WO2016200096A1 - 3차원 형상 측정장치 - Google Patents

3차원 형상 측정장치 Download PDF

Info

Publication number
WO2016200096A1
WO2016200096A1 PCT/KR2016/005891 KR2016005891W WO2016200096A1 WO 2016200096 A1 WO2016200096 A1 WO 2016200096A1 KR 2016005891 W KR2016005891 W KR 2016005891W WO 2016200096 A1 WO2016200096 A1 WO 2016200096A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement object
main
grid pattern
pattern
light
Prior art date
Application number
PCT/KR2016/005891
Other languages
English (en)
French (fr)
Inventor
전문영
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to CN201680033600.5A priority Critical patent/CN107735645B/zh
Priority to EP16807737.8A priority patent/EP3306266B1/en
Priority to US15/735,021 priority patent/US10302423B2/en
Publication of WO2016200096A1 publication Critical patent/WO2016200096A1/ko
Priority to US16/369,339 priority patent/US10788318B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's

Definitions

  • the present invention relates to a three-dimensional shape measuring apparatus, and more particularly to a three-dimensional shape measuring apparatus for measuring a three-dimensional shape based on the height of the measurement object.
  • PCB printed circuit board
  • elements of various shapes are mounted on the printed circuit board.
  • a three-dimensional shape measuring device is usually used.
  • the conventional three-dimensional shape measuring apparatus irradiates light to a measurement object such as a printed circuit board using an imaging optical system and captures a reflection image thereof using a camera. Subsequently, the three-dimensional shape based on the height of the measurement object is measured using the photographed reflection image.
  • Imaging optical systems can be made in a variety of configurations. Among them, an optical triangular system, a stereo system and the like can be employed in the imaging optical system.
  • the optical triangular method is currently widely used as a method using a bucket algorithm after obtaining a grid pattern image.
  • this method has a problem in that the height that can be measured is limited by the pitch of the grid generating the pattern image.
  • the stereo system uses a stereo camera. Just as human vision can recognize the perspective of an object by synthesizing information input through two eyes into distance information, a stereo camera can calculate 3D distance information by capturing images from two cameras.
  • the three-dimensional shape may be measured using two or more images acquired by photographing at different positions. Specifically, in the two images of the texture of the measurement object in the real space, by using the geometric structure based on the texture to obtain the position information in the real space of the texture of the measurement object, Three-dimensional shape can be measured.
  • the three-dimensional shape of the measurement object may be measured based on the texture.
  • a geometric structure is used based on the texture of the measurement object. Since this is impossible, the stereo system has an impossible problem.
  • the problem to be solved by the present invention is to provide a three-dimensional shape measuring apparatus capable of measuring the three-dimensional shape of the measurement object in a stereo method even when there is no texture or obvious.
  • the apparatus for measuring a three dimensional shape includes a plurality of main pattern lighting units, a plurality of main imaging units, and a controller.
  • the main pattern lighting units irradiate the grid pattern light inclined in different directions toward the measurement object.
  • the main image capturing units receive the reflected light of the grid pattern light that is irradiated to the measurement object from the main pattern lighting units and is reflected obliquely by the measurement object to obtain a grid pattern image of the measurement object.
  • the controller calculates height data of the measurement object using grid pattern images of the measurement object, or calculates height data of the measurement object using image formation positions of plane images of the measurement object and texture information of the measurement object.
  • the height data of the measurement object is calculated by using the grid pattern irradiated to the measurement object as the texture information.
  • the lighting apparatus may further include an illumination unit configured to irradiate light toward the measurement object, and the plurality of main imaging units may receive the reflected light of the light reflected from the illumination unit to the measurement object to reflect the light.
  • a plane image can be obtained.
  • the planar images of the measurement object may be photographed without grid pattern light or obtained by averaging the grid pattern images.
  • the controller may calculate height data of the measurement object by using the grid pattern as the texture information.
  • the control unit calculates height data of the measurement object using the grid pattern images of the measurement object below the reference height, and the imaging position of the planar images of the measurement object above the reference height.
  • Height data of the measurement object may be calculated using texture information of the measurement object.
  • the reference height may be equal to or less than a measurable height according to the grid pattern light of the main pattern lights.
  • at least two main pattern lighting units of the main pattern lighting units may generate grating pattern light having different equivalent wavelengths, including gratings having different grating pitches, and the reference height is equal to the different equivalent wavelengths. It can be less than the integrated measurable height.
  • the three-dimensional shape measuring apparatus is disposed above the measurement object, further comprising a top pattern lighting unit for irradiating the grid pattern light vertically toward the measurement object.
  • the three-dimensional shape measuring device is disposed above the measurement object, the grid pattern light is provided with the reflected light of the grid pattern light reflected vertically by the measurement object grid pattern image of the measurement object It may further include a tower image pickup unit to obtain a.
  • the controller may calculate the height data of the measurement target by using the grid pattern image acquired between the top image capturing unit and each main image capturing unit.
  • the main pattern lighting units may be spaced apart from each other along the circumferential direction around the measurement object, and the main imaging units may be spaced apart from each other along the circumferential direction around the measurement object.
  • the main pattern lighting units and the main imaging unit may form a pair and may be disposed to correspond to each other.
  • a three-dimensional shape measuring apparatus includes a plurality of main pattern lighting units, a plurality of main imaging units, and a controller.
  • the main pattern lighting units irradiate the grid pattern light inclined in different directions toward the measurement object.
  • the main image capturing units receive the reflected light of the grid pattern light that is irradiated to the measurement object from the main pattern lighting units and is reflected obliquely by the measurement object to obtain a grid pattern image of the measurement object.
  • the controller may further include a first method of calculating height data of the measurement object using grid pattern images of the measurement object, an image forming position of the planar images of the measurement object, and a height of the measurement object using texture information of the measurement object.
  • a second method of calculating data and a third method of calculating height data of the measurement object using a grid pattern irradiated to the measurement object as the texture information of the measurement object are selectively applied to obtain the height data of the measurement object. Calculate.
  • the controller may determine whether to apply at least one of the first method, the second method, and the third method.
  • the optical triangulation method and the stereo measurement method is used both or selectively, if the texture information of the measurement object is difficult to utilize the grid pattern irradiated to the measurement object By using as the texture information, it is possible to measure the three-dimensional shape more easily and accurately.
  • the height data is calculated using the optical triangular measurement method for the lower than the reference height, and the height data is calculated using the stereo measurement method for the reference height or more. You can extend the range of heights possible, while maintaining measurement accuracy at lower heights.
  • FIG. 1 is a front view schematically showing a three-dimensional shape measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the three-dimensional shape measuring apparatus shown in FIG.
  • FIG. 3 is a conceptual diagram illustrating a process of measuring a 3D shape by a controller of the 3D shape measuring apparatus of FIG. 1 using a stereo method.
  • FIG. 4 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • FIG. 5 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • FIG. 6 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • FIG. 7 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a front view schematically showing a three-dimensional shape measuring apparatus according to an embodiment of the present invention
  • Figure 2 is a plan view of the three-dimensional shape measuring apparatus shown in FIG.
  • a three-dimensional shape measuring apparatus 100 includes a plurality of main pattern lighting units 110a, a plurality of main imaging units 120a, and a controller 130. And the like.
  • the main pattern lighting units 110a irradiate the grid pattern light PL inclined in different directions toward the measurement object 10. That is, the main pattern lighting units 110a may be inclined to irradiate the grid pattern light PL for acquiring three-dimensional shape information of the measurement object 10 with respect to a normal line perpendicular to the plane of the measurement object 10. Can be.
  • the measurement object 10 may include solder or a component formed on a substrate 20 such as a printed circuit board (PCB).
  • the substrate 20 may be disposed on and supported by a stage 30.
  • the stage 30 may transfer the measurement object 10 to a measurement position by a transfer device (not shown).
  • the main pattern lighting units 110a may irradiate the grid patterned light PL N times toward the measurement object 10, and use the grid transfer mechanism to irradiate the grid shifted phase light.
  • the grid pattern may be transferred N times using the pattern image of the liquid crystal display.
  • the main imaging unit 120a which will be described later, may acquire grid pattern images according to the grid pattern lights PL irradiated as described above.
  • each of the main pattern lighting units 110a may include a light source 112, a grating 114, a grating transfer device 116, and a projection lens unit 118.
  • the light source 112 irradiates light toward the measurement object 10.
  • the grating 114 converts the light irradiated from the light source 112 into the grating pattern light PL.
  • the grating 114 transfers N times by 2 ⁇ / N through a grating transfer mechanism 116 such as, for example, a piezo actuator (PZT) to generate a phase shifted grating patterned light PL.
  • PZT piezo actuator
  • the projection lens unit 118 projects the grating pattern light PL generated by the grating 114 onto the measurement object 10.
  • the projection lens unit 118 may be formed of, for example, a plurality of lens combinations, and focuses the grating pattern light PL formed through the grating 114 to project the light to the measurement object 10. Therefore, each main pattern lighting unit 110 irradiates the grid pattern light PL to the measurement object 10 every time the grid 114 is transferred N times.
  • the three-dimensional shape measuring apparatus 100 may be provided with four main pattern lighting unit (110a), the four main pattern lighting unit (110a) is the measurement When the object 10 is viewed in a plan view, the object 10 may be spaced apart from each other in the circumferential direction, or may be disposed at each vertex of the polygon about the object 10.
  • the main pattern lighting units 110a may be provided with m (m is a natural number of two or more), and for example, two, four, or eight may be provided in various numbers.
  • the main image capturing units 120a receive the reflected light RL of the grid pattern light that is irradiated from the main pattern lighting units 110a to the measurement object 10 and is obliquely reflected by the measurement object 10. Obtain the grid pattern image (10).
  • each of the main imaging units 120a may include a camera 122 and an imaging lens 124.
  • the camera 122 may employ a CCD or CMOS camera.
  • the reflected light RL of the grid pattern light reflected from the measurement object 10 may be imaged by the imaging lens 124 and captured by the camera 122.
  • the 3D shape measuring apparatus 100 may include four main imaging units 120a as shown in FIG. 2, and the four main imaging units 120a may measure the measurement.
  • the object 10 When the object 10 is viewed in a plan view, the object 10 may be spaced apart from each other in the circumferential direction, or may be disposed at each vertex of the polygon about the object 10.
  • the main image capturing units 110a may be provided with n (n is a natural number of 2 or more), and may be provided with various numbers such as 2, 4, or 8, for example.
  • the main pattern lighting units 110a and the main imaging unit 120a may be alternately arranged with each other, as shown in FIG. 2.
  • the four main pattern lighting units 110a and the four main imaging units 120a are alternately positioned at eight divisions around the circumference when the measurement object 10 is planarly observed. It may be arranged at equal intervals.
  • the main pattern lighting units 110a and the main imaging unit 120a are shown to be disposed along the circumference of the same circle when viewed in plan, but the main pattern lighting units 110a and the It is apparent that the main imaging units 120a may be arranged along the circumference of circles of different radiuses, respectively.
  • the main pattern lighting units 110a and the main imaging unit 120a are alternately disposed, the main pattern lighting units 110a are generated by the grid pattern lights PL generated from the main pattern lighting units 110a.
  • the grid pattern images may be captured sequentially or simultaneously by all of the main imaging units 120a.
  • the main pattern lighting unit 110a and the main imaging unit 120a employs optical path changing elements such as a mirror, if necessary, so that the actual arrangement position is configured as described above even though the actual arrangement position is slightly different. can do.
  • the controller 130 calculates height data of the measurement object 10.
  • the controller 130 may calculate height data of the measurement object 10 by using grid pattern images of the measurement object 10 captured by the main imaging units 120a. That is, the controller 130 may calculate the height data of the measurement object 10 by using the optical triangulation method. For example, the controller 130 may apply, for example, a known bucket algorithm to the grid pattern images captured by the main imaging units 120a to apply the height of the measurement object 10. Data can be obtained.
  • the controller 130 may calculate the height data of the measurement object 10 by using the imaging position of the planar images of the measurement object 10 and the texture information of the measurement object 10. That is, the controller 130 may calculate the height data of the measurement object 10 by using a stereo method.
  • FIG. 3 is a conceptual diagram illustrating a process of measuring a 3D shape by a controller of the 3D shape measuring apparatus of FIG. 1 using a stereo method.
  • the measurement object 10 applies a trigonometric technique to an image forming position of the measurement object 10 based on images acquired from at least two imaging units 120a, thereby measuring the measurement object ( Height data of 20) can be obtained.
  • the imaging lenses 124 are disposed at a predetermined distance B, and the imaging elements of the cameras 122 are formed based on the central axis CA of the imaging lenses 124.
  • the distances D1 and D2 formed in the 122a) are measured.
  • the focal length of the imaging lens 124 is f, the relationship between them satisfies Equation (1).
  • the controller 130 may obtain the height data of the measurement object 10 from the planar images of the measurement object 10 by using a stereo method.
  • At least two plane images photographed at different positions as described above may find a matching point representing the same point in real space using the texture information of the measurement object 10.
  • the grid pattern irradiated to the measurement object 10 may be used as the texture information.
  • the texture information cannot be obtained.
  • the grid pattern irradiated to the measurement object 10 is used as the texture information. Can be.
  • the height information of the measurement object 10 may be obtained by applying the texture information to a stereo method, and texture information may be applied to the measurement object 10. If not, the height data of the measurement object 10 may be obtained by applying a stereo method by using the grid pattern irradiated to the measurement object 10 as the texture information.
  • the grid pattern irradiated to the measurement object 10 may be used as the texture information.
  • the planar image of the measurement object 10 may be obtained in the unit of the filed view of the main imaging unit 120a, when there is no texture information in only a part of the view range of the measurement object 10. The grid pattern irradiated to the measurement object 10 with respect to the corresponding viewing range may be used as the texture information.
  • the three-dimensional shape measuring apparatus 100 may further include an illumination unit 140 for obtaining a two-dimensional planar image of the measurement object 10.
  • the lighting unit 140 is disposed on the substrate 20 and irradiates light L toward the measurement object 10.
  • the lighting unit 140 may include a plurality of lighting units 142 arranged in a circle with respect to a central axis passing through the center of the measurement object 10 when viewed in a plane.
  • the lighting unit 140 may irradiate a plurality of different color lights at different inclination angles, and LED lights may be continuously arranged to have a ring shape, respectively, to generate a single color light.
