WO2013036076A2 - 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법 - Google Patents

투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법 Download PDF

Info

Publication number
WO2013036076A2
WO2013036076A2 PCT/KR2012/007233 KR2012007233W WO2013036076A2 WO 2013036076 A2 WO2013036076 A2 WO 2013036076A2 KR 2012007233 W KR2012007233 W KR 2012007233W WO 2013036076 A2 WO2013036076 A2 WO 2013036076A2
Authority
WO
WIPO (PCT)
Prior art keywords
measurement object
image
pattern
projection
unit
Prior art date
Application number
PCT/KR2012/007233
Other languages
English (en)
French (fr)
Other versions
WO2013036076A3 (ko
Inventor
박윤덕
Original Assignee
주식회사 인스펙토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110092042A external-priority patent/KR101333299B1/ko
Application filed by 주식회사 인스펙토 filed Critical 주식회사 인스펙토
Priority to CN201280043971.3A priority Critical patent/CN103782129B/zh
Priority to US14/343,052 priority patent/US9360306B2/en
Priority claimed from KR1020120099230A external-priority patent/KR101423829B1/ko
Publication of WO2013036076A2 publication Critical patent/WO2013036076A2/ko
Publication of WO2013036076A3 publication Critical patent/WO2013036076A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the present invention is a projection grid
  • the present invention relates to a three-dimensional shape measuring device and method using amplitude. More specifically, an optical system irradiates an image of a projection grating having a period to a measurement object, obtains an amplitude by changing a pattern of the projection grid, and then moves the measurement object up and down. In this case, the amplitude of amplitude is continuously measured and the three-dimensional shape of the measurement object is measured.
  • White light interferometer has a process of applying a transparent thin film layer on the surface of the opaque metal layer in the semiconductor and liquid crystal display (LCD) manufacturing process, which measures the information about the thickness or surface shape of the transparent thin film layer Several methods have been proposed.
  • WSI white-light scanning interferometry
  • the basic measurement principle of white light scanning interferometry utilizes the short coherence length characteristic of white light. This uses the principle that the interference signal is generated only when the reference light and the measurement light separated by the beam splitter, which is an optical splitter, experience almost the same optical path difference.
  • the interference signal is observed at each measuring point in the measurement area while moving the measuring object in the optical axis direction by a micron interval of several nanometers by a conveying means such as a PZT actuator, the optical path difference is the same as that of the reference mirror. At this point, a short interference signal is generated.
  • a conventional surface shape measurement apparatus includes a light source 110, a light splitting unit 150, an interference module 120, an imaging unit 140, a transfer unit 130 and a control unit 160. .
  • the light source 110 emits white light.
  • the light source 110 emits monochromatic light, such as white light, and uses a tungsten-halogen lamp of approximately 70W.
  • the light emitted from the light source 110 is emitted through an optical fiber (not shown) not shown in the outgoing direction.
  • Light emitted from the optical fiber spreads around the pinhole of the fixing member 171.
  • the light passing through the pinhole is aligned at a constant width while passing through the convex lens 172 disposed between the fixing member 171 and the light splitter 150.
  • Light transmitted through the convex lens 172 is incident to the light splitter 150.
  • the light incident on the light splitter 150 for example, the beam splitter, is reflected at about 45 degrees with respect to the incident direction and is directed toward the measurement object 100.
  • the light reflected by the light splitter 150 and directed toward the measurement object 100 is incident on the interference module 120.
  • the light incident on the interference module 120 is divided into the reference mirror direction and the measurement target 100 provided in the interference module 120, respectively, and are emitted. Then, interference light is formed by the reflected light reflected from the reference mirror and the measurement object 100, respectively, and is emitted to the light splitter 150.
  • the imaging unit 140 outputs the interference light emitted from the interference module 120 and passed through the light splitter 150 and the convex lens 174 to be applied to the controller 160.
  • the controller 160 adjusts the separation distance between the transfer unit 130 and the measurement object 100 by controlling the transfer unit 130 according to the white light scanning interference method.
  • the controller 160 measures the surface shape of the measurement object 100 based on the data captured by the imaging unit 140 in response to the separation distance between the transfer unit 130 and the measurement object 100.
  • the white light interferometer has an interference range of about 2-4 ⁇ m and an interference fringe has a period of about 0.3 ⁇ m. Interference fringes must be obtained over time, resulting in longer measurement times.
  • the present invention has been made to solve the above problems, and proposes a measuring device for measuring a three-dimensional shape even in the presence of a mechanical vibration and a high height difference of the measurement object.
  • the present invention irradiates an image of a projection grid having a period in the three-dimensional measurement politics to the measurement object, obtains the amplitude by changing the pattern of the projection grid, and then obtains the magnitude of the amplitude continuously while moving the measurement object up and down. It is an object of the present invention to provide a new type of measuring device and a method using the same.
  • a pattern projection unit for projecting a pattern of the projection grid to a measurement object having an arbitrary height shape, obtains a pattern image projected on the measurement object
  • An image acquisition unit including an image sensor, a focus position transfer unit for adjusting a focus position of the pattern projection unit and the image acquisition unit, to obtain a clear image of the projection grid pattern projected on the measurement object, and to detect the focus position transfer amount
  • a position sensor for receiving a signal of a position sensor for detecting the pattern image of the projection grid and the focusing position obtained from the image sensor, an image of the image sensor input to the control unit and a position input signal received from the position sensor Comprising a calculation unit for calculating the height of the object to be measured.
  • a measuring method includes: a pattern projector for projecting a pattern of a projection grid onto a measurement object having an arbitrary height shape, an image acquisition unit including an image sensor to obtain a pattern image projected on the measurement object; In order to obtain a clear image of the projection grid pattern projected on the measurement object, a focus position transfer unit for adjusting a focus position of the pattern projection unit and the image acquisition unit, a position sensor for detecting the focus position transfer amount, a projection obtained from the image sensor A control unit receives a pattern image of a grid and a signal of a position sensor for detecting the focus position transfer amount, and calculates a height of a measurement object by calculating an image of an image sensor input to the control unit and a position input signal received from the position sensor.
  • the image sensor of the image acquisition unit includes a plurality of pixels, each pixel arranged to acquire an image of a corresponding point of the measurement object, and a clear image of the projection grid pattern projected on the measurement object.
  • a second step of moving through the focal position transfer unit to obtain a focal position transfer amount, a third step of projecting a pattern of a projection grid having a periodic component on the measurement object, and a measurement object of which the pattern of the projection grid is projected A fourth step of acquiring an image of the second step; and a fifth step of projecting a pattern onto the measurement object while moving the projection grid within one period; and a sixth step of obtaining a projected pattern on the measurement object while the projection grid is moved within one period.
  • an eighth step of determining the value of the largest amplitude of the pattern A seventh step of calculating an amplitude of the projection grid pattern in each pixel from the obtained image; and a projection grid in each pixel.
  • the image acquisition unit including a pattern projection unit for projecting the pattern of the projection grid on the measurement object having an arbitrary height shape, an image sensor for obtaining a pattern image projected on the measurement object,
  • a focus position transfer unit for adjusting a focus position of the pattern projection unit and the image acquisition unit, a position sensor for detecting the focus position transfer amount, a projection obtained from the image sensor
  • a control unit receives a pattern image of a grid and a signal of a position sensor for detecting the focus position transfer amount, and calculates a height of a measurement object by calculating an image of an image sensor input to the control unit and a position input signal received from the position sensor.
  • a calculation unit wherein the focus position transfer unit moves the measurement object in the x-axis direction. While simultaneously driving in the z-axis direction and acquiring the projection grid pattern corresponding to one period while adjusting the focus of the projection grid pattern, and obtaining the three-dimensional information of the measurement object by calculating the amplitude of the obtained projection grid pattern. It features.
  • a pattern projection unit for projecting the pattern of the projection grid to the measurement object having an arbitrary height shape
  • an image acquisition unit including an image sensor for obtaining a pattern image projected on the measurement object, the projection grid pattern of the projection object
  • a focus position transfer unit for adjusting a focus position of the pattern projection unit and the image acquisition unit
  • a position sensor for detecting the focus position transfer amount
  • a pattern image of the projection grid obtained from the image sensor and the focus position transfer amount
  • a three-dimensional shape measuring device consisting of a control unit for receiving a signal of the position sensor to detect, an operation unit for calculating the height of the measurement object by calculating the image of the image sensor input to the control unit and the position input signal received from the position sensor
  • the image sensor of the image acquisition unit is a plurality of And a first pixel arranged to acquire an image of a corresponding point of the measurement object, and moving through the focus position transfer part to obtain a clear image of a projection grid pattern projected
  • a second step of projecting a projection grid pattern a third step of acquiring focus position information on the measurement object through the second step, and a pattern corresponding to one period of the projection grid, and the acquired image.
  • a fourth step of calculating an amplitude of the projection grid pattern in each pixel from a fifth step of determining a value of the largest amplitude of the projection grid pattern in each pixel.
