WO2012091344A2 - 비전검사장치 - Google Patents

비전검사장치 Download PDF

Info

Publication number
WO2012091344A2
WO2012091344A2 PCT/KR2011/009851 KR2011009851W WO2012091344A2 WO 2012091344 A2 WO2012091344 A2 WO 2012091344A2 KR 2011009851 W KR2011009851 W KR 2011009851W WO 2012091344 A2 WO2012091344 A2 WO 2012091344A2
Authority
WO
WIPO (PCT)
Prior art keywords
camera
inspection object
center
image
unit
Prior art date
Application number
PCT/KR2011/009851
Other languages
English (en)
French (fr)
Other versions
WO2012091344A3 (ko
Inventor
이현율
강근형
박태광
Original Assignee
주식회사 미르기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미르기술 filed Critical 주식회사 미르기술
Priority to EP11852270.5A priority Critical patent/EP2660586A2/en
Priority to JP2013547309A priority patent/JP2014503824A/ja
Priority to US13/997,441 priority patent/US20130301904A1/en
Priority to CN2011800631766A priority patent/CN103430013A/zh
Publication of WO2012091344A2 publication Critical patent/WO2012091344A2/ko
Publication of WO2012091344A3 publication Critical patent/WO2012091344A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2504Calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0815Controlling of component placement on the substrate during or after manufacturing