  • the main imaging units 120a may receive the reflected light RL of the light reflected from the illumination unit 140 to the measurement object 10 to obtain a planar image of the measurement object 10.
  • the controller 130 may obtain the height data of the measurement object 10 by using a stereo method from the planar images of the measurement object 10 obtained as described above.
  • planar images of the measurement object 10 may be obtained by averaging the grid pattern images.
  • N grid pattern images are obtained by the grid pattern light PL generated in any one of the main pattern lighting units 110a, and the brightness values of the N grid pattern images are added to each pixel to N.
  • a planar image of the measurement object 10 having an average value of brightness values of each pixel may be obtained.
  • the controller 130 may calculate height data of the measurement object 10 by using grid pattern images of the measurement object 10 captured by the main imaging units 120a. In this case, since the reflected light RLs of the grid pattern lights PL generated by the m main pattern lighting units 110a are respectively captured by the n main imaging units 120a, the height data of the measurement object 10 is measured. M x n can be calculated. In addition, the controller 130 may calculate height data of the measurement object 10 by using the imaging position of the planar images of the measurement object 10 and the texture information of the measurement object 10. Since the stereo method may be applied using the planar images acquired by the two imaging units 120a among the n main imaging units 120a, the height data of the measurement object 10 is n (n-1). ) / 2 can be calculated.
  • the control unit 130 is a first method for calculating the height data of the measurement object 10 by using the grid pattern images of the measurement object 10, the imaging position of the planar images of the measurement object 10 and The second method of calculating the height data of the measurement object using the texture information of the measurement object 10 and the grid pattern irradiated to the measurement object 10 by using as the texture information of the measurement object 10
  • the height data of the measurement object 10 may be calculated by selectively applying a third method of calculating the height data of the measurement object 10.
  • the controller 130 may determine which of the first method, the second method, and the third method to apply, and may determine to apply two or more of the methods.
  • the controller 130 selects only a highly reliable image or an image pixel among the grid pattern images captured by the main image capturing units 120a and merges the height data of the measurement target 10. Can be obtained.
  • the reliability may include brightness, visibility, signal-to-noise ratio (SNR), a measurement range ⁇ corresponding to the grating pitch of each of the grating pattern lights PL, and the main imaging unit. It may include at least one of relative position information between the 120a and each of the main pattern lighting units 110a.
  • SNR signal-to-noise ratio
  • a shadow area and a saturation area may occur according to the position of the measurement object 10 in the captured grid pattern image.
  • the shadow area and the saturation area are areas of low reliability and may be excluded when acquiring height data of the measurement object 10.
  • the shadow area may be defined as an area in which the average brightness is below the reference brightness value and the visibility or SNR is below the reference value
  • the saturation area is an area in which the average brightness is above the reference brightness value and the visibility or SNR is below the reference value. It can be defined as.
  • the remaining area except the shadow area and the saturation area may be defined as an unsaturated area, and the unsaturated area may be included when acquiring height data of the measurement object 10 as a highly reliable area.
  • the shadow area and the saturation area may be generated differently according to the relative position between the main image capturing unit 120a and the main pattern lighting unit 110a.
  • two main pattern lighting units 110a adjacent to one main imaging unit 120a and two main pattern lighting units 110a not adjacent to each other generate different shadow areas and saturation areas. Therefore, the reliability may be set based on the relative position information between the main imaging unit 120a and the main pattern lighting unit 110a.
  • the grid pitch of the main pattern lighting units 110a may determine a measurement range, that is, a measurable height
  • reliability of height data may vary according to the height of the measurement object 10. Therefore, the reliability can be set based on the grid pitch and the height information of the measurement object 10.
  • control unit 130 may calculate the height data by setting a reference height and dualizing the reference height.
  • the controller 130 calculates height data of the measurement object using grid pattern images of the measurement object 10 below the reference height, and measures the measurement object 10 above the reference height.
  • Height data of the measurement object may be calculated by using the imaging position of the planar images and texture information of the measurement object.
  • the reference height may be equal to or less than a measurable height according to the grid pattern light PL of the main pattern lighting units 110a.
  • the measurable height according to the grid pattern light PL refers to a height at which the measurement is defined by the grid pitch generating the grid pattern light.
  • the main pattern lighting units 110a When the main pattern lighting units 110a employ multiple wavelengths, at least one of the main pattern lighting units 110a has a different lattice pitch, or two or more different lattice pitches in one main pattern lighting unit 110a. It can have for example, at least two main pattern lighting units 110a of the main pattern lighting units 110a may include grids 114 having different grid pitches to form grid pattern light PLs having different equivalent wavelengths. In this case, the reference height may be set below the integrated measurable height by the different equivalent wavelengths.
  • the height of the measurement object 10 is obtained by a height measuring method of a stereo method having a wide range of measurable heights at a height higher than the reference height.
  • the height of the measurement object 10 may be obtained by the optical triangular height measuring method with high accuracy.
  • the controller 130 may be a device capable of performing the above-described image processing, shape information processing and calculation, and may include, for example, a computer.
  • the controller 130 may control operations of the above components, that is, the main pattern lighting units 110a and the main imaging unit 120a.
  • the controller 130 controls any one of the main pattern lighting unit 110a so that the main imaging unit 120a controls the main pattern lighting unit 110a while the grid pattern light PL is projected onto the measurement object 10. It can control so that imaging may be carried out simultaneously. Alternatively, the controller 130 may control to capture the grid pattern light PL projected on the measurement object 10 only in the main imaging unit 120a which is not adjacent to any one of the main pattern lighting units 110a. have.
  • each of the main imaging unit 120a captures a grid pattern image in a state inclined at a predetermined angle in a direction perpendicular to the measurement object 10, when the image is captured from the vertical perpendicular to the measurement object 10. Some distortion may occur in comparison with this. Therefore, the controller 130 acquires a two-dimensional image or a three-dimensional image captured from the upper side in advance based on a normal perpendicular to the plane of the measurement object 10, and then uses the measurement object 10. Correction of the image pickup distortion can be performed.
  • the previously acquired image may be acquired with respect to the measurement object 10 or a predetermined specimen.
  • FIG. 4 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • the three-dimensional shape measuring apparatus 101 may refer to a plurality of main pattern lighting units 110a, a plurality of main imaging units 120a, and a controller 130 (FIG. 1). ) And a plurality of beam splitters (not shown).
  • the three-dimensional shape measuring apparatus 101 includes the three-dimensional shape shown in FIGS. 1 and 2 except that the main pattern lighting units 110a and the main imaging unit 120a include the arrangement state and the beam separation units. Since it is substantially the same as the shape measuring apparatus 100, the overlapping detailed description is abbreviate
  • the main pattern lighting units 110a and the main imaging unit 120a are spaced apart from each other along the circumferential direction with respect to the measurement object 10 or the measurement object 10.
  • the main pattern lighting units 110a and the main imaging unit 120a may be disposed to correspond to each other. Therefore, as shown in FIG. 4, the main pattern lighting unit 110a and the main imaging unit 120a disposed corresponding to each other form a pair.
  • the 3D shape measuring apparatus 101 may include a beam splitter (not shown), for example, a beam splitter.
  • the beam splitter is disposed to correspond to the main pattern lighting unit 110a and the main imaging unit 120a forming a pair, and the grid pattern light PL generated from the main pattern lighting unit 110a is measured by the measurement target 10. ), And the reflected light RL irradiated and reflected from the main pattern lighting units 110a is separated and reflected to the main imaging unit 120a.
  • the three-dimensional shape measuring apparatus 101 is formed to correspond to each other with the main pattern lighting unit 110a, the main image capturing unit 120a, and the beam separation unit, a more compact device arrangement and the measurement object 10 may be provided. It can enable more effective three-dimensional shape measurement for.
  • the reflected light RL of the grid pattern light PL irradiated by any one of the main pattern lighting units 110a may be picked up by all the main imaging units 120a or the one of the main pattern lighting units 110a. ) May be photographed except for the main imaging unit 120a forming a pair.
  • the grid pattern image captured by the main image capturing unit 120a forming the pair may be excluded when calculating the height data.
  • the operation control and calculation control of the main imaging unit 120a may be performed by the controller 130.
  • FIG. 5 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • the three-dimensional shape measuring apparatus 102 may include a plurality of main pattern lighting units 110a, a plurality of main imaging units 120a, and a controller 130 (FIG. 1). Reference) and the top pattern lighting unit 110b. Since the three-dimensional shape measuring device 102 is substantially the same as the three-dimensional shape measuring device 100 shown in FIGS. 1 and 2 except that the top pattern lighting unit 110b is included, the detailed description thereof will be repeated. Omit.
  • the top pattern lighting unit 110b is disposed above the measurement object 10 (see FIG. 1) and irradiates the grid pattern light PL (see FIG. 1) vertically toward the measurement object 10.
  • the grid patterned light PL by the top pattern lighting unit 110b may be simultaneously captured by the main imaging units 120a after being reflected by the measurement object 10.
  • the top pattern lighting unit 110b may be configured as described above, even if the actual placement position is slightly different by employing optical path changing elements such as a mirror as necessary.
  • the three-dimensional shape measuring apparatus 102 includes the top pattern lighting unit 110b, by providing the grid pattern light PL perpendicular to the measurement object 10, the three-dimensional shape measuring device 102 is more suitable for the measurement object 10. Precise three-dimensional shape measurement may be possible.
  • FIG. 6 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • the three-dimensional shape measuring apparatus 103 may include a plurality of main pattern lighting units 110a, a plurality of main imaging units 120a, and a controller 130 (FIG. 1). Reference), the top pattern lighting unit 110b and the top image capturing unit 120b. Since the three-dimensional shape measuring device 103 is substantially the same as the three-dimensional shape measuring device 102 shown in FIG. 5 except for including the top imaging unit 120b, detailed descriptions thereof will be omitted.
  • the top image capturing unit 120b is disposed above the measurement object 10 (refer to FIG. 1), and emits grid pattern light emitted from at least one of the main pattern lighting units 110a and the top pattern lighting unit 110b.
  • PL see FIG. 1
  • the top image capturing unit 120b may capture a 2D planar image that is irradiated from the lighting unit 140 and vertically reflected by the measurement object 10. It may be.
  • the top image capturing unit 120b captures the grid pattern light PL emitted from the top pattern lighting unit 110b and averages the captured grid pattern images to generate a two-dimensional planar image from which the grid pattern is removed.
  • the light emitting unit 140 may capture a two-dimensional plane image which is irradiated from the illumination unit 140 and is vertically reflected by the measurement object 10. Accordingly, two-dimensional inspection of the measurement object 10 may be performed on the basis of at least one two-dimensional plane image generated or imaged as described above, and the measurement objects captured by the main imaging units 120a ( The imaging distortion of 10) can be easily corrected.
  • the three-dimensional shape measuring apparatus 103 may include a beam splitter (not shown), for example, a beam splitter, and the beam splitter includes the grid pattern light PL generated from the top pattern lighting unit 110b. ) Is transmitted toward the measurement object 10, and at least one of the reflected light beams RL irradiated and reflected from the plurality of main pattern lighting units 110a and the top pattern lighting unit 110b may be used. 120b).
  • a beam splitter (not shown), for example, a beam splitter, and the beam splitter includes the grid pattern light PL generated from the top pattern lighting unit 110b. ) Is transmitted toward the measurement object 10, and at least one of the reflected light beams RL irradiated and reflected from the plurality of main pattern lighting units 110a and the top pattern lighting unit 110b may be used. 120b).
  • the top imaging unit 120b may be configured as described above by employing optical path changing elements such as a mirror, if necessary, even if the actual placement position is slightly different.
  • the top image capturing unit 120b and the top pattern lighting unit 110b are simultaneously described, but only the top image capturing unit 120b is provided and the top pattern lighting unit 110b is not provided. It may be.
  • the three-dimensional shape measuring apparatus 103 may receive a grid pattern light PL that is vertically reflected to enable more accurate three-dimensional shape measurement on the measurement object 10. have.
  • the main / top lighting unit and the main / top imaging unit can be selectively picked by the field of view (FOV) of the imager, the measurement position, or the height of the measurement object, or a highly accurate image can be selected from the captured image.
  • the dimensional shape can be calculated.
  • FIG. 7 is a plan view of a three-dimensional shape measuring apparatus according to another embodiment of the present invention.
  • the three-dimensional shape measuring apparatus 104 includes a plurality of main pattern lighting units 110a, a plurality of main imaging units 120a, and a controller 130 (FIG. 1). Reference), a top pattern lighting unit 110b, a top imaging unit 120b, and a plurality of beam splitters (not shown).
  • the three-dimensional shape measuring apparatus 104 is shown in FIG. 6 except that the main pattern lighting units 110a, the main imaging unit 120a, and the beam splitters are arranged to correspond to each other as shown in FIG. Since it is substantially the same as the three-dimensional shape measuring apparatus 103 shown, overlapping detailed description is omitted.
  • the three-dimensional shape measuring device 104 employs the arrangement of the top pattern lighting unit 110b and the top image pickup unit 120b shown in FIG. 6, and the main pattern lighting units 110a shown in FIG. The arrangement of the main imaging units 120a is adopted.
  • the pattern lighting units and the imaging units may be included as much as possible, more accurate three-dimensional shape measurement of the measurement object 10 (refer to FIG. 1) may be possible.
  • the main / top lighting units and the main / top imaging units arranged for acquiring the height data of the measurement object 10 may be modified to apply the optical triangular or stereo method. Selection and combination may be possible. For example, an optical triangular method may be applied by a combination of main lighting units or a combination of a main lighting unit and a top lighting unit, and a combination of main / top imaging units that image pattern light of the lighting units separately from the combination of the lighting units. It is also possible to apply the optical triangular method. It is also possible to apply the stereo system by a combination of the main imaging units or a combination of the main imaging unit and the top imaging unit. Such selection and combination may be based on various factors such as the field of view (FOV) of the imaging unit, the measurement position, the height of the measurement object, and the reliability of the captured image.
  • FOV field of view
  • the present invention in measuring the three-dimensional shape of the measurement object, all or selectively using the optical triangulation method and stereo measurement method, if it is difficult to use the texture information of the measurement object irradiated to the measurement object By using the obtained grid pattern as texture information, the three-dimensional shape can be measured more easily and accurately.
  • the height data is calculated using the optical triangular measurement method for the lower than the reference height, and the height data is calculated using the stereo measurement method for the reference height or more. You can extend the range of heights possible, while maintaining measurement accuracy at lower heights.