  • the three-dimensional measuring apparatus and method according to the present invention it is possible to obtain an appropriate measurement result even in the presence of mechanical vibration and height difference of the measurement object, so that the user's desire can be satisfied. It is a very useful and effective invention.
  • the present invention can obtain the phase effect and amplitude size (focus shift effect) according to the projection grid pattern by transferring the measurement object to the inclination angle (x-axis and z-axis), so that the projection grid drive and the measurement object transfer can be performed separately. Because it can be acquired at once without implementation, it has the advantage of improving the measurement speed.
  • the measurement object can be simultaneously moved to the x-axis and the z-axis to obtain the phase acquisition and the panning effect of the grating, it is possible to simplify the device because it is not necessary to implement the separate grating driving and the panning. It works.
  • 1 is a view showing a measuring device applying a conventional white light interferometer
  • FIG. 2 is a view showing an optical system of the measuring device in the present invention
  • FIG. 3 is a block diagram of a measuring device according to the present invention.
  • Figure 4 is a view showing the magnitude of the amplitude changes in accordance with the height of the measurement object in the present invention
  • FIG. 6 is a view showing an optical system of the measuring device through the tilt optical system in the present invention.
  • FIG. 7 is a configuration diagram of a three-dimensional measuring apparatus using the amplitude of the projection grid in another embodiment according to the present invention.
  • FIG. 8 is a view showing a moving form of the measurement object according to FIG.
  • FIG. 9 is a configuration diagram of a three-dimensional measuring apparatus using a projection grid amplitude magnitude in another embodiment according to the present invention.
  • Figure 2 is a view showing an optical system of the measuring device in the present invention
  • Figure 3 is a view showing a block diagram of the measuring device in the present invention
  • Figure 4 is a magnitude of the amplitude that changes according to the height of the measurement object in the present invention
  • 5 is a diagram showing the magnitude of the amplitude according to the focus position in the present invention.
  • the measuring device acquires an image including a pattern projection unit 310 for projecting a pattern of a projection grid onto a measurement object having an arbitrary height shape, and an image sensor for obtaining a pattern image projected on the measurement object.
  • the unit 320 a focus position transfer unit 330 for adjusting a focus position of the pattern projection unit and the image acquisition unit, to obtain a clear image of the projection grid pattern projected on the measurement object, and a position sensor for detecting the focus position transfer amount
  • the controller 340 receives a pattern image of the projection grid acquired by the image sensor 260 and a signal of a position sensor for detecting the focal position transfer amount, and the image and the position of the image sensor 260 input to the controller. It includes a calculation unit 350 for calculating the height of the measurement object by calculating the position input signal received from the sensor.
  • the pattern projection unit 310 for projecting a pattern on the measurement object is a light source 210 for shining light on the measurement object, the front of the light source is installed and the light of the light source And a projection grid 220 having a periodic component projected onto the measurement object, and a projection grid controller 221 for controlling the projection position of the projection grid.
  • the projection grid preferably has a periodic component in which a plurality of stripes are arranged at regular intervals.
  • the image acquisition unit 320 for obtaining a pattern image projected on the measurement object is an image sensor 260 for obtaining a pattern of the grid projected on the measurement object, an image for transmitting the image obtained by the image sensor to the controller
  • the board 261 includes an objective lens 240 disposed between the image sensor and the measurement object.
  • the optical system described above has a structure in which the objective lens 240 is projected when the projection grid is projected onto the measurement object.
  • FIG. 2 illustrates a structure projecting through the objective lens 240
  • the projection projection may be projected onto the measurement object without passing through the objective lens by providing a pattern projection unit including the projection lens separately from the image acquisition unit. (See Figure 6).
  • the pattern projection unit 310 is installed in front of the light source 210, the light source for shining light on the measurement object
  • the projection grid 220 having a periodic component projected onto the measurement object by receiving light from the light source and the projection grid controller 221 for controlling the projection position of the projection grid does not include a separate projection lens.
  • the image acquisition unit 320 is an image sensor for obtaining a pattern of the grid projected on the measurement object 260, an image board for transmitting the image obtained from the image sensor 261, the image sensor and the And a light splitter 230 disposed between the object lens 240 and the image sensor and the objective lens.
  • the projection grid of the pattern projection unit includes the light splitter 230 and the objective lens. Projection is performed to the measurement object through 240.
  • the focus position transfer unit 330 moves the measurement object up and down, moves only the objective lens up and down, moves only the image acquisition unit up and down, or both the pattern projection unit and the image acquisition unit up and down.
  • the position sensor installation position is installed on the table on which the measurement object is seated when moving the measured object up and down, and installed in the housing of the objective lens when moving only the objective lens up and down, and only the image acquisition part moves up and down.
  • the pattern projection unit and the image acquisition unit it is installed in the pattern projection unit or the image acquisition unit, and the projection grid projected onto the measurement object by receiving the light from the light source is projected onto the measurement object.
  • the height of the measurement object is measured by analyzing the amplitude of the projection lattice that changes with the movement of the focal position transfer part.
  • the position sensor for measuring the position of the table 251 on which the measurement object 250 is mounted and the table 251 on which the measurement object is mounted is moved, the motor driver 252 and the motor driver 253 and the simultaneous table of the table. It is preferable to include a (255), the signal of the position sensor is transmitted to the control unit 340 is utilized to calculate the position of the measurement object.
  • the optical system described above refers to the focal length of the objective lens 240 is f, the linear distance from one point of the measurement target 250 to the center distance of the objective lens 240 is b, the objective
  • the optical system is arranged so that the focal positions of the image acquisition unit and the pattern projection unit coincide, and the image acquisition unit always matches the focal positions of the image acquisition unit and the pattern projection unit even when the focal position is transferred. In this case, even if the focus position is transferred, the projection grid is clearly projected on the measurement object, so that a clear image can be obtained.
  • FIG. 3 illustrates a process of measuring through a block diagram according to the present invention.
  • the image sensor 260 has a plurality of pixels, and each of the pixels is arranged to acquire an image of a corresponding measurement point 250.
  • the image is moved through the focal position transfer unit 330 and stores the focal position transfer amount.
  • the focus position transfer unit may be configured to move a measurement object up and down, or to move only the objective lens up and down, or to move only the image acquisition unit up and down, or both the pattern projection unit and the image acquisition unit.
  • the method of moving up and down can be adopted.
  • the installation position of the position sensor is installed on the table where the measurement object is seated when moving the measured object up and down, and installed on the housing of the objective lens when moving only the objective lens up and down, and only the image acquisition part is moved up and down.
  • the pattern projection unit and the image acquisition unit it is installed in the pattern projection unit or the image acquisition unit.
  • the measurement object is controlled to be moved upward or downward by a predetermined distance.
  • the measurement object since the measurement object is seated on the table 251, the measurement object is controlled by the motor driver 253 through the control unit 340 to control the table. As the object moves by the distance, the measurement object moves by the predetermined distance.
  • the pattern of the projection grid projected on the measurement object is moved, and then each pixel of the image sensor 260 acquires an image of a point of the corresponding measurement object. .
  • the projection grid has a plurality of stripes having a certain period, and the brightness change forms a sine wave.
  • the height position of the measurement object is transmitted to the controller.
  • the projection grid 220 is changed and the image is acquired while projecting the measurement object, the measurement object is preferably stopped. Image acquisition is possible while on the move.
  • the method of changing the pattern of the projection grid 220 is that the grid is drawn It can be changed by moving the glass plate or by making LCD with the projection grid.
  • the calculation unit 350 calculates the amplitude according to the pattern change of the projection grid from the image acquired by each pixel. In this case, when the target object is stopped after moving a predetermined distance, the pattern of the projection grid projected on the measurement object is changed. While acquiring the image.
  • the image is acquired by changing the projection grid so as to obtain the amplitude of the projected projection grid in the state where the measurement object is stopped after moving the predetermined distance, and the image is acquired by changing the projection grid again by moving the measurement object another predetermined distance.
  • the amplitude of the projection lattice can be obtained from each pixel of the image sensor through an image obtained at each position of the measurement object.
  • amplitudes obtained at angular positions z1, z2, z3, z4 and z5 of the measurement object at one point of the measurement object corresponding to one pixel of the image sensor are illustrated.
  • the magnitudes of the amplitudes of the positions z1 and z2 are p1 and p2, respectively, and the magnitudes of the amplitudes of the positions z4 and z5 (when they are higher than z3) are respectively p4, p5, If the amplitude at the well-focused z3 position is p3, then the value of p3 is the largest.
  • the height of the corresponding point of the measurement object is set as the height of the point, and the height of the measurement object point corresponding to all the pixels and the amplitude of the object is the largest.
  • 5 is an experimental result showing the magnitude of the amplitude of the projection lattice obtained from the pixel when one point of the measurement object is in the focal position and the focal point is out of the focal position. The deviation shows that the value of the amplitude decreases.
