CN104390608A - 基于投影栅相位法的结构光三维形状构建方法 - Google Patents

基于投影栅相位法的结构光三维形状构建方法 Download PDF

Info

Publication number
CN104390608A
CN104390608A CN201410692654.5A CN201410692654A CN104390608A CN 104390608 A CN104390608 A CN 104390608A CN 201410692654 A CN201410692654 A CN 201410692654A CN 104390608 A CN104390608 A CN 104390608A
Authority
CN
China
Prior art keywords
grating
image
dimensional shape
dimensional
under test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410692654.5A
Other languages
English (en)
Inventor
耿德品
隋毅
薛士枚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiangnan Changxing Shipbuilding Co Ltd
Original Assignee
Shanghai Jiangnan Changxing Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiangnan Changxing Shipbuilding Co Ltd filed Critical Shanghai Jiangnan Changxing Shipbuilding Co Ltd
Priority to CN201410692654.5A priority Critical patent/CN104390608A/zh
Publication of CN104390608A publication Critical patent/CN104390608A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种基于投影栅相位法的结构光三维形状构建方法,其特征在于,包括:步骤1,将编码光栅投射到待测物体表面;步骤2,从两个不同角度分别获取待测物体表面的图像;步骤3,根据光栅相移法和极线约束,对两张图像进行处理从而得到点云数据;步骤4,根据点云数据重构待测物体的三维形状。本发明的方法对相对平滑的物体进行不接触,可以主动式、实时、低成本、精确地进行三维物体的测量与重建。