Definitions

  • the present invention relates to a vision inspection apparatus, and more particularly, to a vision inspection apparatus configured to correct an optical path difference for an inspection object by tilting and arranging an optical sensing unit in a side camera included in the vision inspection apparatus.
  • SMT Surface Mounting Technology
  • PCB printed circuit board
  • SMD surface-mounting components
  • the surface mount line consists of equipment such as surface mounters and vision inspection devices.
  • the surface mounter is a device for mounting a surface mount component on a printed circuit board.
  • the surface mounter receives various surface mount components supplied in a tape, stick, and tray form from a component feeder and prints them. Carry out the work on the mounting board on the circuit board.
  • the vision inspection apparatus inspects the mounting state of the surface mounting component before or after the soldering process of the surface mounting component is completed and transfers the printed circuit board to the next process according to the inspection result.
  • the conventional vision inspection method is to adjust the initial position in the position adjusting device when the printed circuit board is soldered horizontally through the conveyor, and after the adjustment is completed, when the lamp illuminates the printed circuit board, the camera of each surface-mounted part Take a picture of the soldering area.
  • the vision inspection device outputs the photographed state of the soldering part to the monitor and calculates the result of the inspection of the good / bad of the mounting or the mounting of the surface mount component.
  • a vision inspection apparatus employs a technique of measuring a three-dimensional height of an inspection object by detecting a distortion degree of the shadow pattern by illuminating a grid-shaped shadow pattern on the inspection object.
  • the vision inspection apparatus is a vertical camera for photographing the planar image of the inspection object is disposed on the vertical top of the surface on which the inspection object is placed, and a deformed shape of the shadow pattern reflected on the inspection object by being inclined at the side of the inspection object. It is configured to include a side camera for shooting.
  • one of the edges of the inspection object farther from the side camera has an optical path longer than the center of the inspection object, and one of the edges of the inspection object closer to the side camera has a shorter optical path than the center of the inspection object.
  • the image focusing position on the top surface becomes different, which becomes larger as the area to be inspected becomes wider.
  • the depth of focus must be secured so that the image of the entire area can be taken uniformly.
  • the difference in depth required for accurately photographing both edges of the inspection object becomes larger as the side camera is disposed closer to the stage portion on which the inspection object is to be placed, that is, farther from the vertical camera.
  • This phenomenon increases the size of the depth that must be secured in order to capture the entire inspection object, but the camera increases the F value when the depth increases, thereby narrowing down the aperture and consequently shooting a dark image. There is a problem of deterioration.
  • an object of the present invention is to provide a vision inspection apparatus that can accurately capture and read images by increasing the resolution by correcting the optical path difference for the inspection object.
  • Still another object of the present invention is to provide a vision inspection apparatus configured to secure an accurate image of an inspection object without changing the size of the apparatus.
  • Vision inspection apparatus for achieving the above object is a vision inspection device for determining the good or bad by photographing the inspection object with a camera, including a stage portion for mounting the inspection object, a lens and an image sensing unit It comprises a camera unit for taking an image of the inspection object, an illumination unit for providing illumination to the inspection object, and a vision processing unit for determining the good or bad of the inspection object by reading the image taken by the camera unit
  • the image sensing unit in the side camera installed at an angle with respect to a line perpendicular to a plane on which the inspection object is seated among the camera units is set in advance with respect to a line connecting the center of the inspection object with the camera lens center in the side camera unit. It is installed at an angle.
  • the side end portion of the inspection object disposed on the side closer to the distance from the center of the camera lens may be configured such that the side end portion of the image sensing unit is arranged closer to the center Lo of the camera lens.
  • the image sensing unit has a camera in the center of the inspection object and the side camera portion. It can be installed at a greater angle with respect to the line connecting the lens center.
  • the image sensing unit is installed at an angle of 2 degrees or more and 20 degrees or less with respect to a line connecting the center of the inspection object and the center of the camera lens in the side camera portion.
  • the resolution can be increased to read an accurate image on the inspection object.
  • FIG. 1 is a schematic diagram of a vision inspection apparatus according to the present invention.
  • FIG. 2 is a conceptual diagram illustrating the principle of the present invention.
  • 3 is an example of an image photographed by a conventional vision inspection apparatus.
  • FIG 4 is an example of an image captured by the vision inspection apparatus according to the present invention.
  • FIG. 1 is a schematic diagram of a vision inspection apparatus according to the present invention
  • Figure 2 is a conceptual diagram illustrating the principle of the present invention.
  • the vision inspection apparatus is a vision inspection apparatus for determining an inspection object 15 by using a camera to determine good or bad, and a stage unit 10 for seating an inspection object.
  • the camera unit 20 and 30 are configured to include a lens and an image sensing unit 35 to photograph an image of an inspection object, and an illumination unit (not shown) for providing illumination to the inspection object 15.
  • a vision processor 40 which reads the image photographed by the camera unit to determine whether the inspection object is good or bad, and is perpendicular to a plane on which the inspection object 15 is seated among the camera units 20 and 30.
