WO2009107981A2 - 3차원형상 측정장치 및 측정방법 - Google Patents

3차원형상 측정장치 및 측정방법 Download PDF

Info

Publication number
WO2009107981A2
WO2009107981A2 PCT/KR2009/000904 KR2009000904W WO2009107981A2 WO 2009107981 A2 WO2009107981 A2 WO 2009107981A2 KR 2009000904 W KR2009000904 W KR 2009000904W WO 2009107981 A2 WO2009107981 A2 WO 2009107981A2
Authority
WO
WIPO (PCT)
Prior art keywords
image
grid
unit
measurement object
dimensional shape
Prior art date
Application number
PCT/KR2009/000904
Other languages
English (en)
French (fr)
Other versions
WO2009107981A3 (ko
Inventor
이승준
고광일
전문영
윤상규
김홍민
허정
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080017439A external-priority patent/KR100956547B1/ko
Priority claimed from KR1020080082629A external-priority patent/KR101035895B1/ko
Priority to CN200980107016XA priority Critical patent/CN101960253B/zh
Priority to US12/919,691 priority patent/US8854610B2/en
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority claimed from KR1020090015691A external-priority patent/KR101081538B1/ko
Publication of WO2009107981A2 publication Critical patent/WO2009107981A2/ko
Publication of WO2009107981A3 publication Critical patent/WO2009107981A3/ko
Priority to US14/463,287 priority patent/US9243900B2/en
Priority to US14/463,269 priority patent/US9488472B2/en
Priority to US15/331,499 priority patent/US10359276B2/en
Priority to US15/929,142 priority patent/US10563978B2/en
Priority to US16/735,186 priority patent/US10996050B2/en
Priority to US17/212,219 priority patent/US20210207954A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/40Optical focusing aids

