 위치에 배치시킴으로써, 도 3 에서와 같이 격자를 각도 θ 만큼 회전시킨 효과를 발휘할 수 있도록 구성된다.
즉, 상기 실시예에서는 격자회전부재(70)에 의해 격자(75)를 회전시키는 것이 아니라, 격자무늬조사부(40)를 서로 다른 위치에 배치시킴으로써 격자(75)를 회전시키는 것과 결과적으로 동일하도록 구성된다.
상기 실시예에 따라 도 5 에서의 격자무늬조사부(40)는 서로 대향된 위치에 배치된 상태에서 상기 격자무늬조사부(40) 내의 격자(75)가 서로에 대해 상대적으로 회전된 상태로 고정 설치된다.
여기서, 격자(75)들이 서로에 대해 상대적으로 회전된 상태로 고정설치 된다고 함은, 상기 격자(75)들을 통해 격자무늬(42)를 검사대상물(5)의 표면에 형성할 경우, 형성된 격자무늬(42)가 도 4 에서와 같이 서로에 대해 상대적으로 회전된(비틀린) 상태가 되도록 상기 격자(75)들이 설치됨을 의미한다.
상기와 같이 하나의 단일 격자를 이용하여 주기 p1, p2, p3 의 다양한 주기의 위상으로써 부품의 높이를 검사할 수 있도록 구성됨으로써, 비전검사장치 내에 설치되는 격자의 가공이 용이해지고 구성이 단순해진다.
이상, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명의 기술적 사상은 이러한 것에 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해, 본 발명의 기술적 사상과 하기 될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 실시가 가능할 것이다.
Claims (5)
- 부품 조립과정에서 조립 또는 실장된 검사대상물을 카메라로 촬영한 후 촬영된 이미지를 미리 입력된 대상 이미지와 비교하여 검사대상물의 양호 또는 불량을 판별하기 위한 비전검사장치로서,상기 검사대상물을 검사위치에 고정 또는 이송시키는 스테이지부와;상기 스테이지부의 상부에 위치하며, 상기 검사대상물에 조명을 제공하는 조명부와;상기 조명부의 중심에 위치되어 검사대상물의 영상을 획득하기 위한 카메라부와;상기 카메라부의 측부에 배치되는 격자무늬조사부와;상기 중앙카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부와;상기 구성들을 제어하기 위한 제어부와;상기 격자무늬조사부의 격자를 회전시키기 위한 격자회전부재를 포함하는 단일주기격자를 이용한 멀티 모아레 비전검사장치.
- 제 1 항에 있어서,상기 격자무늬조사부는 프린팅 격자 또는 액정패널 또는 디지털 마이크로미러 디스플레이 중의 어느 하나의 격자를 포함하여 구성되는 것을 특징으로 하는 단일주기격자를 이용한 멀티 모아레 비전검사장치.
- 부품 조립과정에서 조립 또는 실장된 검사대상물을 카메라로 촬영한 후 촬영된 이미지를 미리 입력된 대상 이미지와 비교하여 검사대상물의 양호 또는 불량을 판별하기 위한 비전검사장치로서,상기 검사대상물을 검사위치에 고정 또는 이송시키는 스테이지부와;상기 스테이지부의 상부에 위치하며, 상기 검사대상물에 조명을 제공하는 조명부와;상기 조명부의 중심에 위치되어 검사대상물의 영상을 획득하기 위한 카메라부와;상기 카메라부의 측부에 배치되는 격자무늬조사부와;상기 중앙카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부와;상기 구성들을 제어하기 위한 제어부를 포함하며,상기 격자무늬조사부는 서로 다른 위치에 복수 개 배치되며,상기 복수개의 격자무늬조사부에는 동일 주기간격의 격자가 설치되는 것을특징으로 하는 단일주기격자를 이용한 멀티 모아레 비전검사장치.
- 제 3 항에 있어서,상기 격자무늬조사부는 프린팅 격자 또는 액정패널 또는 디지털 마이크로미러 디스플레이 중의 어느 하나의 격자를 포함하여 구성되는 것을 특징으로 하는 단일주기격자를 이용한 멀티 모아레 비전검사장치.