Abstract

3차원 형상 측정장치는 메인 패턴조명부들, 메인 촬상부들 및 제어부를 포함한다. 메인 패턴조명부들은 측정대상물을 향하여 서로 다른 방향에서 경사지게 격자패턴광을 조사한다. 메인 촬상부들은 메인 패턴조명부들로부터 측정대상물로 조사되어 측정대상물에 의해 경사지게 반사된 격자패턴광의 반사광을 제공받아서 측정대상물의 격자패턴이미지를 획득한다. 제어부는 측정대상물의 격자패턴이미지들을 이용하여 측정대상물의 높이 데이터를 산출하거나, 측정대상물의 평면이미지들의 결상 위치 및 측정대상물의 텍스처 정보를 이용하여 측정대상물의 높이 데이터를 산출하되 측정대상물에 조사된 격자패턴을 텍스처 정보로 활용하여 측정대상물의 높이 데이터를 산출한다. 이에 따라, 보다 용이하고 정확하게 3차원 형상을 측정할 수 있다.

Description

3차원 형상 측정장치
본 발명은 3차원 형상 측정장치에 관한 것으로, 더욱 상세하게는 측정대상물의 높이에 기반한 3차원 형상을 측정하는 3차원 형상 측정장치에 관한 것이다.
일반적으로, 전자장치 내에는 적어도 하나의 인쇄회로기판(printed circuit board; PCB)이 구비되며, 이러한 인쇄회로기판 상에는 다양한 형상의 소자들이 실장되어 있다. 이러한 소자들의 불량 등을 검사하기 위하여, 보통 3차원 형상 측정장치가 사용된다.
종래의 3차원 형상 측정장치는 결상 광학 시스템을 이용하여 인쇄회로기판과 같은 측정대상물에 광을 조사하고 이에 대한 반사 이미지를 카메라를 이용하여 촬상한다. 이어서, 촬상된 상기 반사 이미지를 이용하여 측정대상물의 높이에 기반한 3차원 형상을 측정한다.
종래의 결상 광학 시스템은 다양한 구성으로 이루어질 수 있다. 그 중에서, 광 삼각 방식, 스테레오 방식 등이 결상 광학 시스템에 채용될 수 있다.
상기 광 삼각 방식은 격자패턴이미지를 획득한 후 버켓 알고리즘(bucket algorithm)과 같은 방법을 이용하는 방식으로 현재 널리 활용되고 있다. 그러나, 이 방식은 패턴이미지를 생성하는 격자의 피치(pitch)에 의하여 측정이 가능한 높이가 제한되는 문제점이 있다.
상기 스테레오 방식은 스테레오 카메라를 이용한다. 사람의 시각이 두 눈을 통해 입력되는 정보를 거리정보로 합성함으로써 사물의 원근을 인지할 수 있는 것처럼, 스테레오 카메라도 두 개의 카메라로부터 영상을 촬영하여 3차원 거리정보를 산출할 수 있다.
즉, 상이한 위치에서 촬영하여 획득된 두 장 이상의 영상을 이용하여 3차원 형상을 측정할 수 있다. 구체적으로, 실제 공간상의 측정대상물의 텍스처(texture)를 촬영한 두 영상에서, 상기 텍스처를 기초로 기하학적 구조를 이용하여 상기 측정대상물의 텍스처의 실제 공간에서의 위치정보를 획득함으로써, 상기 측정대상물의 3차원 형상을 측정할 수 있다.
이와 같이 상기 측정대상물이 텍스처를 갖는 경우에는, 상기 텍스처를 기초로 상기 측정대상물의 3차원 형상을 측정할 수 있지만, 상기 측정대상물의 표면이 매끈한 경우 상기 측정대상물의 텍스처를 기초로 기하학적 구조를 이용하는 것이 불가능하므로, 상기 스테레오 방식은 불가능한 문제점이 있다.
따라서, 본 발명이 해결하고자 하는 과제는 텍스처가 없거나 분명하지 않은 경우에도 스테레오 방식으로 측정대상물의 3차원 형상을 측정할 수 있는 3차원 형상 측정장치를 제공하는 것이다.
본 발명의 예시적인 일 실시예에 따른 3차원 형상 측정장치는 복수의 메인 패턴조명부들, 복수의 메인 촬상부들 및 제어부를 포함한다. 상기 메인 패턴조명부들은 측정대상물을 향하여 서로 다른 방향에서 경사지게 격자패턴광을 조사한다. 상기 메인 촬상부들은 상기 메인 패턴조명부들로부터 상기 측정대상물로 조사되어 상기 측정대상물에 의해 경사지게 반사된 격자패턴광의 반사광을 제공받아서 상기 측정대상물의 격자패턴이미지를 획득한다. 상기 제어부는 상기 측정대상물의 격자패턴이미지들을 이용하여 상기 측정대상물의 높이 데이터를 산출하거나, 상기 측정대상물의 평면이미지들의 결상 위치 및 상기 측정대상물의 텍스처 정보를 이용하여 상기 측정대상물의 높이 데이터를 산출하되 상기 측정대상물에 조사된 격자패턴을 상기 텍스처 정보로 활용하여 상기 측정대상물의 높이 데이터를 산출한다.
일 실시예로, 상기 측정대상물을 향하여 광을 조사하는 조명부를 더 포함할 수 있고, 상기 복수의 메인 촬상부들은 상기 조명부로부터 상기 측정대상물로 조사되어 반사된 상기 광의 반사광을 제공받아서 상기 측정대상물의 평면이미지를 획득할 수 있다.
일 실시예로, 상기 측정대상물의 평면이미지들은 격자패턴광 없이 촬상되거나 상기 격자패턴이미지들을 평균하여 획득될 수 있다.
일 실시예로, 상기 제어부는, 상기 측정대상물의 텍스처 정보가 없는 경우에 상기 격자패턴을 상기 텍스처 정보로 활용하여 상기 측정대상물의 높이 데이터를 산출할 수 있다.
일 실시예로, 상기 제어부는, 기준높이 미만에 대하여는 상기 측정대상물의 격자패턴이미지들을 이용하여 상기 측정대상물의 높이 데이터를 산출하고, 상기 기준높이 이상에 대하여는 상기 측정대상물의 평면이미지들의 결상 위치 및 상기 측정대상물의 텍스처 정보를 이용하여 상기 측정대상물의 높이 데이터를 산출할 수 있다. 예를 들면, 상기 기준높이는 상기 메인 패턴조명부들의 격자패턴광에 따른 측정가능높이 이하일 수 있다. 한편, 상기 메인 패턴조명부들 중 적어도 2개의 메인 패턴조명부들은 서로 다른 격자피치를 갖는 격자를 포함하여 각각 서로 다른 등가파장을 갖는 격자패턴광을 발생시킬 수 있고, 상기 기준높이는 상기 서로 다른 등가파장에 의한 통합측정가능높이 이하일 수 있다.
일 실시예로, 상기 측정대상물의 상방에 배치되며, 격자패턴광을 상기 측정대상물을 향하여 수직으로 조사하는 탑 패턴조명부를 더 포함하는 것을 특징으로 하는 3차원 형상 측정장치.
일 실시예로, 상기 3차원 형상 측정장치는, 상기 측정대상물의 상방에 배치되며, 상기 격자패턴광이 상기 측정대상물에 의해 수직으로 반사된 격자패턴광의 반사광을 제공받아서 상기 측정대상물의 격자패턴이미지를 획득하는 탑 촬상부를 더 포함할 수 있다. 상기 제어부는, 상기 탑 촬상부와 각각의 메인 촬상부 간에 획득된 격자패턴이미지를 이용하여 상기 측정 대상물의 높이 데이터를 산출할 수 있다.
일 실시예로, 상기 메인 패턴조명부들은 상기 측정대상물을 중심으로 원주 방향을 따라 서로 이격되어 배치될 수 있고, 상기 메인 촬상부들은 상기 측정대상물을 중심으로 원주 방향을 따라 서로 이격되어 배치될 수 있다. 이때, 상기 메인 패턴조명부들 및 상기 메인 촬상부들은 한 조를 형성하며 서로 대응하여 배치될 수 있다.
본 발명의 예시적인 다른 실시예에 따른 3차원 형상 측정장치는 복수의 메인 패턴조명부들, 복수의 메인 촬상부들 및 제어부를 포함한다. 상기 메인 패턴조명부들은 측정대상물을 향하여 서로 다른 방향에서 경사지게 격자패턴광을 조사한다. 상기 메인 촬상부들은 상기 메인 패턴조명부들로부터 상기 측정대상물로 조사되어 상기 측정대상물에 의해 경사지게 반사된 격자패턴광의 반사광을 제공받아서 상기 측정대상물의 격자패턴이미지를 획득한다. 상기 제어부는 상기 측정대상물의 격자패턴이미지들을 이용하여 상기 측정대상물의 높이 데이터를 산출하는 제1 방법, 상기 측정대상물의 평면이미지들의 결상 위치 및 상기 측정대상물의 텍스처 정보를 이용하여 상기 측정대상물의 높이 데이터를 산출하는 제2 방법 및 상기 측정대상물에 조사된 격자패턴을 상기 측정대상물의 텍스처 정보로 활용하여 상기 측정대상물의 높이 데이터를 산출하는 제3 방법을 선택적으로 적용하여 상기 측정대상물의 높이 데이터를 산출한다.
예를 들면, 상기 제어부는 상기 제1 방법, 제2 방법 및 제3 방법 중 적어도 어느 하나의 방법을 적용할지 판정할 수 있다.
본 발명에 따르면, 측정대상물의 3차원 형상을 측정함에 있어서, 광 삼각 측정방식 및 스테레오 측정방식을 모두 혹은 선택적으로 이용하되, 측정대상물의 텍스처 정보를 활용하기 어려운 경우 상기 측정대상물에 조사된 격자패턴을 텍스처 정보로 활용함으로써, 보다 용이하고 정확하게 3차원 형상을 측정할 수 있다.
또한, 소정의 기준높이를 기준으로 이원화하여, 상기 기준높이 미만에 대하여는 광 삼각 측정방식을 이용하여 높이 데이터를 산출하고, 상기 기준높이 이상에 대하여는 스테레오 측정방식을 이용하여 높이 데이터를 산출함으로써, 측정 가능한 높이의 범위를 확장시키면서도 낮은 높이에서의 측정 정확도는 그대로 유지할 수 있다.
또한, 다수의 패턴조명부들로부터 격자패턴광을 발생시키고 다수의 촬상부들에서 격자패턴이미지들을 촬상함으로써, 다양한 방향 및 각도에서 보다 정확하고 정밀하게 광 삼각 측정방식 및 스테레오 측정방식에 의한 3차원 형상 측정이 가능할 수 있다.
도 1은 본 발명의 일 실시예에 의한 3차원 형상 측정장치를 개략적으로 나타낸 정면도이다.
도 2는 도 1에 도시된 3차원 형상 측정장치의 평면도이다.
도 3은 도 1의 3차원 형상 측정장치의 제어부가 스테레오 방식을 이용하여 3차원 형상을 측정하는 과정을 설명하기 위한 개념도이다.
도 4는 본 발명의 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
도 5는 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
도 6은 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
도 7은 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 의한 3차원 형상 측정장치를 개략적으로 나타낸 정면도이고, 도 2는 도 1에 도시된 3차원 형상 측정장치의 평면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 3차원 형상 측정장치(100)는 복수의 메인 패턴조명부(110a)들, 복수의 메인 촬상부(120a)들 및 제어부(130) 등을 포함할 수 있다.