Definitions

  • the present invention relates to a three-dimensional shape measuring apparatus and a measuring method, and more particularly to a three-dimensional shape measuring apparatus and measuring method that can increase the measurement accuracy of the three-dimensional shape of the measurement object.
  • the three-dimensional shape measuring apparatus is a device for measuring the three-dimensional shape of the measurement object by irradiating the grid pattern light on the measurement object, and receiving and analyzing the grid image reflected from the measurement object.
  • the conventional three-dimensional shape measuring apparatus includes one projection unit for irradiating the grid pattern illumination on the measurement object and one imaging unit for taking a grid image reflected from the measurement object.
  • the three-dimensional shape of the measurement target is measured by rotating the projection unit to the other side and then irradiating the grid-patterned lighting, but it takes a relatively long measurement time.
  • the present invention has been made in view of such a problem, and provides a three-dimensional shape measuring apparatus and a measuring method capable of improving the productivity of the three-dimensional shape measuring operation of the measurement object and improving the measurement accuracy.
  • a three-dimensional shape measuring apparatus includes a projection unit for generating and irradiating a grid-patterned light, an XY axis transfer table installed below the projection unit to transfer an inspection object, and between the projection unit and the XY axis transfer table.
  • a beam separation unit installed at the beam separation unit for separating and passing the reflection image from the inspection object, and installed at a lower side of the beam separation unit in a circumferential direction to be spaced apart from each other to reflect the reflection of the grid pattern image from the inspection object.
  • It is characterized by consisting of a reflection mirror, and a plurality of imaging units installed on one side of the beam separation unit and the plurality of reflection mirrors to shoot the grid pattern image passed through the beam separation unit and the grid pattern image reflected from the plurality of reflection mirrors. .
  • the three-dimensional shape measuring method comprises the steps of transferring the inspection object to the measurement position by the XY axis transfer table, and when the inspection object is transferred to the measurement position, the grid element is pitched by the grid transfer mechanism. Transferring the lattice element, and when the lattice element is pitch-transmitted, turning on the illumination source of the image forming unit to irradiate the lattice light with the inspection object, and when the lattice light is irradiated with the inspection object, the lattice image reflected from the inspection object Is irradiated through a plurality of reflective mirrors and photographed in a plurality of imaging units, and when a grid pattern image is photographed in the plurality of imaging units, turning off the illumination source of the imaging unit; The controller checks whether the lattice element is the N + 1 th pitch transfer, and if the lattice element is the N + 1 th pitch transfer, the first circular lamp portion or the second circular lamp portion.
  • Photographing the inspection object with a plurality of imaging parts after turning on the object checking whether the measurement of the inspection object is completed when the imaging object is photographed by the plurality of imaging parts; Comprising a step of calculating the three-dimensional shape of the inspection object by using the image of the inspection object photographing the inspection object and the plurality of image forming the grid pattern image after turning on the lamp unit or the second circular lamp unit.
  • a three-dimensional shape measuring apparatus includes a measuring substrate, a work-stage, a plurality of projections, an image forming portion, and a controller.
  • the work-stage holds the measurement substrate.
  • the plurality of projections each include a light source, a grating portion for transmitting light emitted from the light source, and a projection lens portion for forming grating image light of the grating portion on a measurement object in the measurement substrate, respectively for the measurement object.
  • the image forming unit receives the grid image light reflected by the measurement object.
  • the controller selectively turns on / off at least two or more of the plurality of projection units according to the shape of the measurement object.
  • the three-dimensional shape measuring apparatus measures the three-dimensional shape of the measurement object by using the grid image light received by the imaging unit by the two or more projection units selectively turned on.
  • a three-dimensional shape measuring apparatus includes a work-stage, a plurality of projections, an actuator, an image forming unit and a control unit.
  • the work-stage fixes the measurement substrate measuring substrate which supports the measurement object.
  • Each of the plurality of projection parts includes a light source, a grating for transmitting light emitted from the light source, and a projection lens part for forming grating image light of the grating on a measurement object in the measurement substrate, respectively, in different directions with respect to the measurement object.
  • the direction of the light irradiated from the light source and the normal of the measurement substrate has a certain angle.
  • a three-dimensional shape measuring apparatus includes a stage, at least one lighting unit, a plurality of imaging units, and a controller.
  • the stage supports the measurement object.
  • the illumination unit includes a light source and a grid, and irradiates the grid-patterned light on the measurement object.
  • the imaging units pick up the grid image reflected from the measurement object in different directions.
  • the controller calculates a three-dimensional shape of the measurement object by using the grid images captured by the imaging units.
  • the imaging units include a main imaging unit and a sub imaging unit. The main imaging unit is disposed perpendicular to the reference plane of the stage.
  • the sub-imager is disposed to be inclined at a predetermined angle with respect to the reference plane of the stage, and is spaced apart from each other along the circumferential direction with respect to the main imager.
  • the controller matches a coordinate system of the grid images captured by the main image pickup unit and the sub image pickup units, calculates each confidence index for the matched grid images, and then weights the calculated confidence index.
  • the three-dimensional shape of the measurement object can be calculated.
  • a three-dimensional shape measuring apparatus includes a stage, at least one lighting unit, a main imaging unit, at least one sub imaging unit, and a controller.
  • the stage supports the measurement object.
  • the illumination unit irradiates the grid-patterned light on the measurement object.
  • the main imaging unit picks up a main image of the grid image from which the grid-patterned light is reflected from the measurement object.
  • the sub-imager picks up a sub-image in which the grid-patterned light is reflected by the measurement object and specularly reflected from the measurement object and does not enter the main imaging unit.
  • the controller calculates a three-dimensional shape of the measurement object by using the main image and the sub image captured by the main image pickup unit and the sub image pickup unit.
  • the controller matches the coordinate system of the main image and the sub images captured by the main image capturing unit and the sub image capturing units, and calculates respective reliability indexes of the matched main image and the sub images. Then, the weighted value may be added to the calculated confidence index to calculate the three-dimensional shape of the measurement object.
  • the measurement object is transferred to the measurement position through the transfer of the stage.
  • the grid object is irradiated to the measurement object through at least one lighting unit.
  • the lattice image reflected from the measurement object through the lattice pattern illumination is imaged in a different direction through a plurality of imaging units.
  • the three-dimensional shape of the measurement object is calculated using the grid images captured by the imaging units.
  • the capturing of the grid image may include capturing a main image of the grid image reflected from the measurement object through a main image pickup unit disposed perpendicular to the reference plane of the stage, and simultaneously capturing the main image.
  • the main image is specularly reflected from the measurement object among the grid images reflected from the measurement object through a plurality of sub-imaging parts which are inclined at an angle with respect to the reference plane of the stage and are spaced apart from each other along the circumferential direction about the main imaging part. And capturing a sub-image that does not enter the imaging unit.
  • the calculating of the three-dimensional shape of the measurement object may include matching the coordinate system of the main image and the sub-images captured by the main image capturing unit and the sub image capturing units, respectively, and then matching the matched main image and the sub image. After calculating the confidence index for each, adding a weight to the calculated confidence index, the weighted data may be mapped to calculate a three-dimensional shape.
  • FIG. 1 is a configuration diagram showing the configuration of a three-dimensional shape measuring apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the projection part shown in FIG. 1.
  • FIG. 3 is a plan view of the second and third illumination sources shown in FIG. 1.
  • FIG. 4 is a flowchart illustrating a three-dimensional shape measuring method according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic side view of a three-dimensional shape measuring apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a schematic plan view according to an embodiment of the three-dimensional shape measuring apparatus shown in FIG.
  • FIG. 7 is a schematic plan view according to another embodiment of the three-dimensional shape measuring apparatus shown in FIG.
  • FIG. 8 and 9 are plan views illustrating the operation of the liquid crystal display panel constituting the grating portion shown in FIG. 6 or 7.
  • FIG. 10 is a schematic plan view according to still another embodiment of the three-dimensional shape measuring apparatus shown in FIG.
  • FIG. 11 is a schematic plan view of still another embodiment of the three-dimensional shape measuring apparatus shown in FIG. 5.
  • FIG. 12 is a view schematically showing a three-dimensional shape measuring apparatus according to a third embodiment of the present invention.
  • FIG. 13 is a plan view of the three-dimensional shape measuring apparatus shown in FIG.
  • FIG. 14 is an enlarged view enlarging a measurement object to explain a process of measuring a three-dimensional shape of the measurement object shown in FIG. 12.
  • FIG. 15 is a flowchart illustrating a three-dimensional shape measuring method according to Embodiment 3 of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a three-dimensional shape measuring apparatus according to a first embodiment of the present invention
  • Figure 2 is a plan view of the projection shown in Figure 1
  • Figure 3 is a second and third shown in Figure 1 Top view of an illumination source.
  • each of the first circular lamp unit 60 and the second circular lamp unit 70 shown in FIG. 1 represents a side cross-sectional state
  • Reference numeral 70 denotes a planar cross-sectional state, respectively.
  • the three-dimensional shape measuring apparatus according to the present embodiment, the projection unit 10, the XY axis transfer table 20, the beam separation unit 30, a plurality of reflecting mirrors 40 and a plurality It consists of four imaging units 50, each component is described as follows.
  • the projection unit 10 generates and irradiates a grid-patterned light
  • the X-Y axis transfer table 20 is installed below the projection unit 10 to transfer the inspection object P.
  • the beam splitter 30 is installed between the projection unit 10 and the X-Y axis transfer table 20 to separate and pass the grid image reflected from the inspection object P.
  • the plurality of reflection mirrors 40 are installed on the lower side of the beam separation unit 30 so as to be spaced apart from each other in the circumferential direction, and reflect the grid image reflected from the inspection object P.
  • the plurality of imaging units 50 are respectively installed at one side of the beam splitter 30 and the plurality of reflective mirrors 40 and are reflected by the grid image passed through the beam splitter 30 and the plurality of reflective mirrors 40. Take a grid image.
  • the projection unit 10 the XY axis transfer table 20, the beam separation unit 30, the plurality of reflective mirrors 40 and the plurality of image forming units constituting the three-dimensional shape measuring apparatus according to the present embodiment
  • the detailed configuration is as follows.
  • the projection unit 10 is composed of an illumination source 11, a grating element 12, a grating transfer mechanism 13, a projection lens 14, and a projection lens filter 15.
  • the illumination source 11 of the projection unit 10 generates and irradiates the illumination
  • the grid element 12 is installed below the illumination source 11 to convert the illumination irradiated from the illumination source 11 into a grid pattern illumination.
  • the inclination angle g of the grating element 12 for converting the illumination into the grid pattern illumination is installed at an angle of 45 degrees with respect to the Y-axis direction in the X-Y axis plane as shown in FIG. 2.
  • the grating transfer mechanism 13 is applied to the PZT (piezoelectric) and installed in the grating element 12 to transfer the grating element 12, and the projection lens 14 is installed below the grating element 12 to illuminate the lattice pattern illumination.
  • the projection lens filter 15 is disposed under the projection lens 14 to irradiate the grid-patterned light irradiated through the projection lens 14 by filtration.
  • the XY axis transfer table 20 includes a motor 21 for driving the XY axis transfer table 20 in the X axis direction, and a motor 22 for driving the XY axis transfer table 20 in the Y axis direction. Then, the inspection object (P) is aligned or transferred to the measurement position.
  • the beam splitter 30 is a grid image generated by the projection unit 10 or the illumination generated from the first circular lamp unit 60 or the second circular lamp unit 70 is irradiated to the inspection object (P).
  • a beam splitter is applied to irradiate the reflected image to one of the plurality of imaging units 50 installed on one side of the beam splitter 30.
  • the plurality of reflecting mirrors 40 are X-axis to irradiate the grid image reflected from the inspection object P to the remaining plurality of image forming portions 50 except for the image forming portion 50 installed in the beam splitter 30. It is installed to be inclined in the direction, it is installed so as to be spaced apart in the circumferential direction. That is, the plurality of reflective mirrors 40 are installed to be spaced apart at equal intervals from each other along the circle shown by dashed lines in FIG. 3.
  • the plurality of imaging units 50 simultaneously capture a grid image reflected by the reflection mirror 40 and are composed of a camera filter 51, an imaging lens 52, and a camera 53, respectively.
  • the camera filter 51 filters and irradiates the grating image reflected by the reflection mirror 40.
  • As the camera filter 51 for filtering the grid image one of a frequency filter, a color filter, and a light intensity control filter is applied.
  • the imaging lens 52 is installed at one side of the camera filter 51 to form a grating image transmitted from the camera filter, and the grating image irradiated and irradiated by the imaging lens 52 is photographed by the camera 53.
  • the camera 53 is installed at one side of the imaging lens 52 and photographs a grid image irradiated from the imaging lens 52.
  • the first circular lamp unit 60 and the second circular shape for capturing a two-dimensional image, that is, an illumination image, for extracting a specific shape of the inspection object P
  • the lamp unit 70 is additionally configured, and a control unit 80 for controlling these components is further provided.
  • the first circular lamp unit 60 and the second circular lamp unit 70 further configured to the three-dimensional shape measuring apparatus according to the present embodiment will be described below.
  • the first circular lamp unit 60 is installed on the lower side of the beam separation unit 30 to generate and irradiate the illumination to the inspection object (P) so that the illumination image is reflected from the inspection object (P).
  • the second circular lamp unit 70 is installed on the lower side of the plurality of reflective mirrors 40 to generate illumination to the inspection object (P) so that the illumination image is reflected from the inspection object (P) and irradiates the inspection object (P).
  • the first circular lamp unit 60 and the second circular lamp unit 70 for illuminating the inspection object P are composed of circular ring members 61 and 71 and a plurality of light emitting elements 62 and 72, respectively. .
  • the circular ring members 61 and 71 have through holes 61a and 71a to allow the grid-patterned illumination or the grid image to pass therethrough.
  • the through hole 71a of the second circular lamp unit 70 allows the illumination irradiated from the first circular lamp unit 60 to be irradiated to the inspection object P or the grid image reflected from the inspection object P is
  • the diameter is larger than the through hole 61a of the first circular lamp unit 60 so as to be irradiated with the plurality of reflective mirrors 40.
  • the plurality of light emitting elements 62 and 72 are installed below the circular ring members 61 and 71 to generate illumination.
  • the illumination image reflected from the inspection object P is divided with the beam separation unit 30.
  • Two reflection mirrors 40 are irradiated.
  • Illumination images irradiated with the beam splitter 30 and the plurality of reflection mirrors 40 are respectively photographed by the plurality of imaging units 50.
  • the grid image or the illumination image photographed by the plurality of imaging units 50 is received by the controller 80.
  • the controller 80 uses the same to determine the three-dimensional shape of the inspection object P.
  • the control unit 80 for calculating the three-dimensional shape of the inspection object P includes the projection unit 10, the XY axis transfer table 20, the plurality of imaging units 50, the first circular lamp unit 60, and the second.
  • the circular lamp unit 70 and the like generally control the three-dimensional shape measuring apparatus of the present embodiment.
  • the inspection object P is transferred to the measurement position by the X-Y axis transfer table 20 (S10).
  • the grid element 12 is pitched by the grid transfer mechanism 13 (S20).
  • the illumination source 11 of the image forming unit 50 is turned on to irradiate the grid-patterned light with the inspection object P (S30).
  • the grid image reflected by the inspection object P is irradiated through the plurality of reflection mirrors 40 and photographed by the plurality of imaging units 50 (S40).
  • the plurality of imaging units 50 simultaneously captures the grid image.
  • the illumination source 11 of the imaging unit 50 is turned off (S50).
  • the controller 80 checks whether the grating element 12 is the N + 1 th pitch transfer (S60). As described above, the step S60 of checking whether the N + 1 th pitch transfer is performed returns to the step S20 of pitch feeding the grating element 12 when the grating element 12 is not the N + 1 th pitch transfer. That is, when calculating the three-dimensional shape of the inspection object P using the 4-bucket algorithm, it is transferred four times at the pitch interval of the grating element 12.
  • the grating element 12 is the N + 1 th pitch feed, turn on the first circular lamp unit 60 or the second circular lamp unit 70, and then photograph the inspection object P with a plurality of imaging units 50. (S70). That is, the illumination image which is a two-dimensional image of the inspection object P is photographed.
  • a method for photographing an illumination image will be described in more detail as follows.
  • the first circular lamp unit 60 is turned on (S71).
  • the inspection objects P are photographed by the plurality of imaging units 50 (S72).
  • the first circular lamp unit 60 is turned off (S73).
  • the second circular lamp unit 70 is turned on (S74).
  • the inspection objects P are photographed by the plurality of imaging units 50 (S75).
  • the second circular lamp unit 70 is turned off (S76).
  • step S80 of checking whether the measurement of the inspection object P is completed if the measurement of the inspection object P is not completed, the process returns to the step of transferring the inspection object P to the measurement position.
  • the control unit 80 turns on the first circular lamp unit 60 or the second circular lamp unit 70 and then photographs the inspection object P.
  • the three-dimensional shape of the inspection object P is calculated using the image of the image and the grid image photographed by the plurality of image forming units 50 (S90).
  • the three-dimensional shape measurement time of the inspection object can be reduced by calculating the three-dimensional shape of the inspection object by simultaneously photographing the inspection object using a plurality of imaging units.