Description

基于投影栅相位法的结构光三维形状构建方法
技术领域
本发明涉及三维测量领域,特别是涉及一种基于投影栅相位法的结构光三维形状构建方法。
背景技术
三维物体的重建工作越来越多地出现在人民的生产生活中,而三维测量是最关键的环节,只有准确测量出物体的三维形状,才能实现三维物体的重建。由于物体表面结构的复杂性,只能采用非接触测量法。
发明内容
本发明的目的是提供一种可主动式、实时、低成本、精确地进行三维物体的测量与重建的基于投影栅相位法的结构光三维形状构建方法。
为解决上述技术问题,作为本发明的一个方面,提供了一种基于投影栅相位法的结构光三维形状构建方法,其特征在于,包括:步骤1,将编码光栅投射到待测物体表面;步骤2,从两个不同角度分别获取待测物体表面的图像;步骤3,根据光栅相移法和极线约束,对两张图像进行处理从而得到点云数据;步骤4,根据点云数据重构待测物体的三维形状。
进一步地,编码光栅为经过编码的条纹结构光。
进一步地,编码光栅所使用的编码图案为明暗相间的黑白条纹图。
进一步地,多次投射编码图案,且后一次投射的黑白条纹图案的条纹密度是前一次的2倍。
进一步地,步骤2中获得的图像为编码光栅使用的编码图案被投射到待测物体表面时,被表面调制后得到的变形光栅图像,将变形光栅图像由下式表示:
I (x,y)=R (x,y)× { A (x,y) + B (x,y) × cos [ψ(x,y)]}
其中,
I (x,y)为变形光栅图像的光谱强度;
R (x,y)为与物体表面光学特性有关的物理量;
A (x,y)为背景强度;
B (x,y)为条纹的对比度;
ψ(x,y)为条纹的变形,其与物体三维面形分布z=h(x,y)之间满足以下关系式:
z=l*(θAB)/( (θAB)+2π*d/λ0),
其中,l为工业相机光心到参考面的距离,d为投影装置光心与工业相机光心的距离,λ0是光栅节距,θB为光栅在参考面上的基准相位值,θA为通过畸变的光栅图像得到的相位值。
进一步地,步骤3中,利用极线约束将两个图像中的被测物体的边缘部分进行匹配,从而找到两个图像之间的像点与被测点之间的对应关系,从而获得点云数据。
进一步地,步骤4采用OPENGL和C++编程实现三维物体重建。
本发明的方法对相对平滑的物体进行不接触,可以主动式、实时、低成本、精确地进行三维物体的测量与重建。
附图说明
图1是本发明中的三维测量系统组成图。
图2是本发明中的测量原理图。
图3是本发明中结构光经物体表面调制。
图4是双目视觉中的极线与极平面。
图5是本发明处理方法的流程图。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。
请参考图1至图4,本发明提供了一种基于投影栅相位法的结构光三维形状构建方法,包括:
步骤1,将编码光栅5投射到待测物体1表面,优选地,所述编码光栅5为经过编码的条纹结构光;例如,可以采用一台高亮度投影仪3将编码光栅5投射到待测物体1的表面。
在图2所示的实施例,A为红色通道强度变化模式,B为绿色通道强度变化模式,C为蓝色通道强度变化模式,三者叠加形成如D所示的复合三色锯齿形图案。
步骤2,从两个不同角度分别获取所述待测物体表面的图像;例如,可以采用两台同步高分辨工业相机2拍摄上述图像。在一个实施例中,两台工业相机2通过1394线和1394卡连接到电脑4上,高亮度投影仪3经由USB插口连接到电脑4上。优选地,所述工业相机2的分辨率为2048×1536,帧率为10fps。在电脑4的控制下,编码光栅5由投影仪3依次投影到被测物体1上,再由工业相机2依次拍摄条纹图像。
步骤3,根据光栅相移法和极线约束,对所述两张图像进行处理从而得到点云数据;
步骤4,根据所述点云数据重构所述待测物体的三维形状。
本发明的方法对相对平滑的物体进行不接触,可以主动式、实时、低成本、精确地进行三维物体的测量与重建。
优选地,所述编码光栅所使用的编码图案为明暗相间的黑白条纹图。优选地,多次投射所述编码图案,且后一次投射的黑白条纹图案的条纹密度是前一次的2倍。这样,分割区域的数目与投影图案的幅数的关系式为2n。将所得的条纹图像进行二值化处理,白色条纹区域的像素标记为“1”,黑色条纹区域的像素标记为“0”。
由于本发明摄像机分辨率为2048×1536,投影仪的分辨率为1024×768。根据采样定理,摄像机和投影仪的采样频率域投影仪对物体表面的区域划分频率之比应大于2,采用横向分割物体表面区域的方法,采用的采样频率最大值应为投影仪的横向分辨率1024。故投影编码条纹图案数量N的计算式为:1024/2N≥2,得到N≤9,故此选用9幅图案。经过9次投影与处理后,图像中的每一个像素获得一个9位的二进制编码,从“000000000”到“111111111”。
当正弦光栅图被投射到三维物体表面时,光场被待测物体表面所调制,此时,两台高分辨率工业相机将抓取被测物体的表面图案,并把获得的图案和自身位置传递给电脑。在一个实施例中,优选地,所述步骤2中获得的图像为所述编码光栅使用的编码图案被投射到所述待测物体表面时,被所述表面调制后得到的变形光栅图像,将所述变形光栅图像由下式表示:
I (x,y)=R (x,y)× { A (x,y) + B (x,y) × cos [ψ(x,y)]}
其中,
I (x,y)为变形光栅图像的光谱强度;
R (x,y)为与物体表面光学特性有关的物理量;
A (x,y)为背景强度;