상기 메인 패턴조명부(110a)들은 측정대상물(10)을 향하여 서로 다른 방향에서 경사지게 격자패턴광(PL)을 조사한다. 즉, 상기 메인 패턴조명부(110a)들은 상기 측정대상물(10)의 3차원 형상 정보를 획득하기 위한 격자패턴광(PL)을 상기 측정대상물(10)의 평면에 수직한 법선을 기준으로 경사지게 조사할 수 있다.
상기 측정대상물(10)은 인쇄회로기판(PCB)과 같은 기판(20) 상에 형성된 솔더 또는 부품을 포함할 수 있다. 상기 기판(20)은 스테이지(stage)(30) 상에 배치되어 지지될 수 있다. 상기 스테이지(30)는 이송장치(도시되지 않음)에 의해 상기 측정대상물(10)을 측정 위치로 이송시킬 수 있다.
일 실시예로, 상기 메인 패턴조명부(110a)들은 상기 측정대상물(10)을 향하여 격자패턴광(PL)을 N번 조사할 수 있으며, 위상천이된 격자패턴광을 조사하기 위하여 격자이송기구를 이용하거나 액정표시장치의 패턴 영상을 이용하여 격자패턴을 N번 이송할 수 있다. 후술하는 메인 촬상부(120a)에서는 상기와 같이 조사된 격자패턴광(PL)들에 따른 격자패턴이미지들을 획득할 수 있다.
일 실시예로, 상기 각 메인 패턴조명부(110a)는 광원(112), 격자(114), 격자이송장치(116) 및 투영 렌즈부(118)를 포함할 수 있다.
상기 광원(112)은 측정대상물(10)을 향하여 광을 조사한다. 상기 격자(114)는 상기 광원(112)에서 조사된 광을 격자패턴광(PL)으로 변환시킨다. 상기 격자(114)는 위상천이된 격자패턴광(PL)을 발생시키기 위해, 예를 들면, 피에조 엑추에이터(piezo actuator, PZT)와 같은 격자이송기구(116)를 통해 2π/N 만큼씩 N번 이송된다(N은 2 이상의 자연수). 상기 투영 렌즈부(118)는 상기 격자(114)에 의해 생성된 격자패턴광(PL)을 상기 측정대상물(10)에 투영시킨다. 상기 투영 렌즈부(118)는, 예를 들어, 다수의 렌즈 조합으로 형성될 수 있으며, 상기 격자(114)를 통해 형성된 격자패턴광(PL)을 포커싱하여 상기 측정대상물(10)에 투영시킨다. 따라서, 각각의 메인 패턴조명부(110)는 상기 격자(114)를 N번 이송시키면서 매 이송 시마다 상기 측정대상물(10)로 격자패턴광(PL)을 조사한다.
일 실시예로, 상기 3차원 형상 측정장치(100)는, 도 2에 도시된 바와 같이, 4개의 메인 패턴조명부(110a)들을 구비할 수 있으며, 상기 4개의 메인 패턴조명부(110a)들은 상기 측정대상물(10)을 평면적으로 관측할 때 상기 측정대상물(10)을 중심으로 원주 방향을 따라 서로 이격되어 배치되거나, 상기 측정대상물(10)을 중심으로 다각형의 각 꼭지점에 배치될 수 있다. 상기 메인 패턴조명부(110a)들은 m개 구비될 수 있으며(m은 2 이상의 자연수), 예를 들면, 2개, 4개 또는 8개 등의 다양한 개수로 구비될 수 있다.
상기 메인 촬상부(120a)들은 상기 메인 패턴조명부(110a)들로부터 상기 측정대상물(10)로 조사되어 상기 측정대상물(10)에 의해 경사지게 반사된 격자패턴광의 반사광(RL)을 제공받아서 상기 측정대상물(10)의 격자패턴이미지를 획득한다.
일 실시예로, 상기 각 메인 촬상부(120a)들은 카메라(122) 및 결상렌즈(124)를 포함할 수 있다. 예를 들면, 상기 카메라(122)는 CCD 또는 CMOS 카메라를 채용할 수 있다. 상기 측정대상물(10)에서 반사된 격자패턴광의 반사광(RL)은 상기 결상렌즈(124)에 의해 결상되어 상기 카메라(122)에 의해 촬상될 수 있다.
일 실시예로, 상기 3차원 형상 측정장치(100)는, 도 2에 도시된 바와 같이, 4개의 메인 촬상부(120a)들을 구비할 수 있으며, 상기 4개의 메인 촬상부(120a)들은 상기 측정대상물(10)을 평면적으로 관측할 때 상기 측정대상물(10)을 중심으로 원주 방향을 따라 서로 이격되어 배치되거나, 상기 측정대상물(10)을 중심으로 다각형의 각 꼭지점에 배치될 수 있다. 상기 메인 촬상부(110a)들은 n개 구비될 수 있으며(n은 2 이상의 자연수), 예를 들면, 2개, 4개 또는 8개 등의 다양한 개수로 구비될 수 있다.
상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들은, 도 2에 도시된 바와 같이, 서로 교호적으로 배치될 수 있다. 일 실시예로, 상기 4개의 메인 패턴조명부(110a)들 및 상기 4개의 메인 촬상부(120a)들은, 상기 측정대상물(10)을 평면적으로 관측할 때 원주 둘레를 8분할하는 위치에 각각 교호적으로 등간격 이격되어 배치될 수 있다. 도 2에서는, 상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들이 평면적으로 관측할 때 동일한 원의 원주 둘레를 따라 배치되는 것으로 도시되어 있지만, 상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들은 각각 다른 반경의 원들의 원주 둘레를 따라 배치될 수 있음은 자명하다.
상기와 같이 상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들이 서로 교호적으로 배치되는 경우, 상기 메인 패턴조명부(110a)들로부터 발생된 격자패턴광(PL)들에 의해 생성되는 격자패턴이미지들은 상기 메인 촬상부(120a)들 모두에 의해 순차적으로 또는 동시에 촬상될 수 있다.
한편, 상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들은 필요에 따라 미러(mirror)와 같은 광경로 변경 소자들을 채용하여 실제 배치 위치는 다소 상이하더라도 실질적인 배치 위치를 상기와 같이 구성할 수 있다.
상기 제어부(130)는 상기 측정대상물(10)의 높이 데이터를 산출한다.
구체적으로, 상기 제어부(130)는 상기 메인 촬상부(120a)들에서 촬상된 상기 측정대상물(10)의 격자패턴이미지들을 이용하여 상기 측정대상물(10)의 높이 데이터를 산출할 수 있다. 즉, 상기 제어부(130)는 광 삼각 방식을 이용하여 상기 측정대상물(10)의 높이 데이터를 산출할 수 있다. 예를 들면, 상기 제어부(130)는 상기 메인 촬상부(120a)들에서 촬상된 격자패턴이미지들에, 예를 들면, 주지의 버킷 알고리즘(bucket algorithm)을 적용하여 상기 측정대상물(10)의 높이 데이터를 획득할 수 있다.
또한, 상기 제어부(130)는 상기 측정대상물(10)의 평면이미지들의 결상 위치 및 상기 측정대상물(10)의 텍스처 정보를 이용하여 상기 측정대상물(10)의 높이 데이터를 산출할 수 있다. 즉, 상기 제어부(130)는 스테레오 방식을 이용하여 상기 측정대상물(10)의 높이 데이터를 산출할 수 있다.
도 3은 도 1의 3차원 형상 측정장치의 제어부가 스테레오 방식을 이용하여 3차원 형상을 측정하는 과정을 설명하기 위한 개념도이다.
도 3을 참조하면, 상기 측정대상물(10)은 적어도 2개의 촬상부(120a)들로부터 획득되는 영상을 기초로, 상기 측정대상물(10)의 결상 위치에 삼각기법을 적용하여, 상기 측정대상물(20)의 높이 데이터를 획득할 수 있다.
도 3에 도시된 바와 같이, 상기 결상렌즈(124)들이 소정의 거리(B)를 두고 배치되고, 상기 결상렌즈(124)들의 중심축(CA)을 기준으로 상기 카메라(122)들의 촬상소자(122a)들에 결상된 거리(D1,D2)를 측정한다. 한편, 상기 결상렌즈(124)의 초점거리를 f라고 할 때, 이들 사이의 관계는 수학식 1을 만족한다.
Figure PCTKR2016005891-appb-M000001
따라서, 상기 결상렌즈(124)로부터 상기 측정대상물(10)까지의 거리 S1을 알 수 있으므로, 상기 측정대상물(10)의 높이 데이터를 획득할 수 있다.
상기와 같은 원리를 기초로, 상기 제어부(130)는 상기 측정대상물(10)의 평면이미지들로부터 스테레오 방식을 이용하여 상기 측정대상물(10)의 높이 데이터를 획득할 수 있다.
이때, 상기와 같이 상이한 위치에서 촬영된 적어도 2개의 평면이미지들은 상기 측정대상물(10)의 텍스처 정보를 이용하여 실제 공간상의 동일한 지점을 나타내는 매칭 포인트를 찾을 수 있다.
이때, 상기 측정대상물(10)에 조사된 격자패턴을 상기 텍스처 정보로 활용할 수 있다. 예를 들면, 상기 측정대상물(10)의 표면이 매끈한 경우 상기 텍스처 정보를 얻을 수 없고, 이와 같이 상기 텍스처 정보를 얻을 수 없는 경우 상기 측정대상물(10)에 조사된 격자패턴을 상기 텍스처 정보로 활용할 수 있다.
이에 따라, 상기 측정대상물(10)에 텍스처 정보가 있는 경우, 상기 텍스처 정보를 스테레오 방식에 적용하여 상기 측정대상물(10)의 높이 데이터를 획득할 수 있고, 상기 측정대상물(10)에 텍스처 정보가 없는 경우, 상기 측정대상물(10)에 조사된 격자패턴을 상기 텍스처 정보로 활용하여 스테레오 방식을 적용함으로써 상기 측정대상물(10)의 높이 데이터를 획득할 수 있다. 물론, 상기 측정대상물(10)에 텍스처 정보가 있는 경우에도, 상기 측정대상물(10)에 조사된 격자패턴을 상기 텍스처 정보로 활용할 수도 있다. 또한, 상기 메인 촬상부(120a)의 시야범위(filed of view) 단위로 상기 측정대상물(10)의 평면이미지를 획득할 수 있으므로, 상기 측정대상물(10)의 일부 시야범위에만 텍스처 정보가 없는 경우, 해당 시야범위에 대해서 상기 측정대상물(10)에 조사된 격자패턴을 상기 텍스처 정보로 활용할 수 있다.
상기 3차원 형상 측정장치(100)는 상기 측정대상물(10)의 2차원 평면이미지를 획득하기 위한 조명부(140)를 더 포함할 수 있다. 상기 조명부(140)는 상기 기판(20)의 상부에 배치되어, 상기 측정대상물(10)을 향하여 광(L)을 조사한다. 예를 들면, 상기 조명부(140)는 평면에서 관측할 때 상기 측정대상물(10)의 중심을 지나는 중심축을 기준으로 원형으로 배치된 복수의 조명유닛(142)들을 포함할 수 있다. 예를 들면, 상기 조명부(140)는 서로 다른 복수 개의 컬러광들을 서로 다른 경사각으로 조사할 수도 있으며, 각각 링 형상을 갖도록 엘이디(LED) 조명이 연속적으로 배치되어 단색 조명을 발생시킬 수 있다.