  • FIG. 5 is a schematic side view of a three-dimensional shape measuring apparatus according to a second embodiment of the present invention.
  • the three-dimensional shape measuring apparatus 100 includes a work-stage 130, a plurality of projection units 110, an image forming unit 150, and a controller 140. Include.
  • the work-stage 130 secures the measurement substrate 120.
  • the measuring substrate 120 includes a measurement object (A).
  • the work-stage 130 transfers and fixes the measurement substrate 120 in the x-axis or y-axis direction. After being controlled and controlled by the controller 140, the measuring substrate 120 is transported and fixed, whereby the first auxiliary light source 160 and the second auxiliary light source 170 irradiate light to the measurement target A and measure the light. The entire measurement area of the measurement substrate 120 is set using the recognition mark displayed on the substrate 120.
  • the plurality of projections 110 are arranged to irradiate light at a predetermined angle with respect to the normal of the measurement substrate 120. In addition, the plurality of projections 110 are arranged symmetrically with respect to the normal.
  • the plurality of projections 110 irradiates the grid-patterned light toward the measurement object A.
  • each of the plurality of projections 110, the light source 111, the grid portion 112 that transmits the light emitted from the light source 111 and the grid pattern illumination of the grid portion 112 is the measurement object And a projection lens portion 113 to form an image in (A).
  • the light transmitted through the grating portion 112 forms a lattice pattern illumination.
  • the grating portion 112 includes a blocking portion (not shown) and a transmission portion (not shown).
  • the blocking unit blocks the light irradiated from the light source 111, and the transmitting unit transmits the light.
  • the grating portion 112 may be formed in various forms. The grating section 112 will be described later.
  • the projection lens unit 113 may be formed of, for example, a plurality of lens combinations, and focuses on the grid-patterned light formed through the grid unit 112 to the measurement object A disposed on the measurement substrate 120. Image it.
  • the imaging unit 150 receives a grid image reflected by the measurement object A.
  • the imaging unit 150 includes, for example, a camera 151 and a light receiving lens unit 152.
  • the grating image reflected by the measurement object A is captured by the camera 151 via the light receiving lens unit 152.
  • the control unit 140 may include an operation control unit 141 and a shape detecting unit 142.
  • the control unit 140 controls the work-stage 130, the projection unit 110, and the image forming unit 150, and the shape detecting unit 142 is a measurement object located on the measurement substrate 120.
  • Figure out the form of A when there is data information in advance in which the shape of the measurement object A of the measurement substrate 120 is known, the data information may be used without grasping the shape of the measurement object A.
  • the control unit 140 may turn on the projection unit 110 by selecting an even number, and in this case, the even number of projection units 110 turned on may be symmetrical with respect to the measurement object.
  • the grid image is captured only on one side, since the measurement object A is a three-dimensional shape protruding, the other side of the measurement object A may not be irradiated with the grid image, and thus an accurate three-dimensional shape may not be measured. Therefore, by measuring again on the opposite side, a more accurate three-dimensional shape can be measured.
  • control unit 140 may turn on the two projection units 110 when the measurement object A identified by the shape detecting unit 142 is a quadrilateral, and the shape detecting unit 142 may be turned on.
  • the measurement target A identified in the above is an ellipsoid
  • at least 50% of the plurality of projection units 110 may be turned on.
  • the plurality of projections 110 are arranged in a position symmetrical with each other compared to capturing the opposite grid image by moving the projection in the conventional three-dimensional shape measuring apparatus,
  • the time required for measurement can be shortened, increasing the efficiency of the inspection.
  • FIG. 6 is a schematic plan view according to an embodiment of the three-dimensional shape measuring apparatus shown in FIG. 5
  • FIG. 7 is a schematic plan view according to another embodiment of the three-dimensional shape measuring apparatus shown in FIG.
  • the projection unit 110 is arranged in a regular polygonal shape.
  • the projection unit 110 may be arranged in a square (FIG. 2), a regular hexagon (FIG. 3), or the like.
  • the liquid crystal display panel 112a may be used for the grating portion 112 illustrated in FIG. 5.
  • a power supply is supplied to a graphic card (not shown) for controlling the grid image and the liquid crystal display panel 112a to the liquid crystal display panel 112a. It may further include a power supply (not shown).
  • a power supply not shown.
  • FIG. 8 and 9 are plan views illustrating the operation of the liquid crystal display panel constituting the grating portion shown in FIG. 6 or 7.
  • the blocking unit 401 and the transmitting unit 402 are displayed on the liquid crystal display panel 102.
  • the blocking unit 401 blocks the light, and the transmission unit 402 transmits the light, thereby projecting the lattice light onto the measurement object A.
  • the pitch P is transferred by the values obtained by dividing n equally, and the grid-patterned light is projected onto the measurement target A (in FIG. 9, for example, a four bucket, that is, the pitch P).
  • the measurement target A in FIG. 9, for example, a four bucket, that is, the pitch P.
  • FIG. 10 is a schematic plan view according to still another embodiment of the three-dimensional shape measuring apparatus shown in FIG. 5, and FIG. 11 is a schematic plan view according to another embodiment of the three-dimensional shape measuring apparatus shown in FIG. 5.
  • the grating portion formed in the projection part employs the grating 112b instead of the liquid crystal display panel 112a, and drives the same. It is substantially the same as the three-dimensional shape measuring apparatus shown in FIGS. 6 and 7 except for further including an actuator 601. Therefore, the same or similar components bear the same reference numerals, and redundant descriptions are omitted.
  • a three-dimensional shape measuring apparatus includes a three-dimensional shape measuring apparatus of FIG. 6 or 7 having a grating portion 112 using a liquid crystal display panel 112a.
  • the grating 112b is employed.
  • the grid 112b may be formed by, for example, printing a grid pattern on a glass plate to form a blocking portion and a transmission portion. Two gratings may be formed simultaneously on the glass plate to be used in adjacent projections.
  • an actuator 601 for finely conveying the grating 112b is formed.
  • the three-dimensional shape measuring apparatus includes a plurality of projections arranged at vertices of regular polygons, and the grating 112b formed on two neighboring projections is transferred by one actuator 601.
  • PZT can be used as the actuator 601
  • the driving direction of the actuator 601 is reversed when the adjacent projections among the plurality of projections are sequentially driven. More specifically, after moving the grid 112b in the direction of arrow a and projecting the grid-patterned lights onto the measurement object A, the grid 112b in the neighboring projection part is moved in the arrow b direction. And project the grid lights.
  • the grid pattern illumination is irradiated to the measurement object A through the grid 112b, and the image forming unit receives a grid image reflected by the measurement object a predetermined number of times of the grid (for example, 4 times). Run Thereafter, the grid pattern illumination is irradiated to the measurement object A through grid 112b, and the image forming unit performs a process of receiving a grid image reflected by the measurement object a predetermined number of times (eg, four times). do.
  • grids 3 and 4 execute the same.
  • the control unit uses a total of 16 grid images to be received for the shadow area (the area in which the grid-patterned light on the opposite side cannot be reached when projecting the grid-patterned light to one side of the object to be measured).
  • the exact three-dimensional shape of this compensated measurement object is calculated.
  • the shadow areas # 1 and 3 are compensated using the grid image values of 1 and 3
  • the shadow area values of the areas # 2 and 4 are compensated using the grid image values 2 and 4.
  • the shadow area value compensation replaces the value corresponding to the facing area.
  • the actuator 601 employed in the three-dimensional shape measuring apparatus according to the present embodiment simultaneously drives the gratings 112b formed on two adjacent projections. Therefore, the number of actuators 601 can be reduced to half the number of projection portions.
  • the conveying direction of the actuator 601 may reduce the time required for driving because the direction of the grating 112b is reversed when the neighboring projection units are sequentially driven.
  • FIG. 12 is a view schematically showing a three-dimensional shape measuring apparatus according to a third embodiment of the present invention
  • Figure 13 is a plan view of the three-dimensional shape measuring apparatus shown in FIG.
  • the three-dimensional shape measuring apparatus 300 includes a stage 320 supporting the measurement object 310, at least one lighting unit 330, and a plurality of imaging units ( 340 and the control unit 350.
  • the stage 320 supports the measurement object 310 and moves the measurement object 310 to the measurement position while moving in the x-axis and y-axis under the control of the controller 350.
  • the lighting unit 330 irradiates the grid-patterned light 410 to the measurement object 310 fixed to the stage 320.
  • the lighting unit 330 is disposed to be inclined at a predetermined angle with respect to the reference plane of the stage 320.
  • the three-dimensional shape measuring apparatus 300 may include a plurality of lighting units 330 to increase the measurement accuracy.
  • the 3D shape measuring apparatus 300 may include four lighting units 330, as shown in FIG. 13. In this case, the lighting units 330 are disposed to be spaced apart from each other along the circumferential direction with respect to the main imaging unit 340a disposed perpendicular to the reference plane of the stage 320.
  • the lighting units 330 may be symmetrically disposed with respect to the normal of the reference surface of the stage 320. Accordingly, the plurality of lighting units 330 irradiates the grid-patterned lights 410 in different directions with respect to the measurement object 310 at regular time intervals.
  • the three-dimensional shape measuring apparatus 300 may include a variety of lighting units 330, such as two, three, or six.
  • Each lighting unit 330 includes a light source 332 and a grating 334.
  • each of the lighting unit 330 may further include a grating transfer device 336 and the projection lens unit 338.
  • the light source 332 irradiates light toward the measurement object 310.
  • the grid 334 converts the light irradiated from the light source 332 into the grid pattern illumination 410 according to the grid pattern.
  • the grid 334 is transferred n times by 2 ⁇ / n through a grid feeder 336 such as a piezo actuator (PZT) to generate the phase shifted grid patterned light 410.
  • N is a natural number of 2 or more.
  • the projection lens unit 338 projects the grid-patterned light 410 generated by the grid 334 onto the measurement object 310.
  • the projection lens unit 338 may be formed of, for example, a plurality of lens combinations, and focuses the grid-patterned light 410 formed through the grating 334 to project it onto the measurement object 310. Therefore, each lighting unit 330 irradiates the grid pattern illumination 410 to the measurement object 310 at every transfer while transferring the grid 334 n times.
  • the grid pattern light 410 irradiated from the illumination unit 330 is reflected from the measurement object 310 in different directions
  • a plurality of imaging units 340 is included.
  • the three-dimensional shape measuring apparatus 300 includes a main imaging unit 340a disposed perpendicularly to the reference plane of the stage 320 at an upper portion of the stage 320, and at a predetermined angle with respect to the reference plane of the stage 320. It includes a plurality of sub-imager 340b disposed inclined.
  • the 3D shape measuring apparatus 300 may include four sub-imaging units 340b.
  • the sub imaging units 340b are disposed to be spaced apart from each other along the circumferential direction with respect to the main imaging unit 340a.
  • the sub-imagers 340b may be symmetrically disposed with respect to the normal of the reference surface of the stage 320.
  • the three-dimensional shape measuring apparatus 300 may include two, three, or six sub-image pickup units 340b.
  • Each of the main image capturing unit 340a and the sub image capturing units 340b may include a camera 342 and an imaging lens unit 344 for capturing the grid image 420.
  • the camera 342 may use a CCD or CMOS camera. Therefore, the grating image 420 reflected from the measurement object 310 is imaged by the imaging lens unit 344 and is captured by the camera 342.
  • the lighting units 330 and the sub imaging units 340b may be disposed on the same concentric circle with respect to the main imaging unit 340a.
  • the lighting units 330 may be disposed on concentric circles different from the sub-imagers 340b.
  • the lighting units 330 may be installed at different heights from the sub-imaging units 340b or may be installed at the same height.
  • the lighting units 330 may be disposed between the sub imaging units 340b, respectively.
  • the lighting units 330 when the lighting units 330 are installed at different heights from the sub-imaging units 340b, the lighting units 330 may be installed at the same position as the sub-imaging units 340b.
  • the controller 350 controls the operations of the components included in the 3D shape measuring apparatus 300 as a whole.
  • the controller 350 controls the transfer of the stage 320 to place the measurement object 310 at the measurement position.
  • the control unit 350 operates the plurality of lighting units 330 sequentially, and irradiates the grid pattern illumination 410 to the measurement object 310 at every transfer while transferring the grid 334 of each lighting unit 330 n times.
  • the lighting unit 330 is controlled to be.
  • the controller 350 controls the plurality of imaging units 340 to simultaneously photograph the grid image 420 reflected from the measurement object 310.
  • the controller 350 calculates a three-dimensional shape of the measurement object 310 using the grid images 420 captured by the main imaging unit 340a and the sub imaging units 340b. For example, the controller 350 matches the coordinate systems of the grid images 420 captured by the main imaging unit 340a and the sub imaging units 340b.
  • the control unit 350 uses a value measured n times through the n-bucket algorithm in each of the main image capturing unit 340a and the sub image capturing units 340b to obtain a confidence index for each of the grid images 420. Visibility is calculated using Equations 1 and 2 below, weights are respectively added to the calculated five confidence indices, and the weighted data is mapped to calculate final measurement values.
  • I 1, I 2, I 3, I 4 represents the intensity (intensity) of a grid image measured four times over a four-bucket algorithm, at each image pick-up unit for a point, V is this The confidence index of the grating image measured by each image pickup unit calculated by using is shown.
  • the controller 350 may measure the measurement object using only the grid images 420 measured by the one or two sub-imagers 340b disposed adjacent to the main imager 340a and the lighting unit 330 in operation.
  • the three-dimensional shape of 310 may be calculated.
  • FIG. 14 is an enlarged view enlarging a measurement object to explain a process of measuring a three-dimensional shape of the measurement object shown in FIG. 12.
  • the measurement object 310 may include a circuit board 312 and an electronic device 316 coupled by solder 314 on the circuit board 312.
  • the grid pattern light 410 When the grid pattern light 410 is irradiated from the lighting unit 330, the grid pattern light 410 is reflected from the measurement object 310 to generate the grid image 420.
  • the solder 314 connecting the electronic device 316 to the circuit board 312 has specular characteristics, specular reflection is performed at the solder 314. Accordingly, the grid image 420 reflected from some regions of the solder 314 region is reflected upward and enters the main imaging unit 340a, but the grid image 420 reflected from the remaining partial regions has a predetermined angle. Reflected inclined so as not to enter the main imaging unit 340a. Instead, the grid image 420 reflected from the measurement object 310 to be inclined at a predetermined angle is photographed by the sub imaging unit 340b.
  • the grid pattern light 410 is reflected in the upward direction, and the main image is captured by the main imaging unit 340a and reflected from the measurement object 310.
  • At least one sub imager 340b of the grating image 420 may be photographed by at least one sub imager 340b. Therefore, by appropriately combining the main image picked up by the main imaging unit 340a and the sub image picked up by the sub imaging unit 340b, the three-dimensional shape of the entire measurement object 310 including the solder 314 region is precisely obtained. It can be measured.
  • 15 is a flowchart illustrating a three-dimensional shape measuring method according to an embodiment of the present invention.
  • the controller 350 transfers the stage 320 to move the measurement object 310 to the measurement position (S100).
  • the grid-patterned light 410 is irradiated to the measurement object 310 through the at least one lighting unit 330 (S200).
  • the plurality of lighting units 330 are sequentially operated to be inclined at a predetermined angle with respect to the reference plane of the stage 320 and spaced along the circumferential direction about the main imaging unit 340a to sequentially operate the grid pattern illumination. 410) sequentially.
  • each of the lighting unit 330 irradiates the grid pattern illumination 410 to the measurement object 310 at every transfer while transferring the grid 334 n times.
  • the grid image 420 reflected from the measurement object 310 is photographed in different directions through the plurality of imaging units 340 (S300).
  • the main image is photographed through the main image capturing unit 340a disposed perpendicular to the reference plane of the stage 320 and directed toward the upper side of the grid image 420 reflected from the measurement object 310.
  • the reflection is reflected by the measurement object 310 through the sub-imaging units 340b which are inclined at a predetermined angle with respect to the reference plane of the stage 320 and are spaced apart from each other in the circumferential direction about the main imaging unit 340a.
  • the sub image is specularly reflected by the measurement object 310 and reflected at an inclined angle at a predetermined angle without entering the main imaging unit 340a.
  • the controller 350 matches coordinate systems of the main image and the sub-images captured by the main image capturing unit 340a and the sub image capturing units 340b, respectively (S400). That is, since the path difference occurs when the grid image 420 reflected from the measurement object 310 reaches the main imaging unit 340a and the sub imaging units 340b, the main imaging unit 340a is caused by such a path difference. ) And the grid images 420 captured by the sub-image capturing units 340b are generated. Therefore, by compensating for the deviation between the grid images 420 due to this path difference, the coordinate system of the main image and the sub-images are matched.
  • the controller 350 calculates a three-dimensional shape of the measurement object 310 by mapping the main image and the sub-images based on a confidence index for each of the matched main image and the sub-images (see FIG. S500). For example, the controller 350 calculates a confidence index for each of the main image and the sub-images using Equations 1 and 2, and weights each of the calculated 5 confidence indices. ), And then the three-dimensional shape of the measurement area of the measurement object 310 is calculated using the weighted data. For example, the reliability of the final measured value may be improved by adding a high weight to an image exceeding a certain value among the calculated five confidence indices and adding or subtracting a low weight to an image below a certain value.
  • the process of capturing the grid image 420 through the main image capturing unit 340a and the sub image capturing units 340b is repeated whenever the lighting unit 330 irradiates the grid pattern lighting 410.
  • the controller 350 finally measures the three-dimensional shape of the measurement object 310 by using the images obtained through the photographing.
  • the reflection is reflected by the measurement object 310 and is performed by the main imaging unit 340a.
  • the sub-imagers 340b for capturing the sub-image that cannot be captured the three-dimensional shape of the measurement object 310 can be measured more precisely.
  • the three-dimensional shape measuring apparatus and measuring method of the present invention can be applied to the field for measuring the three-dimensional shape of the measurement target, such as a printed circuit board or solder (solder).
  • the measurement target such as a printed circuit board or solder (solder).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

측정 정밀도를 높일 수 있는 3차원 형상 측정장치 및 측정방법이 개시되어 있다. 3차원 형상 측정장치는 스테이지, 적어도 하나의 조명부, 복수의 촬상부들 및 제어부를 포함한다. 스테이지는 측정대상물을 지지한다. 조명부는 광원 및 격자를 포함하며, 측정대상물에 격자무늬조명을 조사한다. 촬상부들은 측정대상물에서 반사되어 나오는 격자 이미지를 서로 다른 방향에서 촬상한다. 제어부는 촬상부들에서 촬상된 격자 이미지들을 이용하여 측정대상물의 3차원 형상을 산출한다. 이와 같이, 메인 촬상부 및 서브 촬상부들을 통해 격자 이미지를 촬상함으로써, 측정대상물의 3차원 형상을 보다 신속하고 정밀하게 측정할 수 있다.

Description

3차원형상 측정장치 및 측정방법
본 발명은 3차원 형상 측정장치 및 측정방법에 관한 것으로, 보다 상세하게는 측정대상물의 3차원 형상의 측정 정밀도를 높일 수 있는 3차원 형상 측정장치 및 측정방법에 관한 것이다.
일반적으로, 3차원형상 측정장치는 측정 대상물에 격자무늬조명을 조사하고, 상기 측정 대상물로부터 반사된 격자 이미지를 수신하여 이를 분석함으로써 측정 대상물의 3차원적 형상을 측정하는 장치이다.
종래의 3차원형상 측정장치는 측정 대상물에 격자무늬조명을 조사하기 위한 하나의 투영부와 측정 대상물에서 반사되는 격자 이미지를 촬영하기 위한 하나의 결상부를 포함하였다.
이와 같이, 측정 대상물에 3차원적 형상을 측정하기 위해서, 일측면에만 격자무늬조명을 조사하는 경우, 측정 대상물의 돌출로 인하여 타측에는 격자 이미지가 도달되지 못하는 그림자영역이 발생하게 되어 측정 대상물의 완전한 3차원적 형상을 파악하기 힘들었다. 이를 개선하기 위해서, 상기 투영부를 회전시켜 타측으로 이동시킨 후, 다시 격자무늬조명을 조사하는 방식으로 측정 대상물의 3차원적 형상을 측정하고 있으나, 상대적으로 많은 측정 시간이 걸리는 문제점이 발생된다.
또한, 하나의 결상부로 격자 이미지를 촬영하는 경우, 측정 대상물의 정반사에 의하여 정반사면의 영상을 정확하게 획득하기 어려운 문제가 있었다. 이를 개선하기 위하여, 필터나 광량 조절을 통해 정반사면의 정반사도를 줄여 영상을 획득하는 방법을 이용하기도 하지만, 이 경우 정반사도가 높은 입체면의 격자무늬는 잘 나타나는 반면 주변 영역의 격자무늬는 잘 나타나지 않게 되어, 측정 정밀도가 떨어지는 문제점이 발생된다.
따라서, 본 발명은 이와 같은 문제점을 감안한 것으로써, 측정대상물의 3차원형상 측정 작업의 생산성을 향상시키고 측정 정밀도를 향상시킬 수 있는 3차원형상 측정장치 및 측정방법을 제공한다.
본 발명의 일 특징에 따른 3차원형상 측정장치는 격자무늬조명을 발생하여 조사하는 투영부와, 투영부의 하측에 설치되어 검사대상물을 이송시키는 X-Y축 이송테이블과, 투영부와 X-Y축 이송테이블 사이에 설치되어 검사대상물에서 반사되는 격자무늬 이미지를 분리하여 통과시키는 빔 분리부와, 빔 분리부의 하측에 서로 원주방향으로 이격되도록 설치되어 검사대상물에서 반사되는 격자무늬 이미지가 조사되면 이를 반사시키는 다수개의 반사거울과, 빔 분리부와 다수개의 반사거울의 일측에 각각 설치되어 빔 분리부에서 통과되는 격자무늬 이미지와 다수개의 반사거울에서 반사되는 격자무늬 이미지를 촬영하는 다수개의 결상부로 구성됨을 특징으로 한다.
본 발명의 일 특징에 따른 3차원형상 측정방법은 X-Y축 이송테이블에 의해 검사대상물을 측정위치로 이송시키는 단계와, 검사대상물이 측정위치로 이송되면 격자이송기구에 의해 격자소자를 피치(pitch) 이송시키는 단계와, 격자소자가 피치 이송되면 결상부의 조명원을 온(on)시켜 격자무늬조명을 검사대상물로 조사하는 단계와, 검사대상물로 격자무늬조명이 조사되면 검사대상물에서 반사되는 격자무늬 이미지를 다수개의 반사거울을 통해 조사받아 다수개의 결상부에서 촬영하는 단계와, 다수개의 결상부에서 격자무늬 이미지가 촬영되면 결상부의 조명원을 오프(off)시키는 단계와, 결상부의 조명원이 오프되면 제어부는 격자소자가 N+1 번째 피치이송인지 여부를 확인하는 단계와, 격자소자가 N+1 번째 피치 이송이면 제1원형램프부나 제2원형램프부를 온시킨 후 검사대상물을 다수개의 결상부로 촬영하는 단계와, 검사대상물을 다수개의 결상부가 촬영하면 검사대상물의 측정이 완료되었는지 여부를 확인하는 단계와, 검사대상물의 측정이 완료되면 제어부는 제1원형램프부나 제2원형램프부를 온시킨 후 검사대상물을 촬영한 검사대상물의 이미지와 다수개의 결상부에서 촬영된 격자무늬 이미지를 이용하여 검사대상물의 3차원형상을 산출하는 단계로 구성됨을 특징으로 한다.
본 발명의 다른 특징에 따른 3차원형상 측정장치는 측정 기판, 워크-스테이지(work-stage), 다수의 투영부, 결상부 및 제어부를 포함한다. 상기 워크-스테이지는 측정 기판을 고정한다. 상기 다수의 투영부는 각각이 광원, 상기 광원에서 조사된 빛을 투과하는시키는 격자부 및 상기 격자부의 격자이미지광을 상기 측정 기판 내의 측정대상물에 결상시키는 투영렌즈부를 포함하며, 상기 측정대상물에 대해 각각 다른 방향에서 격자이미지를 조사한다. 상기 결상부는 상기 측정대상물에 의해 반사되는 상기 격자이미지 광을 수신한다. 상기 제어부는 상기 측정대상물의 형태에 따라 상기 다수개의 투영부 중 적어도 2개 이상을 선택적으로 턴온(turn on)/턴오프(turn off)한다. 이러한 3차원형상 측정장치는 상기 선택적으로 턴온된 2개 이상의 투영부에 의해 상기 결상부에 수신된 격자이미지 광을 이용하여 상기 측정대상물의 3차원형상을 측정한다.
본 발명의 또 다른 특징에 따른 3차원형상 측정장치는 워크-스테이지, 다수의 투영부, 엑추에이터, 결상부 및 제어부를 포함한다. 상기 워크-스테이지는 측정 대상물을 지지하는 측정 기판상기 측정 기판측정기판을 고정한다. 상기 다수의 투영부는 각각이 광원, 상기 광원에서 조사된 빛을 투과시키는 격자 및 상기 격자의 격자이미지광을 상기 측정 기판 내의 측정대상물에 결상시키는 투영렌즈부를 포함하며, 상기 측정대상물에 대해 각각 다른 방향에서 격자이미지를 조사하기 위해서 정다각형의 각 꼭지점에 배열되고, 상기 광원에서 조사된 빛이 진행하는 방향과 상기 측정 기판의 법선이 일정 각도를 갖는다.
본 발명의 또 다른 특징에 따른 3차원 형상 측정장치는 스테이지, 적어도 하나의 조명부, 복수의 촬상부들 및 제어부를 포함한다. 상기 스테이지는 측정대상물을 지지한다. 상기 조명부는 광원 및 격자를 포함하며, 상기 측정대상물에 격자무늬조명을 조사한다. 상기 촬상부들은 상기 측정대상물에서 반사되어 나오는 격자 이미지를 서로 다른 방향에서 촬상한다. 상기 제어부는 상기 촬상부들에서 촬상된 상기 격자 이미지들을 이용하여 상기 측정대상물의 3차원 형상을 산출한다. 상기 촬상부들은 메인 촬상부 및 서브 촬상부들을 포함한다. 상기 메인 촬상부는 상기 스테이지의 기준면에 대해 수직으로 배치된다. 상기 서브 촬상부는 상기 스테이지의 기준면에 대해 일정 각도로 기울어지게 배치되며, 상기 메인 촬상부를 중심으로 원주 방향을 따라 서로 이격되도록 배치된다. 상기 제어부는 상기 메인 촬상부 및 상기 서브 촬상부들에서 촬상된 상기 격자 이미지들의 좌표계를 매칭시키고, 매칭된 상기 격자 이지미들에 대한 각각의 신뢰지수(visibility)를 산출한 후 산출된 신뢰지수에 가중치를 부가하여 상기 측정대상물의 3차원 형상을 산출할 수 있다.
본 발명의 또 다른 특징에 따른 3차원 형상 측정장치는 스테이지, 적어도 하나의 조명부, 메인 촬상부, 적어도 하나의 서브 촬상부 및 제어부를 포함한다. 상기 스테이지는 측정대상물을 지지한다. 상기 조명부는 상기 측정대상물에 격자무늬조명을 조사한다. 상기 메인 촬상부는 상기 격자무늬조명이 상기 측정대상물에서 반사되어 나오는 격자 이미지 중 메인 이미지를 촬상한다. 상기 서브 촬상부는 상기 격자무늬조명이 상기 측정대상물에서 반사되어 나오는 상기 격자 이미지 중 상기 측정대상물에서 정반사되어 상기 메인 촬상부로 들어가지 않는 서브 이미지를 촬상한다. 상기 제어부는 상기 메인 촬상부 및 상기 서브 촬상부에서 촬상된 상기 메인 이미지 및 상기 서브 이미지를 이용하여 상기 측정대상물의 3차원 형상을 산출한다. 상기 제어부는 상기 메인 촬상부 및 상기 서브 촬상부들에서 촬상된 상기 메인 이미지 및 상기 서브 이미지들의 좌표계를 매칭시키고, 매칭된 상기 메인 이지미 및 상기 서브 이미지들에 대한 각각의 신뢰지수(visibility)를 산출한 후 산출된 신뢰지수에 가중치를 부가하여 상기 측정대상물의 3차원 형상을 산출할 수 있다.
본 발명의 다른 특징에 따른 3차원 형상 측정방법에 따르면, 우선, 스테이지의 이송을 통해 측정대상물을 측정위치로 이송시킨다. 이후, 적어도 하나의 조명부를 통해 상기 측정대상물에 격자무늬조명을 조사한다. 상기 격자무늬조명의 조사를 통해 상기 측정대상물에서 반사되어 나오는 격자 이미지를 복수의 촬상부들을 통해 서로 다른 방향에서 촬상한다. 이후, 상기 촬상부들에서 촬상된 상기 격자 이미지들을 이용하여 상기 측정대상물의 3차원 형상을 산출한다. 상기 격자 이미지를 촬상하는 과정은, 상기 스테이지의 기준면에 대해 수직으로 배치된 메인 촬상부를 통해 상기 측정대상물에서 반사되어 나오는 상기 격자 이미지 중 메인 이미지를 촬상하는 과정과, 상기 메인 이미지의 촬상과 동시에 상기 스테이지의 기준면에 대해 일정 각도로 기울어지고 상기 메인 촬상부를 중심으로 원주 방향을 따라 서로 이격되도록 배치된 다수의 서브 촬상부를 통해 상기 측정대상물에서 반사되어 나오는 상기 격자 이미지 중 상기 측정대상물에서 정반사되어 상기 메인 촬상부로 들어가지 않는 서브 이미지를 촬상하는 과정을 포함할 수 있다. 상기 측정대상물의 3차원 형상을 산출하는 과정은, 상기 메인 촬상부 및 상기 서브 촬상부들에서 각각 촬상된 상기 메인 이미지 및 상기 서브 이미지들의 좌표계를 매칭시킨 후, 매칭된 상기 메인 이미지 및 상기 서브 이미지들 각각에 대한 신뢰지수를 산출하고, 산출된 신뢰지수에 가중치를 부가한 후, 가중치가 부가된 데이터를 매핑하여 3차원 형상을 산출할 수 있다.
이와 같은 3차원형상 측정장치 및 측정방법에 따르면, 다수의 투영부 또는 다수의 결상부를 통해 측정대상물의 3차원형상을 측정함으로써, 측정 시간을 단축시키고 측정 정밀도를 향상시킬 수 있다.
도 1은 본 발명의 실시예 1에 따른 3차원형상 측정장치의 구성을 나타낸 구성도이다.
도 2는 도 1에 도시된 투영부의 평면도이다.
도 3은 도 1에 도시된 제2 및 제3 조명원의 평면도이다.
도 4는 본 발명의 실시예 1에 따른 3차원형상 측정방법을 나타낸 흐름도이다.
도 5은 본 발명의 실시예 2에 의한 3차원형상 측정장치의 개략적인 측면도이다.
도 6은 도 5에서 도시된 3차원형상 측정장치의 일 실시예에 의한 개략적인 평면도이다.
도 7은 도 5에서 도시된 3차원형상 측정장치의 다른 실시예에 의한 개략적인 평면도이다.
도 8 및 9는 도 6 또는 도 7에서 도시된 격자부를 구성하는 액정표시패널의 동작을 설명하는 평면도이다.
도 10은 도 5에서 도시된 3차원형상 측정장치의 또 다른 실시예에 의한 개략적인 평면도이다.
도 11은 도 5에서 도시된 3차원형상 측정장치의 또 다른 실시예에 의한 개략적인 평면도이다.
도 12는 본 발명의 실시예 3에 따른 3차원 형상 측정장치를 개략적으로 나타낸 도면이다.
도 13은 도 12에 도시된 3차원 형상 측정장치의 평면도이다.
도 14는 도 12에 도시된 측정대상물의 3차원 형상을 측정하는 과정을 설명하기 위해 측정대상물을 확대한 확대도이다.
도 15는 본 발명의 실시예 3에 따른 3차원 형상 측정방법을 나타낸 흐름도이다.
- 실시예 1
도 1은 본 발명의 실시예 1에 따른 3차원형상 측정장치의 구성을 나타낸 구성도이고, 도 2는 도 1에 도시된 투영부의 평면도이며, 도 3은 도 1에 도시된 제2 및 제3 조명원의 평면도이다. 여기서 도 1에 도시된 제1 원형램프부(60)나 제2 원형램프부(70)는 각각 측단면 상태를 나타내며, 도 2에 도시된 제1 원형램프부(60)나 제2 원형램프부(70)는 각각 평단면 상태를 나타낸다.
도 1 내지 도 3에서와 같이, 본 실시예에 따른 3차원형상 측정장치는 투영부(10), X-Y축 이송테이블(20), 빔 분리부(30), 다수개의 반사거울(40) 및 다수개의 결상부(50)로 구성되며, 각 구성 요소들은 설명하면 다음과 같다.
투영부(10)는 격자무늬조명을 발생하여 조사하며, X-Y축 이송테이블(20)은 투영부(10)의 하측에 설치되어 검사대상물(P)을 이송시킨다. 빔 분리부(30)는 투영부(10)와 X-Y축 이송테이블(20) 사이에 설치되어 검사대상물(P)에서 반사되는 격자 이미지를 분리하여 통과시킨다. 다수개의 반사거울(40)은 빔 분리부(30)의 하측에 서로 원주방향으로 이격되도록 설치되어 검사대상물(P)에서 반사되는 격자 이미지가 조사되면 이를 반사시킨다. 다수개의 결상부(50)는 빔 분리부(30)와 다수개의 반사거울(40)의 일측에 각각 설치되어 빔 분리부(30)에서 통과되는 격자 이미지와 다수개의 반사거울(40)에서 반사되는 격자 이미지를 촬영한다.
본 실시예에 따른 3차원형상 측정장치를 구성하는 투영부(10), X-Y축 이송테이블(20), 빔 분리부(30), 다수개의 반사거울(40) 및 다수개의 결상부(50)의 상세한 구성을 설명하면 다음과 같다.
투영부(10)는 조명원(11), 격자소자(12), 격자이송기구(13), 투영렌즈(14) 및 투영렌즈 필터(15)로 구성된다.
투영부(10)의 조명원(11)은 조명을 발생시켜 조사하며, 격자소자(12)는 조명원(11)의 하측에 설치되어 조명원(11)에서 조사되는 조명을 격자무늬조명으로 변환시켜 조사한다. 조명을 격자무늬조명으로 변환시키는 격자소자(12)의 경사각도(g)는 도 2에 도시된 것과 같이 X-Y축 평면에서 Y축 방향을 기준으로 45도 경사지게 설치된다. 격자이송기구(13)는 PZT(piezoelectric)가 적용되어 격자소자(12)에 설치되어 격자소자(12)를 이송시키며, 투영렌즈(14)는 격자소자(12)의 하측에 설치되어 격자무늬조명을 투영시킨다. 투영렌즈 필터(15)는 투영렌즈(14)의 하측에 설치되어 투영렌즈(14)를 통해 조사되는 격자무늬조명을 여과시켜 조사한다.
X-Y축 이송테이블(20)은 X-Y축 이송테이블(20)을 X축 방향으로 구동시키기 위한 모터(21)와, X-Y축 이송테이블(20)을 Y축 방향으로 구동시키기 위한 모터(22)가 구비되어 검사대상물(P)을 정렬하거나 측정위치로 이송시키게 된다.
빔 분리부(30)는 투영부(10)에 의해 발생되는 격자 이미지나, 제1 원형램프부(60)나 제2 원형램프부(70)에서 발생된 조명이 검사대상물(P)로 조사되는 반사되는 이미지를 빔 분리부(30)의 일측에 설치된 다수개의 결상부(50)중 하나의 결상부(50)로 조사시키기 위해 빔스플릿터(beam splitter)가 적용된다.
다수개의 반사거울(40)은 검사대상물(P)에서 반사되는 격자 이미지를 빔 분리부(30)에서 설치되는 결상부(50)를 제외하고 나머지 다수개의 결상부(50)로 조사하기 위해 X축 방향으로 경사지게 설치되며, 서로 원주방향으로 이격되도록 설치된다. 즉, 다수개의 반사거울(40)은 도 3에 일점쇄선으로 도시된 원을 따라 서로 등 간격으로 이격되도록 설치된다.
다수개의 결상부(50)는 반사거울(40)에서 반사되는 격자 이미지를 동시에 촬영하며 각각 카메라 필터(51), 결상렌즈(52) 및 카메라(53)로 구성된다. 카메라 필터(51)는 반사거울(40)에서 반사되는 격자 이미지를 여과시켜 조사한다. 격자 이미지를 여과시키는 카메라 필터(51)는 주파수 필터, 칼라필터나 광세기 조절필터 중의 하나가 적용된다. 결상렌즈(52)는 카메라 필터(51)의 일측에 설치되어 카메라 필터에서 투과된 격자 이미지를 결상하며, 결상렌즈(52)에서 결상되어 조사되는 격자 이미지는 카메라(53)에서 촬영한다. 카메라(53)는 결상렌즈(52)의 일측에 설치되어 결상렌즈(52)에서 조사되는 격자 이미지를 촬영한다.
상기 구성을 갖는 본 실시예에 따른 3차원형상 측정장치는 검사대상물(P)의 특이형상을 추출하기 위한 2차원 이미지 즉, 조명 이미지를 촬영하기 위해 제1 원형램프부(60) 및 제2 원형램프부(70)가 추가되어 구성되며, 이러한 구성 요소들을 제어하기 위한 제어부(80)가 더 구비된다.
본 실시예에 따른 3차원형상 측정장치에 추가로 구성되는 제1 원형램프부(60), 제2 원형램프부(70)를 설명하면 다음과 같다.
제1 원형램프부(60)는 빔 분리부(30)의 하측에 설치되어 검사대상물(P)에서 조명 이미지가 반사되도록 검사대상물(P)로 조명을 발생하여 조사한다. 제2 원형램프부(70)는 다수개의 반사거울(40)의 하측에 설치되어 검사대상물(P)에서 조명 이미지가 반사되도록 검사대상물(P)로 조명을 발생하여 검사대상물(P)로 조사한다. 검사대상물(P)로 조명을 조사하는 제1 원형램프부(60)와 제2 원형램프부(70)는 각각 원형 링부재(61,71)와 다수개의 발광소자(62,72)로 구성된다.
원형 링부재(61,71)는 격자무늬조명이나 격자 이미지가 통과되도록 관통구(61a,71a)를 갖는다. 여기서, 제2 원형램프부(70)의 관통구(71a)는 제1 원형램프부(60)에서 조사되는 조명이 검사대상물(P)로 조사되도록 하거나 검사대상물(P)에서 반사되는 격자 이미지가 다수개의 반사거울(40)로 조사되도록 제1 원형램프부(60)의 관통구(61a)보다 직경이 크다. 다수개의 발광소자(62,72)는 원형 링부재(61,71)의 하측에 설치되어 조명을 발생한다.
제1 원형램프부(60)나 제2 원형램프부(70)에서 조명이 발생되어 검사대상물(P)로 조사되면, 검사대상물(P)에서 반사되는 조명 이미지는 빔 분리부(30)와 다수개의 반사거울(40)로 조사된다. 빔 분리부(30)와 다수개의 반사거울(40)로 조사된 조명 이미지는 각각 다수개의 결상부(50)에서 촬영한다.
다수개의 결상부(50)에서 촬영된 격자 이미지나 조명 이미지는 제어부(80)에서 수신받는다, 제어부(80)는 격자 이미지나 조명 이미지가 수신되면 이를 이용하여 검사대상물(P)의 3차원형상을 산출한다. 검사대상물(P)의 3차원형상을 산출하는 제어부(80)는 투영부(10), X-Y축 이송테이블(20), 다수개의 결상부(50), 제1 원형램프부(60) 및 제2 원형램프부(70)등 본 실시예의 3차원형상 측정장치를 전반적으로 제어한다.
상기 구성을 갖는 본 실시예의 3차원형상 측정장치를 이용한 3차원형상 측정방법을 첨부된 도 1 및 도 4를 참조하여 설명하면 다음과 같다.
도 1 및 도 4에서와 같이 본 실시예의 3차원형상 측정방법은 먼저, X-Y축 이송테이블(20)에 의해 검사대상물(P)을 측정위치로 이송시킨다(S10). 검사대상물(P)이 측정위치로 이송되면 격자이송기구(13)에 의해 격자소자(12)를 피치(pitch) 이송시킨다(S20). 격자소자(12)가 피치 이송되면 결상부(50)의 조명원(11)을 온시켜 격자무늬조명을 검사대상물(P)로 조사한다(S30).
검사대상물(P)로 격자무늬조명이 조사되면 검사대상물(P)에서 반사되는 격자 이미지를 다수개의 반사거울(40)을 통해 조사받아 다수개의 결상부(50)에서 촬영한다(S40). 격자 이미지의 촬영 시 다수개의 결상부(50)는 이를 동시에 촬영한다. 다수개의 결상부(50)에서 격자 이미지가 촬영되면 결상부(50)의 조명원(11)을 오프시킨다(S50).
결상부(50)의 조명원(11)이 오프되면 제어부(80)는 격자소자(12)가 N+1 번째 피치이송인지 여부를 확인한다(S60). 이와 같이 N+1 번째 피치이송인지 여부를 확인하는 단계(S60)는 격자소자(12)가 N+1 번째 피치 이송이 아니면 격자소자(12)를 피치 이송시키는 단계(S20)로 리턴한다. 즉, 4-버킷 알고리즘을 이용하여 검사대상물(P)의 3차원 형상을 산출하는 경우에 격자소자(12)의 피치 간격으로 4번 이송시킨다.
격자소자(12)가 N+1 번째 피치 이송이면 제1 원형램프부(60)나 제2 원형램프부(70)를 온시킨 후 검사대상물(P)을 다수개의 결상부(50)로 촬영한다(S70). 즉, 검사대상물(P)의 2차원 이미지인 조명 이미지를 촬영한다.
조명 이미지를 촬영하기 위한 방법을 보다 상세하게 설명하면 다음과 같다. 먼저, 격자소자(12)가 N+1 번째 피치 이송이면 제1 원형램프부(60)를 온시킨다(S71). 제1 원형램프부(60)가 온되면 다수개의 결상부(50)에서 검사대상물(P)을 촬영한다(S72). 다수개의 결상부(50)에서 검사대상물(P)이 촬영되면 제1 원형램프부(60)를 오프시킨다(S73). 제1 원형램프부(60)가 오프되면 제2 원형램프부(70)를 온시킨다(S74). 제2 원형램프부(70)가 온되면 다수개의 결상부(50)에서 검사대상물(P)을 촬영한다(S75). 다수개의 결상부(50)에서 검사대상물(P)이 촬영되면 제2 원형램프부(70)를 오프시킨다(S76). 이와 같이 제1 원형램프부(60)나 제2 원형램프부(70)에서 발생된 조명에 따라 다수개의 결상부(50)에서 조명 이미지를 촬영함으로써 검사대상물(P)의 여러 방향에서의 특이점을 보다 신속하게 촬영할 수 있게 된다.
조명 이미지가 촬영되면 검사대상물(P)을 다수개의 결상부(50)가 촬영하면 검사대상물(P)의 측정이 완료되었는지 여부를 확인한다(S80). 검사대상물(P)의 측정이 완료되었는지 여부를 확인하는 단계(S80)에서 검사대상물(P)의 측정이 완료되지 않으면 검사대상물(P)을 측정위치로 이송시키는 단계로 리턴한다. 반대로, 검사대상물(P)의 측정이 완료되면 제어부(80)는 제1 원형램프부(60)나 제2 원형램프부(70)를 온시킨 후 검사대상물(P)을 촬영한 검사대상물(P)의 이미지와 다수개의 결상부(50)에서 촬영된 격자 이미지를 이용하여 검사대상물(P)의 3차원형상을 산출한다(S90).
이와 같이 다수개의 결상부를 이용하여 검사대상물을 동시에 촬영하여 검사대상물의 3차원형상을 산출함으로써 검사대상물의 3차원형상 측정 작업 시간을 감소시킬 수 있게 된다.
- 실시예 2
도 5는 본 발명의 실시예 2에 의한 3차원형상 측정장치의 개략적인 측면도이다.
도 5를 참조하면, 본 실시예에 의한  3차원형상 측정장치(100)는 워크-스테이지(work-stage, 130), 다수의 투영부(110), 결상부(150) 및 제어부(140)를 포함한다.
상기 워크-스테이지(130)는 측정 기판(120)을 고정한다. 상기 측정기판은(120)는 측정 대상물(A)을 포함한다.
상기 워크-스테이지(130)는 워크-스테이지(130)는 x축 또는 y축 방향으로 상기 측정 기판(120)을 이송 및 고정시킨다.  상기 제어부(140)에 의해 제어되어 상기 상기 측정 기판(120)을 이송 및 고정 후,  제1 보조광원(160) 및 제2 보조광원(170)이 측정 대상물(A)에 광을 조사하고, 측정 기판(120)에 표시된 인식 마크를 이용하여 측정 기판(120)의 전체 측정영역을 설정한다.
상기 다수의 투영부(110)는 상기 측정 기판(120)의 법선에 대해서 일정한 각도로 광을 조사하도록 배치된다.  또한, 다수의 투영부(110)는 상기 법선에 대해서 대칭적으로 배열된다. 
상기 다수의 투영부(110)는 상기 측정 대상물(A)을 향해서 격자무늬조명을 조사한다.  이를 위해서, 상기 다수의 투영부(110) 각각은 광원(111), 상기 광원(111)에서 조사된 빛을 투과하는 격자부(112) 및 상기 격자부(112)의 격자무늬조명을 상기 측정대상물(A)에 결상시키는 투영렌즈부(113)를 포함한다. 
상기 격자부(112)를 투과한 광은 격자무늬조명을 형성한다.  이를 위해서, 상기 격자부(112)는 차단부(도시안됨)와 투과부(도시안됨)를 포함한다.  차단부는 상기 광원(111)에서 조사된 광을 차단하고, 상기 투과부는 광을 투과시킨다.  상기 격자부(112)는 다양한 형태로 형성될 수 있다.  상기 격자부(112)에 대해서는 추후 설명한다.
상기 투영렌즈부(113)는 예컨대 다수의 렌즈 조합으로 형성될 수 있으며, 상기 격자부(112)를 통하여 형성된 격자무늬조명을 포커싱하여 상기 측정 기판(120) 상부에 배치된 측정 대상물(A)에 결상시킨다.
상기 결상부(150)는 상기 측정대상물(A)에 의해 반사되는 격자 이미지를 수신한다.  상기 결상부(150)는 예컨대 카메라(151) 및 수광렌즈부(152)를 포함한다.  상기 측정대상물(A)에 의해 반사된 격자 이미지는 상기 수광렌즈부(152)를 거쳐 상기 카메라(151)에 의해 캡쳐된다.
상기 제어부(140)는 동작제어부(141) 및 형상감지부(142)를 포함할 수 있다.  상기 제어부(140)는 상기 워크-스테이지(130), 상기 투영부(110) 및 상기 결상부(150)를 제어하며, 상기 형상감지부(142)는 상기 측정 기판(120)에 위치한 측정 대상물(A)의 형태를 파악한다.  또한, 측정 기판(120)의 측정대상물(A) 형태를 알 수 있는 데이터 정보가 사전에 있을 경우에는 상기 측정대상물(A) 형상 파악을 하지 않고 이 데이터 정보를 이용할 수 도 있다.
상기 제어부(140)는 상기 투영부(110)를 짝수개를 선택하여 턴온시킬 수 있으며, 이때, 턴온되는 짝수개의 상기 투영부(110)는 상기 측정 대상물을 중심으로 서로 대칭일 수 있다.  격자 이미지를 일측에서만 캡쳐하는 경우, 측정대상물(A)이 돌출된 입체형상이므로 측정대상물(A)의 타측은 격자 이미지가 조사되지 못하는 영역이 발생되므로, 정확한 3차원 형상이 측정되지 못한다.  따라서, 반대측에서 다시 측정함으로써, 보다 정확한 3차원 형상이 측정될 수 있다.
예컨대, 상기 제어부(140)는, 상기 형상감지부(142)에서 파악된 상기 측정 대상물(A)이 4각형인 경우, 2개의 투영부(110)를 턴온시킬 수 있으며, 상기 형상 감지부(142)에서 파악된 상기 측정 대상물(A)이 타원체형상인 경우, 상기 다수개의 투영부(110)중 50% 이상을 턴온시킬 수 있다.
본 실시예에 의한 3차원형상 측정장치(100)에 의하면, 다수개의 투영부(110)가 서로 대칭되는 위치에 배치되어 종래 3차원형상 측정장치에서 투영부를 움직여 반대측 격자 이미지를 캡쳐하는 것에 비해, 측정에 필요한 시간을 단축시킬 수 있어 검사의 효율성이 증대된다.
도 6은 도 5에서 도시된 3차원형상 측정장치의 일 실시예에 따른 개략적인 평면도이고, 도 7은 도 5에서 도시된 3차원형상 측정장치의 다른 실시예에 의한 개략적인 평면도이다.
도 5, 도 6 및 7을 참조하면, 투영부(110)는 정다각형 형상으로 배열된다.  예컨대, 상기 투영부(110)는 정사각형(도 2), 정육각형(도 3) 등으로 배열될 수 있다.
본 실시예에서, 상기 도 5에서 도시된 격자부(112)는 액정표시패널(112a)이 사용될 수 있다.  상기 액정표시패널(112a)을 이용하여 격자무늬조명을 형성하는 경우, 상기 액정표시패널(112a)에 격자영상을 제어하는 그래픽카드(미도시) 및 상기 액정표시패널(112a)에 전원을 공급하는 전원공급부(미도시)를 더 포함할 수 있다. 상기 액정표시패널을 이용할 경우 실제 격자를 이용하는 것에 비해 격자를 이송시키기 위한 엑추에이터를 구비할 필요 없다.
도 8 및 9는 도 6 또는 도 7에서 도시된 격자부를 구성하는 액정표시패널의 동작을 설명하는 평면도이다.
도 8을 참조하면, 액정표시패널(102)에는 차단부(401) 및 투과부(402)가 표시된다.  차단부(401)는 광을 차단하고, 투과부(402)는 빛을 투과시킴으로써, 격자무늬조명을 상기 측정대사물(A)에 투사한다.
정밀한 3차원형상을 측정하기 위해서는 피치(P)를 n등분하여 얻은 값들 만큼 이송시켜가며 격자무늬조명을 상기 측정대사물(A)에 투사하게 된다(도 9에서는, 예컨대 4버켓, 즉 피치(P)를 1/4등분한 값만큼씩 차단부(401) 및 투과부(402)를 이송한 도면임).
따라서, 투영부에 격자를 이송하기 위한 엑추에이터를 구비할 필요 없다.
도 10은 도 5에서 도시된 3차원형상 측정장치의 또 다른 실시예에 의한 개략적인 평면도이고, 도 11은 도 5에서 도시된 3차원형상 측정장치의 또 다른 실시예에 의한 개략적인 평면도이다.  도 10 및 11에서 도시된 3차원형상 측정장치는 도 6 및 7에서 각각 도시된 3차원형상 측정장치와 투영부에 형성된 격자부가 액정표시패널(112a) 대신 격자(112b)를 채용하고, 이를 구동하기 위한 엑추에이터(601)를 더 포함하는 것을 제외하고는 도 6 및 7에서 도시된 3차원형상 측정장치와 실질적으로 동일하다.  따라서, 동일 또는 유사한 구성요소는 동일한 참조부호를 병기하고, 중복되는 설명은 생략한다.
도 10 및 11을 참조하면, 본 발명에 의한 예시적인 실시예에 따른 3차원형상 측정장치는, 액정표시패널(112a)을 이용한 격자부(112)를 갖는 도 6 또는 7의 3차원형상 측정장치와는 달리, 격자(112b)를 채용한다.  상기 격자(112b)는 예컨대, 유리판 위에 격자무늬를 인쇄하여 차단부와 투과부를 형성함으로써 형성될 수 있다. 상기 유리판에는 2개의 격자를 동시에 형성되어 인접한 투영부에서 이용되어 질 수 도 있다.
이와 같이, 격자(112b)를 채용하는 경우, 상기 격자(112b)를 미세이송하기 위한 엑추에이터(601)가 형성된다.
본 실시예에 의한 3차원형상 측정장치는 정다각형의 꼭지점에 배열되는 다수의 투영부를 포함하여, 서로 이웃하는 두 개의 투영부에 형성된 격자(112b)는 하나의 엑추에이터(601)에 의해 이송된다.  상기 엑추에이터(601)로서, PZT가 사용되어질 수 있다.
이때, 상기 다수의 투영부 중 서로 이웃하는 투영부가 순차적으로 구동될 때, 상기 엑추에이터(601)의 구동방향은 반대인 것이 바람직하다.  보다 상세히, ①번 격자(112b)를 화살표 a방향으로 이동하며 격자무늬조명들을 상기 측정대사물(A)에 투사한 후, 이웃하는 투영부의 ②번 격자(112b)의 경우에는 화살표 b방향으로 이동하며 격자무늬조명들을 투사한다.
보다 상세히, ①번 격자(112b)를 통해서 격자무늬조명을 측정대상물(A)에 조사하고, 결상부는 상기 측정대상물에 의해 반사된 격자 이미지를 수신하는 과정을 격자의 일정 횟수(예:4번) 실행한다. 이후, ②번 격자(112b)를 통해서 격자무늬조명을 측정대상물(A)에 조사하고, 결상부는 상기 측정대상물에 의해 반사된 격자 이미지를 수신하는 과정을 격자의 일정 횟수(예:4번) 실행한다. 마찬가지로, ③ 및 ④번 격자도 동일하게 실행한다. 제어부는 수신된 총 16번의 격자 이미지를 이용하여 그림자 영역(측정대상물이 입체형상을 가지므로, 측정대상물의 한쪽 측면으로 격자무늬조명을 투사할 때, 반대편측의 격자무늬조명이 도달되지 못하는 영역)이 보상된 측정대상물의 정확한 3차원형상을 산출한다. 예를 들어 ①번 및 ③번 격자 이미지 값들을 이용하여 ①번 및 ③번 그림자 영역을 보상, ② 및 ④번 격자 이미지 값들을 이용하여 ②번 및 ④번 영역의 그림자 영역값을 보상한다. 그림자 영역값 보상은 마주보는 영역에 해당되는 값으로 대체시킨다.
본 실시예에 의한 3차원형상 측정장치에서 채용된 엑추에이터(601)는 서로 이웃하는 두 개의 투영부에 형성된 격자(112b)들을 동시에 구동한다.  따라서, 엑추에이터(601)의 수를 투영부 갯수의 반으로 감소시킬 수 있다.
또한, 상기 엑추에이터(601)의 이송방향은 이웃하는 투영부가 순차적으로 구동될때, 상기 격자(112b)의 방향을 반대로 구동하므로 구동에 필요한 시간을 감소시킬 수 있다.
- 실시예 3
도 12는 본 발명의 실시예 3에 따른 3차원 형상 측정장치를 개략적으로 나타낸 도면이며, 도 13은 도 12에 도시된 3차원 형상 측정장치의 평면도이다.
도 12 및 도 13을 참조하면, 본 실시예에 따른 3차원 형상 측정장치(300)는 측정대상물(310)을 지지하는 스테이지(320)와, 적어도 하나의 조명부(330), 복수의 촬상부들(340) 및 제어부(350)를 포함한다.
스테이지(320)는 측정대상물(310)을 지지하며, 제어부(350)의 제어에 따라 x축 및 y축으로 이동하면서 측정대상물(310)을 측정 위치로 이송시킨다.
조명부(330)는 스테이지(320)에 고정된 측정대상물(310)에 격자무늬조명(410)을 조사한다. 조명부(330)는 스테이지(320)의 기준면에 대해 일정 각도로 기울어지게 배치된다. 한편, 3차원 형상 측정장치(300)는 측정 정밀도를 높이기 위하여 복수의 조명부들(330)을 포함할 수 있다. 예를 들어, 3차원 형상 측정장치(300)는 도 13에 도시된 바와 같이, 4개의 조명부들(330)을 포함할 수 있다. 이때, 조명부들(330)은 스테이지(320)의 기준면에 대해 수직하게 배치된 메인 촬상부(340a)를 중심으로 원주 방향을 따라 서로 이격되도록 배치된다. 특히, 조명부들(330)은 스테이지(320) 기준면의 법선에 대하여 대칭적으로 배치될 수 있다. 이에 따라, 복수의 조명부들(330)은 일정한 시간 간격을 두고 측정대상물(310)에 대하여 서로 다른 방향에서 격자무늬조명(410)을 조사하게 된다. 한편, 3차원 형상 측정장치(300)는 2개, 3개, 또는 6개 등의 다양한 개수의 조명부들(330)을 포함할 수 있다.
각각의 조명부(330)는 광원(332) 및 격자(334)를 포함한다. 또한, 각각의 조명부(330)는 격자이송장치(336) 및 투영 렌즈부(338)를 더 포함할 수 있다.
광원(332)은 측정대상물(310)을 향하여 광을 조사한다. 격자(334)는 광원(332)에서 조사된 광을 격자무늬에 따른 격자무늬조명(410)으로 변환시킨다. 격자(334)는 위상천이된 격자무늬조명(410)을 발생시키기 위해 페이조 엑추에이터(piezo actuator : PZT) 등의 격자이송장치(336)를 통해 2π/n 만큼씩 n번 이송된다. 여기서, n은 2 이상의 자연수이다. 투영 렌즈부(338)는 격자(334)에 의해 생성된 격자무늬조명(410)을 측정대상물(310)에 투영시킨다. 투영 렌즈부(338)는 예를 들어, 다수의 렌즈 조합으로 형성될 수 있으며, 격자(334)를 통해 형성된 격자무늬조명(410)을 포커싱하여 측정대상물(310)에 투영시킨다. 따라서, 각각의 조명부(330)는 격자(334)를 n번 이송시키면서 매 이송시마다 측정대상물(310)로 격자무늬조명(410)을 조사한다.
본 실시예에 따른 3차원 형상 측정장치(300)는 조명부(330)에서 조사된 격자무늬조명(410)이 측정대상물(310)에서 반사되어 나오는 격자 이미지(420)를 서로 다른 방향에서 촬영하기 위하여 복수의 촬상부들(340)을 포함한다.
구체적으로, 3차원 형상 측정장치(300)는 스테이지(320)의 상부에서 스테이지(320)의 기준면에 대해 수직으로 배치된 메인 촬상부(340a)와, 스테이지(320)의 기준면에 대해 일정 각도로 기울어지게 배치된 다수의 서브 촬상부들(340b)을 포함한다. 예를 들어, 3차원 형상 측정장치(300)는 도 13에 도시된 바와 같이, 4개의 서브 촬상부들(340b)을 포함할 수 있다. 이때, 서브 촬상부들(340b)은 메인 촬상부(340a)를 중심으로 원주 방향을 따라 서로 이격되도록 배치된다. 특히, 서브 촬상부들(340b)은 스테이지(320) 기준면의 법선에 대하여 대칭적으로 배치될 수 있다. 이에 따라, 메인 촬상부(340a)와 서브 촬상부들(340b)은 각 조명부(330)의 동작에 따라 측정대상물(310)에서 반사되어 나오는 격자 이미지(420)를 서로 다른 방향에서 동시에 촬영한다. 한편, 3차원 형상 측정장치(300)는 2개, 3개, 또는 6개 등의 다양한 개수의 서브 촬상부들(340b)을 포함할 수 있다.
메인 촬상부(340a) 및 서브 촬상부들(340b) 각각은 격자 이미지(420)의 촬상을 위하여 카메라(342) 및 결상 렌즈부(344)를 포함할 수 있다. 카메라(342)는 CCD 또는 CMOS 카메라를 사용할 수 있다. 따라서, 측정대상물(310)에서 반사되어 나오는 격자 이미지(420)는 결상 렌즈부(344)에 의해 결상되어 카메라(342)에 촬상된다.
한편, 조명부들(330)과 서브 촬상부들(340b)은 메인 촬상부(340a)를 중심으로 동일한 동심원 상에 배치될 수 있다. 이와 달리, 조명부들(330)은 서브 촬상부들(340b)과는 다른 동심원 상에 배치될 수 있다. 또한, 조명부들(330)은 서브 촬상부들(340b)과 서로 다른 높이에 설치되거나, 동일한 높이에 설치될 수 있다. 조명부들(330)은 각각 서브 촬상부들(340b) 사이에 배치될 수 있다. 이와 달리, 조명부들(330)이 서브 촬상부들(340b)과 다른 높이에 설치되는 경우, 조명부들(330)은 서브 촬상부들(340b)과 동일한 위치에 설치될 수도 있다.
제어부(350)는 3차원 형상 측정장치(300)에 포함된 구성요소들의 동작을 전체적으로 제어한다. 제어부(350)는 측정대상물(310)을 측정 위치에 배치시키기 위해 스테이지(320)의 이송을 제어한다. 제어부(350)는 다수의 조명부들(330)을 순차적으로 동작시키며, 각 조명부(330)의 격자(334)를 n번 이송시키면서 매 이송시마다 측정대상물(310)로 격자무늬조명(410)을 조사하도록 조명부(330)를 제어한다. 제어부(350)는 측정대상물(310)에서 반사되어 나오는 격자 이미지(420)를 동시에 촬영하도록 다수의 촬상부들(340)을 제어한다.
제어부(350)는 메인 촬상부(340a) 및 서브 촬상부들(340b)에서 촬상된 격자 이미지들(420)을 이용하여 측정대상물(310)의 3차원 형상을 산출한다. 예를 들어, 제어부(350)는 메인 촬상부(340a) 및 서브 촬상부들(340b)에서 촬상된 격자 이미지들(420)의 좌표계를 매칭시킨다. 또한, 제어부(350)는 메인 촬상부(340a) 및 서브 촬상부들(340b) 각각에서 n-버킷(bucket) 알고리즘을 통해 n번 측정된 값을 이용하여 격자 이미지들(420) 각각에 대한 신뢰지수(visibility)를 하기 수학식 1 및 2를 이용하여 산출하고, 산출된 5개의 신뢰지수에 대하여 각각 가중치(weight)를 부가한 후, 가중치가 부가된 데이터를 매핑하여 최종 측정값을 산출한다.
수학식 1
Figure PCTKR2009000904-appb-I000001
수학식 2
Figure PCTKR2009000904-appb-I000002
수학식 1 및 2에서, I1, I2, I3, I4는 한 지점에 대해 각 촬상부에서 4-버킷 알고리즘을 통해 4번 측정된 격자 이미지들의 세기(intensity)를 나타내며, V는 이를 이용하여 계산한 각 촬상부에서 측정된 격자 이미지의 신뢰지수를 나타낸다.
한편, 제어부(350)는 메인 촬상부(340a)와 동작중인 조명부(330)에 인접하게 배치된 하나 내지 두개의 서브 촬상부(340b)에서 측정된 격자 이미지들(420)만을 이용하여 측정대상물(310)의 3차원 형상을 산출할 수도 있다.
도 14는 도 12에 도시된 측정대상물의 3차원 형상을 측정하는 과정을 설명하기 위해 측정대상물을 확대한 확대도이다.
도 12 및 도 14를 참조하면, 측정대상물(310)은 회로기판(312)과 회로기판(312) 상에 솔더(314)에 의해 결합된 전자소자(316)를 포함할 수 있다.
조명부(330)로부터 격자무늬조명(410)이 조사되면 측정대상물(310)에서 반사되어 격자이미지(420)가 생성된다. 이때, 전자소자(316)를 회로기판(312)에 연결시키는 솔더(314)는 경면 특성을 갖기 때문에 솔더(314) 부분에서는 정반사가 이루어진다. 이에 따라, 솔더(314) 영역 중 일부 영역에서 반사되어 나오는 격자 이미지(420)는 상측으로 반사되어 메인 촬상부(340a)로 들어가게 되나, 나머지 일부 영역에서 반사되어 나오는 격자 이미지(420)는 소정 각도로 기울어지게 반사되어 메인 촬상부(340a)에 들어가지 않게 된다. 그 대신, 측정대상물(310)로부터 소정 각도로 기울어지게 반사되어 나오는 격자 이미지(420)는 서브 촬상부(340b)에서 촬영된다. 즉, 격자무늬조명(410)이 측정대상물(310)에서 반사되어 나오는 격자 이미지(420) 중에서 상측 방향으로 반사되는 메인 이미지는 메인 촬상부(340a)에서 촬영되며, 측정대상물(310)에서 반사되어 나오는 격자 이미지(420) 중에서 측정대상물(310)에서 소정 각도로 기울어지게 정반사되어 메인 촬상부(340a)로 들어가지 않는 서브 이미지는 적어도 하나의 서브 촬상부(340b)에서 촬영된다. 따라서, 메인 촬상부(340a)에서 촬상된 메인 이미지와 서브 촬상부(340b)에서 촬상된 서브 이미지를 적절히 합성함으로써, 솔더(314) 영역을 포함한 전체 측정대상물(310)의 3차원 형상을 정밀하게 측정할 수 있다.
도 15는 본 발명의 일 실시예에 따른 3차원 형상 측정방법을 나타낸 흐름도이다.
도 12 및 도 15를 참조하면, 측정대상물(310)의 3차원 형상 측정을 위하여, 제어부(350)는 스테이지(320)를 이송시켜 측정대상물(310)을 측정위치로 이송시킨다(S100).
측정대상물(310)을 측정위치에 위치시킨 후, 적어도 하나의 조명부(330)를 통해 측정대상물(310)에 격자무늬조명(410)을 조사한다(S200). 예를 들어, 스테이지(320)의 기준면에 대해 일정 각도로 기울어지고 메인 촬상부(340a)를 중심으로 원주 방향을 따라 이격되도록 배치된 다수의 조명부들(330)을 순차적으로 동작시켜 격자무늬조명(410)을 순차적으로 조사한다. 이때, 각각의 조명부(330)는 격자(334)를 n번 이송시키면서 매 이송시마다 측정대상물(310)로 격자무늬조명(410)을 조사한다.
격자무늬조명(410)을 측정대상물(310)에 조사한 후, 측정대상물(310)에서 반사되어 나오는 격자 이미지(420)를 복수의 촬상부들(340)을 통해 서로 다른 방향에서 촬영한다(S300). 구체적으로, 스테이지(320)의 기준면에 대해 수직으로 배치된 메인 촬상부(340a)를 통해, 측정대상물(310)에서 반사되어 나오는 격자 이미지(420) 중 상측 방향으로 향하는 메인 이미지를 촬상한다. 이와 동시에, 스테이지(320)의 기준면에 대해 일정 각도로 기울어지고 메인 촬상부(340a)를 중심으로 원주 방향을 따라 서로 이격되도록 배치된 서브 촬상부들(340b)를 통해, 측정대상물(310)에서 반사되어 나오는 격자 이미지(420) 중 측정대상물(310)에서 정반사되어 메인 촬상부(340a)로 들어가지 않고 소정 각도로 기울어지게 반사되는 서브 이미지를 촬상한다.
이후, 제어부(350)는 메인 촬상부(340a) 및 서브 촬상부들(340b)에서 각각 촬상된 상기 메인 이미지 및 상기 서브 이미지들의 좌표계를 매칭시킨다(S400). 즉, 측정대상물(310)에서 반사되어 나오는 격자 이미지(420)가 메인 촬상부(340a) 및 서브 촬상부들(340b)에 도달함에 있어 경로의 차이가 발생되므로, 이러한 경로차로 인해 메인 촬상부(340a) 및 서브 촬상부들(340b)에 촬상되는 격자 이미지들(420) 간에는 편차가 발생되게 된다. 따라서, 이러한 경로차로 인한 격자 이미지들(420)간의 편차를 보상하여 줌으로써, 상기 메인 이미지 및 상기 서브 이미지들의 좌표계를 일치시킨다.
이후, 제어부(350)는 매칭된 상기 메인 이미지 및 상기 서브 이미지들 각각에 대한 신뢰지수(visibility)를 토대로 상기 메인 이미지 및 상기 서브 이미지들을 매핑하여 측정대상물(310)의 3차원 형상을 산출한다(S500). 예를 들어, 제어부(350)는 상기 메인 이미지 및 상기 서브 이미지들 각각에 대한 신뢰지수(visibility)를 상기 수학식 1 및 2를 이용하여 산출하고, 산출된 5개의 신뢰지수에 대하여 각각 가중치(weight)를 부가한 후, 가중치가 부가된 데이터를 이용하여 측정대상물(310)의 측정 영역에 대한 3차원 형상을 산출한다. 예를 들어, 산출된 5개의 신뢰지수들 중에서 특정 값을 넘는 이미지에는 높은 가중치를 부가하고, 특정 값 이하의 이미지에는 낮은 가중치를 부가하거나 제외시킴으로써, 최종 측정값의 신뢰도를 향상시킬 수 있다.
이와 같이 메인 촬상부(340a) 및 서브 촬상부들(340b)을 통해 격자 이미지(420)를 촬영하는 과정은 조명부(330)가 격자무늬조명(410)을 조사할 때 마다 반복해서 이루어지며, 반복된 촬영을 통해 얻어진 이미지들을 이용하여 제어부(350)는 최종적으로 측정대상물(310)의 3차원 형상을 측정하게 된다.
상술한 바와 같이, 측정대상물(310)에서 반사되어 나오는 격자 이미지(420) 중 메인 이미지를 촬상하기 위한 메인 촬상부(340a)와 함께, 측정대상물(310)에서 정반사되어 메인 촬상부(340a)에서 촬상되지 못하는 서브 이미지를 촬상하기 위한 서브 촬상부들(340b)을 추가적으로 설치함으로써, 측정대상물(310)의 3차원 형상을 보다 정밀하게 측정할 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다. 따라서, 전술한 설명 및 아래의 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어져야 한다.
본 발명의 3차원형상 측정장치 및 측정방법은 인쇄회로기판이나 솔더(solder)등과 같은 측정대상물의 3차원형상을 측정하는 분야에 적용할 수 있다.