  • the measuring method includes a pattern projection unit for projecting a pattern of a projection grid onto a measurement object having an arbitrary height shape, an image acquisition unit including an image sensor for obtaining a pattern image projected onto the measurement object, and a projection grid projected onto the measurement object.
  • a focus position transfer unit for adjusting a focus position of the pattern projection unit and the image acquisition unit, a position sensor for detecting the focus position transfer amount, a pattern image of the projection grid obtained from the image sensor and the focus position
  • Three-dimensional shape measuring device comprising a control unit for receiving a signal of the position sensor for detecting the feed amount, a calculation unit for calculating the height of the object to be measured by calculating the image of the image sensor input to the control unit and the position input signal received from the position sensor
  • the image sensor of the image acquisition unit In the first step of having a plurality of pixels, each pixel is arranged to obtain an image of a corresponding point of the measurement object, through the focus position transfer unit to obtain a clear image of the projection grid pattern projected on the measurement object
  • the focus position transfer moves the measurement object up and down, only the objective lens up and down, only the image acquisition part, or both the pattern projection part and the image acquisition part.
  • the position sensor installation position is installed on the table on which the measurement object is seated, and when only the objective lens is moved up and down, it is installed in the housing of the objective lens and only the image acquisition part is moved.
  • the image acquisition unit when moving both the pattern projection unit and the image acquisition unit further includes a step 2_1 to be installed in the pattern projection unit or the image acquisition unit.
  • the height of the measurement object point corresponding to each pixel after the eighth step is determined as the height of the measurement object point through the focal length transfer amount information stored when the amplitude is the largest in the eighth step. It further comprises a step.
  • the present invention may further include a tenth step of determining the heights of the measurement object points corresponding to all the pixels and connecting the points of each measurement object to display the entire measurement object shape.
  • FIGS. 7 to 9 illustrate a configuration capable of simultaneously obtaining a projection grid amplitude and an amplitude magnitude.
  • FIG. 7 is a configuration diagram of a three-dimensional measuring apparatus using the amplitude of the projection grid as another embodiment according to the present invention.
  • the pattern acquisition unit 3200 may project a pattern of a projection grid onto a measurement object having an arbitrary height shape, and an image acquisition unit 3200 including an image sensor for obtaining a pattern image projected onto the measurement object.
  • an image acquisition unit 3200 including an image sensor for obtaining a pattern image projected onto the measurement object.
  • a focus position transfer unit 3300 for adjusting a focus position of the pattern projection unit and the image acquisition unit
  • a position sensor for detecting the focus position transfer amount
  • the controller 3400 receives a pattern image of the projection grid and a position sensor signal for detecting the focal position transfer amount, calculates an image of the image sensor input to the controller, and calculates a position input signal input from the position sensor.
  • a calculation unit 3500 for calculating the height of the object wherein the focal position transfer unit 3300 includes x for the measurement object. While simultaneously driving in the direction and z-axis direction, while obtaining the projection grid pattern corresponding to one period while adjusting the focus of the projection grid pattern, and calculating the amplitude of the obtained projection grid pattern to obtain the three-dimensional information of the measurement object It is characterized by.
  • the phase shifting effect of the projection grid is obtained by simultaneously moving the measurement object along the x-axis and the z-axis to acquire the period of the projection grid pattern and the focus of the reflected light (to obtain the amplitude according to the projection grid bucket period).
  • 3D information of the surface of the measurement object can be obtained by satisfying the effect of moving the focal position and the focal position simultaneously.
  • the pattern projecting unit 3100 projecting a pattern onto the measurement object 2500 has a light source 2100 that shines light on the measurement object, and is provided in front of the light source, and has a periodic component projected onto the measurement object by receiving light from the light source. It includes a projection grid 2200.
  • the projection grid preferably has a periodic component in which a plurality of stripes are arranged at regular intervals.
  • the image acquisition unit 3200 for obtaining a pattern image projected on the measurement object is an image sensor 2600 for obtaining a pattern of the grid projected on the measurement object, and transmits the image obtained from the image sensor to the controller
  • the optical system described above has a structure in which the objective lens 2400 is projected when the projection grid is projected onto the measurement object.
  • the image acquisition unit 3200 may include an image sensor 2600 for obtaining a pattern of a grid projected onto the measurement object, an image board 2610 for transmitting an image obtained from the image sensor to a controller, the image sensor and the And an objective lens 2400 disposed between the measurement object and a light splitter 2300 disposed between the image sensor and the objective lens, and the projection grid of the pattern projection unit includes the light splitter 2300 and the objective lens. Projection is performed to the measurement object through 240.
  • the focal position transfer unit 3300 simultaneously moves in a constant tilt angle, that is, the x-axis direction and the z-axis direction when driving the measurement object. Accordingly, the movement in the x-axis direction corresponds to the phase transfer effect of the grating, and the movement in the z-axis direction may have the focus position shifting effect. Therefore, the present invention eliminates the need for a driver for driving the projection grid (the conventional projection grid driver), and simultaneously secures the amplitude and amplitude of the projection grid by moving the measurement object simultaneously on the x-axis and the z-axis.
  • the measuring device is configured.
  • the focus position transfer unit 3300 may be configured as one stage including a motor 2520 for driving a measurement object and a position sensor 2550 for detecting a movement value, and additionally, a motor drive for controlling the motor. 2530.
  • FIG. 8 is a diagram illustrating a moving form of a measurement object according to FIG. 7. It is a figure which shows the movement form of the measurement object which concerns on this invention.
  • the focus position transfer unit may be configured as one stage including a motor and a position sensor to simultaneously transport the measurement object in the x-axis direction and the z-axis direction.
  • the movement in the x-axis direction corresponds to the movement for acquiring information according to the phase acquisition of the projection grid as the measurement object is moved with a predetermined inclination angle, and the movement in the z-axis direction is focused on the focal alignment. It corresponds to the transfer for.
  • the movement value moved in the x-axis direction and the z-axis direction is used to implement the height information of the measurement object by obtaining the movement value through the position sensor and transmitting it to the calculation unit.
  • the image sensor of the image acquisition unit has a plurality of pixels, each pixel is arranged to obtain an image of the corresponding point of the measurement object, to obtain a clear image of the projection grid pattern projected on the measurement object
  • a second step of projecting the projection grid pattern while moving through the focal position transfer unit, and obtaining a position corresponding to one period of the projection grid while acquiring the focal position information of the measurement object through the second step
  • the movement value with respect to the z-axis obtained by the focus position transfer unit corresponds to focus information for obtaining a clear image.
  • the movement value about the x-axis obtains the amplitude of the projection lattice obtained by compensating the movement value, and if the projection lattice amplitude obtained for each point of the measurement object is continuously obtained in the x-axis direction, it is measured on each pixel of the image sensor.
  • the magnitude of the projection lattice amplitude can be obtained from the image obtained at each position of the object. Assuming that the image sensor gets the most distinct image (which is the best focus), the amplitude of the projection grating becomes small due to poor focus at the position beyond the most pronounced area. Accordingly, the height information of the measurement object can be secured by determining a point having the largest amplitude and compensating the focal length transfer amount (moving value).
  • the amplitude of the projection grid pattern is obtained by compensating the feed value in the x-axis direction while simultaneously moving the x-axis direction and the z-axis direction of the measurement object, and compensating the feed value in the z-axis direction. It is to determine the optimal focus information to obtain a clear image of the.
  • the height of the measurement object point corresponding to each pixel after the fifth step is the height of the measurement object point through the focal length transfer amount information (z-axis movement amount) stored when the amplitude is the largest in the fifth step.
  • the sixth step is to determine.
  • a seventh step of determining the height of the measurement object points corresponding to all pixels and connecting the points of each measurement object to calculate the overall measurement object shape is a seventh step of determining the height of the measurement object points corresponding to all pixels and connecting the points of each measurement object to calculate the overall measurement object shape.
  • FIG. 9 is a configuration diagram of a three-dimensional measuring apparatus using the amplitude of the projection grid in another embodiment according to the present invention.
  • 8 is another method for simultaneously implementing phase acquisition and focal transfer of the projection grid according to the present invention, while driving the measurement object only in the x-axis direction, and obtaining the corresponding information by projecting the projection grid at a predetermined angle. .
  • the present invention constructed as described above implements the focus transfer process and the projection grid projection process for projecting the pattern light corresponding to one period of the focal transfer and the projection grid in the conventional measurement, but the present invention implements two processes at once By implementing and obtaining the corresponding information, the three-dimensional information of the measurement object can be obtained more quickly, and the device configuration can be simplified.