상기 메인 촬상부(120a)들은 상기 조명부(140)로부터 상기 측정대상물(10)로 조사되어 반사된 상기 광의 반사광(RL)을 제공받아서 상기 측정대상물(10)의 평면이미지를 획득할 수 있다. 상기 제어부(130)는 상기와 같이 획득된 상기 측정대상물(10)의 평면이미지들로부터 스테레오 방식을 이용하여 상기 측정대상물(10)의 높이 데이터를 획득할 수 있다.
이와는 다르게, 상기 측정대상물(10)의 평면이미지들은 상기 격자패턴이미지들을 평균하여 획득될 수 있다. 구체적으로, 상기 메인 패턴조명부(110a)들 중 어느 하나에서 발생된 격자패턴광(PL)에 의해 N개의 격자패턴이미지들이 획득되고, 상기 N개의 격자패턴이미지들의 밝기값들을 픽셀별로 모두 더하여 N으로 나누면 픽셀별 밝기값들의 평균값으로 이루어진 상기 측정대상물(10)의 평면이미지를 획득할 수 있다.
상기와 같이, 상기 제어부(130)는 상기 메인 촬상부(120a)들에서 촬상된 상기 측정대상물(10)의 격자패턴이미지들을 이용하여 상기 측정대상물(10)의 높이 데이터를 산출할 수 있고, 이 경우 상기 m개의 메인 패턴조명부(110a)들에서 발생된 격자패턴광(PL)들의 반사광(RL)들을 상기 n개의 메인 촬상부(120a)들에서 각각 캡쳐하므로, 상기 측정대상물(10)의 높이 데이터를 m×n개 산출할 수 있다. 또한, 상기 제어부(130)는 상기 측정대상물(10)의 평면이미지들의 결상 위치 및 상기 측정대상물(10)의 텍스처 정보를 이용하여 상기 측정대상물(10)의 높이 데이터를 산출할 수 있고, 이 경우 상기 n개의 메인 촬상부(120a)들 중 2개의 촬상부(120a)들에서 획득된 평면이미지들을 이용하여 스테레오 방식을 적용할 수 있으므로, 상기 측정대상물(10)의 높이 데이터를 n(n-1)/2개 산출할 수 있다.
상기와 같이, 상기 측정대상물(10)의 높이 데이터는 어느 한 지점에 대해서 다수의 값들이 획득되므로, 이들을 선택적으로 이용하거나 가공하여 최종 높이 데이터를 획득할 수 있다. 또한, 상기 제어부(130)는 상기 측정대상물(10)의 격자패턴이미지들을 이용하여 상기 측정대상물(10)의 높이 데이터를 산출하는 제1 방법, 상기 측정대상물(10)의 평면이미지들의 결상 위치 및 상기 측정대상물(10)의 텍스처 정보를 이용하여 상기 측정대상물의 높이 데이터를 산출하는 제2 방법 및 상기 측정대상물(10)에 조사된 격자패턴을 상기 측정대상물(10)의 텍스처 정보로 활용하여 상기 측정대상물(10)의 높이 데이터를 산출하는 제3 방법을 선택적으로 적용하여 상기 측정대상물(10)의 높이 데이터를 산출할 수 있다. 이때, 상기 제어부(130)는 상기 제1 방법, 제2 방법 및 제3 방법 중 어느 방법을 적용할지 판정할 수 있으며, 상기 방법들의 2개 이상을 적용하도록 판정할 수도 있다.
즉, 어느 한 측정대상물에 대해 각 방법들을 이용한 3차원 형상을 매칭시켜 보다 정밀한 3차원 형상측정을 가능하게 할 수 있다.
예를 들면, 상기 제어부(130)는 상기 각 메인 촬상부(120a)에서 촬상된 격자패턴이미지들 중 신뢰도가 높은 이미지 또는 이미지 픽셀만 선별한 후, 이를 병합하여 상기 측정대상물(10)의 높이 데이터를 획득할 수 있다.
상기 신뢰도는 밝기, 가시도(visibility), SNR(signal-to-noise ratio), 상기 격자패턴광(PL)들 각각의 격자피치(pitch)에 대응되는 측정범위(λ) 및 상기 각 메인 촬상부(120a)와 상기 각 메인 패턴조명부(110a) 사이의 상대적 위치정보 중 적어도 하나를 포함할 수 있다.
상기 촬상된 격자패턴이미지에서 측정대상물(10)의 위치에 따라 그림자 영역 및 포화영역이 발생할 수 있다. 이러한 그림자 영역 및 포화영역은 신뢰도가 낮은 영역으로서, 상기 측정대상물(10)의 높이 데이터 획득 시 제외시킬 수 있다. 예를 들면, 상기 그림자 영역은 평균밝기가 기준밝기값 이하이고 가시도 또는 SNR이 기준값 이하인 영역으로 정의될 수 있고, 상기 포화 영역은 평균밝기가 기준밝기값 이상이고 가시도 또는 SNR이 기준값 이하인 영역으로 정의될 수 있다. 상기 그림자 영역 및 상기 포화 영역을 제외한 나머지 영역은 비포화 영역으로 정의할 수 있고, 상기 비포화 영역은 신뢰도가 높은 영역으로 상기 측정대상물(10)의 높이 데이터 획득 시 포함시킬 수 있다.
또한, 그림자 영역 및 포화영역은 상기 각 메인 촬상부(120a)와 상기 각 메인 패턴조명부(110a) 사이의 상대적 위치에 따라 서로 다르게 생성될 수 있다. 예를 들면, 어느 한 메인 촬상부(120a)에 인접한 2개의 메인 패턴조명부(110a)들과 인접하지 않은 2개의 메인 패턴조명부(110a)들은 서로 다른 그림자 영역과 포화영역을 생성한다. 따라서, 상기 각 메인 촬상부(120a)와 상기 각 메인 패턴조명부(110a) 사이의 상대적 위치정보에 의해 신뢰도를 설정할 수 있다.
또한, 상기 메인 패턴조명부(110a)들의 격자피치는 측정범위, 즉 측정가능높이를 결정할 수 있으므로, 상기 측정대상물(10)의 높이에 따라 높이 데이터의 신뢰도가 달라질 수 있다. 따라서, 격자피치와 상기 측정대상물(10)의 높이 정보를 토대로 한 신뢰도를 설정할 수 있다.
한편, 상기 제어부(130)는 기준높이를 설정하여 이를 기준으로 이원화하여 높이 데이터를 산출할 수 있다. 구체적으로, 상기 제어부(130)는, 기준높이 미만에 대하여는 상기 측정대상물(10)의 격자패턴이미지들을 이용하여 상기 측정대상물의 높이 데이터를 산출하고, 상기 기준높이 이상에 대하여는 상기 측정대상물(10)의 평면이미지들의 결상 위치 및 상기 측정대상물의 텍스처 정보를 이용하여 상기 측정대상물의 높이 데이터를 산출할 수 있다.
이때, 상기 기준높이는 상기 메인 패턴조명부(110a)들의 격자패턴광(PL)에 따른 측정가능높이 이하일 수 있다. 상기 격자패턴광(PL)에 따른 측정가능높이란, 앞서 설명한 바와 같이, 상기 격자패턴광을 생성하는 격자피치에 의하여 정의되는 측정이 가능한 높이를 의미한다.
상기 메인 패턴조명부(110a)들이 다중파장을 채용하는 경우, 상기 메인 패턴조명부(110a)들 중 적어도 하나가 다른 격자피치를 가지거나, 하나의 메인 패턴조명부(110a)에서 2가지 이상의 서로 다른 격자피치를 가질 수 있다. 예를 들면, 상기 메인 패턴조명부(110a)들 중 적어도 2개의 메인 패턴조명부(110a)들은 서로 다른 격자피치를 갖는 격자(114)를 포함하여 각각 서로 다른 등가파장을 갖는 격자패턴광(PL)을 발생시킬 수 있으며, 이 경우 상기 기준높이는 상기 서로 다른 등가파장에 의한 통합측정가능높이 이하로 설정될 수 있다.
이와 같이 이원적으로 상기 측정대상물(10)의 높이를 산출하는 경우, 상기 기준높이 이상의 높은 높이에서는 측정가능 높이의 범위가 넓은 스테레오 방식의 높이측정 방식에 의하여 상기 측정대상물(10)의 높이를 획득할 수 있고, 상기 기준높이 미만의 낮은 높이에서는 정확도가 높은 광 삼각 방식의 높이측정 방식에 의하여 상기 측정대상물(10)의 높이를 획득할 수 있다.
상기 제어부(130)는 상기와 같은 이미지 처리, 형상 정보처리 및 연산 등을 수행할 수 있는 장치일 수 있으며, 예를 들면, 컴퓨터를 포함할 수 있다. 상기 제어부(130)는 상기한 구성요소들, 즉, 상기 메인 패턴조명부(110a)들, 상기 메인 촬상부(120a)들 등의 동작을 제어할 수도 있다.
일 실시예로, 상기 제어부(130)는 어느 한 메인 패턴조명부(110a)를 제어하여, 상기 격자패턴광(PL)을 상기 측정대상물(10)에 투영시키는 동안 상기 메인 촬상부(120a)들이 이를 동시에 촬상할 수 있도록 제어할 수 있다. 이와는 다르게, 상기 제어부(130)는 어느 한 메인 패턴조명부(110a)에 인접하지 않은 메인 촬상부(120a)에서만 상기 측정대상물(10)에 투영된 상기 격자패턴광(PL)을 촬상하도록 제어할 수도 있다.
한편, 상기 각 메인 촬상부(120a)는 상기 측정대상물(10)로부터 수직한 방향에서 일정한 각도로 경사진 상태로 격자패턴이미지를 촬상하므로, 상기 측정대상물(10)에 수직한 상방에서 촬상하는 경우에 비하여 다소 왜곡이 발생될 수 있다. 따라서, 상기 제어부(130)는, 상기 측정대상물(10)의 평면에 수직한 법선을 기준으로 상부에서 촬상된 2차원 이미지 혹은 3차원 이미지를 사전에 획득한 후, 이를 이용하여 상기 측정대상물(10)의 촬상 왜곡의 보정을 수행할 수 있다. 상기 사전에 획득되는 이미지는 상기 측정대상물(10) 또는 소정의 시편에 대해 획득될 수 있다.
도 4는 본 발명의 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
도 4를 참조하면, 본 발명의 다른 실시예에 의한 3차원 형상 측정장치(101)는 복수의 메인 패턴조명부(110a)들, 복수의 메인 촬상부(120a)들, 제어부(130, 도 1 참조) 및 복수의 빔분리부들(도시되지 않음) 등을 포함할 수 있다.
상기 3차원 형상 측정장치(101)는 상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들의 배치 상태와 상기 빔분리부들을 포함하는 것을 제외하면 도 1 및 도 2에 도시된 3차원 형상 측정장치(100)와 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
도 4에 도시된 바와 같이, 상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들은 상기 측정대상물(10)을 중심으로 원주 방향을 따라 서로 이격되어 배치되거나, 상기 측정대상물(10)을 중심으로 다각형의 각 꼭지점에 배치되며, 상기 메인 패턴조명부(110a)들 및 상기 메인 촬상부(120a)들은 서로 대응하여 배치될 수 있다. 따라서, 도 4에 도시된 바와 같이, 서로 대응하여 배치된 상기 메인 패턴조명부(110a) 및 상기 메인 촬상부(120a)는 한 조를 형성한다.
상기 3차원 형상 측정장치(101)는 빔분리부(도시되지 않음), 예를 들면, 빔스플리터(beam splitter)를 포함할 수 있다.