  • Vision inspection apparatus is installed to perform the vision inspection before moving to the next process through the conveyor of the preceding equipment, when inspecting the surface-mounted parts of the printed circuit board after the work in the surface mounting line.
  • Such a vision inspection apparatus may be installed in a manner that is arranged in a space formed between the conveyor of the line and the trailing equipment, or may be used in the form of a single table without being connected to the line or the trailing equipment.
  • the stage unit 10 is a component for seating the inspection object 15, such as a PCB substrate to be subjected to vision inspection, for example, a robot arm, a transfer roller or a motor and a conveyor belt through the control of the control unit 50.
  • the inspection object 15 conveyed by the conveying means, such as, is seated.
  • the camera units 20 and 30 are configured to photograph two-dimensional shapes and grid shadows of the inspection object, and the side camera 30 is installed at an angle to the inspection object 15 at an angle.
  • the image sensing unit included in the camera units 20 and 30 includes an imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS).
  • an imaging device such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS).
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the lighting unit is configured to illuminate the inspection object 15, and may include a grid unit (not shown) to form a grid-shaped shadow.
  • the lighting unit illuminates the light through the grid unit, and photographs it through the camera units 20 and 30, the grid lines are parallel to each other at the same three-dimensional height on the surface of the inspection object 15. Is taken as.
  • the grid lines are distorted and photographed in a form in which they are shifted from each other. We can calculate the three-dimensional height of).
  • the images photographed by the camera units 20 and 30 are read by the vision processing unit 40 so that the three-dimensional height of the surface of the inspection object 15 is calculated, and the height of the inspection object 15 is previously determined. If it is significantly higher or lower than the stored reference data height, it is determined that the inspection object 15, for example a chip on the PCB substrate, is not correctly mounted.
  • the far side Oa from the side camera 30 is located at a distance farther from the image detection unit 35 of the side camera 30 than the center Oo of the inspection object.
  • the depth of field should be secured by about fa than about the center o of the inspection object 15, and the side Ob close to the side camera 30 from the edge of the inspection object 15 Since it is disposed at a distance closer to the center (Oo) of the inspection object, a depth of approximately ne than that of the center (o) of the inspection object should be secured so that a uniform image of the entire area can be taken.
  • the difference in depth required for accurately photographing both edges of the inspection object is such that the side camera 30 is inclined at a smaller angle with respect to the stage portion on which the inspection object is seated, that is, the vertical camera ( The larger it is from farther away.
  • This phenomenon increases the size of the depth that must be secured in order to capture the entire inspection object, but the camera increases the F value when the depth increases, thereby narrowing down the aperture and consequently shooting a dark image. Degrades.
  • the depth of the image is lowered by lowering the F value of the camera, and the image is made brighter, thereby increasing the resolution of the image, and instead correcting the optical path difference from the image sensing unit to the inspection object, thereby making the entire image more clear. I want to be able to shoot.
  • the depth of the lens is reduced, thereby eliminating the necessity of securing a larger lens required for photographing the entire inspection object.
  • the surface 37 of the image sensing unit 35 in the side camera 30 of the camera unit 20, 30, the center (Oo) and the side camera unit 30 of the inspection object It is installed at a predetermined angle ( ⁇ c) with respect to the plane (Pv) perpendicular to the line connecting the camera lens center Lo in the ().
  • the end Ca of the image sensing unit which is symmetrically disposed at the edge Ob of the inspection object disposed at a closer distance to the lens center Lo, is disposed farther from the lens center Lo
  • the end portion Cb of the image sensing unit symmetrically disposed at the edge Oa of the inspection object disposed at a greater distance from the lens center Lo may be disposed farther from the lens center Lo, thereby detecting the image.
  • the optical path difference of the image photographed by the unit 35 is corrected.
  • a vision inspection device that can be secured can be provided.
  • the center o of the inspection object with respect to the plane on which the inspection object 15 is seated and the center of the camera lens Lo in the side camera part.
  • the surface 37 of the image sensing unit is a plane perpendicular to the line connecting the center o of the inspection object and the camera lens center Lo in the side camera unit. It is installed inclined at a larger angle ⁇ c with respect to Pv).
  • the surface 37 of the image sensing unit is installed at an angle of 2 degrees or more and 20 degrees or less with respect to a plane Pv perpendicular to a line connecting the center of the inspection object and the center of the camera lens in the side camera portion. do.
  • the surface 37 of the image sensing unit means a surface of the side receiving the inspection object 15 in the image pickup device such as the CD or the CMOS to receive the light.
  • the side camera 30 is generally installed at an angle of 30 to 70 degrees with respect to the plane on which the inspection object is seated.
  • the center of the inspection object and the camera in the side camera portion are installed.
  • the surface 37 of the image sensing unit is inclined at 2 degrees or more and 20 degrees or less with respect to the plane Pv perpendicular to the line connecting the lens center.
  • FIG. 3 is an image taken by a conventional vision inspection apparatus in a state in which the depth is increased (increasing the F value)
  • FIG. 4 is a present invention in which the depth of the image is reduced (decreasing the F value) and the image sensing unit is inclined to the same object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)