Abstract

본 발명은 투영격자를 진폭을 적용한 3차원 형상 측정장치 및 방법에 관한 것으로, 더욱 상세하게는 광학계에서 주기를 갖는 투영격자의 영상을 측정대상물에 조사하고 투영격자를 패턴을 변화시켜 진폭을 구한다음 측정대상물을 상하로 움직이면서, 연속적으로 진폭의 크기를 얻고 이를 통해 측정대상물의 3차원 형상을 측정하는 것이다. 본 발명의 측정장치는 임의 높이 형상을 갖는 측정대상물에 패턴을 영사하는 패턴 영사부(310), 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부(320), 측정대상물을 상하로 이동시키고 이동된 해당위치를 측정하는 위치센서를 포함하는 측정대상물 위치결정부(330), 상기 이미지센서에서 획득되는 영상과 상기 테이블의 위치를 측정하는 위치센서의 신호를 입력받는 제어부(340), 상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부(350)를 포함한다.

Description

투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
본 발명은 투영격자를 진폭을 적용한 3차원 형상 측정장치 및 방법에 관한 것으로, 더욱 상세하게는 광학계에서 주기를 갖는 투영격자의 영상을 측정대상물에 조사하고 투영격자를 패턴을 변화시켜 진폭을 구한다음 측정대상물을 상하로 움직이면서, 연속적으로 진폭의 크기를 얻고 이를 통해 측정대상물의 3차원 형상을 측정하는 것이다.
백색광 간섭계를 이용하여, 미세영역에 있어서, 형상을 측정하는 기술은 널리 보급되어 현재 많은 분야에서 활용되고 있다.
이러한 백생광간섭계는 대한민국특허 등록공보 제10-598572호를 보면 잘 설명되어 있다. 백색광간섭계는 반도체 및 LCD(Liquid Crystal Display) 제조 공정 중에서 불투명한 금속 층의 표면상에 투명한 박막 층을 도포하는 공정이 존재하는데, 이 때 투명한 박막 층의 두께나 그 표면 형상에 대한 정보를 측정하는 몇가지 방법들이 제안되었다.
이러한 투명한 박막층의 표면 형상을 측정하는 방법의 하나로, 백색광 주사 간섭법(WSI : White-light Scanning Interferometry)이 제안되었는데, 종래의 위상 천이 간섭법(PSI : Phase Shifting Interferometry)이 가지는 2π-모호성(2πambiguity)을 극복하여 거친면이나 고단차를 가지는 측정면도 고 분해능으로 측정할 수 있게 되었다.
백색광 주사 간섭법의 기본 측정 원리는 백색광의 짧은 가간섭(Short Coherence Length) 특성을 이용한다. 이는 광분할기인 빔 스플리터(Beam splitter)에서 분리되는 기준광과 측정광이 거의 동일한 광경로차(Optical path difference)를 겪을 때에만 간섭신호(Interference signal)가 발생하는 원리를 이용한다.
그러므로, 측정대상물을 광축 방향으로 PZT 액츄에이터와 같은 이송수단으로 수 나노미터(nanometer)의 미소 간격씩 이동하면서 측정 영역 내의 각 측정점에서의 간섭신호를 관찰하면, 각 점이 기준미러와 동일한 광경로차가 발생하는 지점에서 짧은 간섭신호가 발생한다.
이러한 간섭신호의 발생 위치를 측정 영역 내의 모든 측정점에서 산출하면 측정면의 3차원 형상에 대한 정보를 획득하게 되고, 획득된 3차원 정보로부터 박막층의 표면 형상을 측정하게 된다.
도 1은 백색광 주사 간섭법을 이용한 표면형상 측정장치를 도시한 도면이다. 도면에 도시된 바와 같이, 종래의 표면형상측정장치는 광원(110), 광분할부(150), 간섭모듈(120), 촬상부(140), 이송유닛(130) 및 제어부(160)를 포함한다.
광원(110)은 백색광을 방출한다. 광원(110)은 단색광, 예컨대 백색광을 방출하며, 대략 70W 정도의 텅스텐-할로겐 램프를 사용한다. 여기서, 광원(110)으로부터 출광된 광은 출광방향으로 도시되지 않은 광 파이버(미도시)를 거쳐 출광된다.
광 파이버로부터 출광된 광은 고정부재(171)의 핀홀을 중심으로 퍼져나간다. 그리고, 핀홀을 통과한 광은 고정부재(171)와 광분할부(150) 사이에 배치된 볼록렌즈(172)을 투과하면서 일정한 폭으로 정렬된다.
볼록렌즈(172)를 투과한 광은 광분할부(150)로 입사된다. 여기서, 광분할부(150), 예컨대, 광분할기(Beam Splitter)에 입사된 광은 입사방향에 대해 약 45도 정도로 반사되어 측정 대상물(100)을 향하게 된다.
광분할부(150)에 의해 반사되어 측정 대상물(100)을 향하는 광은 간섭모듈(120)에 입사된다. 간섭모듈(120)에 입사된 광은 각각 간섭모듈(120)에 마련된 기준미러 방향 및 측정 대상물(100) 방향으로 분할되어 출광된다. 그리고, 기준미러 및 측정 대상물(100)로부터 각각 반사된 반사광에 의해 간섭광이 형성되어 광분할부(150)로 출광된다.
촬상부(140)는 간섭모듈(120)로부터 출광되어 광분할부(150) 및 볼록렌즈(174)를 거친 간섭광을 촬상하여 제어부(160)에 인가한다.
제어부(160)는 백색광 주사 간섭법에 따라 이송유닛(130)을 제어하여 이송유닛(130)과 측정 대상물(100) 간의 이격 거리를 조절한다. 그리고, 제어부(160)는 이송유닛(130)과 측정 대상물(100) 간의 이격 거리에 대응하여 촬상부(140)에서 촬상된 데이터에 기초하여 측정 대상물(100)의 표면 형상을 측정한다.
그러나 이러한 백색광 간섭계는 가간섭 구간이 대략 2-4um이면서, 간섭무늬의 주기는 대략 0.3um정도이기 때문에 높낮이가 존재하는 입체형상을 측정하기 위해서는, 매우 짧은 간격으로 스텝(step) 이송하면서 전체 높이에 걸쳐서 간섭무늬를 획득해야 하며, 이로 인해서 측정에 소요되는 시간이 길어지게 된다.
이러한 측정방식에서는 측정대상물의 높낮이 차이가 적고, 진동이 없는 안정적인 환경에서는 효과적인 측정 장치이지만, 측정대상물의 높낮이 차이가 크면서 기구적인 진동이 존재하는 여건에서는 적절한 측정결과를 얻기 힘든 점이 있다.
이에 본 발명은 상기와 같은 문제점들을 해소하기 위해 안출된 것으로써, 측정대상물의 높낮이 차이가 크면서 기구적인 진동이 존재하는 여건에서도 3차원 형상을 측정하는 측정장치를 제안하는 것이다.
이를 위해 본 발명은 3차원 측정정치에서 주기를 갖는 투영격자의 영상을 측정대상물에 조사하고 투영격자를 패턴을 변화시켜 진폭을 구한다음 측정대상물을 상하로 움직이면서, 연속적으로 진폭의 크기를 얻어 측정대상물의 3차원 형상을 측정하는 새로운 형태의 측정장치와 이를 이용한 방법을 제공하는 것이 목적이다.
상기한 본 발명의 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 측정장치는, 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부, 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부, 상기 초점위치이송량을 검출하는 위치센서, 상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부, 상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부를 포함하여 구성한다.
본 발명의 일 실시예에 따른 측정방법은, 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부, 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부, 상기 초점위치이송량을 검출하는 위치센서, 상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부, 상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부를 포함하여 구성된 3차원 형상 측정장치를 적용한 3차원 형상 측정방법에 있어서, 상기 영상획득부의 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 상기 측정대상물의 대응되는 지점의 영상을 획득되도록 배치되는 제1단계, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해 상기 초점위치이송부를 통해 이동하며, 초점위치이송량을 저장하는 제2단계, 상기 측정대상물에 주기성분을 갖는 투영격자의 패턴을 영사하는 제3단계, 상기 투영격자의 패턴이 영사된 측정대상물의 영상을 획득하는 제4단계, 상기 투영격자를 한주기내에서 이동시키면서 측정대상물에 패턴을 영사하는 제5단계, 상기 투영격자가 한주기내에서 이동되면서 측정대상물에 영사된 패턴을 획득하는 제6단계, 상기 획득한 영상으로부터 각각의 화소에서 상기 투영격자 패턴의 진폭을 연산하는 제7단계, 상기 각 화소에서 투영격자 패턴의 진폭이 가장 큰 값을 결정하는 제8단계를 포함하여 구성된다.
상기와 같은 목적을 달성하기 위한 본 발명은, 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부, 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부, 상기 초점위치이송량을 검출하는 위치센서, 상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부, 상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부를 포함하여 구성되고, 상기 초점위치이송부는, 상기 측정대상물을 x축 방향과 z축 방향으로 동시에 구동시키면서, 투영격자 패턴의 초점을 조절함과 동시에 한주기에 해당하는 투영격자 패턴을 획득하고, 획득한 투영격자 패턴의 진폭을 연산하여 측정대상물의 3차원 정보를 획득하는 것을 특징으로 한다.
또한, 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부, 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부, 상기 초점위치이송량을 검출하는 위치센서, 상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부, 상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부로 구성된 3차원 형상 측정장치를 적용한 3차원 형상 측정방법에 있어서, 상기 영상획득부의 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 상기 측정대상물의 대응되는 지점의 영상이 획득되도록 배치되는 제1단계, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해 상기 초점위치이송부를 통해 이동함과 동시에 투영격자의 패턴을 영사하는 제2단계, 상기 2단계를 통해 상기 측정물에 대한 초점위치정보를 획득함과 동시에 투영격자의 한주기에 해당하는 패턴을 획득하는 제 3단계, 상기 획득한 영상으로부터 각각의 화소에서 상기 투영격자 패턴의 진폭을 연산하는 제4단계 및 상기 각 화소에서 투영격자 패턴의 진폭이 가장 큰 값을 결정하는 제5단계를 포함하는 것을 특징으로 한다.
상기한 바와 같이, 본 발명에 의한 3차원 측정장치 및 방법에 의하면, 측정대상물의 높낮이 차이가 크면서 기구적인 진동이 존재하는 여건에서도 적절한 측정결과를 얻을 수 있어, 사용자의 욕구를 충족시킬 수 있게 하는 매우 유용하고 효과적인 발명이다.
또한, 본 발명은 측정 대상물을 경사각(x축과 z축)으로 이송시켜 투영격자 패턴에 따른 위상효과와 진폭 크기(초점 이동 효과)를 동시에 획득할 수 있어, 투영격자 구동과 측정 대상물 이송을 개별적으로 구현하지 않고 한 번에 획득할 수 있기 때문에 측정 속도를 향상시킬 수 있는 장점이 있다.