Claims (15)

  1. 격자무늬조명을 발생하여 조사하는 투영부와,
    상기 투영부의 하측에 설치되어 검사대상물을 이송시키는 X-Y축 이송테이블과,
    상기 투영부와 상기 X-Y축 이송테이블 사이에 설치되어 검사대상물에서 반사되는 격자 이미지를 분리하여 통과시키는 빔 분리부와,
    상기 빔 분리부의 하측에 서로 원주방향으로 이격되도록 설치되어 검사대상물에서 반사되는 격자 이미지가 조사되면 이를 반사시키는 다수개의 반사거울과,
    상기 빔 분리부와 상기 다수개의 반사거울의 일측에 각각 설치되어 빔 분리부에서 통과되는 격자 이미지와 다수개의 반사거울에서 반사되는 격자 이미지를 촬영하는 다수개의 결상부로 구성됨을 특징으로 하는 3차원형상 측정장치.
  2. 격자무늬조명을 발생하여 조사하는 투영부와,
    상기 투영부의 하측에 설치되어 검사대상물을 이송시키는 X-Y축 이송테이블과,
    상기 투영부와 상기 X-Y축 이송테이블 사이에 설치되어 격자 이미지나 조명 이미지를 분리하여 통과시키는 빔 분리부와,
    상기 빔 분리부의 하측에 설치되어 검사대상물에서 조명 이미지가 반사되도록 검사대상물로 조명을 발생하여 조사하는 제1 원형램프부와,
    상기 빔 분리부의 하측에 서로 원주방향으로 이격되도록 설치되어 검사대상물에서 반사되는 격자 이미지나 조명 이미지가 조사되면 이를 반사시키는 다수개의 반사거울과,
    상기 다수개의 반사거울의 하측에 설치되어 검사대상물에서 조명 이미지가 반사되도록 검사대상물로 조명을 발생하여 검사대상물로 조사하는 제2 원형램프부와,
    상기 빔 분리부와 상기 다수개의 반사거울의 일측에 각각 설치되어 빔 분리부와 다수개의 반사거울에서 조사되는 격자 이미지나 조명 이미지를 촬영하는 다수개의 결상부와,
    상기 다수개의 결상부에서 촬영된 격자 이미지나 조명 이미지를 수신받아 검사대상물의 3차원형상을 산출하는 제어부로 구성됨을 특징으로 하는 3차원형상 측정장치.
  3. X-Y축 이송테이블에 의해 검사대상물을 측정위치로 이송시키는 단계와,
    검사대상물이 측정위치로 이송되면 격자이송기구에 의해 격자소자를 피치 이송시키는 단계와,
    격자소자가 피치 이송되면 결상부의 조명원을 온시켜 격자무늬조명을 검사대상물로 조사하는 단계와,
    검사대상물로 격자무늬조명이 조사되면 검사대상물에서 반사되는 격자 이미지를 다수개의 반사거울을 통해 조사받아 다수개의 결상부에서 촬영하는 단계와,
    다수개의 결상부에서 격자 이미지가 촬영되면 결상부의 조명원을 오프시키는 단계와,
    결상부의 조명원이 오프되면 제어부는 격자소자가 N+1 번째 피치이송인지 여부를 확인하는 단계와,
    격자소자가 N+1 번째 피치 이송이면 제1 원형램프부나 제2 원형램프부를 온시킨 후 검사대상물을 다수개의 결상부로 촬영하는 단계와,
    검사대상물을 다수개의 결상부가 촬영하면 검사대상물의 측정이 완료되었는지 여부를 확인하는 단계와,
    검사대상물의 측정이 완료되면 제어부는 제1 원형램프부나 제2 원형램프부를 온시킨 후 검사대상물을 촬영한 검사대상물의 이미지와 다수개의 결상부에서 촬영된 격자 이미지를 이용하여 검사대상물의 3차원형상을 산출하는 단계로 구성됨을 특징으로 하는 3차원형상 측정방법.
  4. 베이스 부재를 고정하는 워크-스테이지(work-stage);
    각각이 광원, 상기 광원에서 조사된 빛을 투과시키는 격자 및 상기 격자의 격자무늬조명을 상기 베이스 부재 내의 측정대상물에 결상시키는 투영렌즈부를 포함하며, 상기 측정대상물에 대해 각각 다른 방향에서 격자무늬조명을 조사하는 다수의 투영부;
    상기 측정대상물에 의해 반사되는 격자 이미지를 수신하는 결상부; 및
    상기 측정대상물의 형태에 따라 상기 다수개의 투영부 중 적어도 2개 이상을 선택적으로 턴온(turn on)/턴오프(turn off)하는 제어부를 포함하여, 상기 선택적으로 턴온된 2개 이상의 투영부에 의해 상기 결상부에 수신된 격자 이미지를 이용하여 상기 측정대상물의 3차원형상을 측정하는 3차원형상 측정장치.
  5. 제4항에 있어서,
    상기 제어부는 상기 결상부에 의해 수신된 상기 격자 이미지를 이용하여 상기 측정대상물의 그림자 영역을 보상하기 위하여 상기 그림자 영역에 해당되는 측정값은 마주보는 값으로 대체하는 것을 특징으로 하는 3차원형상 측정장치.
  6. 제4항에 있어서,
    상기 제어부는 상기 측정 대상물이 타원형상인 경우, 상기 다수개의 투영부중 50% 이상을 턴온시키는 것을 특징으로 하는 3차원형상 측정장치.
  7. 측정기판를 고정하는 워크-스테이지;
    각각이 광원, 상기 광원에서 조사된 빛을 투과시키는 격자 및 상기 격자의 격자무늬조명을 상기 베이스 부재 내의 측정대상물에 결상시키는 투영렌즈부를 포함하며, 상기 측정대상물에 대해 각각 다른 방향에서 격자무늬조명을 조사하기 위해서 정다각형 형태로 배열되고, 상기 광원에서 조사된 빛이 진행하는 방향과 상기 베이스 부재의 법선이 일정 각도를 갖는 다수의 투영부;
    상기 다수의 투영부 중, 이웃하는 두 개의 투영부의 상기 격자의 이동을 제어하는 격자 엑추에이터;
    상기 측정대상물에 의해 반사되는 상기 격자이미지 광을 수신하는 결상부; 및
    상기 측정대상물의 형태에 따라 상기 다수개의 투영부 중 적어도 2개 이상을 선택적으로 턴온/턴오프하는 제어부를 포함하여, 상기 선택적으로 턴온된 2개 이상의 투영부에 의해 상기 결상부에 수신된 격자 이미지를 이용하여 상기 측정대상물의 3차원형상을 측정하는 3차원형상 측정장치.
  8. 제7항에 있어서,
    상기 엑추에이터는 이웃하는 두 개의 투영부의 격자를 동시에 움직이는 것을 특징으로하는 3차원 형상 측정장치.
  9. 측정대상물을 지지하는 스테이지;
    광원 및 격자를 포함하며, 상기 측정대상물에 격자무늬조명을 조사하는 적어도 하나의 조명부;
    상기 측정대상물에서 반사되어 나오는 격자 이미지를 서로 다른 방향에서 촬상하는 복수의 촬상부들; 및
    상기 촬상부들에서 촬상된 상기 격자 이미지들을 이용하여 상기 측정대상물의 3차원 형상을 산출하는 제어부를 포함하는 3차원 형상 측정장치.
  10. 제9항에 있어서, 상기 촬상부들은
    상기 스테이지의 기준면에 대해 수직으로 배치된 메인 촬상부; 및
    상기 스테이지의 기준면에 대해 일정 각도로 기울어지게 배치되며, 상기 메인 촬상부를 중심으로 원주 방향을 따라 서로 이격되도록 배치된 다수의 서브 촬상부들을 포함하는 것을 특징으로 하는 3차원 형상 측정장치.
  11. 제10항에 있어서,
    상기 제어부는 상기 메인 촬상부 및 상기 서브 촬상부들에서 촬상된 상기 격자 이미지들의 좌표계를 매칭시키고, 매칭된 상기 격자 이지미들에 대한 각각의 신뢰지수(visibility)를 산출한 후 산출된 신뢰지수에 가중치를 부가하여 상기 측정대상물의 3차원 형상을 산출하는 것을 특징으로 하는 3차원 형상 측정장치.
  12. 측정대상물을 지지하는 스테이지;
    상기 측정대상물에 격자무늬조명을 조사하는 적어도 하나의 조명부;
    상기 격자무늬조명이 상기 측정대상물에서 반사되어 나오는 격자 이미지 중 메인 이미지를 촬상하는 메인 촬상부;
    상기 격자무늬조명이 상기 측정대상물에서 반사되어 나오는 상기 격자 이미지 중 상기 측정대상물에서 정반사되어 상기 메인 촬상부로 들어가지 않는 서브 이미지를 촬상하는 적어도 하나의 서브 촬상부; 및
    상기 메인 촬상부 및 상기 서브 촬상부에서 촬상된 상기 메인 이미지 및 상기 서브 이미지를 이용하여 상기 측정대상물의 3차원 형상을 산출하는 제어부를 포함하는 3차원 형상 측정장치.
  13. 스테이지의 이송을 통해 측정대상물을 측정위치로 이송시키는 단계;
    적어도 하나의 조명부를 통해 상기 측정대상물에 격자무늬조명을 조사하는 단계;
    상기 측정대상물에서 반사되어 나오는 격자 이미지를 복수의 촬상부들을 통해 서로 다른 방향에서 촬상하는 단계; 및
    상기 촬상부들에서 촬상된 상기 격자 이미지들을 이용하여 상기 측정대상물의 3차원 형상을 산출하는 단계를 포함하는 3차원 형상 측정방법.
  14. 제13항에 있어서, 상기 격자 이미지를 촬상하는 단계는,
    상기 스테이지의 기준면에 대해 수직으로 배치된 메인 촬상부를 통해, 상기 측정대상물에서 반사되어 나오는 상기 격자 이미지 중 메인 이미지를 촬상하는 단계; 및
    상기 메인 이미지의 촬상과 동시에, 상기 스테이지의 기준면에 대해 일정 각도로 기울어지고 상기 메인 촬상부를 중심으로 원주 방향을 따라 서로 이격되도록 배치된 다수의 서브 촬상부를 통해, 상기 측정대상물에서 반사되어 나오는 상기 격자 이미지 중 상기 측정대상물에서 정반사되어 상기 메인 촬상부로 들어가지 않는 서브 이미지를 촬상하는 단계를 포함하는 것을 특징으로 하는 3차원 형상 측정방법.
  15. 제14항에 있어서, 상기 측정대상물의 3차원 형상을 산출하는 단계는,
    상기 메인 촬상부 및 상기 서브 촬상부들에서 각각 촬상된 상기 메인 이미지 및 상기 서브 이미지들의 좌표계를 매칭시키는 단계; 및
    매칭된 상기 메인 이미지 및 상기 서브 이미지들 각각에 대한 신뢰지수(visibility)를 산출하고, 산출된 신뢰지수에 가중치를 부가한 후, 가중치가 부가된 데이터를 매핑하는 단계를 포함하는 것을 특징으로 하는 3차원 형상 측정방법.
PCT/KR2009/000904 2008-02-26 2009-02-25 3차원형상 측정장치 및 측정방법 WO2009107981A2 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200980107016XA CN101960253B (zh) 2008-02-26 2009-02-25 三维形状测量装置及测量方法
US12/919,691 US8854610B2 (en) 2008-02-26 2009-02-25 Apparatus and method for measuring a three-dimensional shape
US14/463,287 US9243900B2 (en) 2008-02-26 2014-08-19 Apparatus and method for measuring a three dimensional shape
US14/463,269 US9488472B2 (en) 2008-02-26 2014-08-19 Apparatus and method for measuring a three dimensional shape
US15/331,499 US10359276B2 (en) 2008-02-26 2016-10-21 Apparatus and method for measuring a three dimensional shape
US15/929,142 US10563978B2 (en) 2008-02-26 2019-06-12 Apparatus and method for measuring a three dimensional shape
US16/735,186 US10996050B2 (en) 2008-02-26 2020-01-06 Apparatus and method for measuring a three dimensional shape
US17/212,219 US20210207954A1 (en) 2008-02-26 2021-03-25 Apparatus and method for measuring a three-dimensional shape

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020080017439A KR100956547B1 (ko) 2008-02-26 2008-02-26 3차원형상 측정장치 및 방법
KR10-2008-0017439 2008-02-26
KR10-2008-0082629 2008-08-23
KR1020080082629A KR101035895B1 (ko) 2008-08-23 2008-08-23 3차원형상 측정장치
KR1020090015691A KR101081538B1 (ko) 2009-02-25 2009-02-25 3차원 형상 측정장치 및 측정방법
KR10-2009-0015691 2009-02-25

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/919,691 A-371-Of-International US8854610B2 (en) 2008-02-26 2009-02-25 Apparatus and method for measuring a three-dimensional shape
US14/463,269 Division US9488472B2 (en) 2008-02-26 2014-08-19 Apparatus and method for measuring a three dimensional shape
US14/463,287 Division US9243900B2 (en) 2008-02-26 2014-08-19 Apparatus and method for measuring a three dimensional shape

Publications (2)

Publication Number Publication Date
WO2009107981A2 true WO2009107981A2 (ko) 2009-09-03
WO2009107981A3 WO2009107981A3 (ko) 2009-11-05

Family

ID=41016585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000904 WO2009107981A2 (ko) 2008-02-26 2009-02-25 3차원형상 측정장치 및 측정방법

Country Status (3)

Country Link
US (7) US8854610B2 (ko)
CN (2) CN103134446B (ko)
WO (1) WO2009107981A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102278955A (zh) * 2010-03-29 2011-12-14 索尼公司 机器人装置和控制机器人装置的方法
EP2508871A4 (en) * 2009-11-30 2017-05-10 Nikon Corporation Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
WO2020263054A1 (ko) * 2019-06-28 2020-12-30 주식회사 고영테크놀러지 대상체의 3차원 형상을 결정하기 위한 장치 및 방법