- 제 3 항에 있어서,상기 복수개의 격자무늬조사부에 포함되는 동일 주기간격의 격자들은 서로에대해 상대적으로 회전된 상태로 설치되는 것을 특징으로 하는 단일주기격자를 이용한 멀티 모아레 비전검사장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0057685 | 2012-05-30 | ||
KR1020120057685A KR101405427B1 (ko) | 2012-05-30 | 2012-05-30 | 단일주기격자를 이용한 멀티 모아레 비전검사장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013180394A1 true WO2013180394A1 (ko) | 2013-12-05 |
Family
ID=49673546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/003609 WO2013180394A1 (ko) | 2012-05-30 | 2013-04-26 | 단일주기격자를 이용한 멀티 모아레 비전검사장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101405427B1 (ko) |
WO (1) | WO2013180394A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109870466A (zh) * | 2019-01-25 | 2019-06-11 | 深圳市华星光电半导体显示技术有限公司 | 用于显示装置外围线路区匹配缺陷点与线路编号的方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102240270B1 (ko) | 2014-07-21 | 2021-04-14 | 삼성전자주식회사 | 광 변환 모듈 및 광학 측정 시스템 |
KR102398772B1 (ko) * | 2020-06-15 | 2022-05-18 | (주) 인텍플러스 | 표면 검사장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004325096A (ja) * | 2003-04-22 | 2004-11-18 | Fujitsu Ltd | 格子パターン投影法における画像処理方法、画像処理装置及び計測装置 |
KR100841662B1 (ko) * | 2006-06-23 | 2008-06-26 | 주식회사 고영테크놀러지 | 모아레와 스테레오를 이용한 3차원형상 측정시스템 및 방법 |
KR20100041022A (ko) * | 2008-10-13 | 2010-04-22 | 주식회사 고영테크놀러지 | 다중파장을 이용한 3차원형상 측정장치 및 측정방법 |
KR20110089506A (ko) * | 2010-02-01 | 2011-08-09 | 주식회사 고영테크놀러지 | 3차원 형상 측정장치의 높이 측정방법 및 이를 이용한 3차원 형상 측정장치 |
-
2012
- 2012-05-30 KR KR1020120057685A patent/KR101405427B1/ko active IP Right Grant
-
2013
- 2013-04-26 WO PCT/KR2013/003609 patent/WO2013180394A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004325096A (ja) * | 2003-04-22 | 2004-11-18 | Fujitsu Ltd | 格子パターン投影法における画像処理方法、画像処理装置及び計測装置 |
KR100841662B1 (ko) * | 2006-06-23 | 2008-06-26 | 주식회사 고영테크놀러지 | 모아레와 스테레오를 이용한 3차원형상 측정시스템 및 방법 |
KR20100041022A (ko) * | 2008-10-13 | 2010-04-22 | 주식회사 고영테크놀러지 | 다중파장을 이용한 3차원형상 측정장치 및 측정방법 |
KR20110089506A (ko) * | 2010-02-01 | 2011-08-09 | 주식회사 고영테크놀러지 | 3차원 형상 측정장치의 높이 측정방법 및 이를 이용한 3차원 형상 측정장치 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109870466A (zh) * | 2019-01-25 | 2019-06-11 | 深圳市华星光电半导体显示技术有限公司 | 用于显示装置外围线路区匹配缺陷点与线路编号的方法 |
CN109870466B (zh) * | 2019-01-25 | 2021-06-01 | 深圳市华星光电半导体显示技术有限公司 | 用于显示装置外围线路区匹配缺陷点与线路编号的方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20130134279A (ko) | 2013-12-10 |
KR101405427B1 (ko) | 2014-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012121556A2 (ko) | 다중 격자 무늬를 이용한 비전검사장치 | |
WO2012121558A1 (ko) | 영상 선명도가 개선된 비전검사장치 | |
WO2012134146A1 (ko) | 스테레오 비전과 격자 무늬를 이용한 비전검사장치 | |
WO2016200096A1 (ko) | 3차원 형상 측정장치 | |
WO2013009065A2 (ko) | 엘이디 부품의 3차원비전검사장치 및 비전검사방법 | |
WO2009142390A2 (ko) | 표면형상 측정장치 | |
WO2013176482A1 (ko) | 3차원 형상 측정장치의 높이 측정 방법 | |
WO2016163840A1 (ko) | 3차원 형상 측정장치 | |
WO2013048093A2 (ko) | 비접촉식 부품검사장치 및 부품검사방법 | |
WO2009107981A2 (ko) | 3차원형상 측정장치 및 측정방법 | |
WO2020027440A1 (ko) | 이미지 센서를 이용한 표면결함 검사장치 및 검사방법 | |
WO2012091344A2 (ko) | 비전검사장치 | |
WO2017014518A1 (ko) | 검사 시스템 및 검사 방법 | |
WO2017138754A1 (ko) | 차량하부 촬영장치 및 이를 운용하는 차량하부 촬영방법 | |
WO2013172568A1 (ko) | 광조사 각도 조절가능한 조명부를 포함하는 비전검사장치 | |
WO2016099154A1 (ko) | 부품이 실장된 기판 검사방법 및 검사장치 | |
WO2013180394A1 (ko) | 단일주기격자를 이용한 멀티 모아레 비전검사장치 | |
WO2018074755A1 (ko) | 기판 검사장치 및 이를 이용한 기판 검사방법 | |
WO2012134147A1 (ko) | 가시광선의 격자무늬와 비가시광선의 격자 무늬를 이용한 비전검사장치 | |
WO2012150782A1 (ko) | 편광판과 다중 격자 무늬를 이용한 비전검사장치 | |
WO2015026210A1 (ko) | 솔더 조인트 검사 방법 | |
WO2012134145A1 (ko) | 서로 다른 색깔의 다중 격자 무늬를 이용한 비전검사장치 | |
KR20130058414A (ko) | 적외선패턴조사부를 구비하는 비전검사장치 | |
KR101442666B1 (ko) | 복수 행의 조명부재를 포함하는 비전검사장치 | |
KR20110120461A (ko) | 비전검사장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13797794 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13797794 Country of ref document: EP Kind code of ref document: A1 |