또한, 측정 대상물을 x축과 z축으로 동시에 이송시켜 격자의 위상 획득과 초점이동 효과를 획득할 수 있기 때문에 초점 이동 별도의 격자 구동과 초점 이동 구현이 불필요하기 때문에 장치를 간소화시킬 수 있는 장점이 효과가 있다.
도 1은 종래 백색광 간섭계를 적용한 측정장치를 도시한 도면이고,
도 2는 본 발명에 측정장치의 광학계를 도시한 도면이며,
도 3은 본 발명에 측정장치의 블록도를 도시한 도면이고,
도 4는 본 발명에서 측정대상물의 높이에 따라 변하는 진폭의 크기를 도시한 도면이며,
도 5는 본 발명에 초점위치에 따라 진폭의 크기를 도시한 도면이고,
도 6는 본 발명에 경사광학계를 통한 측정장치의 광학계를 도시한 도면이다.
도 7은 본 발명에 따른 또 다른 실시예로 투영격자 진폭 크기를 이용한 3차원 측정장치의구성도,
도 8은 도 7에 따른 측정 대상물의 이동 형태를 도시한 도면,
도 9는 본 발명에 따른 다른 실시예로 투영격자 진폭 크기를 이용한 3차원 측정장치의 구성도.
이하, 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 설명한다.
또한, 본 실시 예는 본 발명의 권리범위를 한정하는 것은 아니고 단지 예시로 제시된 것이며, 그 기술적 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
도 2는 본 발명에 측정장치의 광학계를 도시한 도면이며, 도 3은 본 발명에 측정장치의 블록도를 도시한 도면이고, 도 4는 본 발명에서 측정대상물의 높이에 따라 변하는 진폭의 크기를 도시한 도면이며, 도 5는 본 발명에 초점위치에 따라 진폭의 크기를 도시한 도면이다.
도면에서 도시한 바와 같이, 본 측정장치는 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴영사부(310), 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부(320), 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부(330), 상기 초점위치이송량을 검출하는 위치센서, 상기 이미지센서(260)에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부(340), 상기 제어부에 입력되는 이미지센서(260)의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부(350)를 포함한다.
도 2를 통해 본 발명의 측정장치를 설명하면, 상기 측정대상물에 패턴을 영사하는 패턴 영사부(310)는 상기 측정대상물에 빛을 비추는 광원(210), 상기 광원의 앞쪽에 설치되며 상기 광원의 빛을 받아 측정대상물로 투영되는 주기성분을 갖는 투영격자(220), 상기 투영격자의 투영위치를 제어하는 투영격자제어기(221)를 포함한다. 여기서 투영격자는 다수의 줄무늬가 일정간격으로 배치된 주기성분을 갖는 것이 바람직하다.
또한 상기 측정대상물에 영사된 패턴영상을 획득하는 영상획득부(320)는 상기 측정대상물에 투영되는 격자의 패턴을 획득하는 이미지센서(260), 상기 이미지센서에서 획득하는 영상을 제어부로 전송하는 영상보드(261), 상기 이미지센서와 상기 측정대상물 사이에는 배치되는 대물렌즈(240)로 구성된다.
위에서 설명한 광학계는 투영격자를 측정대상물에 투영할 때 대물렌즈(240)를 투영하는 구조이다.
즉 도2에서는 대물렌즈(240)를 통해 투영하는 구조를 도시하고 있지만, 영사렌즈를 포함하는 패턴영사부를 영상획득부와 별개로 설치함으로써 대물렌즈를 통하지 않고도 투영격자를 측정대상물에 투영할 수도 있다(도6 참조).
도 2와 같이 투영격자를 측정대상물에 투영할 때 대물렌즈(240)를 통해 투영되는 구조로서, 패턴 영사부(310)는 상기 측정대상물에 빛을 비추는 광원(210), 상기 광원의 앞쪽에 설치되며 상기 광원의 빛을 받아 측정대상물로 투영되는 주기성분을 갖는 투영격자(220), 상기 투영격자의 투영위치를 제어하는 투영격자제어기(221)로 구성되어 별도의 영사렌즈를 포함하지 않는다.
또한, 영상획득부(320)는 상기 측정대상물에 투영되는 격자의 무늬를 획득하는 이미지센서(260), 상기 이미지센서에서 획득하는 영상을 제어부로 전송하는 영상보드(261), 상기 이미지센서와 상기 측정대상물 사이에는 배치되는 대물렌즈(240)와 상기 이미지센서와 상기 대물렌즈 사이에 배치되는 광분할기(230)를 더 포함하며, 상기 패턴영사부의 투영격자는 상기 광분할기(230)와 상기 대물렌즈(240)를 통해서 상기 측정대상물에 영사가 이루어진다.
또한, 상기 초점위치이송부(330)는 측정대상물을 상하로 이동시키거나, 상기 대물렌즈만을 상하로 이동시키거나, 상기 영상획득부만을 상하로 이동시키거나, 상기 패턴영사부와 영상획득부를 모두 상하로 이동시키되, 상기 위치센서 설치위치는 측정물을 상하로 이동시킬때는 측정대상물이 안착된 테이블에 설치하고, 대물렌즈만을 상하로 이동시킬 때는 대물렌즈의 하우징에 설치하며, 영상획득부만을 상하로 이동시킬때는 영상획득부에 설치하고, 패턴영사부와 영상획득부 모두를 이동시킬때는 패턴영사부나 영상획득부에 설치하여, 상기 광원의 빛을 받아 측정대상물로 투영되는 투영격자가 측정대상물로 투영된 후, 초점위치이송부의 이송에 따라 변하는 투영격자의 진폭의 크기를 분석하여 측정대상물의 높이를 측정한다.
이때, 측정대상물을 상하로 이동시키거나, 상기 대물렌즈만을 상하로 이동시키거나, 상기 영상획득부만을 상하로 이동시키거나, 상기 패턴영사부와 영상획득부를 모두 상하로 이동시키는 구조는 당업자가 본 발명의 요지에 맞추어 구성할 수 있으므로 자세한 설명은 생략하나, 이해를 돕기위해 측정대상물을 상하로 이동시키는 구조에 대해 간략히 설명한다.
이때는 상기 측정대상물(250)이 안착된 테이블(251)과 상기 측정대상물이 안착된 테이블을 상하이동 시키는 모터(252)와 모터드라이버(253)와 상기 테이블의 상하이동시 테이블의 위치를 측정하는 위치센서(255)를 포함하는 것이 바람직하며, 위치센서의 신호는 제어부(340)로 전송되어 측정대상물의 위치를 연산하는데 활용된다.
이때, 위에서 설명한 광학계는 상기 대물렌즈(240)의 초점거리를 f라 하고, 상기 측정대상물(250)의 일지점에서 상기 대물렌즈(240)의 중심거리까지의 직선거리가 b라 하며, 상기 대물렌즈(240)에서 상기 이미지센서(260) 영상획득 지점까지의 직선거리가 a 라 하면, 이때 광학계의 배치는 1/f = (1/a + 1/b) 위치에서 상기 측정대상물의 일지점의 영상이 상기 이미지센서(260)에 선명하게 획득되도록 배치되는 것을 특징으로 한다.
또한, 본 발명에서는 대물렌즈(240)와 광분할기(230) 사이에는 조리개(241)를 배치함으로써 초점심도를 자유롭게 조절하는 것이 바람직하다.
또한 본 발명에서는 상기 영상획득부와 상기 패턴영사부의 초점위치가 일치하도록 상기 광학계가 배치되는 것이 바람직하며, 초점위치가 이송되는 과정에서도 항시 영상획득부와 패턴영사부의 초점위치가 일치되도록 하면 영상획득부에서는 초점위치가 이송되더라도 측정대상물에 투영격자가 선명하게 투영되므로 선명한 영상을 획득할 수 있다.
도 3은 본 발명에 따른 블록도를 통해 측정하는 과정을 설명한다.
본 발명은 상기 이미지센서(260)는 다수개의 화소를 가진 것으로서, 상기 각각의 화소는 대응되는 측정대상물(250) 지점의 영상을 획득되도록 배치된다.
다음으로 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기위해 상기 초점위치이송부(330)를 통해 이동하며, 초점위치이송량을 저장한다.
여기서 상기 초점위치이송부를 이동하는 형태는 측정대상물을 상하로 이동시키거나, 혹은 상기 대물렌즈만을 상하로 이동시키거나, 혹은 상기 영상획득부만을 상하로 이동시키거나 혹은 상기 패턴영사부와 영상획득부를 모두 상하로 이동시키는 방식을 채택할 수 있다.
이 때 위치센서의 설치위치는 측정물을 상하로 이동시킬때는 측정대상물이 안착된 테이블에 설치하고, 대물렌즈만을 상하로 이동시킬 때는 대물렌즈의 하우징에 설치하며, 영상획득부만을 상하로 이동시킬때는 영상획득부에 설치하고, 패턴영사부와 영상획득부 모두를 이동시킬때는 패턴영사부나 영상획득부에 설치한다.
이하, 측정대상물을 상하로 이동시키는 방식에 대해 좀더 상세히 설명한다.
상기 측정대상물은 위쪽 또는 아래쪽으로 소정의 거리만큼씩 이동되도록 제어되며, 이때는 상기 측정대상물은 테이블(251)에 안착되어 있으므로, 제어부(340)를 통해 모터드라이버(253)를 제어하여 테이블을 소정 거리만큼씩 이동시킴에 따라 측정대상물은 소정의 거리만큼씩 이동한다.
상기 측정대상물(250)이 소정의 거리만큼씩 이동시에 상기 측정대상물에 투영되는 상기 투영격자의 패턴을 이동시킨 다음, 이미지센서(260)의 각 화소는 대응되는 측정대상물의 지점의 영상을 획득한다.
측정대상물을 그대로 두고 대물렌즈만을 상하로 이동시키거나, 혹은 영상획득부만을 이동시키거나, 상기 패턴영사부와 영상획득부를 모두 상하로 이동시키는 방식을 채택하여 적용하는 기술은 당업자라면 본 발명의 상세한 설명에 기재된 내용을 참고하여 용이하게 수행할 수 있다고 판단되므로 본 발명에서는 자세한 설명은 생략한다.
이하에서는 투영격자와 이의 제어에 관해 설명한다.
투영격자는 일정한 주기를 갖는 다수의 줄무늬형태이면서 밝기변화가 정현파형태를 이루는 것이 바람직하다.
상기 투영격자를 변화시키면서 영상을 획득할 때 해당 측정대상물의 높이위치를 제어부로 전송하는데, 투영격자(220)를 변화시켜 측정대상물에 투영하면서 영상을 획득할 때는 측정대상물이 정지되는 것이 바람직하나 저속 이동중에도 영상획득은 가능하다.
투영격자(220)의 패턴을 변화시키는 방법은 격자가 그려진 유리판을 움직이거나 투영격자를 LCD로 만들어 변화시킬 수 있다.
상기 연산부(350)는 상기 각각의 화소가 획득하는 영상으로부터 투영격자의 패턴변화에 따른 진폭을 연산하게 되는데, 이때 측정대상물의 소정거리를 이동후 정지하면, 측정대상물에 투영된 투영격자를 패턴을 변화시키면서 영상을 획득한다.
즉 측정대상물이 소정거리 이동후 정지한 상태에서 투영된 투영격자의 진폭을 얻을 수 있도록 투영격자를 변화시키면서 영상을 획득하고, 측정대상물을 또 다시 소정거리만큼 이동시켜 다시 투영격자를 변화시켜 영상을 획득하는 과정을 반복해서 진행하면 결국 이미지센서의 각화소에는 측정대상물의 각각의 위치에서 얻은 영상을 통해 투영격자의 진폭의 크기를 구할 수 있다.
도 4를 보면, 이미지센서의 하나의 화소에 대응되는 측정대상물의 한 지점에서 측정대상물의 각위치(z1, z2, z3, z4, z5)에서 얻은 진폭의 크기를 도시한 것이다.
도 4에서 z3 위치에서 이미지센서에 가장 뚜렸한 영상이 획득된다고 가정(이는 초점이 가장 잘 맞는 경우임)했을 때 z3를 벗어나는 위치에서는 초점이 잘 맞지 않아 투영격자의 진폭의 값이 작아지게 된다.
다시 말해, z1, z2의 위치(z3보다 아래위치 일때)의 진폭의 크기를 각각 p1, p2, 라하고, z4, z5의 위치(z3보다 위쪽위치 일때)의 진폭의 크기를 각각 p4, p5, 라하며, 초점이 잘 맞은 z3위치에서의 진폭을 p3 라하면, 결국 p3의 값이 가장 큼을 알 수 있다.
따라서 이미지센서의 각화소에 대응되는 측정대상물의 각지점[p(x, y) x=1,,n y=1..n] 이라 하면 측정대상물의 각 지점의 높이는 각 화소에서 획득되는 진폭을 구해 그 진폭이 가장 클 때의 측정대상물의 높이로 정하게 되면, 측정대상물의 모든 지점에서의 높이데이터를 구할 수 있게 된다.