Abstract

본 발명에 따른 비전검사장치는, 검사대상물을 카메라로 촬영하여 양호 또는 불량을 판별하기 위한 비전검사장치로서, 검사대상물을 안착시키는 스테이지부와, 렌즈와 이미지감지부를 포함하여 구성되되 검사대상물의 영상을 촬영하기 위한 카메라부와, 상기 검사대상물에 조명을 제공하기 위한 조명부와, 상기 카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부를 포함하며, 상기 카메라부 중에서 검사대상물이 안착된 평면에 수직한 선에 대해 기울어져 설치되는 측부카메라 내의 이미지감지부는, 상기 검사대상물의 중심과 상기 측면카메라부 내의 카메라렌즈 중심을 잇는 선에 대해 미리 설정된 각도로 기울어져 설치된다. 본 발명에 의해, 분해능을 높이면서도 검사대상물에 대한 광로차를 보정함으로써, 검사대상물에 대한 정확한 영상의 판독이 가능하다. 또한, 장치의 크기 변함이 없이도 검사대상물의 뚜렷한 측면 영상을 확보할 수 있다.

Description

비전검사장치
본 발명은 비전검사장치에 관한 것으로서, 보다 상세하게는 비전검사장치 내에 포함되는 측부카메라 내의 광감지부를 기울여 배치함으로써, 검사대상물에 대한 광로 차이를 보정할 수 있도록 구성된 비전검사장치에 관한 것이다.
일반적으로, 인쇄회로기판(PCB) 등에 표면실장부품을 조립하는 표면실장기술(SMT; Surface Mounting Technology)은 표면실장부품(SMD; Surface Mounting Device)을 소형화/집적화하는 기술과, 이러한 표면실장부품을 정밀하게 조립하기 위한 정밀조립장비의 개발 및 각종 조립장비를 운용하는 기술을 포함한다.
통상적으로, 표면실장라인은 표면실장기와 비전검사장치와 같은 장비로 구성된다.
상기 표면실장기는 표면실장부품을 인쇄회로기판상에 실장하는 장비로서, 테입(Tape), 스틱(Stick), 트레이(Tray) 형태로 공급되는 각종 표면실장부품을 부품공급기(Feeder)로부터 공급받아 인쇄회로기판 상의 실장위치에 올려놓는 작업을 수행한다.
그리고, 상기 비전검사장치는 표면실장부품의 납땜공정 완료 전 또는 완료 후, 표면실장부품의 실장상태를 검사하며 검사결과에 따라 다음 공정으로 인쇄회로기판을 이송시키게 된다.
이때, 기존의 비전검사방법은 컨베이어를 통해 납땜이 완료된 인쇄회로기판이 수평 이송되면 위치조절장치에서 초기 위치를 조절하고, 조절이 완료된 후 조명등이 인쇄회로기판을 조사하면 카메라가 각 표면실장부품의 납땜 부위를 촬영한다.
이후 비전검사장치는 납땜부위의 촬영 상태를 모니터로 출력하고 연산함으로써, 실장의 양호/불량을 검사하거나, 표면실장부품의 실장 유/무를 검사하게 된다.
통상적으로 비전검사장치에는 격자 형상의 그림자 무늬를 검사대상물 상에 비추어 상기 그림자 무늬의 왜곡된 정도를 감지하여 검사대상물의 입체적 높이를 측정하는 기술이 이용된다.
따라서, 상기 비전검사장치는 검사대상물이 놓여지는 면의 수직 상부에 배치되어 검사대상물의 평면적 영상을 촬영하기 위한 수직카메라와, 검사대상물의 측부에서 경사지게 배치되어 검사대상물에 비친 그림자 무늬의 변형된 형태를 촬영하기 위한 측부카메라를 포함하여 구성된다.
그런데, 검사대상물의 가장자리 중에서 측부카메라로부터 먼쪽은 검사대상물의 중심보다 긴 광경로(Optical Path)를 가지고, 검사대상물의 가장자리 중에서 측부카메라로부터 가까운쪽은 검사대상물의 중심보다 짧은 광경로를 가지게 되어, 상면에서의 이미지 포커싱(Focusing) 위치가 다르게 되고, 이는 검사대상 영역이 넓어 질수록 더 커진다.
이를 해소하기 위해서는 깊은 심도(Depth of focus)가 확보되어야 전체 영역의 영상이 균일하게 촬영이 가능하다.
상기와 같이 검사대상물의 양 가장자리를 정확히 촬영하기 위해 요구되는 심도의 차이는, 상기 측부카메라가 검사대상물이 안착되는 스테이지부에 가까이 배치될 수록, 즉 상기 수직카메라로부터 멀리 배치될 수록 커진다.
이러한 현상은 전체 검사대상물을 촬영하기 위해서는 확보되어야 하는 심도의 크기를 증가시키게 되는데, 카메라는 그 특성 상 심도가 커질 경우 F 값이 상승되어 조리개가 좁혀지고, 결과적으로 어두운 영상을 촬영하게 되므로 분해능이 저하되는 문제점이 있다.
상기와 같이 분해능이 저하될 경우에는, 미세한 패턴 또는 소형 부품의 3차원적 형상을 정확히 판별하는데에 한계가 될 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 검사대상물에 대한 광로차를 보정함으로써 분해능을 높여 정확한 영상의 촬영 및 판독이 가능한 비전검사장치를 제공하는 것이다.
본 발명의 또 다른 목적은, 장치의 크기 변함이 없이도 검사대상물의 정확한 영상을 확보할 수 있도록 구성되는 비전검사장치를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 비전검사장치는, 검사대상물을 카메라로 촬영하여 양호 또는 불량을 판별하기 위한 비전검사장치로서, 검사대상물을 안착시키는 스테이지부와, 렌즈와 이미지감지부를 포함하여 구성되되 검사대상물의 영상을 촬영하기 위한 카메라부와, 상기 검사대상물에 조명을 제공하기 위한 조명부와, 상기 카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부를 포함하며, 상기 카메라부 중에서 검사대상물이 안착된 평면에 수직한 선에 대해 기울어져 설치되는 측부카메라 내의 이미지감지부는, 상기 검사대상물의 중심과 상기 측면카메라부 내의 카메라렌즈 중심을 잇는 선에 대해 미리 설정된 각도로 기울어져 설치된다.