상기 빔분리부는 한 조를 형성하는 메인 패턴조명부(110a) 및 메인 촬상부(120a)에 대응하여 배치되고, 상기 메인 패턴조명부(110a)로부터 발생된 격자패턴광(PL)을 상기 측정대상물(10)을 향하여 투과시키고, 상기 메인 패턴조명부(110a)들로부터 조사되어 반사되는 반사광(RL)을 분리시켜, 상기 메인 촬상부(120a)로 반사한다.
상기 3차원 형상 측정장치(101)는 상기 메인 패턴조명부(110a), 상기 메인 촬상부(120a) 및 상기 빔분리부와 서로 대응되도록 형성되므로, 보다 컴팩트한 장치 배치 및 상기 측정대상물(10)에 대한 보다 효과적인 3차원 형상 측정을 가능하게 할 수 있다.
이 경우, 어느 한 메인 패턴조명부(110a)에 의해 조사되는 격자패턴광(PL)의 반사광(RL)은, 모든 메인 촬상부(120a)들에 의해 촬상될 수도 있고 상기 어느 한 메인 패턴조명부(110a)와 한 조를 형성하는 메인 촬상부(120a)만 제외하고 촬상될 수도 있다. 모든 메인 촬상부(120a)들에 의해 촬상되는 경우에는, 상기 한 조를 형성하는 메인 촬상부(120a)에서 촬상된 격자패턴이미지는 높이 데이터 산출 시 제외될 수 있다. 상기와 같은 메인 촬상부(120a)의 동작 제어 및 산출 제어는 상기 제어부(130)에 의해 수행될 수 있다.
도 5는 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
도 5를 참조하면, 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치(102)는 복수의 메인 패턴조명부(110a)들, 복수의 메인 촬상부(120a)들, 제어부(130, 도 1 참조) 및 탑 패턴조명부(110b) 등을 포함할 수 있다. 상기 3차원 형상 측정장치(102)는 상기 탑 패턴조명부(110b)를 포함하는 것을 제외하면 도 1 및 도 2에 도시된 3차원 형상 측정장치(100)와 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
상기 탑 패턴조명부(110b)는 상기 측정대상물(10, 도 1 참조)의 상방에 배치되며, 격자패턴광(PL, 도 1 참조)을 상기 측정대상물(10)을 향하여 수직으로 조사한다. 상기 탑 패턴조명부(110b)에 의한 격자패턴광(PL)은 상기 측정대상물(10)에 의해 반사된 후 상기 메인 촬상부(120a)들에 의해 동시에 촬상될 수 있다.
한편, 상기 탑 패턴조명부(110b)는 필요에 따라 미러(mirror)와 같은 광경로 변경 소자들을 채용하여 실제 배치 위치는 다소 상이하더라도 실질적인 배치 위치를 상기와 같이 구성할 수 있다.
이와 같이 상기 3차원 형상 측정장치(102)는 탑 패턴조명부(110b)를 구비하므로, 상기 측정대상물(10)에 수직으로 격자패턴광(PL)을 제공함으로써, 상기 측정대상물(10)에 대한 보다 정밀한 3차원 형상 측정이 가능할 수 있다.
도 6은 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
도 6을 참조하면, 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치(103)는 복수의 메인 패턴조명부(110a)들, 복수의 메인 촬상부(120a)들, 제어부(130, 도 1 참조), 탑 패턴조명부(110b) 및 탑 촬상부(120b)를 포함한다. 상기 3차원 형상 측정장치(103)는 상기 탑 촬상부(120b)를 포함하는 것을 제외하면 도 5에 도시된 3차원 형상 측정장치(102)와 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
상기 탑 촬상부(120b)는 상기 측정대상물(10, 도 1 참조)의 상방에 배치되며, 상기 메인 패턴조명부(110a)들 및 상기 탑 패턴조명부(110b) 중 적어도 하나로부터 조사된 격자패턴광(PL, 도 1 참조)이 상기 측정대상물(10)에 의해 수직으로 반사되어 생성되는 격자패턴이미지를 촬상할 수 있다.
또한, 조명부(140, 도 1 참조)가 구비되는 경우, 상기 탑 촬상부(120b)는 상기 조명부(140)에서 조사되어 상기 측정대상물(10)에 의해 수직으로 반사되는 2차원 평면이미지를 촬상할 수도 있다.
즉, 상기 탑 촬상부(120b)는 상기 탑 패턴조명부(110b)로부터 조사된 격자패턴광(PL)을 촬상한 후 촬상된 격자패턴이미지들을 평균화하여 격자패턴이 제거된 2차원 평면이미지를 생성할 수 있으며, 상기 조명부(140)로부터 조사되어 상기 측정대상물(10)에 의해 수직으로 반사되는 2차원 평면이미지를 촬상할 수 있다. 이에 따라, 상기와 같이 생성되거나 촬상된 적어도 하나의 2차원 평면이미지를 기준으로 상기 측정대상물(10)의 2차원 검사를 수행할 수 있으며, 상기 메인 촬상부(120a)들에서 촬상된 측정대상물(10)의 촬상 왜곡을 용이하게 보정할 수 있다.
상기 3차원 형상 측정장치(103)는 빔분리부(도시되지 않음), 예를 들면, 빔스플리터를 포함할 수 있으며, 상기 빔분리부는 상기 탑 패턴조명부(110b)로부터 발생된 격자패턴광(PL)을 상기 측정대상물(10)을 향하여 투과시키고, 상기 복수의 메인 패턴조명부(110a)들 및 상기 탑 패턴조명부(110b)로부터 조사되어 반사되는 반사광(RL)들 중 적어도 하나를 상기 탑 촬상부(120b)로 반사한다.
한편, 상기 탑 촬상부(120b)는 필요에 따라 미러(mirror)와 같은 광경로 변경 소자들을 채용하여 실제 배치 위치는 다소 상이하더라도 실질적인 배치 위치를 상기와 같이 구성할 수 있다.
한편, 도 6에서는, 상기 탑 촬상부(120b)와 상기 탑 패턴조명부(110b)를 동시에 구비하는 것으로 설명되었지만, 상기 탑 촬상부(120b)만을 구비하고 상기 탑 패턴조명부(110b)는 구비하지 않을 수도 있다.
상기 3차원 형상 측정장치(103)는 탑 촬상부(120b)를 구비하므로, 수직으로 반사되는 격자패턴광(PL)을 수신하여 상기 측정대상물(10)에 대한 보다 정밀한 3차원 형상 측정이 가능할 수 있다.
한편, 상기 측정대상물(10)에 조사된 격자패턴을 상기 텍스처 정보로 활용하여 탑 촬상부(120b)와 각각의 메인 촬상부(120a) 간에도 스테레오 방식으로 상기 측정대상물(10)의 높이 데이터를 획득할 수 있고, 이를 토대로 3차원 형상을 측정할 수 있다. 이를 통해 촬상부의 시야범위(field of view, FOV), 측정 위치 또는 측정 대상물의 높이 별로 메인/탑 조명부, 메인/탑 촬상부를 선택적으로 촬상하거나, 촬상된 이미지에서 신뢰도 높은 이미지를 선택하여 보다 정밀한 3차원 형상을 산출할 수 있다.
도 7은 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치의 평면도이다.
도 7을 참조하면, 본 발명의 또 다른 실시예에 의한 3차원 형상 측정장치(104)는 복수의 메인 패턴조명부(110a)들, 복수의 메인 촬상부(120a)들, 제어부(130, 도 1 참조), 탑 패턴조명부(110b), 탑 촬상부(120b) 및 복수의 빔분리부들(도시되지 않음) 등을 포함할 수 있다. 상기 3차원 형상 측정장치(104)는 상기 메인 패턴조명부(110a)들, 상기 메인 촬상부(120a)들 및 빔분리부들이 도 4에 도시된 바와 같이 서로 대응하여 배치되는 것을 제외하면 도 6에 도시된 3차원 형상 측정장치(103)와 실질적으로 동일하므로, 중복되는 상세한 설명은 생략한다.
구체적으로, 상기 3차원 형상 측정장치(104)는 도 6에 도시된 탑 패턴조명부(110b) 및 탑 촬상부(120b)의 배치를 채용하고, 도 4에 도시된 메인 패턴조명부(110a)들 및 메인 촬상부(120a)들의 배치를 채용한다.
따라서, 최대한 많은 수의 패턴조명부들 및 촬상부들을 포함할 수 있으므로, 상기 측정대상물(10, 도 1 참조)에 대한 보다 정밀한 3차원 형상 측정이 가능할 수 있다.
한편, 상술한 본 발명의 다양한 실시예들에서, 상기 측정대상물(10)의 높이 데이터 획득을 위해 배치되는 메인/탑 조명부들 및 메인/탑 촬상부들은 광 삼각 방식 혹은 스테레오 방식을 적용하기 위해 다양한 선택 및 조합이 가능할 수 있다. 예를 들면, 메인 조명부들의 조합 또는 메인 조명부와 탑 조명부의 조합에 의한 광 삼각 방식의 적용도 가능하고, 상기 조명부들의 조합과 별도로 상기 조명부들의 패턴조명을 촬상한 메인/탑 촬상부들의 조합에 의한 광 삼각 방식의 적용도 가능하다. 또한 메인 촬상부들의 조합 또는 메인 촬상부와 탑 촬상부의 조합에 의한 스테레오 방식의 적용도 가능하다. 이러한 선택 및 조합은 촬상부의 시야범위(FOV), 측정 위치, 측정대상물의 높이, 촬상된 이미지의 신뢰도 등 다양한 인자(factor)가 기준이 될 수 있다.
상기와 같은 본 발명에 따르면, 측정대상물의 3차원 형상을 측정함에 있어서, 광 삼각 측정방식 및 스테레오 측정방식을 모두 혹은 선택적으로 이용하되, 측정대상물의 텍스처 정보를 활용하기 어려운 경우 상기 측정대상물에 조사된 격자패턴을 텍스처 정보로 활용함으로써, 보다 용이하고 정확하게 3차원 형상을 측정할 수 있다.
또한, 소정의 기준높이를 기준으로 이원화하여, 상기 기준높이 미만에 대하여는 광 삼각 측정방식을 이용하여 높이 데이터를 산출하고, 상기 기준높이 이상에 대하여는 스테레오 측정방식을 이용하여 높이 데이터를 산출함으로써, 측정 가능한 높이의 범위를 확장시키면서도 낮은 높이에서의 측정 정확도는 그대로 유지할 수 있다.
또한, 다수의 패턴조명부들로부터 격자패턴광을 발생시키고 다수의 촬상부들에서 격자패턴이미지들을 촬상함으로써, 다양한 방향 및 각도에서 보다 정확하고 정밀하게 광 삼각 측정방식 및 스테레오 측정방식에 의한 3차원 형상 측정이 가능할 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다. 따라서, 전술한 설명 및 아래의 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어야 한다.

Claims (12)

  1. 측정대상물을 향하여 서로 다른 방향에서 경사지게 격자패턴광을 조사하는 복수의 메인 패턴조명부들;
    상기 메인 패턴조명부들로부터 상기 측정대상물로 조사되어 상기 측정대상물에 의해 경사지게 반사된 격자패턴광의 반사광을 제공받아서 상기 측정대상물의 격자패턴이미지를 획득하는 복수의 메인 촬상부들; 및
    상기 측정대상물의 격자패턴이미지들을 이용하여 상기 측정대상물의 높이 데이터를 산출하거나, 상기 측정대상물의 평면이미지들의 결상 위치 및 상기 측정대상물의 텍스처 정보를 이용하여 상기 측정대상물의 높이 데이터를 산출하되 상기 측정대상물의 텍스처 정보가 없는 경우에 상기 측정대상물에 조사된 격자패턴을 상기 텍스처 정보로 활용하여 상기 측정대상물의 높이 데이터를 산출하는 제어부를 포함하는 3차원 형상 측정장치.
  2. 제1항에 있어서,
    상기 측정대상물을 향하여 광을 조사하는 조명부를 더 포함하고,
    상기 복수의 메인 촬상부들은 상기 조명부로부터 상기 측정대상물로 조사되어 반사된 상기 광의 반사광을 제공받아서 상기 측정대상물의 평면이미지를 획득하는 것을 특징으로 하는 3차원 형상 측정장치.
  3. 제1항에 있어서,
    상기 측정대상물의 평면이미지들은 격자패턴광 없이 촬상되거나 상기 격자패턴이미지들을 평균하여 획득되는 것을 특징으로 하는 3차원 형상 측정장치.
  4. 제1항에 있어서,
    상기 제어부는, 기준높이 미만에 대하여는 상기 측정대상물의 격자패턴이미지들을 이용하여 상기 측정대상물의 높이 데이터를 산출하고, 상기 기준높이 이상에 대하여는 상기 측정대상물의 평면이미지들의 결상 위치 및 상기 측정대상물의 텍스처 정보를 이용하여 상기 측정대상물의 높이 데이터를 산출하는 것을 특징으로 하는 3차원 형상 측정장치.
  5. 제4항에 있어서,
    상기 기준높이는 상기 메인 패턴조명부들의 격자패턴광에 따른 측정가능높이 이하인 것을 특징으로 하는 3차원 형상 측정장치.
  6. 제4항에 있어서,
    상기 메인 패턴조명부들 중 적어도 2개의 메인 패턴조명부들은 서로 다른 격자피치를 갖는 격자를 포함하여 각각 서로 다른 등가파장을 갖는 격자패턴광을 발생시키고,
    상기 기준높이는 상기 서로 다른 등가파장에 의한 통합측정가능높이 이하인 것을 특징으로 하는 3차원 형상 측정장치.
  7. 제1항에 있어서,
    상기 측정대상물의 상방에 배치되며, 격자패턴광을 상기 측정대상물을 향하여 수직으로 조사하는 탑 패턴조명부를 더 포함하는 것을 특징으로 하는 3차원 형상 측정장치.
  8. 제1항에 있어서,
    상기 측정대상물의 상방에 배치되며, 상기 격자패턴광이 상기 측정대상물에 의해 수직으로 반사된 격자패턴광의 반사광을 제공받아서 상기 측정대상물의 격자패턴이미지를 획득하는 탑 촬상부를 더 포함하는 것을 특징으로 하는 3차원 형상 측정장치.
  9. 제 8항에 있어서,
    상기 제어부는,
    상기 탑 촬상부와 각각의 메인 촬상부 간에 획득된 격자패턴이미지를 이용하여 상기 측정 대상물의 높이 데이터를 산출하는 것을 특징으로 하는 3차원 형상측정 장치.
  10. 제1항에 있어서,
    상기 메인 패턴조명부들은 상기 측정대상물을 중심으로 원주 방향을 따라 서로 이격되어 배치되고,
    상기 메인 촬상부들은 상기 측정대상물을 중심으로 원주 방향을 따라 서로 이격되어 배치된 것을 특징으로 하는 3차원 형상 측정장치.
  11. 제10항에 있어서,
    상기 메인 패턴조명부들 및 상기 메인 촬상부들은 한 조를 형성하며 서로 대응하여 배치된 것을 특징으로 하는 3차원 형상 측정장치.
  12. 측정대상물을 향하여 서로 다른 방향에서 경사지게 격자패턴광을 조사하는 복수의 메인 패턴조명부들;
    상기 메인 패턴조명부들로부터 상기 측정대상물로 조사되어 상기 측정대상물에 의해 경사지게 반사된 격자패턴광의 반사광을 제공받아서 상기 측정대상물의 격자패턴이미지를 획득하는 복수의 메인 촬상부들; 및
    상기 측정대상물의 격자패턴을 텍스처 정보로 활용하여, 상기 측정대상물의 이미지들의 결상 위치 및 상기 측정대상물의 격자패턴을 이용하여 상기 측정대상물의 높이 데이터를 산출하는 제어부를 포함하는 3차원 형상 측정장치.
PCT/KR2016/005891 2015-06-08 2016-06-03 3차원 형상 측정장치 WO2016200096A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680033600.5A CN107735645B (zh) 2015-06-08 2016-06-03 三维形状测量装置
EP16807737.8A EP3306266B1 (en) 2015-06-08 2016-06-03 Three-dimensional shape measurement apparatus
US15/735,021 US10302423B2 (en) 2015-06-08 2016-06-03 Three-dimensional shape measurement apparatus
US16/369,339 US10788318B2 (en) 2015-06-08 2019-03-29 Three-dimensional shape measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150080284A KR101639227B1 (ko) 2015-06-08 2015-06-08 3차원 형상 측정장치
KR10-2015-0080284 2015-06-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/735,021 A-371-Of-International US10302423B2 (en) 2015-06-08 2016-06-03 Three-dimensional shape measurement apparatus
US16/369,339 Continuation US10788318B2 (en) 2015-06-08 2019-03-29 Three-dimensional shape measurement apparatus

Publications (1)

Publication Number Publication Date
WO2016200096A1 true WO2016200096A1 (ko) 2016-12-15

Family

ID=56505755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005891 WO2016200096A1 (ko) 2015-06-08 2016-06-03 3차원 형상 측정장치

Country Status (6)

Country Link
US (2) US10302423B2 (ko)
EP (1) EP3306266B1 (ko)
KR (1) KR101639227B1 (ko)
CN (2) CN111735413A (ko)
DE (1) DE202016008925U1 (ko)
WO (1) WO2016200096A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3546884A1 (en) * 2018-03-26 2019-10-02 Simmonds Precision Products, Inc. Ranging objects external to an aircraft using multi-camera triangulation
CN110352346A (zh) * 2017-03-15 2019-10-18 通用电气公司 用于检查资产的方法和装置
EP4113993A1 (en) * 2018-01-24 2023-01-04 Cyberoptics Corporation Structured light projection for specular surfaces

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635892B2 (ja) * 2016-07-22 2020-01-29 株式会社キーエンス 拡大観察装置
KR101775110B1 (ko) 2016-10-19 2017-09-05 (주)플럭스플래닛 고품질 텍스처 획득 방법 및 이를 위한 장치
KR20180044157A (ko) 2016-10-21 2018-05-02 주식회사 고영테크놀러지 복수의 상이한 패턴 광원의 설치가 가능한 패턴 광 조사 장치 및 검사 장치
KR101918110B1 (ko) 2018-03-20 2018-11-13 주식회사 이지비젼 광원모듈 및 비전검사모듈
KR101976780B1 (ko) * 2018-05-21 2019-05-10 주식회사 고영테크놀러지 복수의 상이한 패턴 광원의 설치가 가능한 패턴 광 조사 장치 및 검사 장치
JP2020008434A (ja) * 2018-07-09 2020-01-16 オムロン株式会社 3次元測定装置及び方法
FI128443B (en) 2018-12-21 2020-05-15 Valmet Automation Oy Contactless thickness measurement
EP3992575A4 (en) * 2019-06-28 2022-08-31 Koh Young Technology Inc. APPARATUS AND METHOD FOR DETERMINING THE THREE-DIMENSIONAL SHAPE OF AN OBJECT
CN111823734B (zh) * 2020-09-10 2020-12-29 季华实验室 定位校准组件、装置、打印机及喷印点坐标定位校准方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042401A1 (en) * 2000-04-25 2003-03-06 Hansjorg Gartner Combined stereovision, color 3D digitizing and motion capture system
KR20050031328A (ko) * 2003-09-29 2005-04-06 (주) 인텍플러스 스테레오비전과 모아레를 이용한 3차원 검사 방법 및 장치
KR20070122014A (ko) * 2006-06-23 2007-12-28 주식회사 고영테크놀러지 모아레와 스테레오를 이용한 3차원형상 측정시스템 및 방법
KR20130130656A (ko) * 2012-05-22 2013-12-02 주식회사 고영테크놀러지 3차원 형상 측정장치의 높이 측정 방법
KR20130130565A (ko) * 2012-05-22 2013-12-02 주식회사 고영테크놀러지 3차원 형상 측정장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7545512B2 (en) * 2006-01-26 2009-06-09 Koh Young Technology Inc. Method for automated measurement of three-dimensional shape of circuit boards
CN101373135B (zh) * 2008-07-01 2010-06-23 南京航空航天大学 基于瞬时随机光照的三维曲面测量装置及方法
US8294762B2 (en) * 2008-10-10 2012-10-23 Fujifilm Corporation Three-dimensional shape measurement photographing apparatus, method, and program
KR101190122B1 (ko) 2008-10-13 2012-10-11 주식회사 고영테크놀러지 다중파장을 이용한 3차원형상 측정장치 및 측정방법
US8823775B2 (en) * 2009-04-30 2014-09-02 Board Of Regents, The University Of Texas System Body surface imaging
CN101694375B (zh) * 2009-10-23 2011-06-22 北京航空航天大学 一种用于强反射表面三维形貌测量的立体视觉检测方法
US20120056982A1 (en) * 2010-09-08 2012-03-08 Microsoft Corporation Depth camera based on structured light and stereo vision
KR101245622B1 (ko) 2011-03-31 2013-03-20 주식회사 미르기술 스테레오 비전과 격자 무늬를 이용한 비전검사장치
WO2013036076A2 (ko) * 2011-09-09 2013-03-14 주식회사 인스펙토 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
US20140198185A1 (en) * 2013-01-17 2014-07-17 Cyberoptics Corporation Multi-camera sensor for three-dimensional imaging of a circuit board
CN103900494B (zh) * 2014-03-31 2016-06-08 中国科学院上海光学精密机械研究所 用于双目视觉三维测量的同源点快速匹配方法
CN104390608A (zh) * 2014-11-27 2015-03-04 上海江南长兴造船有限责任公司 基于投影栅相位法的结构光三维形状构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030042401A1 (en) * 2000-04-25 2003-03-06 Hansjorg Gartner Combined stereovision, color 3D digitizing and motion capture system
KR20050031328A (ko) * 2003-09-29 2005-04-06 (주) 인텍플러스 스테레오비전과 모아레를 이용한 3차원 검사 방법 및 장치
KR20070122014A (ko) * 2006-06-23 2007-12-28 주식회사 고영테크놀러지 모아레와 스테레오를 이용한 3차원형상 측정시스템 및 방법
KR20130130656A (ko) * 2012-05-22 2013-12-02 주식회사 고영테크놀러지 3차원 형상 측정장치의 높이 측정 방법
KR20130130565A (ko) * 2012-05-22 2013-12-02 주식회사 고영테크놀러지 3차원 형상 측정장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110352346A (zh) * 2017-03-15 2019-10-18 通用电气公司 用于检查资产的方法和装置
EP3596450A4 (en) * 2017-03-15 2021-03-24 General Electric Company METHOD AND DEVICE FOR INSPECTING AN ASSET
CN110352346B (zh) * 2017-03-15 2022-04-26 通用电气公司 用于检查资产的方法和装置
EP4113993A1 (en) * 2018-01-24 2023-01-04 Cyberoptics Corporation Structured light projection for specular surfaces
EP3546884A1 (en) * 2018-03-26 2019-10-02 Simmonds Precision Products, Inc. Ranging objects external to an aircraft using multi-camera triangulation
US10818024B2 (en) 2018-03-26 2020-10-27 Simmonds Precision Products, Inc. Ranging objects external to an aircraft using multi-camera triangulation

Also Published As

Publication number Publication date
US10302423B2 (en) 2019-05-28
CN111735413A (zh) 2020-10-02
KR101639227B1 (ko) 2016-07-13
CN107735645A (zh) 2018-02-23
EP3306266A1 (en) 2018-04-11
US20190226837A1 (en) 2019-07-25
US10788318B2 (en) 2020-09-29
EP3306266B1 (en) 2020-10-28
CN107735645B (zh) 2020-07-17
DE202016008925U1 (de) 2020-10-01
US20180156606A1 (en) 2018-06-07
EP3306266A4 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
WO2016200096A1 (ko) 3차원 형상 측정장치
US10996050B2 (en) Apparatus and method for measuring a three dimensional shape
WO2016163840A1 (ko) 3차원 형상 측정장치
WO2011087337A2 (ko) 기판 검사장치
TWI422800B (zh) 板檢驗裝置及方法
WO2009142390A2 (ko) 표면형상 측정장치
WO2013176482A1 (ko) 3차원 형상 측정장치의 높이 측정 방법
WO2012050378A2 (ko) 기판 검사방법
KR20110086222A (ko) 3차원 형상 측정장치
WO2015080480A1 (ko) 웨이퍼 영상 검사 장치
WO2012050375A2 (ko) 측정장치 및 이의 보정방법
KR101081538B1 (ko) 3차원 형상 측정장치 및 측정방법
WO2017014518A1 (ko) 검사 시스템 및 검사 방법
KR20110089486A (ko) 실장기판 검사장치 및 검사방법
WO2016099154A1 (ko) 부품이 실장된 기판 검사방법 및 검사장치
WO2013100223A1 (ko) 기판 검사장치의 높이정보 생성 방법
KR20120100064A (ko) 기판 검사방법
CN112857234A (zh) 结合物体二维和高度信息的测量方法及其装置
KR101226716B1 (ko) 색수차 보상방법, 이를 이용한 3차원 형상 측정방법 및 측정장치
KR101329025B1 (ko) 색수차 보상방법, 이를 이용한 3차원 형상 측정방법 및 측정장치
KR102091623B1 (ko) 광파이버를 이용한 3차원 형상 측정 장치
WO2016043543A1 (ko) 프리즘을 이용한 3차원 형상 측정장치
WO2016043529A1 (ko) 스테레오 현미경을 이용한 3차원 형상 측정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15735021

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016807737

Country of ref document: EP