B (x,y)为条纹的对比度;
ψ(x,y)为条纹的变形,其与物体三维面形分布z=h(x,y)之间满足以下关系式:
z=l*(θAB)/( (θAB)+2π*d/λ0),
其中,l为工业相机光心到参考面的距离,d为投影装置光心与工业相机光心的距离,λ0是光栅节距,θB为光栅在参考面上的基准相位值,θA为通过畸变的光栅图像得到的相位值。
优选地,所述步骤3中,利用极线约束将所述两个图像中的被测物体的边缘部分进行匹配,从而找到所述两个图像之间的像点与被测点之间的对应关系,从而获得所述点云数据。其中,这些边缘部分反映了三维物体的外部形状。
在图4中,PL为左图像平面,PR为图像平面,L为极线,E为极平面,B为基线。请参考图4,在一个优选的实施例中,采用下述原理进行匹配:
可以采用基本矩阵表示匹配点对之间对应关系,基本矩阵包含了摄像机的内参和外参信息。通用的基础矩阵表示形式为F=KT[t]×RK-1,其中:K为摄像机内参数阵,R,t分别为摄像机的旋转矩阵与平移矢量。基本矩阵是摄像机标定、匹配和跟踪、三维重建的基础,获得基本矩阵为计算外极线的关键步骤。
为了获得基本矩阵,首先,建立初始化标记的左右两幅图像上的对应匹配点集合为{Pl,P2,P3,⋯,Pn)和{P1’,P2’,P3’,⋯,Pn’),然后根据式(1)计算基本矩阵F。
PiT*F*Pi’=0, (i=1,…n) (1)
利用基本矩阵得到与左侧图像IL中的一个点P1相对应的右侧图像IR中的外极线l2,例如,可按式(2)得到外极线l2:
l2=F*P1,其中F为基本矩阵; (2)
同理,利用基本矩阵得到与右侧图像IR中的一个点P2相对应的左侧图像IL中的外极线l1,例如,可按式(3)得到外极线l1:
l1=F*P2 (3)
进一步地,如果IR中的任意一点P2在图像IL中的对应点为P1,则P1一定在l1上,并且满足
P1T*FT*P2=0 (4)
每条极线可用三个参数a,b,c表示,即
a*u+b*v+c=0 (5)
根据上述极线参数,可将边缘部分检测从二维搜索变为一维搜索。由图4可知,被测物体的某一边缘点分别成像于左右两个像平面。如,确定某点P在左像平面的像点为PL,则需要在右像平面中寻找PR,是一种二维搜索。利用极限约束可知,通过上面的公式(3),PR一定位于右像平面和极平面的交叉线,即极线之上,则变成了一维搜索。
通过上述方式,可进行快速匹配。由以上理论获取极线参数后,边缘检测从二维搜索变为一维。同时,利用分区子图方法,设定更小的范围,从而以较快的速度确定对应点。
优选地,所述步骤4采用OPENGL和C++编程实现三维物体重建。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于投影栅相位法的结构光三维形状构建方法,其特征在于,包括:
步骤1,将编码光栅投射到待测物体表面;
步骤2,从两个不同角度分别获取所述待测物体表面的图像;
步骤3,根据光栅相移法和极线约束,对所述两张图像进行处理从而得到点云数据;
步骤4,根据所述点云数据重构所述待测物体的三维形状。
2.根据权利要求1所述的方法,其特征在于,所述编码光栅为经过编码的条纹结构光。
3.根据权利要求2所述的方法,其特征在于,所述编码光栅所使用的编码图案为明暗相间的黑白条纹图。
4.根据权利要求3所述的方法,其特征在于,多次投射所述编码图案,且后一次投射的黑白条纹图案的条纹密度是前一次的2倍。
5.根据权利要求1所述的方法,其特征在于,所述步骤2中获得的图像为所述编码光栅使用的编码图案被投射到所述待测物体表面时,被所述表面调制后得到的变形光栅图像,将所述变形光栅图像由下式表示:
I (x,y)=R (x,y)× { A (x,y) + B (x,y) × cos [ψ(x,y)]}
其中,
I (x,y)为变形光栅图像的光谱强度;
R (x,y)为与物体表面光学特性有关的物理量;
A (x,y)为背景强度;
B (x,y)为条纹的对比度;
ψ(x,y)为条纹的变形,其与物体三维面形分布z=h(x,y)之间满足以下关系式:
z=l*(θAB)/( (θAB)+2π*d/λ0),
其中,l为工业相机光心到参考面的距离,d为投影装置光心与工业相机光心的距离,λ0是光栅节距,θB为光栅在参考面上的基准相位值,θA为通过畸变的光栅图像得到的相位值。
6.根据权利要求1所述的方法,其特征在于,所述步骤3中,利用极线约束将所述两个图像中的被测物体的边缘部分进行匹配,从而找到所述两个图像之间的像点与被测点之间的对应关系,从而获得所述点云数据。
7.根据权利要求1所述的方法,其特征在于,所述步骤4采用OPENGL和C++编程实现三维物体重建。
CN201410692654.5A 2014-11-27 2014-11-27 基于投影栅相位法的结构光三维形状构建方法 Pending CN104390608A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410692654.5A CN104390608A (zh) 2014-11-27 2014-11-27 基于投影栅相位法的结构光三维形状构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410692654.5A CN104390608A (zh) 2014-11-27 2014-11-27 基于投影栅相位法的结构光三维形状构建方法

Publications (1)

Publication Number Publication Date
CN104390608A true CN104390608A (zh) 2015-03-04

Family

ID=52608543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410692654.5A Pending CN104390608A (zh) 2014-11-27 2014-11-27 基于投影栅相位法的结构光三维形状构建方法

Country Status (1)

Country Link
CN (1) CN104390608A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835158A (zh) * 2015-05-05 2015-08-12 中国人民解放军国防科学技术大学 基于格雷码结构光与极线约束的三维点云获取方法
CN105241397A (zh) * 2015-06-29 2016-01-13 北航温州研究院 基于结构光的实时测量拼接方法及其设备
CN106500627A (zh) * 2016-10-19 2017-03-15 杭州思看科技有限公司 含有多个不同波长激光器的三维扫描方法及扫描仪
CN106767524A (zh) * 2016-11-22 2017-05-31 江苏大学 一种水力机械叶片曲面检测方法和装置
CN106767405A (zh) * 2016-12-15 2017-05-31 深圳大学 相位映射辅助三维成像系统快速对应点匹配的方法及装置
CN106840251A (zh) * 2015-12-07 2017-06-13 中国电力科学研究院 一种用于低压电流互感器外观检测的三维扫描系统
CN106840037A (zh) * 2017-01-17 2017-06-13 黑龙江科技大学 一种用于逆向工程的三维形貌数字化测量系统及方法
WO2018171384A1 (zh) * 2017-03-24 2018-09-27 南京理工大学 一种基于多模态复合编码和极线约束的高效三维图像获取方法
WO2019091010A1 (zh) * 2017-11-08 2019-05-16 先临三维科技股份有限公司 三维扫描方法、装置、系统、存储介质和处理器
CN111735413A (zh) * 2015-06-08 2020-10-02 株式会社高迎科技 三维形状测量装置
CN112212805A (zh) * 2020-09-18 2021-01-12 南京理工大学 一种基于复合编码的高效立体相位展开方法
CN112525106A (zh) * 2020-10-23 2021-03-19 清华大学 基于三相机协同激光的3d探测方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483999A (zh) * 2003-08-15 2004-03-24 清华大学 测量物体三维表面轮廊的方法及系统
CN101105393A (zh) * 2006-07-13 2008-01-16 周波 投射多频光栅的物体表面三维轮廓的视觉测量方法
CN101363716A (zh) * 2008-09-26 2009-02-11 华中科技大学 一种组合式空间精密测量系统
CN101608908A (zh) * 2009-07-20 2009-12-23 杭州先临三维科技股份有限公司 数字散斑投影和相位测量轮廓术相结合的三维数字成像方法
CN102175182A (zh) * 2011-01-27 2011-09-07 浙江大学宁波理工学院 结构光三维测量装置及其完整点云数据的获取方法
CN102261896A (zh) * 2011-04-19 2011-11-30 长春东瑞科技发展有限公司 一种基于相位测量的物体三维形貌测量方法及系统
US20120194641A1 (en) * 2011-02-01 2012-08-02 Sony Corporation Three-dimensional measuring apparatus, three-dimensional measuring method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483999A (zh) * 2003-08-15 2004-03-24 清华大学 测量物体三维表面轮廊的方法及系统
CN101105393A (zh) * 2006-07-13 2008-01-16 周波 投射多频光栅的物体表面三维轮廓的视觉测量方法
CN101363716A (zh) * 2008-09-26 2009-02-11 华中科技大学 一种组合式空间精密测量系统
CN101608908A (zh) * 2009-07-20 2009-12-23 杭州先临三维科技股份有限公司 数字散斑投影和相位测量轮廓术相结合的三维数字成像方法
CN102175182A (zh) * 2011-01-27 2011-09-07 浙江大学宁波理工学院 结构光三维测量装置及其完整点云数据的获取方法
US20120194641A1 (en) * 2011-02-01 2012-08-02 Sony Corporation Three-dimensional measuring apparatus, three-dimensional measuring method, and program
CN102261896A (zh) * 2011-04-19 2011-11-30 长春东瑞科技发展有限公司 一种基于相位测量的物体三维形貌测量方法及系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835158B (zh) * 2015-05-05 2016-03-23 中国人民解放军国防科学技术大学 基于格雷码结构光与极线约束的三维点云获取方法
CN104835158A (zh) * 2015-05-05 2015-08-12 中国人民解放军国防科学技术大学 基于格雷码结构光与极线约束的三维点云获取方法
CN111735413A (zh) * 2015-06-08 2020-10-02 株式会社高迎科技 三维形状测量装置
CN105241397A (zh) * 2015-06-29 2016-01-13 北航温州研究院 基于结构光的实时测量拼接方法及其设备
CN106840251B (zh) * 2015-12-07 2020-04-14 中国电力科学研究院 一种用于低压电流互感器外观检测的三维扫描系统
CN106840251A (zh) * 2015-12-07 2017-06-13 中国电力科学研究院 一种用于低压电流互感器外观检测的三维扫描系统
CN106500627A (zh) * 2016-10-19 2017-03-15 杭州思看科技有限公司 含有多个不同波长激光器的三维扫描方法及扫描仪
CN106767524A (zh) * 2016-11-22 2017-05-31 江苏大学 一种水力机械叶片曲面检测方法和装置
CN106767405A (zh) * 2016-12-15 2017-05-31 深圳大学 相位映射辅助三维成像系统快速对应点匹配的方法及装置
CN106840037A (zh) * 2017-01-17 2017-06-13 黑龙江科技大学 一种用于逆向工程的三维形貌数字化测量系统及方法
WO2018171384A1 (zh) * 2017-03-24 2018-09-27 南京理工大学 一种基于多模态复合编码和极线约束的高效三维图像获取方法
US10911672B2 (en) * 2017-03-24 2021-02-02 Nanjing University Of Science And Technology Highly efficient three-dimensional image acquisition method based on multi-mode composite encoding and epipolar constraint
WO2019091010A1 (zh) * 2017-11-08 2019-05-16 先临三维科技股份有限公司 三维扫描方法、装置、系统、存储介质和处理器
CN112212805A (zh) * 2020-09-18 2021-01-12 南京理工大学 一种基于复合编码的高效立体相位展开方法
CN112212805B (zh) * 2020-09-18 2022-09-13 南京理工大学 一种基于复合编码的高效立体相位展开方法
CN112525106A (zh) * 2020-10-23 2021-03-19 清华大学 基于三相机协同激光的3d探测方法及装置
CN112525106B (zh) * 2020-10-23 2022-08-26 清华大学 基于三相机协同激光的3d探测方法及装置

Similar Documents

Publication Publication Date Title
CN104390608A (zh) 基于投影栅相位法的结构光三维形状构建方法
CN107607060B (zh) 一种应用于光栅三维投影测量中的相位误差补偿方法
Pages et al. Optimised De Bruijn patterns for one-shot shape acquisition
CN101813461B (zh) 基于复合彩色条纹投影的绝对相位测量方法
CN107945268B (zh) 一种基于二元面结构光的高精度三维重建方法及系统
CN104197861B (zh) 基于结构光灰度向量的三维数字成像方法
CN111563564B (zh) 基于深度学习的散斑图像逐像素匹配方法
CN110425986A (zh) 基于单像素传感器的三维计算成像方法及装置
Dai et al. A dual-frequency fringe projection three-dimensional shape measurement system using a DLP 3D projector
CN101975558B (zh) 基于彩色光栅投影的快速三维测量方法
JP6270157B2 (ja) 画像処理システムおよび画像処理方法
Song et al. A new phase unwrapping algorithm based on three wavelength phase shift profilometry method
CN105844633B (zh) 基于De序列和相位编码的单帧结构光深度获取方法
CN101694375A (zh) 一种用于强反射表面三维形貌测量的立体视觉检测方法
CN102519394A (zh) 一种高适应性彩色结构光三维测量方法
CN109974625B (zh) 一种基于色相优化灰度的彩色物体结构光三维测量方法
CN102261896A (zh) 一种基于相位测量的物体三维形貌测量方法及系统
CN103292741A (zh) 一种基于k均值颜色聚类的物体表面三维轮廓的结构光视觉测量方法
CN109307483A (zh) 一种基于结构光系统几何约束的相位展开方法
CN103292733B (zh) 一种基于相移和三视张量的对应点查找方法
CN110692084B (zh) 用于导出场景的拓扑信息的装置和机器可读存储介质
CN100561118C (zh) 三维数字化测量中的一种颜色渲染方法
CN104154879B (zh) 一种非均匀条纹分段生成方法
CN108332684A (zh) 一种基于结构光照明显微技术的三维轮廓测量方法
CN109631798A (zh) 一种基于π相移方法的三维面形垂直测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150304