여기서, 상기 카메라렌즈 중심으로부터의 거리가 보다 가까운 측에 배치된 검사대상물의 측단부에 대해서는, 상기 카메라렌즈의 중심(Lo)으로부터 상기 이미지감지부의 측단부가 보다 가깝게 배치되도록 구성될 수 있다.
또한, 상기 검사대상물이 안착된 평면에 대한 상기 검사대상물의 중심과 상기 측부카메라부 내의 카메라렌즈 중심을 잇는 선의 각도가 작아질수록, 상기 이미지감지부는 상기 검사대상물의 중심과 상기 측부카메라부 내의 카메라렌즈 중심을 잇는 선에 대해 보다 큰 각도로 기울어져 설치될 수 있다.
바람직하게는, 상기 이미지감지부는 상기 검사대상물의 중심과 상기 측부카메라부 내의 카메라렌즈 중심을 잇는 선에 대해 2도 이상 20도 이하로 기울어져 설치된다.
본 발명에 의해, 검사대상물에 대한 광로차를 보정함으로써, 분해능을 높여 검사대상물에 대한 정확한 영상의 판독이 가능하다.
또한, 장치의 크기 변함이 없이도 검사대상물의 정확한 영상을 확보할 수 있다.
도 1 은 본 발명에 따른 비전검사장치의 개략도이다.
도 2 는 본 발명의 원리를 설명하는 개념도이다.
도 3 은 종래 비전검사장치에 의해 촬영된 영상의 일 예이다.
도 4 는 본 발명에 따른 비전검사장치에 의해 촬영된 영상의 일 예이다.
이하, 첨부된 도면을 참조하여 본 발명의 구성을 상세히 설명하기로 한다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어는 사전적인 의미로 한정 해석되어서는 아니되며, 발명자는 자신의 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절히 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예 및 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 표현하는 것은 아니므로, 본 출원 시점에 있어 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.
도 1 은 본 발명에 따른 비전검사장치의 개략도이며, 도 2 는 본 발명의 원리를 설명하는 개념도이다.
도 1 및 2 를 참조하면, 본 발명에 따른 비전검사장치는, 검사대상물(15)을 카메라로 촬영하여 양호 또는 불량을 판별하기 위한 비전검사장치로서, 검사대상물을 안착시키는 스테이지부(10)와, 렌즈와 이미지감지부(35)를 포함하여 구성되되 검사대상물의 영상을 촬영하기 위한 카메라부(20, 30)와, 상기 검사대상물(15)에 조명을 제공하기 위한 조명부(미도시)와, 상기 카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부(40)를 포함하며, 상기 카메라부(20, 30) 중에서 검사대상물(15)이 안착된 평면에 수직한 선에 대해 기울어져 설치되는 측부카메라(30) 내의 이미지감지부(35)의 표면(37)은, 상기 검사대상물의 중심(Oo)과 상기 측면카메라부(30) 내의 카메라렌즈 중심(Co)을 잇는 선에 수직한 평면(Pv)에 대해 미리 설정된 각도(θc)로 기울어여 설치된다.
본 발명에 따른 비전검사장치는 표면실장라인에서 작업을 마친 인쇄회로기판의 표면실장부품을 검사할 경우, 선행장비의 컨베이어를 통해 다음 공정으로 이동되기 이전에 비전검사를 실시할 수 있도록 설치된다.
이와 같은 비전검사장치는 선, 후행 장비의 컨베이어와 컨베이어 사이에 형성되는 공간에 배치되는 방식으로 설치되거나, 또는 선, 후행장비와 연계되지 않고 단독 테이블 형태로도 사용될 수 있다.
상기 스테이지부(10)는 비전 검사의 대상이 되는 PCB 기판 등의 검사대상물(15)을 안착시키기 위한 구성으로서, 예를 들어 제어부(50)의 제어를 통한 로봇 암, 이송롤러 또는 모터 및 컨베이어벨트 등의 이송 수단에 의해 이송된 상기 검사대상물(15)이 안착된다.
상기 카메라부(20, 30)는 검사대상물의 2차원적 형상 및 격자 그림자를 촬영하기 위한 구성이며, 측부카메라(30)는 상기 검사대상물(15)에 대해 일정 각도 비스듬히 설치된다.
상기 카메라부(20, 30) 내에 포함되는 이미지감지부는 씨씨디(CCD: Charge Coupled Device) 또는 씨모스(CMOS: Complementary metal-oxide semiconductor)와 같은 촬상소자로 구성된다.
상기 조명부는 상기 검사대상물(15)에 조명을 비추기 위한 구성으로서, 격자 형상의 그림자를 형성하기 위해 격자부(미도시)를 포함하여 구성될 수 있다.
그리하여, 상기 격자부를 통해 조명을 비추어 상기 격자부의 그림자가 상기 검사대상물(15)의 표면에 형성되도록 하고, 이와 같이 형성된 격자부의 그림자를 상기 카메라부(20, 30)를 통해 촬영함으로써. 상기 검사대상물의 3차원적 높이를 측정하게 된다.
상기 조명부가 격자부를 통해 조명을 비추고, 이를 상기 카메라부(20, 30)를 통해 촬영하게 되면, 상기 검사대상물(15)의 표면에서 3차원적 높이가 동일한 부분에서는 격자선이 평행한 일직선의 형태로 촬영된다.
그러나, 상기 검사대상물(15)의 표면에서 3차원적 높이가 서로 다른 부분의 경우, 상기 격자선이 서로 어긋나는 형태로 왜곡되어 촬영되는데, 이러한 왜곡의 정도를 3각함수로 계산하면 검사대상물(15)의 3차원적 높이를 계산할 수 있다.