이와 같이 이미지센서의 각 화소에서 얻은 영상에서 진폭이 가장 클 때, 측정대상물 해당지점의 높이를 그 지점의 높이로 정하고, 모든 화소에 대응되는 측정대상물 지점의 높이도, 진폭이 가장 클 때 측정대상물의 해당 측정대상물 지점의 높이로 정하면, 모든 측정대상물의 모든 지점의 높이 값을 구할 수 있다.
도 5는 측정대상물의 일지점이 초점위치에 있을 때와 초점위치를 벗어났을 때 해당 화소에서 얻는 투영격자의 진폭의 크기를 나타낸 실험결과로서 초점위치에서 진폭의 값이 가장 크고, 이를 위 또는 아래쪽으로 벗어났을 때 그 진폭의 값이 작아짐을 보여주고 있다.
이하, 본 발명의 측정방법에 대해 설명한다.
본 측정방법은 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부, 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부, 상기 초점위치이송량을 검출하는 위치센서, 상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부, 상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부로 구성된 3차원 형상 측정장치를 적용한 3차원 형상 측정방법에 있어서, 상기 영상획득부의 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 상기 측정대상물의 대응되는 지점의 영상을 획득되도록 배치되는 제1단계, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해 상기 초점위치이송부를 통해 이동하며, 초점위치이송량을 저장하는 제2단계, 상기 측정대상물에 주기성분을 갖는 투영격자의 패턴을 영사하는 제3단계, 상기 투영격자의 패턴이 영사된 측정대상물의 영상을 획득하는 제4단계, 상기 투영격자를 한주기내에서 이동시키면서 측정대상물에 패턴을 영사하는 제5단계, 상기 투영격자가 한주기내에서 이동되면서 측정대상물에 영사된 패턴을 획득하는 제6단계, 상기 획득한 영상으로부터 각각의 화소에서 상기 투영격자 패턴의 진폭을 연산하는 제7단계, 상기 각 화소에서 투영격자 패턴의 진폭이 가장 큰 값을 결정하는 제8단계를 포함하여 구성된다.
또한 본 발명은 상기 제2단계에서 상기 초점위치이송은 측정대상물을 상하로 이동시키거나, 상기 대물렌즈만을 상하로 이동시키거나, 영상획득부만을 이동시키거나, 상기 패턴영사부와 영상획득부를 모두 상하로 이동시키되, 상기 위치센서 설치위치는 측정물을 상하로 이동시킬때는 측정대상물이 안착된 테이블에 설치하고, 대물렌즈만을 상하로 이동시킬 때는 대물렌즈의 하우징에 설치하며, 영상획득부만을 이동시킬때는 영상획득부에 설치하고, 패턴영사부와 영상획득부 모두를 이동시킬때는 패턴영사부나 영상획득부에 설치하는 제2_1단계를 더 포함한다.
나아가 본 발명은 상기 제8단계 이후에 상기 각 화소에 대응되는 측정대상물 지점의 높이는 상기 제8단계에서 진폭이 가장 클 때 저장되었던 초점거리이송량 정보를 통해 해당 측정대상물 지점의 높이로 결정하는 제9단계를 더 포함한다.
또한 본 발명은 제9단계 이후에 모든 화소에 대응되는 측정대상물 지점의 높이를 결정하고 상기 각 측정대상물의 지점들을 연결하여 전체 측정대상물형상을 디스플레이하는 제10단계를 더 포함한다.
한편, 본 발명에 따른 다른 실시예로 도 7 내지 9는 통해 투영격자 진폭과 진폭 크기를 동시에 획득할 수 있는 구성을 설명한다.
도 7은 본 발명에 따른 또 다른 실시예로 투영격자 진폭 크기를 이용한 3차원 측정장치의구성도이다.
도 7의 구성도 마찬가지로 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부(3100), 상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부(3200), 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부(3300), 상기 초점위치이송량을 검출하는 위치센서, 상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부(3400), 상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부(3500)를 포함하여 구성되고, 상기 초점위치이송부(3300)는, 상기 측정대상물을 x축 방향과 z축 방향으로 동시에 구동시면서, 투영격자 패턴의 초점을 조절함과 동시에 한주기에 해당하는 투영격자 패턴을 획득하고, 획득한 투영격자 패턴의 진폭을 연산하여 측정대상물의 3차원 정보를 획득하는 것을 특징으로 한다.
여기서, 도 7의 실시예에서는 투영격자 패턴의 주기 획득과 반사광의 초점 획득을 위하여 측정대상물을 x축과 z축으로 동시에 이동시켜 투영격자의 위상이송효과(투영격자 버킷 주기에 따른 진폭을 구함)와 초점위치 이동효과를 동시에 만족하여 측정대상물 표면의 3차원 정보를 획득할 수 있는 것을 주요 기술적 요지로 한다.
측정대상물(2500)에 패턴을 영사하는 패턴 영사부(3100)는 상기 측정대상물에 빛을 비추는 광원(2100), 상기 광원의 앞쪽에 설치되며 상기 광원의 빛을 받아 측정대상물로 투영되는 주기성분을 갖는 투영격자(2200)를 포함한다. 여기서 상기 투영격자는 다수의 줄무늬가 일정간격으로 배치된 주기성분을 갖는 것이 바람직하다.
또한, 상기 측정대상물에 영사된 패턴영상을 획득하는 영상획득부(3200)는 상기 측정대상물에 투영되는 격자의 패턴을 획득하는 이미지센서(2600), 상기 이미지센서에서 획득하는 영상을 제어부로 전송하는 영상보드(2610), 상기 이미지센서와 상기 측정대상물 사이에는 배치되는 대물렌즈(2400)로 구성된다. 위에서 설명한 광학계는 투영격자를 측정대상물에 투영할 때 대물렌즈(2400)를 투영하는 구조이다.
또한, 영상획득부(3200)는 상기 측정대상물에 투영되는 격자의 무늬를 획득하는 이미지센서(2600), 상기 이미지센서에서 획득하는 영상을 제어부로 전송하는 영상보드(2610), 상기 이미지센서와 상기 측정대상물 사이에는 배치되는 대물렌즈(2400)와 상기 이미지센서와 상기 대물렌즈 사이에 배치되는 광분할기(2300)를 더 포함하며, 상기 패턴영사부의 투영격자는 상기 광분할기(2300)와 상기 대물렌즈(240)를 통해서 상기 측정대상물에 영사가 이루어진다.
한편, 초점위치이송부(3300)는 측정대상물을 구동시킬 때 일정한 경사각 즉, x축 방향과 z축 방향으로 동시에 이동시킨다. 이에 따라 x축 방향의 이동은 격자의 위상이송효과에 해당하는 것이며, z축 방향의 이동은 초점위치 이동효과를 가질 수 있는 것이다. 따라서, 본 발명은 투영격자를 버킷 구동시키기 위한 구동기(종래의 투영격자 구동기)가 불필요하며, 측정대상물을 x축과 z축으로 동시에 이동시킴에 따라 투영격자의 진폭과 진폭크기를 동시에 확보할 수 있는 측정장치를 구성한 것이다.
상기 초점위치이송부(3300)는 측정대상물을 구동시키기 위한 모터(2520)과 이동값을 검출하기 위한 위치센서(2550)를 포함하는 하나의 스테이지로 구성될 수 있으며, 추가적으로 상기 모터를 제어하는 모터드라이브(2530)을 포함하여 구성된다.
도 8은 도 7에 따른 측정 대상물의 이동 형태를 도시한 도면이다. 본 발명에 따른 측정 대상물의 이동 형태를 도시한 도면이다. 본 발명에 따른 초점위치이송부는 앞서 언급한 바와 같이 측정대상물의 x축 방향과 z축 방향으로 동시에 이송시킬 수 있도록 모터와 위치센서를 포함하는 하나의 스테이지로 구성될 수 있다. 도 3에 나타낸 바와 같이 소정의 경사각을 가지고 측정대상물을 이동시킴에 따라 x축 방향의 이송은 투영격자의 위상획득에 따른 정보를 획득하기 위한 이송에 해당하며, z축 방향의 이송은 초점 정렬을 위한 이송에 해당하는 것이다. x축 방향과 z축 방향으로 이동한 이동값에 대해서는 위치센서를 통해 이동값을 획득한 후 이를 연산부에 전송하여 측정 대상물의 높이 정보를 구현하기 위해 사용되어지는 것이다.
다음으로 본 발명에 따른 측정방법을 설명한다.
영상획득부의 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 상기 측정대상물의 대응되는 지점의 영상이 획득되도록 배치되는 제1단계, 상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해 상기 초점위치이송부를 통해 이동함과 동시에 투영격자의 패턴을 영사하는 제2단계, 상기 2단계를 통해 상기 측정물에 대한 초점위치정보를 획득함과 동시에 투영격자의 한주기에 해당하는 패턴을 획득하는 제 3단계, 상기 획득한 영상으로부터 각각의 화소에서 상기 투영격자 패턴의 진폭을 연산하는 제4단계, 상기 각 화소에서 투영격자 패턴의 진폭이 가장 큰 값을 결정하는 제5단계를 포함하는 것을 특징으로 한다.
좀 더 구체적으로 설명하면, 측정대상물을 x축 방향과 z축 방향으로 구동시키면서 위치센서(2550)를 통해 검출되는 이동값을 연산부로 제공하며, 이와 더불어 이미지센서의 다수 화소(픽셀)에서 획득되는 크기를 영상획득부에서 획득하여 영상보드를 통해 연산부로 제공한다. 이때, 초점위치이송부에서 획득되는 z축에 대한 이동값은 선명한 영상을 얻기 위한 초점정보에 해당하는 것이다.
x축에 대한 이동값은 이동값을 보상하여 얻어지는 투영격자의 진폭을 얻게 되며, 측정대상물의 각 지점에 대하여 얻어지는 투영격자 진폭을 x축 방향에 대하여 연속적으로 얻으면, 결국 이미지센서의 각화소에는 측정대상물의 각각의 위치에서 얻은 영상을 통해 투영격자 진폭의 크기를 획득할 수 있는 것이다. 이미지센서에 가장 뚜렷한 영상이 획득된다고 가정(이는 초점이 가장 잘 맞는 경우임)했을 때 초점 영역이 가장 뚜렷한 영역을 벗어나는 위치에서 초점이 잘 맞지 않아 투영격자의 진폭 값이 작아지게 된다. 따라서, 진폭이 가장 큰 지점을 결정하고 여기에서 초점거리이송량(이동값)을 보상하여 측정대상물의 높이정보를 확보할 수 있다.
다시 정리하면, 측정대상물의 x축 방향과 z축 방향을 동시에 이동시키면서 x축 방향에 대한 이송값을 보상하여 투영격자 패턴에 대한 진폭을 구하는 것이며, z축 방향에 대한 이송값을 보상하여 측정대상물의 영상을 선명하게 얻기 위한 최적의 초점정보를 결정하는 것이다.
즉, 상기 제5단계 이후에 상기 각 화소에 대응되는 측정대상물 지점의 높이는 상기 제5단계에서 진폭이 가장 클 때, 저장되었던 초점거리이송량 정보(z축 이동량)를 통해 해당 측정대상물 지점의 높이로 결정하는 제6단계로 구성된다.
또한, 상기 제6단계 이후에 모든 화소에 대응되는 측정대상물 지점의 높이를 결정하고 상기 각 측정대상물의 지점들을 연결하여 전체 측정대상물형상을 산출하는 제7단계로 구성되는 것이다.
도 9는 본 발명에 따른 다른 실시예로 투영격자 진폭 크기를 이용한 3차원 측정장치의 구성도이다. 도 8의 도시는 본 발명에 따른 투영격자의 위상획득과 초점이송을 동시에 구현하기 위한 다른 방법으로 측정대상물은 x축 방향으로만 구동시키되, 투영격자를 소정의 각도로 영사함으로써 해당 정보를 획득한다.
이와 같이 구성되는 본 발명은 기존의 측정에서 초점이송과 투영격자의 한 주기에 해당하는 패턴광을 영사하기 위한 초점이송과정과 투영격자 영사 과정을 개별적으로 구현하였지만, 본 발명에서는 두 개의 과정을 한번에 구현하여 해당 정보를 획득함으로써, 보다 신속하게 측정대상물의 3차원 정보를 획득할 수 있고, 장치 구성을 간략히 할 수 있는 장점이 있는 것이다.

Claims (17)

  1. 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부;
    상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부;
    상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부;
    상기 초점위치이송량을 검출하는 위치센서;
    상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부;
    상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부;를 포함하여 이루어지는 투영격자 패턴의 진폭크기를 적용한 3차원 형상측정장치.
  2. 제1항에 있어서,
    상기 측정대상물에 패턴을 영사하는 패턴 영사부는
    상기 측정대상물에 빛을 비추는 광원;
    상기 광원의 앞쪽에 설치되며 상기 광원의 빛을 받아 측정대상물로 투영되는 주기성분을 갖는 투영격자;
    상기 투영격자의 투영위치를 제어하는 투영격자제어기;
    상기 투영격자를 측정대상물에 영사하는 영사렌즈;를 포함하고,
    상기 측정대상물에 영사된 패턴영상을 획득하는 영상획득부는
    상기 측정대상물에 투영되는 격자의 무늬를 획득하는 이미지센서;
    상기 이미지센서에서 획득하는 영상을 제어부로 전송하는 영상보드;
    상기 이미지센서와 상기 측정대상물 사이에는 배치되는 대물렌즈;를 포함하여 이루어지는 투영격자 진폭의 크기를 적용한 3차원 형상측정장치.
  3. 제1항에 있어서,
    상기 측정대상물에 패턴을 영사하는 패턴 영사부는
    상기 측정대상물에 빛을 비추는 광원;
    상기 광원의 앞쪽에 설치되며 상기 광원의 빛을 받아 측정대상물로 투영되는 주기성분을 갖는 투영격자;
    상기 투영격자의 투영위치를 제어하는 투영격자제어기;를 포함하고,
    상기 측정대상물에 영사된 패턴영상을 획득하는 영상획득부는
    상기 측정대상물에 투영되는 격자의 무늬를 획득하는 이미지센서;
    상기 이미지센서에서 획득하는 영상을 제어부로 전송하는 영상보드;
    상기 이미지센서와 상기 측정대상물 사이에는 배치되는 대물렌즈;
    상기 이미지센서와 상기 대물렌즈 사이에 배치되는 광분할기;를 포함하며,
    상기 패턴영사부의 투영격자는 상기 광분할기와 상기 대물렌즈를 통해서 상기 측정대상물에 영사가 이루어지는 투영격자 진폭의 크기를 적용한 3차원 형상측정장치.
  4. 제2항 또는 제3항에 있어서,
    상기 초점위치이송부는,
    측정대상물을 상하로 이동시키거나, 상기 대물렌즈만을 상하로 이동시키거나, 상기 영상획득부만을 상하로 이동시키거나, 상기 패턴영사부와 영상획득부를 모두 상하로 이동시키되,
    상기 위치센서 설치위치는 측정물을 상하로 이동시킬때는 측정대상물이 안착된 테이블에 설치하고, 대물렌즈만을 상하로 이동시킬 때는 대물렌즈의 하우징에 설치하며, 영상획득부만을 상하로 이동시킬때는 영상획득부에 설치하고, 패턴영사부와 영상획득부 모두를 이동시킬때는 패턴영사부나 영상획득부에 설치하여 상기 광원의 빛을 받아 측정대상물로 투영되는 투영격자가 측정대상물로 투영된 후, 초점위치이송부의 이송에 따라 변하는 투영격자의 진폭의 크기를 분석하여 측정대상물의 높이를 측정하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정장치.
  5. 제4항에 있어서,
    상기 영상획득부와 상기 패턴영사부의 초점위치가 일치하도록 상기 광학계가 배치되며, 초점위치가 이송되는 과정에서도 항시 영상획득부와 패턴영사부의 초점위치가 일치되는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정장치.
  6. 제5항에 있어서
    상기 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 대응되는 측정대상물 지점의 영상을 획득되도록 배치된 후,
    상기 초점위치이송부를 위쪽 또는 아래쪽으로 소정의 거리만큼씩 이동되며,
    상기 초점위치이송부가 소정의 거리만큼씩 이동시에 이미지센서의 각 화소는 대응되는 측정대상물의 지점의 영상을 획득하고, 상기 측정대상물에 상기 투영격자가 움직이면서 영상을 획득할 때 해당 초점위치이송부의 높이정보를 제어부로 전송하며,
    상기 연산부는 상기 각각의 화소가 획득하는 영상으로부터 투영격자의 이송에 따른 진폭을 연산하고,
    각 화소에서 얻은 영상에서 진폭이 가장 클 때, 초점위치이송부의 높이정보로부터 그 화소에 대응되는 측정대상물 지점의 높이를 획득하고,
    이미지센서의 모든 화소에 대응되는 측정대상물 각 지점의 높이도, 각 화소에서 얻은 영상에서 진폭이 가장 클 때, 초점위치이송부의 높이정보로부터 그 화소에 대응되는 측정대상물 지점의 높이를 획득하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정장치.
  7. 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부;
    상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부;
    상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부;
    상기 초점위치이송량을 검출하는 위치센서;
    상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부;
    상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부로 구성된 3차원 형상 측정장치를 적용한 3차원 형상 측정방법에 있어서,
    상기 영상획득부의 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 상기 측정대상물의 대응되는 지점의 영상이 획득되도록 배치되는 제1단계;
    상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해 상기 초점위치이송부를 통해 이동하며, 초점위치이송량을 저장하는 제2단계;
    상기 측정대상물에 주기성분을 갖는 투영격자의 패턴을 영사하는 제3단계;
    상기 투영격자의 패턴이 영사된 측정대상물의 영상을 획득하는 제4단계;
    상기 투영격자를 한주기내에서 이동시키면서 측정대상물에 패턴을 영사하는 제5단계;
    상기 투영격자가 한주기내에서 이동되면서 측정대상물에 영사된 패턴을 획득하는 제6단계;
    상기 획득한 영상으로부터 각각의 화소에서 상기 투영격자 패턴의 진폭을 연산하는 제7단계;
    상기 각 화소에서 투영격자 패턴의 진폭이 가장 큰 값을 결정하는 제8단계;를 포함하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정방법.
  8. 제 7항에 있어서,
    상기 제8단계 이후에 상기 각 화소에 대응되는 측정대상물 지점의 높이는 상기 제8단계에서 진폭이 가장 클 때, 저장되었던 초점거리이송량 정보를 통해 해당 측정대상물 지점의 높이로 결정하는 제9단계; 를 더 포함하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정방법.
  9. 제 8항에 있어서,
    상기 제9단계 이후에 모든 화소에 대응되는 측정대상물 지점의 높이를 결정하고 상기 각 측정대상물의 지점들을 연결하여 전체 측정대상물형상을 산출하는 제10단계; 를 더 포함하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정방법.
  10. 제1항 내지 제3항 중 한 항에 있어서
    상기 대물렌즈(240)에 조리개(241)를 배치하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정장치.
  11. 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부;
    상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부;
    상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부;
    상기 초점위치이송량을 검출하는 위치센서;
    상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부;
    상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부;를 포함하여 구성되고,
    상기 초점위치이송부는, 상기 측정대상물을 x축 방향과 z축 방향으로 동시에 구동시키면서, 투영격자 패턴의 초점을 조절함과 동시에 한주기에 해당하는 투영격자 패턴을 획득하고, 획득한 투영격자 패턴의 진폭을 연산하여 측정대상물의 3차원 정보를 획득하는 투영격자의 진폭을 적용한 3차원 형상 측정장치.
  12. 제 11항에 있어서,
    상기 측정대상물에 패턴을 영사하는 패턴 영사부는,
    상기 측정대상물에 빛을 비추는 광원;
    상기 광원의 앞쪽에 설치되며 상기 광원의 빛을 받아 측정대상물로 투영되는 주기성분을 갖는 투영격자;를 포함하고,
    상기 측정대상물에 영사된 패턴영상을 획득하는 영상획득부는,
    상기 측정대상물에 투영되는 격자의 무늬를 획득하는 이미지센서;
    상기 이미지센서에서 획득하는 영상을 제어부로 전송하는 영상보드;
    상기 이미지센서와 상기 측정대상물 사이에는 배치되는 대물렌즈;
    상기 이미지센서와 상기 대물렌즈 사이에 배치되는 광분할기;를 포함하며,
    상기 패턴영사부의 투영격자는 상기 광분할기와 상기 대물렌즈를 통해서 상기 측정대상물에 영사가 이루어지는 것을 특징으로 하는 투영격자의 진폭을 적용한 3차원 형상 측정장치.
  13. 제 11항에 있어서, 상기 초점위치이송부는,
    상기 측정대상물을 x축 방향과 z축 방향으로 동시에 이송시키는 모터와 이송값을 검출하는 위치센서를 포함하여 구성되는 스테이지를 통해 구현시키는 것을 특징으로 하는 투영격자의 진폭을 적용한 3차원 형상 측정장치.
  14. 제 11항에 있어서,
    상기 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 대응되는 측정대상물 지점의 영상을 획득되도록 배치된 후,
    상기 측정대상물을 x축과 z축으로 동시에 이송시키며,
    상기 초점위치이송부가 소정의 거리만큼씩 이동시에 이미지센서의 각 화소는 대응되는 측정대상물의 지점의 영상을 획득함과 동시에 투영격자의 진폭을 상기 연산부에서 연산하고,
    각 화소에서 얻은 영상에서 진폭이 가장 클 때, 초점위치이송부의 높이정보로부터 그 화소에 대응되는 측정대상물 지점의 높이를 획득하고,
    이미지센서의 모든 화소에 대응되는 측정대상물 각 지점의 높이도, 각 화소에서 얻은 영상에서 진폭이 가장 클 때, 초점위치이송부의 이송정보로부터 그 화소에 대응되는 측정대상물 지점의 높이를 획득하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정장치.
  15. 임의 높이 형상을 갖는 측정대상물에 투영격자의 패턴을 영사하는 패턴 영사부;
    상기 측정대상물에 영사된 패턴영상을 획득하는 이미지센서를 포함하는 영상획득부;
    상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해, 상기 패턴영사부와 상기 영상획득부의 초점위치를 조정하는 초점위치이송부;
    상기 초점위치이송량을 검출하는 위치센서;
    상기 이미지센서에서 획득되는 투영격자의 패턴영상과 상기 초점위치이송량을 검출하는 위치센서의 신호를 입력받는 제어부;
    상기 제어부에 입력되는 이미지센서의 영상과 상기 위치센서로부터 입력받는 위치입력신호를 연산하여 측정대상물의 높이를 연산하는 연산부로 구성된 3차원 형상 측정장치를 적용한 3차원 형상 측정방법에 있어서,
    상기 영상획득부의 이미지센서는 다수개의 화소를 가지며, 상기 각각의 화소는 상기 측정대상물의 대응되는 지점의 영상이 획득되도록 배치되는 제1단계;
    상기 측정대상물에 영사된 투영격자 패턴의 선명한 영상을 얻기 위해 상기 초점위치이송부를 통해 이동함과 동시에 투영격자의 패턴을 영사하는 제2단계;
    상기 2단계를 통해 상기 측정물에 대한 초점위치정보를 획득함과 동시에 투영격자의 한주기에 해당하는 패턴을 획득하는 제 3단계;
    상기 획득한 영상으로부터 각각의 화소에서 상기 투영격자 패턴의 진폭을 연산하는 제4단계; 및
    상기 각 화소에서 투영격자 패턴의 진폭이 가장 큰 값을 결정하는 제5단계;를 포함하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정방법.
  16. 제 15항에 있어서,
    상기 제5단계 이후에 상기 각 화소에 대응되는 측정대상물 지점의 높이는 상기 제5단계에서 진폭이 가장 클 때, 저장되었던 초점거리이송량 정보를 통해 해당 측정대상물 지점의 높이로 결정하는 제6단계;를 더 포함하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정방법.
  17. 제 15항에 있어서,
    상기 제6단계 이후에 모든 화소에 대응되는 측정대상물 지점의 높이를 결정하고 상기 각 측정대상물의 지점들을 연결하여 전체 측정대상물형상을 산출하는 제7단계;를 더 포함하는 것을 특징으로 하는 투영격자 진폭의 크기를 적용한 3차원 형상 측정방법.
PCT/KR2012/007233 2011-09-09 2012-09-07 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법 WO2013036076A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280043971.3A CN103782129B (zh) 2011-09-09 2012-09-07 利用投影光栅振幅的三维形状测量装置及方法
US14/343,052 US9360306B2 (en) 2011-09-09 2012-09-07 Three-dimensional profile measurement apparatus and method using amplitude size of projection grid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110092042A KR101333299B1 (ko) 2011-09-09 2011-09-09 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
KR10-2011-0092042 2011-09-09
KR10-2012-0099230 2012-09-07
KR1020120099230A KR101423829B1 (ko) 2012-09-07 2012-09-07 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법