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9124881B2 (en) * 2010-12-03 2015-09-01 Fly's Eye Imaging LLC Method of displaying an enhanced three-dimensional images
JP5765651B2 (ja) * 2011-02-01 2015-08-19 Jukiオートメーションシステムズ株式会社 3次元測定装置
KR101295760B1 (ko) * 2011-03-10 2013-08-13 주식회사 미르기술 다중 격자 무늬를 이용한 비전검사장치
JP5847568B2 (ja) * 2011-12-15 2016-01-27 Ckd株式会社 三次元計測装置
US9186470B2 (en) 2012-02-08 2015-11-17 Apple Inc. Shape reflector and surface contour mapping
CN103575234B (zh) * 2012-07-20 2016-08-24 德律科技股份有限公司 三维影像测量装置
TWI460394B (zh) 2012-07-20 2014-11-11 Test Research Inc 三維影像量測裝置
JP6009288B2 (ja) * 2012-09-11 2016-10-19 株式会社キーエンス 計測顕微鏡装置及び計測顕微鏡装置操作プログラム並びにコンピュータで読み取り可能な記録媒体
JP6091866B2 (ja) * 2012-11-30 2017-03-08 株式会社キーエンス 計測顕微鏡装置、画像生成方法及び計測顕微鏡装置操作プログラム並びにコンピュータで読み取り可能な記録媒体
CN103438834B (zh) * 2013-09-17 2015-10-28 清华大学深圳研究生院 基于结构光投影的层级式快速三维测量装置及测量方法
JP6303867B2 (ja) * 2014-06-27 2018-04-04 オムロン株式会社 基板検査装置及びその制御方法
JP6256249B2 (ja) * 2014-08-08 2018-01-10 オムロン株式会社 計測装置、基板検査装置、及びその制御方法
JP6507653B2 (ja) * 2015-01-13 2019-05-08 オムロン株式会社 検査装置及び検査装置の制御方法
JP6452508B2 (ja) * 2015-03-17 2019-01-16 オリンパス株式会社 3次元形状測定装置
KR101659302B1 (ko) * 2015-04-10 2016-09-23 주식회사 고영테크놀러지 3차원 형상 측정장치
CN107429991B (zh) * 2015-04-14 2021-09-07 雅马哈发动机株式会社 外观检查装置及外观检查方法
JP6648916B2 (ja) * 2015-07-27 2020-02-14 キヤノン株式会社 撮像装置
US10832976B2 (en) * 2017-01-12 2020-11-10 Hitachi High-Tech Corporation Charged particle beam device and optical examination device
JP6761488B2 (ja) 2017-01-31 2020-09-23 富士フイルム株式会社 3次元情報検出装置
KR102102291B1 (ko) * 2017-12-20 2020-04-21 주식회사 고영테크놀러지 옵티컬 트래킹 시스템 및 옵티컬 트래킹 방법
JP7215826B2 (ja) * 2018-02-21 2023-01-31 Juki株式会社 3次元計測装置、電子部品実装装置、及び3次元計測方法
KR102264682B1 (ko) 2018-10-15 2021-06-15 주식회사 고영테크놀러지 검사를 위한 장치, 방법 및 명령을 기록한 기록 매체
US10883823B2 (en) 2018-10-18 2021-01-05 Cyberoptics Corporation Three-dimensional sensor with counterposed channels
JP7231433B2 (ja) * 2019-02-15 2023-03-01 株式会社キーエンス 画像処理装置
JP7000380B2 (ja) * 2019-05-29 2022-01-19 Ckd株式会社 三次元計測装置及び三次元計測方法
CN111443093B (zh) * 2020-04-23 2023-10-13 北京大恒图像视觉有限公司 一种透明容器检测装置及检测方法
US11835418B2 (en) * 2021-09-30 2023-12-05 Opto-Alignment Technology, Inc. Simultaneous multi-surface non-contact optical profiler
EP4217136A1 (en) 2021-10-07 2023-08-02 Additive Monitoring Systems, LLC Structured light part quality monitoring for additive manufacturing and methods of use
IT202100031832A1 (it) * 2021-12-20 2023-06-20 Scuola Univ Professionale Della Svizzera Italiana Supsi Apparato di acquisizione di informazioni tridimensionali di oggetti e superfici per un sistema di visione artificiale per l'ispezione ottica automatica della qualità visiva di un oggetto sottostante, in particolare assemblaggi elettronici, schede elettroniche e simili
WO2023118059A1 (en) * 2021-12-20 2023-06-29 Scuola universitaria professionale della Svizzera italiana (SUPSI) Apparatus for acquiring three-dimensional information of objects and surfaces for an artificial vision system for automatic optical inspection of the visual quality of an underlying object, in particular electronic assemblies, circuit boards and the like

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162215A (ja) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd 3次元形状計測方法およびそのシステム
JP2004150929A (ja) * 2002-10-30 2004-05-27 Yamatake Corp 3次元計測装置及び3次元計測方法
KR100615576B1 (ko) * 2003-02-06 2006-08-25 주식회사 고영테크놀러지 3차원형상 측정장치
US20070211259A1 (en) * 2006-03-11 2007-09-13 Moon Young Jeon Three-dimensional shape measuring apparatus using shadow moire
KR20070122014A (ko) * 2006-06-23 2007-12-28 주식회사 고영테크놀러지 모아레와 스테레오를 이용한 3차원형상 측정시스템 및 방법

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039868A (en) 1988-11-24 1991-08-13 Omron Corporation Method of and apparatus for inspecting printed circuit boards and the like
JP2782759B2 (ja) 1989-02-17 1998-08-06 オムロン株式会社 ハンダ付け外観検査装置
DE3907430C1 (ko) 1988-12-23 1991-03-21 Klaus 8206 Bruckmuehl De Pfister
US5060065A (en) 1990-02-23 1991-10-22 Cimflex Teknowledge Corporation Apparatus and method for illuminating a printed circuit board for inspection
US5064291A (en) 1990-04-03 1991-11-12 Hughes Aircraft Company Method and apparatus for inspection of solder joints utilizing shape determination from shading
DE4130237A1 (de) 1991-09-11 1993-03-18 Zeiss Carl Fa Verfahren und vorrichtung zur dreidimensionalen optischen vermessung von objektoberflaechen
US5175601A (en) 1991-10-15 1992-12-29 Electro-Optical Information Systems High-speed 3-D surface measurement surface inspection and reverse-CAD system
JP3189500B2 (ja) 1993-06-25 2001-07-16 松下電器産業株式会社 電子部品の外観検査装置および外観検査方法
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
US5852672A (en) * 1995-07-10 1998-12-22 The Regents Of The University Of California Image system for three dimensional, 360 DEGREE, time sequence surface mapping of moving objects
JPH1070064A (ja) * 1996-08-27 1998-03-10 Nikon Corp 投影露光装置
US6084663A (en) 1997-04-07 2000-07-04 Hewlett-Packard Company Method and an apparatus for inspection of a printed circuit board assembly
US6022124A (en) * 1997-08-19 2000-02-08 Ppt Vision, Inc. Machine-vision ring-reflector illumination system and method
US6147764A (en) * 1998-04-03 2000-11-14 Mitutoyo Corporation Of Kamiyokoba Optical interference profiler having shadow compensation
WO2000003357A1 (en) 1998-07-08 2000-01-20 Ppt Vision, Inc. Identifying and handling device tilt in a three-dimensional machine-vision image
JP3417377B2 (ja) 1999-04-30 2003-06-16 日本電気株式会社 三次元形状計測方法及び装置並びに記録媒体
CA2306515A1 (en) 2000-04-25 2001-10-25 Inspeck Inc. Internet stereo vision, 3d digitizing, and motion capture camera
JP4505949B2 (ja) * 2000-06-06 2010-07-21 株式会社島津製作所 放射線画像撮影装置
US20020110786A1 (en) * 2001-02-09 2002-08-15 Dillier Stephen L. Method and apparatus for generating a customized dental prosthetic
JP3519698B2 (ja) 2001-04-20 2004-04-19 照明 與語 3次元形状測定方法
US7061628B2 (en) * 2001-06-27 2006-06-13 Southwest Research Institute Non-contact apparatus and method for measuring surface profile
US7239399B2 (en) 2001-11-13 2007-07-03 Cyberoptics Corporation Pick and place machine with component placement inspection
JP2003202284A (ja) * 2002-01-09 2003-07-18 Hitachi Ltd 走査プローブ顕微鏡およびこれを用いた試料観察方法およびデバイス製造方法
KR100449175B1 (ko) 2002-01-15 2004-09-22 (주) 인텍플러스 광학식 2차원 및 3차원 형상 측정 시스템
JP3878023B2 (ja) 2002-02-01 2007-02-07 シーケーディ株式会社 三次元計測装置
CN1437000A (zh) * 2002-02-09 2003-08-20 沈阳同联集团高新技术有限公司 投影栅线测量物体三维表面形状的方法和装置
CN100338434C (zh) * 2003-02-06 2007-09-19 株式会社高永科技 三维图像测量装置
TW576729B (en) * 2003-06-12 2004-02-21 Univ Nat Taipei Technology Apparatus and technique for automatic 3-D dental data required for crown reconstruction
JP2005114642A (ja) 2003-10-10 2005-04-28 Mitsuru Kawaguchi 立体物形成システムおよび方法
US20050157920A1 (en) 2004-01-21 2005-07-21 John Doherty Machine vision system and method
US7154613B2 (en) 2004-03-15 2006-12-26 Northrop Grumman Corporation Color coded light for automated shape measurement using photogrammetry
CN1587900A (zh) 2004-07-09 2005-03-02 中国科学院计算技术研究所 三维表面测量方法及装置
EP1788345B1 (en) 2005-06-17 2014-03-05 Omron Corporation Image processing device and image processing method performing 3d measurement
JP4426519B2 (ja) 2005-11-11 2010-03-03 株式会社日立ハイテクノロジーズ 光学的高さ検出方法、電子線測定装置および電子線検査装置
CA2528791A1 (en) * 2005-12-01 2007-06-01 Peirong Jia Full-field three-dimensional measurement method
US7545512B2 (en) * 2006-01-26 2009-06-09 Koh Young Technology Inc. Method for automated measurement of three-dimensional shape of circuit boards
JP4784396B2 (ja) 2006-05-26 2011-10-05 パナソニック電工株式会社 3次元形状計測方法及びこれを用いた3次元形状計測装置
US7710611B2 (en) * 2007-02-16 2010-05-04 Illinois Tool Works, Inc. Single and multi-spectral illumination system and method
US7403872B1 (en) * 2007-04-13 2008-07-22 Gii Acquisition, Llc Method and system for inspecting manufactured parts and sorting the inspected parts
KR100870930B1 (ko) * 2007-05-08 2008-11-28 주식회사 고영테크놀러지 다방향 영사식 모아레 간섭계 및 이를 이용한 검사방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162215A (ja) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd 3次元形状計測方法およびそのシステム
JP2004150929A (ja) * 2002-10-30 2004-05-27 Yamatake Corp 3次元計測装置及び3次元計測方法
KR100615576B1 (ko) * 2003-02-06 2006-08-25 주식회사 고영테크놀러지 3차원형상 측정장치
US20070211259A1 (en) * 2006-03-11 2007-09-13 Moon Young Jeon Three-dimensional shape measuring apparatus using shadow moire
KR20070122014A (ko) * 2006-06-23 2007-12-28 주식회사 고영테크놀러지 모아레와 스테레오를 이용한 3차원형상 측정시스템 및 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508871A4 (en) * 2009-11-30 2017-05-10 Nikon Corporation Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
CN102278955A (zh) * 2010-03-29 2011-12-14 索尼公司 机器人装置和控制机器人装置的方法
WO2020263054A1 (ko) * 2019-06-28 2020-12-30 주식회사 고영테크놀러지 대상체의 3차원 형상을 결정하기 위한 장치 및 방법
WO2020263056A1 (ko) * 2019-06-28 2020-12-30 주식회사 고영테크놀러지 대상체의 3차원 형상을 결정하기 위한 장치 및 방법

Also Published As

Publication number Publication date
US10996050B2 (en) 2021-05-04
US20110050893A1 (en) 2011-03-03
US10563978B2 (en) 2020-02-18
CN103134446B (zh) 2017-03-01
US9488472B2 (en) 2016-11-08
US20170038197A1 (en) 2017-02-09
US8854610B2 (en) 2014-10-07
US20190293413A1 (en) 2019-09-26
CN101960253A (zh) 2011-01-26
US20200141721A1 (en) 2020-05-07
WO2009107981A3 (ko) 2009-11-05
US20140354804A1 (en) 2014-12-04
US9243900B2 (en) 2016-01-26
CN101960253B (zh) 2013-05-01
US20210207954A1 (en) 2021-07-08
US10359276B2 (en) 2019-07-23
US20140354805A1 (en) 2014-12-04
CN103134446A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2009107981A2 (ko) 3차원형상 측정장치 및 측정방법
WO2012050378A2 (ko) 기판 검사방법
WO2016200096A1 (ko) 3차원 형상 측정장치
WO2011087337A2 (ko) 기판 검사장치
CN107238608B (zh) 基板检查装置
KR100927429B1 (ko) 소자 배치를 검사하는 픽 앤드 플레이스 머신
WO2012050375A2 (ko) 측정장치 및 이의 보정방법
WO2016163840A1 (ko) 3차원 형상 측정장치
WO2009142390A2 (ko) 표면형상 측정장치
WO2013048093A2 (ko) 비접촉식 부품검사장치 및 부품검사방법
WO2012121556A2 (ko) 다중 격자 무늬를 이용한 비전검사장치
WO2012121558A1 (ko) 영상 선명도가 개선된 비전검사장치
KR101081538B1 (ko) 3차원 형상 측정장치 및 측정방법
WO2013176482A1 (ko) 3차원 형상 측정장치의 높이 측정 방법
WO2015080480A1 (ko) 웨이퍼 영상 검사 장치
WO2013009065A2 (ko) 엘이디 부품의 3차원비전검사장치 및 비전검사방법
JPH09506302A (ja) 位置合わせシステム
KR101876934B1 (ko) 비전 검사장치
WO2012134146A1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
WO2016099154A1 (ko) 부품이 실장된 기판 검사방법 및 검사장치
WO2013100223A1 (ko) 기판 검사장치의 높이정보 생성 방법
KR100956547B1 (ko) 3차원형상 측정장치 및 방법
CN108139206B (zh) 三维测量装置
WO2012150782A1 (ko) 편광판과 다중 격자 무늬를 이용한 비전검사장치
WO2012134147A1 (ko) 가시광선의 격자무늬와 비가시광선의 격자 무늬를 이용한 비전검사장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107016.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713775

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12919691

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09713775

Country of ref document: EP

Kind code of ref document: A2