상기 카메라부(20, 30)에 의해 촬영된 영상은 상기 비전처리부(40)에서 판독되어, 상기 검사대상물(15) 표면의 3차원적 높이가 계산되고, 이러한 검사대상물(15)의 높이가 미리 저장된 기준 데이터 높이보다 현저히 높거나 또는 낮을 경우, 예를 들어 PCB 기판 상의 칩과 같은 검사대상물(15)이 올바르게 장착되지 않은 것으로 판단하게 된다.
그런데, 검사대상물(15)의 가장자리 중에서 측부카메라(30)로부터 먼쪽(Oa)은 상기 측부카메라(30)의 이미지감지부(35)로부터의 거리가 상기 검사대상물의 중심(Oo) 보다 먼 거리에 배치되어있어, 검사대상물(15)의 중심(o)에 대해서 보다는 대략 fa 정도 만큼 더 심도( Depth of field )가 확보되어야 하고, 검사대상물의 가장자리 중에서 측부카메라(30)로부터 가까운쪽(Ob)은 검사대상물의 중심(Oo) 보다 가까운 거리에 배치되어 있어, 검사대상물의 중심(o)에 대해서 보다는 대략 ne 정도 더 심도가 확보되어야 전체영역에 대한 균일한 영상의 촬영 가능하다.
상기와 같이 검사대상물의 양 가장자리를 정확히 촬영하기 위해 요구되는 심도의 차이는 상기 측부카메라(30)가 검사대상물이 안착되는 스테이지부에 대해 보다 작은 각도로 기울여져 배치될 수록, 즉 상기 수직카메라(20)로부터 멀리 배치될 수록 커진다.
이러한 현상은 전체 검사대상물을 촬영하기 위해서는 확보되어야 하는 심도의 크기를 증가시키게 되는데, 카메라는 그 특성 상 심도가 커질 경우 F 값이 상승되어 조리개가 좁혀지고, 결과적으로 어두운 영상을 촬영하게 되므로 분해능이 저하된다.
따라서, 본 발명에서는 카메라의 F 값을 낮추어 심도를 저하시키되, 영상을 보다 밝은 상태로 하여 영상의 분해능을 상승시키고, 대신 이미지감지부로부터 검사대상물까지의 광로 차이를 보정해 줌으로써 전체 영상을 보다 선명하게 촬영할 수 있도록 하고자 한다.
상기와 같이 구성함으로써, 심도를 저하시킴으로써, 전체 검사대상물을 촬영하기 위해 요구되는 보다 큰 렌즈의 확보 필요성이 없어진다.
상기와 같은 목적에 따라, 상기 카메라부(20, 30) 중에서 측부카메라(30) 내의 이미지감지부(35)의 표면(37)은, 상기 검사대상물의 중심(Oo)과 상기 측면카메라부(30) 내의 카메라렌즈 중심(Lo)을 잇는 선에 수직한 평면(Pv)에 대해 미리 설정된 각도(θc)로 기울어져 설치된다.
그리하여, 상기 렌즈 중심(Lo)에 대해 보다 가까운 거리에 배치된 검사대상물의 가장자리(Ob)에 대칭적으로 배치되는 이미지감지부의 단부(Ca)는 상기 렌즈 중심(Lo)으로부터 보다 멀리 배치시키고, 상기 렌즈 중심(Lo)에 대해 보다 먼 거리에 배치되는 검사대상물의 가장자리(Oa)에 대칭적으로 배치되는 이미지감지부의 단부(Cb)는 상기 렌즈 중심(Lo)으로부터 보다 멀리 배치되도록 함으로써, 상기 이미지감지부(35)에 의해 촬영되는 영상의 광로 차이를 보정한다.
그리하여, 상기와 같은 검사대상물의 양단부에 대한 광로 차이를 감소시키기 위해, 측부카메라(30)의 장착 각도를 높이지 않아도 되므로, 전체 장비의 크기는 종래의 비전검사장치 크기와 동일하면서도 보다 선명한 영상을 확보할 수 있는 비전검사장치를 제공할 수 있다.
또한, 상기와 같이 검사대상물의 양 단부에 대한 광로차이를 보상하기 위해, 상기 검사대상물(15)이 안착된 평면에 대한 상기 검사대상물의 중심(o)과 상기 측부카메라부 내의 카메라렌즈 중심(Lo)을 잇는 선의 각도(θo)가 작아질수록, 상기 이미지감지부의 표면(37)은 상기 검사대상물의 중심(o)과 상기 측부카메라부 내의 카메라렌즈 중심(Lo)을 잇는 선에 수직한 평면(Pv)에 대해 보다 큰 각도(θc)로 기울어져 설치된다.
여기서 바람직하게는, 상기 이미지감지부의 표면(37)은 상기 검사대상물의 중심과 상기 측부카메라부 내의 카메라렌즈 중심을 잇는 선에 수직한 평면(Pv)에 대해 2도 이상 20도 이하로 기울어져 설치된다.
상기 이미지감지부의 표면(37)은 씨씨디 또는 씨모스와 같은 촬상소자에서 검사대상물(15)을 대면하여 광을 받아들이는 측의 표면을 의미한다.
비전검사장치 내에서 상기 측부카메라(30)는 상기 검사대상물이 안착된 평면에 대해 통상 30 내지 70 도의 각도로 기울어져 설치되는데, 이러한 설치 상태에 대해서는 상기 검사대상물의 중심과 상기 측부카메라부 내의 카메라렌즈 중심을 잇는 선에 수직한 평면(Pv)에 대해 상기 이미지감지부의 표면(37)이 2도 이상 20도 이하로 기울어져 설치되는 것이 바람직하다.
도 3 은 심도를 크게(F값 높임) 한 상태애서 종래 비전검사장치에 의해 촬영된 영상이며, 도 4 는 동일한 대상에 대해 심도를 작게(F값 낮춤) 하고 이미지감지부를 기울여 설치한 본 발명에 따른 비전검사장치에 의해 촬영된 영상이다.
도 3 과 4 에 도시된 촬영 영상을 비교하면, 본 발명에 따른 비전검사장치에 의해 촬영된 영상이 전체적으로 더욱 밝으면서 선명함을 확인할 수 있다.
이상, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명의 기술적 사상은 이러한 것에 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해, 본 발명의 기술적 사상과 하기 될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 실시가 가능할 것이다.