Publications (2)

Publication Number Publication Date
WO2013036076A2 true WO2013036076A2 (ko) 2013-03-14
WO2013036076A3 WO2013036076A3 (ko) 2013-05-02

Family

ID=47832729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007233 WO2013036076A2 (ko) 2011-09-09 2012-09-07 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법

Country Status (3)

Country Link
US (1) US9360306B2 (ko)
CN (1) CN103782129B (ko)
WO (1) WO2013036076A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302423B2 (en) * 2015-06-08 2019-05-28 Koh Young Technology Inc. Three-dimensional shape measurement apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575088B (zh) * 2014-07-22 2019-06-11 卡尔蔡司Smt有限责任公司 三维测量光刻掩模的3d空间像的方法
NL2013355B1 (en) * 2014-08-22 2016-09-23 Handicare Stairlifts B V Method and system for designing a stair lift rail assembly.
KR102079181B1 (ko) * 2016-03-04 2020-02-19 주식회사 고영테크놀러지 패턴광 조사 장치 및 방법
WO2017153069A1 (en) * 2016-03-07 2017-09-14 Asml Netherlands B.V. Level sensor and lithographic apparatus
CN106123806A (zh) * 2016-06-20 2016-11-16 四川川大智胜软件股份有限公司 一种基于微机电的结构光投影方案
KR102464368B1 (ko) * 2017-11-07 2022-11-07 삼성전자주식회사 메타 프로젝터 및 이를 포함하는 전자 장치
JP7157547B2 (ja) * 2018-04-20 2022-10-20 株式会社キーエンス 形状測定装置、形状測定方法及び形状測定プログラム
WO2020056566A1 (zh) * 2018-09-17 2020-03-26 苏州大学张家港工业技术研究院 一种快照式全场白光干涉显微测量方法及其装置
US10520301B1 (en) 2018-12-31 2019-12-31 Mitutoyo Corporation Method for measuring Z height values of a workpiece surface with a machine vision inspection system
US20220268940A1 (en) * 2019-08-07 2022-08-25 Lensvector Inc. Optical object detection and classification with dynamic beam control
CN112756281B (zh) * 2021-01-15 2023-12-12 镇江润茂钢球有限公司 一种钢球表面粗糙度筛选装置及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078596A (ko) * 2001-04-06 2002-10-19 삼성테크윈 주식회사 부품 검사 장치 및 방법
JP2005003545A (ja) * 2003-06-12 2005-01-06 Olympus Corp 高さ測定方法及びその装置
KR20090101661A (ko) * 2008-03-24 2009-09-29 선문대학교 산학협력단 Lcd패널을 이용한 모아레 형상측정장치
KR20110017679A (ko) * 2009-08-14 2011-02-22 (주)에이피앤텍 높이차 측정 장치 및 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748335A (en) * 1985-04-19 1988-05-31 Siscan Systems, Inc. Method and aparatus for determining surface profiles
US4920273A (en) * 1985-06-17 1990-04-24 View Engineering, Inc. Z-axis measurement system
JP2794698B2 (ja) * 1987-10-28 1998-09-10 興和 株式会社 立体形状測定装置
JP3211491B2 (ja) * 1993-06-07 2001-09-25 キヤノン株式会社 投影露光装置及びそれを用いた半導体製造方法並びに装置
JP3555230B2 (ja) * 1994-05-18 2004-08-18 株式会社ニコン 投影露光装置
JP3927774B2 (ja) * 2000-03-21 2007-06-13 キヤノン株式会社 計測方法及びそれを用いた投影露光装置
JP4379056B2 (ja) * 2003-08-12 2009-12-09 富士ゼロックス株式会社 三次元画像撮像装置および方法
KR100598572B1 (ko) 2005-08-01 2006-07-07 (주)펨트론 표면형상 측정장치 및 그 제어방법
KR20080043047A (ko) * 2006-11-13 2008-05-16 주식회사 고영테크놀러지 새도우 모아레를 이용한 3차원형상 측정장치
JP2009071103A (ja) * 2007-09-14 2009-04-02 Panasonic Corp 露光システムおよび半導体装置の製造方法
KR101010189B1 (ko) * 2008-06-30 2011-01-21 에스엔유 프리시젼 주식회사 두께 또는 표면형상 측정방법
KR101190122B1 (ko) * 2008-10-13 2012-10-11 주식회사 고영테크놀러지 다중파장을 이용한 3차원형상 측정장치 및 측정방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078596A (ko) * 2001-04-06 2002-10-19 삼성테크윈 주식회사 부품 검사 장치 및 방법
JP2005003545A (ja) * 2003-06-12 2005-01-06 Olympus Corp 高さ測定方法及びその装置
KR20090101661A (ko) * 2008-03-24 2009-09-29 선문대학교 산학협력단 Lcd패널을 이용한 모아레 형상측정장치
KR20110017679A (ko) * 2009-08-14 2011-02-22 (주)에이피앤텍 높이차 측정 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302423B2 (en) * 2015-06-08 2019-05-28 Koh Young Technology Inc. Three-dimensional shape measurement apparatus
US20190226837A1 (en) * 2015-06-08 2019-07-25 Koh Young Technology Inc. Three-dimensional shape measurement apparatus
US10788318B2 (en) * 2015-06-08 2020-09-29 Koh Young Technology Inc. Three-dimensional shape measurement apparatus

Also Published As

Publication number Publication date
US20140198320A1 (en) 2014-07-17
US9360306B2 (en) 2016-06-07
WO2013036076A3 (ko) 2013-05-02
CN103782129A (zh) 2014-05-07
CN103782129B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
WO2013036076A2 (ko) 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
US9041940B2 (en) Three-dimensional shape measuring apparatus
WO2016200096A1 (ko) 3차원 형상 측정장치
US8836943B2 (en) Workpiece alignment device
JP6522344B2 (ja) 高さ検出装置、塗布装置および高さ検出方法
JP2000275027A (ja) スリット共焦点顕微鏡とそれを用いた表面形状計測装置
WO2010134669A1 (ko) 입체 형상 측정장치
WO2018072446A1 (zh) 非对称式光学干涉测量方法及装置
KR101423829B1 (ko) 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
KR101333299B1 (ko) 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
WO2015029819A1 (ja) 露光装置
CN106814547B (zh) 一种测校装置及测校方法
JP5700293B2 (ja) 高速光学測定装置
CN108709509A (zh) 轮廓照相机、配套的超大直径回转体工件非接触式测径仪以及非接触式回转体测量方法
CN207976139U (zh) 可变物距光学检测装置
JP2000275183A (ja) 画像取込み装置
JP4664463B2 (ja) 基板検査装置
KR20090129080A (ko) 렌즈 모듈 광축 정렬 장치 및 방법
KR20160125884A (ko) 측정 장치
WO2022234950A1 (ko) 공초점 센싱 시스템
WO2021206044A1 (ja) パターン形成装置、並びにパターン形成方法
WO2023121094A1 (ko) 다수의 영상 정보를 획득하는 입체형상 측정장치
JP2005197483A (ja) 撮像手段の回転誤差計測方法、及びこの回転誤差計測方法を用いた調整方法又は計測方法、及びこの回転誤差計測方法で計測された回転誤差を使用する位置計測装置、及びこの位置計測装置を備えた露光装置
JPS6358106A (ja) 送りテ−ブルの真直度測定装置
KR20230168341A (ko) 검사장비의 광학계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830263

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14343052

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830263

Country of ref document: EP

Kind code of ref document: A2