Claims (4)

  1. 검사대상물을 카메라로 촬영하여 양호 또는 불량을 판별하기 위한 비전검사장치로서,
    검사대상물을 안착시키는 스테이지부와;
    렌즈와 이미지감지부를 포함하여 구성되되 검사대상물의 영상을 촬영하기 위한 카메라부와;
    상기 검사대상물에 조명을 제공하기 위한 조명부와;
    상기 카메라부에서 촬영된 영상을 판독하여 상기 검사대상물의 양호 또는 불량을 판별하는 비전처리부를 포함하며,
    상기 카메라부 중에서 검사대상물이 안착된 평면에 수직한 선에 대해 기울어져 설치되는 측부카메라 내의 이미지감지부의 표면은, 상기 검사대상물의 중심과 상기 측면카메라부 내의 카메라렌즈 중심을 잇는 선에 수직한 평면에 대해 미리 설정된 각도로 기울어져 설치되는 것을 특징으로 하는 비전검사장치.
  2. 제 1 항에 있어서,
    상기 카메라렌즈 중심(Lo)으로부터의 거리가 보다 가까운 측에 배치된 검사대상물의 측단부(Ob)에 대해서는, 상기 카메라렌즈의 중심(Lo)으로부터 상기 이미지감지부의 측단부(Cb)가 보다 가깝게 배치되도록 구성되는 것을 특징으로 하는 비전검사장치.
  3. 제 2 항에 있어서,
    상기 검사대상물이 안착된 평면에 대한 상기 검사대상물의 중심(o)과 상기 측부카메라부 내의 카메라렌즈 중심(Lo)을 잇는 선의 각도(θo)가 작아질수록, 상기 이미지감지부의 표면(37)은 상기 검사대상물의 중심(o)과 상기 측부카메라부 내의 카메라렌즈 중심(Lo)을 잇는 선에 수직한 평면(Pv)에 대해 보다 큰 각도로 기울어져 설치되는 것을 특징으로 하는 비전검사장치.
  4. 제 3 항에 있어서,
    상기 이미지감지부의 표면(37)은 상기 검사대상물의 중심(o)과 상기 측부카메라부 내의 카메라렌즈 중심(Lo)을 잇는 선에 수직한 평면(Pv)에 대해 2도 이상 20도 이하로 기울어져 설치되는 것을 특징으로 하는 비전검사장치.
PCT/KR2011/009851 2010-12-30 2011-12-20 비전검사장치 WO2012091344A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11852270.5A EP2660586A2 (en) 2010-12-30 2011-12-20 Visual inspection apparatus
JP2013547309A JP2014503824A (ja) 2010-12-30 2011-12-20 視覚検査装置
US13/997,441 US20130301904A1 (en) 2010-12-30 2011-12-20 Visual inspection apparatus
CN2011800631766A CN103430013A (zh) 2010-12-30 2011-12-20 目视检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0138460 2010-12-30
KR1020100138460A KR101240947B1 (ko) 2010-12-30 2010-12-30 비전검사장치

Publications (2)

Publication Number Publication Date
WO2012091344A2 true WO2012091344A2 (ko) 2012-07-05
WO2012091344A3 WO2012091344A3 (ko) 2012-09-07

Family

ID=46383639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009851 WO2012091344A2 (ko) 2010-12-30 2011-12-20 비전검사장치

Country Status (6)

Country Link
US (1) US20130301904A1 (ko)
EP (1) EP2660586A2 (ko)
JP (1) JP2014503824A (ko)
KR (1) KR101240947B1 (ko)
CN (1) CN103430013A (ko)
WO (1) WO2012091344A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143862A (zh) * 2013-03-19 2015-12-09 亨内克系统有限责任公司 检测系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083897A2 (en) 2014-11-24 2016-06-02 Kitov Systems Ltd. Automated inspection
ITUB20159510A1 (it) * 2015-12-22 2017-06-22 Sacmi Apparato di ispezione ottica di oggetti
US10600174B2 (en) * 2015-12-29 2020-03-24 Test Research, Inc. Optical inspection apparatus
CN106595516B (zh) * 2016-11-29 2019-11-05 江苏瑞伯特视觉科技股份有限公司 一种基于定焦镜头的大景深结构光测量方法
WO2019044198A1 (ja) * 2017-08-28 2019-03-07 ダイキン工業株式会社 空気調和装置
CN111033135A (zh) * 2017-08-28 2020-04-17 大金工业株式会社 空气处理装置
KR102091014B1 (ko) * 2017-12-27 2020-04-28 선문대학교 산학협력단 머신 비전 장치 및 머신 비전을 이용한 제품 검사 방법
CN108107614A (zh) * 2017-12-28 2018-06-01 深圳市华星光电半导体显示技术有限公司 显示检查方法及显示检查装置
US20200160089A1 (en) * 2018-11-15 2020-05-21 International Business Machines Corporation Visual pattern recognition with selective illumination for assisted inspection
US20230175978A1 (en) * 2020-04-02 2023-06-08 Hitachi High-Tech Corporation Defect inspection apparatus and defect inspection method
JPWO2023012966A1 (ko) * 2021-08-05 2023-02-09
KR102520888B1 (ko) 2022-07-12 2023-04-14 배종옥 인공지능 입체적 비전검사 시스템
KR20240059078A (ko) 2022-10-27 2024-05-07 주식회사 코드기어 인공지능 기반의 불량품 판별 및 분류 자동화 시스템

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085573A (ja) * 1994-06-16 1996-01-12 Sumitomo Kinzoku Ceramics:Kk ワーク表面の検査装置と検査方法
JPH10232114A (ja) 1996-12-20 1998-09-02 Komatsu Ltd 半導体パッケージの端子検査装置
US6160906A (en) * 1998-06-01 2000-12-12 Motorola, Inc. Method and apparatus for visually inspecting an object
IES991081A2 (en) * 1998-12-23 2000-07-26 Mv Res Ltd A measurement system
JP2000193432A (ja) 1998-12-25 2000-07-14 Tani Denki Kogyo Kk 画像認識による計測方法および装置
KR100406843B1 (ko) * 2001-04-06 2003-11-21 (주) 인텍플러스 색정보를 이용한 실시간 3차원 표면형상 측정방법 및 장치
KR100378490B1 (ko) * 2001-04-06 2003-03-29 삼성테크윈 주식회사 씨씨디 카메라의 조명장치
JP2003130801A (ja) * 2001-10-22 2003-05-08 Ushio Inc 蛍光体の検査方法および装置
JP2004109106A (ja) * 2002-07-22 2004-04-08 Fujitsu Ltd 表面欠陥検査方法および表面欠陥検査装置
KR100541449B1 (ko) * 2003-07-23 2006-01-11 삼성전자주식회사 패널검사장치
WO2007095090A2 (en) * 2006-02-10 2007-08-23 Monogen, Inc. Method and apparatus and computer program product for collecting digital image data from microscope media-based specimens
JP2007327896A (ja) * 2006-06-09 2007-12-20 Canon Inc 検査装置
JP4669819B2 (ja) * 2006-06-15 2011-04-13 第一実業ビスウィル株式会社 整列検査システム及び検査用照明装置
JP5252184B2 (ja) * 2008-03-13 2013-07-31 アイシン精機株式会社 凹凸表面検査装置
JP5641386B2 (ja) * 2009-10-16 2014-12-17 株式会社ニコン 表面検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143862A (zh) * 2013-03-19 2015-12-09 亨内克系统有限责任公司 检测系统
CN105143862B (zh) * 2013-03-19 2019-07-09 亨内克系统有限责任公司 检测系统

Also Published As

Publication number Publication date
US20130301904A1 (en) 2013-11-14
CN103430013A (zh) 2013-12-04
KR101240947B1 (ko) 2013-03-18
KR20120076761A (ko) 2012-07-10
WO2012091344A3 (ko) 2012-09-07
JP2014503824A (ja) 2014-02-13
EP2660586A2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2012091344A2 (ko) 비전검사장치
WO2012121558A1 (ko) 영상 선명도가 개선된 비전검사장치
WO2013048093A2 (ko) 비접촉식 부품검사장치 및 부품검사방법
WO2012121556A2 (ko) 다중 격자 무늬를 이용한 비전검사장치
KR101000047B1 (ko) 비전 검사 시스템
KR101105679B1 (ko) 비전검사장치
WO2011087337A2 (ko) 기판 검사장치
WO2009142390A2 (ko) 표면형상 측정장치
CN1573400A (zh) 对准排列相机镜头与传感器方法
WO2012134146A1 (ko) 스테레오 비전과 격자 무늬를 이용한 비전검사장치
CN107110789B (zh) 贴装有部件的基板检查方法及检查装置
WO2013172568A1 (ko) 광조사 각도 조절가능한 조명부를 포함하는 비전검사장치
WO2015026210A1 (ko) 솔더 조인트 검사 방법
KR101099392B1 (ko) 비전검사장치
EP0871027A2 (en) Inspection of print circuit board assembly
WO2012134147A1 (ko) 가시광선의 격자무늬와 비가시광선의 격자 무늬를 이용한 비전검사장치
KR101381836B1 (ko) 영상 선명도가 개선된 비전검사장치
WO2012150782A1 (ko) 편광판과 다중 격자 무늬를 이용한 비전검사장치
WO2012157952A2 (ko) 피시비 기판 검사장치
WO2012134145A1 (ko) 서로 다른 색깔의 다중 격자 무늬를 이용한 비전검사장치
KR101123051B1 (ko) 비전검사장치
WO2013180394A1 (ko) 단일주기격자를 이용한 멀티 모아레 비전검사장치
KR101340336B1 (ko) 비전검사장치
JP3535828B2 (ja) 部品のリード端子及び/又はエッジの位置検出方法および装置
KR20170012911A (ko) Aoi 연동형 틸팅 기판 검사장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852270

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011852270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011852270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13997441

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013547309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE