WO2012090732A1 - 難燃性二軸配向ポリエステルフィルム - Google Patents

難燃性二軸配向ポリエステルフィルム Download PDF

Info

Publication number
WO2012090732A1
WO2012090732A1 PCT/JP2011/079183 JP2011079183W WO2012090732A1 WO 2012090732 A1 WO2012090732 A1 WO 2012090732A1 JP 2011079183 W JP2011079183 W JP 2011079183W WO 2012090732 A1 WO2012090732 A1 WO 2012090732A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
polyester film
oriented polyester
biaxially oriented
flame retardant
Prior art date
Application number
PCT/JP2011/079183
Other languages
English (en)
French (fr)
Inventor
奈緒美 水野
小野 光正
吉田 哲男
Original Assignee
帝人デュポンフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人デュポンフィルム株式会社 filed Critical 帝人デュポンフィルム株式会社
Priority to JP2012550832A priority Critical patent/JP5480981B2/ja
Priority to CN201180063407.3A priority patent/CN103261319B/zh
Priority to KR1020157001047A priority patent/KR101555808B1/ko
Priority to KR1020137019642A priority patent/KR101555770B1/ko
Publication of WO2012090732A1 publication Critical patent/WO2012090732A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a biaxially oriented polyester film having flame retardancy, and more specifically, it has excellent flame retardancy and also has hydrolysis resistance superior to conventional flame retardant polyester films, and a metal layer,
  • the present invention relates to a flame retardant biaxially oriented polyester film that exhibits high flame retardancy even when used by bonding.
  • Polyester films especially biaxially stretched films of polyethylene terephthalate and polyethylene naphthalate, have excellent mechanical properties, heat resistance, and chemical resistance, so magnetic tape, photographic film, packaging film, film for electronic parts, electrical insulation It is widely used as a material for films, metal laminate films, protective films and the like.
  • Patent Document 1 discloses a carboxyphosphinic acid component. Among them, it is disclosed that by using a specific carboxyphosphinic acid component, high flame retardancy can be imparted to polyethylene-2,6-naphthalenedicarboxylate in a small amount without using any other phosphorus compound.
  • the laminated film having a layer containing a carboxyphosphinic acid compound as disclosed in Patent Document 1 exhibits high flame retardancy in the state of the film, but the flame retardancy after processing into a flat cable or the like is used. The flame retardancy of the film may not be reproduced.
  • JP 2009-179037 A Patent Document 2
  • JP 2010-89334 A Patent Document 3
  • inorganic metal phosphate derivatives such as phosphinic acid metal salts.
  • a laminated film in which a flame retardant layer containing a polyester film is laminated has been proposed.
  • the proposed laminated film is a technology that provides a flame retardant layer using a flame retardant and a curing agent on the substrate film in view of the high flammability due to the void structure inside the film of the porous substrate film. there were.
  • Patent Document 4 describes a composition containing a phosphoric acid derivative of an inorganic metal and a flame retardant coated electric wire.
  • this is a technique for making a thermoplastic elastomer resin flame retardant.
  • the thermoplastic elastomer resin is a resin having a high elongation, a decrease in physical properties due to the addition of the flame retardant is not a problem.
  • the polyester base layer itself such as polyethylene terephthalate and polyethylene naphthalate is made flame retardant with a phosphorus-based flame retardant, and further bonded with a metal layer without lowering the hydrolysis resistance due to these flame retardants.
  • a flame-retardant biaxially oriented polyester film that exhibits the same high flame resistance as the film has not yet been proposed.
  • the object of the present invention is to eliminate the problems of the prior art, flame-retard the polyester base layer itself such as polyalkylene terephthalate and polyalkylene naphthalate with a phosphorus-based flame retardant, and further reduce the hydrolysis resistance due to these flame retardants.
  • An object of the present invention is to provide a flame retardant biaxially oriented polyester film in which is suppressed.
  • the second object of the present invention is to make the polyester base layer itself flame retardant with a phosphorus-based flame retardant, and further to suppress the degradation of hydrolysis resistance by these flame retardants, and at the same time, flame retardancy with excellent reflectance characteristics.
  • the object is to provide a biaxially oriented polyester film.
  • the third object of the present invention is to use a polyester base layer itself as a flame retardant with a phosphorus-based flame retardant, and further suppress degradation in hydrolysis resistance due to these flame retardants, and is particularly used by being laminated with a metal layer.
  • Another object of the present invention is to provide a flame retardant biaxially oriented polyester film laminate that exhibits high flame retardancy similar to that of the flame retardant biaxially oriented polyester film itself.
  • polyester films such as polyethylene terephthalate and polyethylene naphthalate. It has been found that the hydrolysis resistance of the polyester is not impaired even when a large amount of the phosphorus component is added compared to the system component or the copolymer type phosphorus component. Based on this knowledge, since there is less influence on physical properties of these polyesters compared to conventional phosphorus-based flame retardants, a large amount of flame retardant components can be added to the polyester base layer. It has been found that a flame retardant biaxially oriented polyester film having both hydrolysis resistance and the present invention has been completed.
  • an object of the present invention is a flame retardant polyester film including a flame retardant substrate layer, and the flame retardant substrate layer contains 60% by weight or more of polyalkylene terephthalate or polyalkylene naphthalate based on the weight of the layer.
  • a flame-retardant biaxially oriented polyester film containing 98% by weight or less and 2% by weight or more and 40% by weight or less of a phosphinate represented by the following formula (1) or a diphosphinate represented by the formula (2) ( Item 1) is achieved.
  • R 1 and R 2 are hydrogen, an alkyl group having 1 to 6 carbon atoms and / or an aryl group, M is a metal, and m is a valence of M
  • the flame retardant biaxially oriented polyester film of the present invention includes the following aspects as a preferred aspect thereof, and further the flame retardant biaxially laminated laminate of the flame retardant biaxially oriented polyester film of the present invention and a metal layer. An oriented polyester film laminate is also included in the present invention.
  • the flame retardant biaxially oriented polyester film according to Item 1 wherein the phosphorus atom concentration in the flame retardant substrate layer is 1 wt% or more and 8 wt% or less based on the weight of the flame retardant substrate layer.
  • Item 3. Item 3. The flame retardant biaxially oriented polyester film according to item 1 or 2, wherein the flame retardant substrate layer has a thickness of 2 ⁇ m to 200 ⁇ m.
  • Item 5. Item 5.
  • Item 6. The flame retardant biaxially oriented polyester film according to any one of Items 1 to 5, wherein the film density is 0.7 g / cm 3 or more and 1.3 g / cm 3 or less.
  • Item 7. Item 7. The flame retardant biaxially oriented polyester film according to any one of Items 1 to 6, wherein the flame retardant substrate layer has a surface roughness Ra of from 0.1 ⁇ m to 2 ⁇ m.
  • Item 9. Item 9. The flame retardant biaxially oriented polyester film according to any one of Items 1 to 8, which has a heat seal layer on at least one side of the flame retardant substrate layer.
  • Item 10. Item 10. A flame retardant biaxially oriented polyester film laminate in which the flame retardant biaxially oriented polyester film according to any one of Items 1 to 9 and a metal layer are laminated.
  • the flame-retardant biaxially oriented polyester film of the present invention has high flame retardancy without reducing the hydrolysis resistance of polyester such as polyalkylene terephthalate or polyalkylene naphthalate, such as a flexible printed circuit board, It can be suitably used for a flat cable, a solar battery back sheet or a reflector.
  • the flame retardant biaxially oriented polyester film of the present invention is a flame retardant biaxially oriented polyester film including a flame retardant substrate layer, and the flame retardant substrate layer is a polyalkylene terephthalate or poly based on the weight of the layer. Difficult to contain 60% by weight or more and 98% by weight or less of alkylene naphthalate and 2% by weight or more and 40% by weight or less of phosphinic acid salt represented by the following formula (1) or diphosphinic acid salt represented by formula (2) It is a flammable biaxially oriented polyester film.
  • R 1 and R 2 are hydrogen, an alkyl group having 1 to 6 carbon atoms and / or an aryl group, M is a metal, and m is a valence of M
  • the flame retardant substrate layer of the present invention contains polyalkylene terephthalate or polyalkylene naphthalate as a polymer component in a range of 60% by weight to 98% by weight with respect to the flame retardant substrate layer.
  • the phosphinic acid salt represented by the above formula (1) or the diphosphinic acid salt represented by the formula (2) is contained in the range of 2% by weight to 40% by weight with respect to the flame retardant substrate layer.
  • polyalkylene terephthalate in the present invention examples include polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. Among these, polyethylene terephthalate is preferable.
  • polyalkylene naphthalate in the present invention examples include polyethylene naphthalate, polytrimethylene naphthalate, and polybutylene naphthalate. Among these, polyethylene naphthalate is preferable, and polyethylene-2,6-naphthalate is more preferable.
  • the lower limit of the content of these polyesters is preferably 65% by weight based on the weight of the flame retardant substrate layer, more preferably 70% by weight, still more preferably 75% by weight, 80% by weight is particularly preferred.
  • the upper limit of the content of these polyesters is preferably 96% by weight, more preferably 94% by weight, still more preferably 90% by weight, particularly preferably in relation to the content of the flame retardant component described later. 85% by weight. If the content of these polyesters is less than the lower limit, the film-forming property will be poor. On the other hand, if the content of these polyesters exceeds the upper limit, the content of flame retardant components will be relatively small and sufficient flame retardancy will be achieved. Does not develop.
  • the polyalkylene terephthalate or polyalkylene naphthalate of the present invention may be a copolymer having a component other than the main component (hereinafter sometimes referred to as a copolymer component) within a range not impairing the object of the present invention,
  • the copolymerization component can be used in a range of less than 25 mol% based on the number of moles of all repeating units of these polyesters, more preferably 20 mol% or less, and even more preferably 15 mol% or less.
  • copolymer component examples include oxalic acid, adipic acid, phthalic acid, sebacic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, Dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, tetralin dicarboxylic acid, decalin dicarboxylic acid, diphenyl ether dicarboxylic acid, oxycarboxylic acids such as p-oxybenzoic acid, p-oxyethoxybenzoic acid, Or ethylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexanedimethanol, neopentyl glycol, ethylene oxide a
  • polyalkylene terephthalate or polyalkylene naphthalate of the present invention may be a blend of at least two kinds of polyesters or a blend with a thermoplastic resin other than the polyesters as long as the object of the present invention is not impaired.
  • thermoplastic resins other than polyester include polyolefin resins, polystyrene resins, polyimide resins, and the like.
  • the intrinsic viscosity of these polyesters is preferably from 0.4 dl / g to 1.5 dl / g, more preferably 0.5 dl / g, measured at 25 ° C. using o-chlorophenol as a solvent. It is preferable that it is 1.2 dl / g or more.
  • the present invention uses a phosphinate represented by the following formula (1) or a diphosphinate represented by the formula (2) as a flame retardant component.
  • phosphinates represented by the following formula (1) or a diphosphinate represented by the formula (2) as a flame retardant component.
  • these may be collectively referred to as phosphinates.
  • R 1 and R 2 are hydrogen, an alkyl group having 1 to 6 carbon atoms and / or an aryl group, M is a metal, and m is a valence of M
  • R 3 and R 4 are hydrogen, an alkyl group having 1 to 6 carbon atoms and / or an aryl group
  • R 5 is an alkylene group having 1 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, and an alkylarylene group.
  • M represents a metal
  • n represents a valence of M.
  • a phosphinate is a compound also referred to as a phosphinic acid metal salt.
  • R 1 and R 2 hydrogen, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, Examples include a pentyl group, a hexyl group, and a phenyl group.
  • M include aluminum, magnesium, and calcium, and the valence m is an integer of 2 to 4.
  • R 3 and R 4 are hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, phenyl,
  • methylene group as R 5
  • M include aluminum, magnesium, and calcium
  • valence n is an integer of 2 to 4.
  • diphosphinic acid salt represented by the formula (2) examples include alkane bisphosphinate calcium such as ethane-1,2-bis (phosphinic acid) calcium and alkanebis (alkyl alkenyl such as ethane-1,2-bis (methylphosphinic acid) calcium.
  • Phosphinic acid) calcium alkane bisphosphinic acid magnesium, alkane bis (alkyl phosphinic acid) magnesium, alkane bis phosphinic acid aluminum, alkane bis (alkyl phosphinic acid) aluminum and the like.
  • aluminum diethylphosphinate is particularly preferable.
  • the present invention uses such phosphinates as a flame retardant component, it is less affected by a decrease in physical properties of a high-strength polyester such as polyalkylene terephthalate or polyalkylene naphthalate compared to conventional phosphorus flame retardants. It has a feature that a large amount of flame retardant component can be added to such an extent that it could not be added until now. Therefore, for example, when it is processed into an application used by being laminated with a metal layer, it has a characteristic that high flame retardancy similar to that of the flame-retardant polyester film itself can be obtained. Moreover, the flame-retardant biaxially oriented polyester film of the present invention contains such phosphinates and is biaxially stretched to exhibit high reflectance characteristics.
  • the content of such phosphinates is 2% by weight or more and 40% by weight or less based on the weight of the flame retardant base material layer.
  • the lower limit of the content of such phosphinates is preferably 4% by weight, more preferably 6% by weight, still more preferably 10% by weight, and particularly preferably 15% by weight.
  • the upper limit of the content of the phosphinate is preferably 35% by weight, more preferably 30% by weight, still more preferably 25% by weight, and particularly preferably 20% by weight. If the content of phosphinates is less than the lower limit, the flame retardancy is not sufficient. On the other hand, if the content of phosphinates exceeds the upper limit, the film-forming property is lowered.
  • the average particle diameter of such phosphinates is preferably 0.1 ⁇ m or more and 35 ⁇ m or less. If the average particle size is less than the lower limit, the handleability during film formation may be reduced. On the other hand, when the average particle diameter exceeds the upper limit, the film strength may decrease or the film may be easily broken.
  • the phosphinic acid salts of the present invention have such an average particle diameter, voids are easily generated at the interface between the phosphinic acid salts and the polyester phase by biaxial stretching, and the reflectance of the obtained biaxially oriented polyester film is high. It exhibits a reflectance characteristic as well as a flame retardant effect. Further, the smaller the average particle diameter, the higher the reflectance tends to be as will be described later.
  • the phosphorus atom concentration in the present invention is preferably 1% by weight or more and 8% by weight or less based on the weight of the flame retardant substrate layer.
  • the lower limit of the phosphorus atom concentration is more preferably 1.5% by weight, further preferably 2.0% by weight, particularly preferably 2.5% by weight, and particularly preferably 3.0% by weight.
  • the upper limit of the phosphorus atom concentration is more preferably 7.0% by weight, and even more preferably 6.5% by weight.
  • the use of the phosphinic acid salts of the present invention for a high-strength polyester such as polyalkylene terephthalate or polyalkylene naphthalate allows the polyester to be used in comparison with conventional additive-type phosphorus-based components or copolymer-type phosphorus-based components. It is characterized in that the hydrolysis resistance is not impaired. Therefore, it can be added in a large amount to these polyesters, and the concentration of phosphorus atoms in the flame retardant substrate layer can be increased to a level that cannot be obtained with conventional phosphorus-based components.
  • inert particles or the like may be added to the flame-retardant biaxially oriented polyester film of the present invention within a range not impairing the effects of the invention.
  • the inert particles include inorganic particles (for example, kaolin, alumina, titanium oxide, calcium carbonate, silicon dioxide) containing the elements of Periodic Tables IIA, IIB, IVA, and IVB, and crosslinked silicone resins. , Particles made of a polymer having high heat resistance such as crosslinked polystyrene and crosslinked acrylic resin particles.
  • the average particle diameter of the inert particles is preferably in the range of 0.001 to 5 ⁇ m, and may be contained in the range of 0.01 to 10% by weight based on the flame retardant substrate layer. It is preferably 0.05 to 5% by weight, more preferably 0.05 to 3% by weight.
  • the flame retardant biaxially oriented polyester film of the present invention may further contain additives such as a heat stabilizer, an antioxidant, an ultraviolet absorber, a release agent, a colorant, and an antistatic agent as necessary. It can mix
  • the thickness of the flame retardant substrate layer in the present invention is preferably 2 ⁇ m or more and 200 ⁇ m or less.
  • the mechanical properties and hydrolysis resistance of the base layer are reduced.
  • the present invention is based on the polyester base material layer having such a thickness. It has the characteristic that a flame retardant can be added.
  • the thickness of the flame retardant substrate layer can be adjusted according to the application within the above-described range.
  • the thickness is more preferably 2 to 100 ⁇ m, further preferably 5 to 75 ⁇ m, and particularly preferably 10 to 50 ⁇ m.
  • the flame retardant biaxially oriented polyester film of the present invention preferably has a heat seal layer on at least one side of the flame retardant substrate layer.
  • a heat seal layer may be a layer coated with a heat-sealing adhesive, or may be a layer composed of a polymer having a melting point lower than that of the flame retardant substrate layer.
  • the heat-seal type adhesive is also called a hot-melt type adhesive, and a known one can be used.
  • a hot-melt type adhesive a known one can be used.
  • the product name “HM326” manufactured by Cemedine Co., Ltd. and the product name “Elfan PH” manufactured by Nippon Matai Co., Ltd. are exemplified.
  • a layer comprised with a polymer whose melting point is lower than that of the flame retardant substrate layer for example, a layer using a copolyester is exemplified.
  • a polyester of the type described in the flame retardant substrate layer can be used. Of these, ethylene terephthalate or ethylene naphthalate is preferable.
  • the main component amount of the copolyester is preferably more than 50 mol%, more preferably 60 mol% or more, based on all the repeating units of the polyester constituting the heat seal layer.
  • the secondary component constituting the copolymer polyester is preferably more than the total copolymerization amount of the polyester of the flame retardant substrate layer and less than 50 mol% based on the total repeating units of the polyester of the heat seal layer.
  • Such a copolyester has a relatively lower melting point than that of the polyester of the flame retardant base material layer, so that the mating material for bonding the heat seal layer surface of the flame retardant polyester film of the present invention, specifically, a conductor to be described later, etc.
  • Subordinate components constituting the copolymer polyester include isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, p-oxybenzoic acid, and the like.
  • diol components such as dicarboxylic acid components, trimethylene glycol, hexamethylene glycol, neopentyl glycol, and ethylene oxide adducts of bisphenolsulfone, components other than the main component are preferably exemplified.
  • Such a heat seal layer is preferably provided when used as a flat cable or a solar battery back sheet.
  • the flame-retardant biaxially oriented polyester film of the present invention preferably has a polyester film tensile strength retention of 50% or more after being treated in saturated steam at 121 ° C. and 2 atm for 10 hours. Such film tensile strength retention is more preferably 60% or more. Such tensile strength retention is sometimes referred to as the film continuous film forming direction of the polyester film (hereinafter sometimes referred to as the longitudinal direction, the longitudinal direction, and the MD direction) or the orthogonal direction thereof (hereinafter referred to as the width direction, the lateral direction, and the TD direction). It is more preferable that the tensile strength retention rate in at least one direction is satisfied in both directions.
  • the flame retardant biaxially oriented polyester film of the present invention is excellent in flame retardancy and also has excellent hydrolysis resistance by using the phosphinic acid salts of the present invention as a flame retardant component. A high film tensile strength retention rate can be maintained thereafter.
  • the flame-retardant biaxially oriented polyester film of the present invention has flame retardancy and excellent hydrolysis resistance, and at the same time has high reflection characteristics.
  • the average reflectance of the polyester film at a wavelength of 400 to 700 nm is preferably 70% or more and 100% or less, more preferably 75% or more and 100% or less, and particularly preferably 80% or more and 100% or less. It is. By having such a reflectance characteristic, it can be suitably used as a reflector having, for example, flame retardancy and reflection characteristics.
  • Such reflectance characteristics can be obtained by a method in which a conventional flame retardant reflector uses white particles that increase the reflectance, or a resin that is incompatible with the matrix resin, and further laminates a layer containing a flame retardant.
  • the phosphinic acid salts of the present invention are contained in the base material layer, and the void can be efficiently formed by biaxial stretching, and the reflectance is improved while obtaining flame retardancy. is there.
  • the reflectance characteristics can be further enhanced by using those having an average particle diameter of 1 ⁇ m or more and 10 ⁇ m or less, and further 1 ⁇ m or more and 5 ⁇ m or less.
  • the flame-retardant biaxially oriented polyester film of the present invention also has a feature that the film density is smaller than that of a general polyester film.
  • the film density is preferably 0.7 g / cm 3 or more and 1.3 g / cm 3 or less, more preferably 0.8 g / cm 3 or more and 1.2 g / cm 3 or less, particularly preferably 0. .8g / cm 3 or more 1.1g / cm 3 or less.
  • Such a film density is obtained by generating a void at the interface between the phosphinic acid salts and the polyester phase by biaxially stretching the polyester film using a specific amount of the phosphinic acid salts having the above average particle diameter.
  • a flame-retardant biaxially oriented polyester film having excellent film folding characteristics and punching properties even in a state containing a large amount of phosphinates can be obtained. It is easy to punch into shapes for various uses of the present invention.
  • the density decreases.
  • the lower limit of the density is preferably 0.8 g / cm 3 .
  • the flame-retardant biaxially oriented polyester film of the present invention is suitable for flexible printed circuits, flat cables, and the like that require flexibility because it has excellent bending properties as well as flame resistance and hydrolysis resistance.
  • the surface roughness Ra of the flame retardant substrate layer of the present invention is preferably from 0.1 ⁇ m to 2 ⁇ m, more preferably from 0.2 ⁇ m to 1.5 ⁇ m, and even more preferably from 0.5 ⁇ m to 1.5 ⁇ m. is there.
  • Such surface roughness can be obtained by using a specific amount of the phosphinic acid salts having the above-mentioned average particle diameter in the base material layer.
  • Adhesiveness when laminating with other layers through a heat seal layer or adhesive layer is improved due to the rough surface over which the flame retardant substrate layer is applied, and is suitable for applications such as flat cables and solar battery back sheets. Can be used.
  • ⁇ Film production method> As a method for producing the flame-retardant biaxially oriented polyester film of the present invention, there is a film production method in which the polyester constituting the base material layer is melt-extruded and the solidified and formed sheet is stretched in two directions.
  • the film-forming method can be manufactured by using a known film-forming method. For example, after sufficiently drying a polyester containing a phosphinate, it is melted in an extruder at a temperature of melting point to (melting point + 70) ° C. , Melt-extrusion through a T-die, the film-like melt is rapidly cooled on a cooling roll (casting drum) to form an unstretched film, and then the unstretched film is sequentially or simultaneously biaxially stretched and heat-set. Can do.
  • the unstretched film is stretched in the longitudinal direction at 60 to 170 ° C. in the range of 2.3 to 5.5 times, more preferably in the range of 2.5 to 5.0 times.
  • the film is stretched in the transverse direction at 80 to 170 ° C. in the range of 2.3 to 5.0 times, more preferably 2.5 to 4.8 times.
  • the heat setting is preferably performed at a temperature of 180 to 260 ° C., more preferably 190 to 240 ° C. under tension or limited shrinkage, and the heat setting time is preferably 1 to 1000 seconds.
  • the above stretching temperature, stretching ratio, heat setting temperature and the like can be applied.
  • a layer composed of a polymer having a lower melting point than that of the flame retardant substrate layer is provided as a heat seal layer, it is supplied to an extruder different from that of the flame retardant substrate layer and melted at a temperature of melting point to (melting point + 70) ° C.
  • dye for example, the simultaneous lamination extrusion method using a multi-manifold die, is mentioned.
  • the subsequent stretching method the above-described method can be used.
  • the flame retardant biaxially oriented polyester film of the present invention can be used as a flame retardant biaxially oriented polyester film laminate laminated with a metal layer.
  • the metal layer includes a layer formed on a film, a conductor, a certain pattern such as a circuit, and the like.
  • the flame retardant biaxially oriented polyester film In laminating the flame retardant biaxially oriented polyester film with the metal layer, it is preferable to laminate the flame retardant biaxially oriented polyester film on the heat seal layer of the flame retardant biaxially oriented polyester film.
  • a flame-retardant biaxially oriented polyester film laminate By laminating with a metal layer via a heat seal layer, a flame-retardant biaxially oriented polyester film laminate can be obtained by a simple method.
  • Such a flame retardant biaxially oriented polyester film laminate can be suitably used for applications requiring flame retardancy and hydrolysis resistance, and examples thereof include applications such as flat cables and flexible printed circuit boards. Further, it can be used for other applications to be bonded to a metal layer.
  • the flame-retardant biaxially oriented polyester film and the laminate thereof of the present invention can be used as a covering material for flat cables.
  • a flat cable is a cable having a flat shape in which a metal layer in the form of a conductor is covered with an electrically insulating coating material in a sandwich shape.
  • two flame retardant biaxially oriented polyester films having a heat seal layer are used to oppose the heat seal layers, and a plurality of them are interposed therebetween.
  • the lead wire a normal lead wire used for a flat cable can be used, and examples thereof include copper, plated copper, and silver.
  • the conducting wire has a foil shape or a rectangular shape, and is arranged in parallel at a predetermined interval.
  • the flat cable obtained by using the flame retardant biaxially oriented polyester film laminate of the present invention has a very high flame resistance of the base material layer itself, and is processed into a flat cable application used by being laminated with a metal layer.
  • high flame retardancy similar to that of the flame retardant biaxially oriented polyester film itself is exhibited, and sufficient hydrolysis resistance is provided, so that it is excellent in long-term durability as a flat cable.
  • the flame-retardant biaxially oriented polyester film of the present invention can achieve both flame retardancy and bendability, a highly flexible flame-retardant flat cable can be obtained.
  • the flame retardant biaxially oriented polyester film of the present invention has an effect that the surface is rough and the adhesiveness with an adhesive layer such as a heat seal layer is enhanced.
  • the flame-retardant biaxially oriented polyester film and the laminate thereof of the present invention can be used for a flexible printed circuit board.
  • a metal layer is laminated
  • a copper foil is illustrated as a metal layer used in this use.
  • a so-called subtractive method in which a metal layer is laminated on a flame retardant biaxially oriented polyester film, and then the metal layer is subjected to pattern etching.
  • the flexible printed circuit board obtained using the flame retardant biaxially oriented polyester film laminate of the present invention has a very high flame resistance of the base material layer itself, and is a flexible printed circuit used by being laminated with a metal layer. Even when processed for substrate use, it exhibits high flame resistance similar to that of the flame retardant biaxially oriented polyester film itself, and also has sufficient hydrolysis resistance, so it can be used for long-term durability as a flexible printed circuit board. Is also excellent.
  • the flame-retardant biaxially oriented polyester film of the present invention is also excellent in bendability, it has excellent punchability when processed into a flexible printed circuit board, and furthermore, both flame retardancy and bendability can be achieved. A flexible printed circuit board with high flexibility can be obtained. Since the flame-retardant biaxially oriented polyester film and the laminate thereof of the present invention are excellent in reflectance characteristics, they can be used as flexible printed circuit boards for LEDs.
  • the flame-retardant biaxially oriented polyester film of the present invention can be used for a back sheet of a solar cell.
  • the solar cell backsheet obtained using the flame retardant biaxially oriented polyester film of the present invention is excellent in flame retardancy and also has sufficient hydrolysis resistance, thereby improving the long-term durability of the solar cell. be able to.
  • the flame-retardant biaxially oriented polyester film of the present invention has a rough surface, improves adhesion with EVA used as a filler for solar cells, and can further enhance long-term durability as a solar cell.
  • the flame-retardant biaxially oriented polyester film of the present invention can be used as various reflectors because it has both high flame retardancy and hydrolysis resistance, as well as high reflectance characteristics. Specifically, a reflecting plate of a liquid crystal display device, a reflecting plate of a lighting device, and the like can be given. In addition, when used as a reflector for a liquid crystal display device, the surface roughness characteristics of the present invention can reduce sticking to adjacent members and suppress a decrease in reflectance characteristics during long-term use.
  • polyester component Polyester components and copolymer components and amounts of each component were identified by 1 H-NMR measurement and 13 C-NMR measurement.
  • Type of phosphorus component The type of phosphorus component was specified using NMR and EPMA.
  • Phosphorus atom concentration For the flame retardant substrate layer, the phosphorus atom concentration was calculated from the emission intensity of fluorescent X-rays.
  • each layer of the laminated film was determined by embedding a small piece of the film in an epoxy resin (trade name “Epomount” manufactured by Refine Tech Co., Ltd.) and embedding using Microtome 2050 manufactured by Reichert-Jung. The entire resin was sliced to a thickness of 50 nm and measured by a transmission electron microscope (LEM-2000) at an acceleration voltage of 100 KV.
  • a strip-shaped sample cut out of a film 150 mm long ⁇ 10 mm wide is suspended with a stainless steel clip in an environmental tester set to 121 ° C., 2 atm, wet saturation mode, and 100% RH. . Thereafter, a sample piece is taken out of the environmental tester after 10 hours and the tensile strength is measured. The longitudinal direction of the film was taken as the measurement direction, the measurement was carried out five times, the average value was determined, and the hydrolysis resistance was evaluated according to the following criteria. As a measuring device, Tensilon UCT-100 type manufactured by Orientec Co., Ltd. was used.
  • Tensile strength retention (%) (Tensile strength after treatment X / initial tensile strength X 0 ) ⁇ 100 (In the formula, tensile strength X represents the tensile strength after treatment for a predetermined time under the conditions of 121 ° C., 2 atm, and 100% RH, and tensile strength X 0 represents the initial tensile strength before treatment) ⁇ : Tensile strength retention after 10 hours is 50% or more ⁇ : Tensile strength retention after 10 hours is less than 50%
  • Flammability of flat cable A hot melt adhesive (product name “Erphan PH” manufactured by Nippon Matai Co., Ltd.) is applied to one side of the film to a thickness of about 30 ⁇ m, and the adhesive is applied. A 35 ⁇ m-thick copper foil cut to a width of 3 mm was placed side by side, and two films were bonded together so that the heat seal layers were opposed to each other with the copper foil interposed therebetween, and a flat cable sample was prepared by heat-sealing. .
  • this heat-seal layer was made to oppose, the 35 micrometer-thick copper foil cut
  • the temperature was 140 ° C.
  • the pressure was 2.8 kgf / cm 2
  • the heat sealing time was 2 sec.
  • the produced flat cable samples were evaluated according to the UL-94V method.
  • the sample was cut into 13 mm ⁇ 125 mm and left in 50 ⁇ 5% RH for 48 hours, after which the lower end of the sample was held 10 mm above the burner and held vertically.
  • the lower end of the sample was indirectly fired for 10 seconds using a Bunsen burner having an inner diameter of 9.5 mm and a flame length of 19 mm as a heating source.
  • the self-extinguishing property after flame removal was evaluated.
  • Fire extinguishing within 10 seconds after flame release
  • Burning beyond 10 seconds after flame release
  • Average particle diameter About the cross section of the flame-retardant base material layer, it measured by 3500 times about 20 particles using Hilox digital microscope KH-3000, and calculated
  • Example 1 Polyethylene terephthalate (transesterification catalyst: manganese acetate tetrahydrate, polymerization catalyst: antimony trioxide) having an intrinsic viscosity of 0.60 dl / g and a terminal carboxyl group concentration of 25 equivalents / ton was used as polyester, and aluminum dimethylphosphinate (in Table 1) And a composition containing 15% by weight of phosphor compound A (average particle size 2 ⁇ m) based on the weight of the flame retardant substrate layer, dried for 3 hours with a 170 ° C.
  • transesterification catalyst manganese acetate tetrahydrate
  • polymerization catalyst antimony trioxide
  • melt-kneading at °C and extruding from a die slit at 280 °C it was cooled and solidified on a casting drum set at a surface temperature of 25 °C to prepare an unstretched film.
  • the unstretched film was guided to a roll group heated to 100 ° C., stretched 3.5 times in the longitudinal direction (longitudinal direction), and cooled with a roll group at 25 ° C. Subsequently, both ends of the longitudinally stretched film were guided to a tenter while being held by clips, and stretched in a direction perpendicular to the longitudinal direction (lateral direction) at a magnification of 3.8 times in an atmosphere heated to 120 ° C. Thereafter, the film was heat-set at 230 ° C. in a tenter, relaxed 2% in the width direction at 180 ° C., and then uniformly cooled and cooled to room temperature to obtain a biaxially stretched film having a thickness of 50 ⁇ m. The properties of the obtained film are shown in Table 1. The film of this example was excellent in flame retardancy and hydrolysis resistance. The film of this example was also excellent in reflectance characteristics and bending characteristics.
  • Example 2 A biaxially stretched film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the flame retardant was changed to aluminum diethylphosphinate (indicated as phosphorus compound B in Table 1, average particle diameter 2 ⁇ m). The properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, reflectance characteristics, and bending characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween. Moreover, when the peel strength was measured about the adhesiveness of a flame-resistant base material layer and a heat seal layer using the produced flat cable, intensity
  • Example 3 A biaxially stretched film having a thickness of 50 ⁇ m was obtained by performing the same operation as in Example 2 except that the content of the flame retardant was changed to 5% by weight.
  • the properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, and bending characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 4 A biaxially stretched film having a thickness of 50 ⁇ m was obtained by performing the same operation as in Example 2 except that the content of the flame retardant was changed to 30% by weight.
  • the properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, and reflectance characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 5 A biaxially stretched film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the flame retardant was changed to aluminum ethylmethylphosphinate (indicated as phosphorus compound C in Table 1, average particle diameter of 3 ⁇ m). The properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, reflectance characteristics, and bending characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 6 Example except that the flame retardant was changed to aluminum biphenylphosphinate (indicated as phosphorus compound D in Table 1, average particle diameter 3 ⁇ m) and the content was changed to 20% by weight based on the weight of the flame retardant substrate layer. The same operation as 1 was performed to obtain a biaxially stretched film having a thickness of 50 ⁇ m. The properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, and reflectance characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 7 A biaxially stretched film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the flame retardant was changed to calcium dimethylphosphinate (indicated as phosphorus compound E in Table 1 and average particle diameter of 5 ⁇ m). The properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, reflectance characteristics, and bending characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 8 A biaxially stretched film having a thickness of 50 ⁇ m was obtained by performing the same operation as in Example 1 except that the flame retardant was changed to calcium diethylphosphinate (indicated as phosphorus compound F in Table 1, average particle diameter: 5 ⁇ m). The properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, reflectance characteristics, and bending characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 9 Polyethylene-2,6-naphthalenedicarboxylate (transesterification catalyst: manganese acetate tetrahydrate, polymerization catalyst: antimony trioxide) having an intrinsic viscosity of 0.57 dl / g and a terminal carboxyl group concentration of 25 equivalents / ton as polyester is used.
  • a composition containing 15% by weight of aluminum diethylphosphinate (phosphorus compound B) based on the weight of the flame retardant substrate layer is dried with a 180 ° C. dryer for 5 hours and then put into an extruder and melted at a melting temperature of 300 ° C. After kneading and extruding from a die slit at 300 ° C., the film was cooled and solidified on a casting drum set at a surface temperature of 60 ° C. to prepare an unstretched film.
  • the unstretched film was led to a roll group heated to 140 ° C., stretched 3.5 times in the longitudinal direction (longitudinal direction), and cooled with a roll group at 60 ° C. Subsequently, both ends of the longitudinally stretched film were guided to a tenter while being held by clips, and stretched 3.5 times in a direction (lateral direction) perpendicular to the longitudinal direction in an atmosphere heated to 150 ° C. Thereafter, the film was heat-set at 230 ° C. in a tenter, relaxed by 2% in the width direction at 180 ° C., then uniformly cooled and cooled to room temperature to obtain a biaxially stretched film having a thickness of 50 ⁇ m. The properties of the obtained film are shown in Table 1. The film of this example was excellent in flame retardancy, hydrolysis resistance, reflectance characteristics, and bending characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 10 A biaxially stretched film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 9 except that the content of the flame retardant was changed to 5% by weight.
  • the properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, and bending characteristics. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 11 20% by weight of aluminum diethylphosphinate (phosphorus compound B) based on the weight of the flame retardant substrate layer, a composition using polyethylene terephthalate as the polyester was dried with a 170 ° C. dryer for 3 hours and then put into an extruder. The mixture was melt kneaded at a melting temperature of 280 ° C.
  • isophthalic acid-copolymerized polyethylene terephthalate having an intrinsic viscosity of 0.59 dl / g obtained by copolymerizing isophthalic acid with 18 mol% based on all repeating units of polyester in the heat-sealing layer for a heat seal layer is dried with a 170 ° C. dryer for 3 hours. Thereafter, it was charged into the other extruder and melted at a melting temperature of 270 ° C.
  • An unstretched film composed of two layers was prepared by cooling and solidifying on a casting drum. This unstretched film was biaxially stretched in the same manner as in Example 1 to obtain a biaxially stretched film having a thickness of 50 ⁇ m (a flame retardant substrate layer: 40 ⁇ m, a heat seal layer: 10 ⁇ m).
  • the properties of the obtained film are shown in Table 1.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, and reflectance characteristics. Furthermore, even in the state of a flat cable produced by sandwiching a copper foil, it was excellent in flame retardancy.
  • Examples 12 to 14 The same operation as in Example 2 was carried out except that aluminum diethylphosphinate (described as phosphorus compound B in Table 1) was changed to the average particle diameter shown in Table 2 to obtain a biaxially stretched film having a thickness of 50 ⁇ m. It was. The properties of the obtained film are shown in Table 2.
  • the film of this example was excellent in flame retardancy, hydrolysis resistance, and bending characteristics. As for the reflectance characteristics, a higher reflectance was obtained when the average particle diameter of the flame retardant was smaller. Furthermore, the flame resistance was excellent even in the state of the flat cable produced with the copper foil sandwiched therebetween.
  • Example 1 A biaxially stretched film having a thickness of 50 ⁇ m was obtained by performing the same operation as in Example 1 except that no flame retardant was added. The properties of the obtained film are shown in Table 1. Although the film of this comparative example was excellent in hydrolysis resistance, flame retardance was not sufficient for both the film and the flat cable. Also, the reflectivity was low.
  • Example 2 A biaxially stretched film having a thickness of 50 ⁇ m was obtained by performing the same operation as in Example 2 except that the content of the flame retardant was changed to 45% by weight. The properties of the obtained film are shown in Table 1. In this comparative example, the film forming property was not sufficient, and a biaxially stretched film could not be obtained.
  • a polycondensation reaction was performed by a conventional method to obtain a polyester having an intrinsic viscosity of 0.70 dl / g.
  • the obtained polyester is dried for 3 hours with a 170 ° C. dryer, put into an extruder, melted at 260 ° C. and extruded through a die slit, and then cooled and solidified on a casting drum set at a surface temperature of 25 ° C. to be unstretched.
  • a film was created.
  • This unstretched film was stretched 3.5 times in the longitudinal direction (continuous film-forming direction) at 100 ° C., then biaxially stretched successively 3.8 times in the transverse direction (width direction) at 130 ° C., and further 230 ° C.
  • the film was heat fixed at 200 ° C., relaxed 2% in the transverse direction at 200 ° C., then uniformly cooled and cooled to room temperature to obtain a 50 ⁇ m-thick biaxially stretched film.
  • Table 1 The properties of the obtained film are shown in Table 1. Although the film of this comparative example was excellent in the flame retardance in a film, the flame retardance in the state of a flat cable was not enough. In addition, hydrolysis resistance and reflectance were also reduced as compared to the examples.
  • PET represents polyethylene terephthalate
  • PEN represents polyethylene-2,6-naphthalenedicarboxylate
  • the flame-retardant biaxially oriented polyester film of the present invention has high flame retardancy without reducing the hydrolysis resistance of polyester such as polyalkylene terephthalate or polyalkylene naphthalate, such as a flexible printed circuit board, It can be suitably used for a flat cable, a solar battery back sheet or a reflector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ポリアルキレンテレフタレートやポリアルキレンナフタレートといったポリエステルの基材層そのものをリン系難燃剤で難燃化し、さらにこれら難燃剤による耐加水分解性低下が抑制された難燃性二軸配向ポリエステルフィルムを提供する。 本発明は難燃基材層を含む難燃性二軸配向ポリエステルフィルムであり、該難燃基材層が該層の重量を基準としてポリアルキレンテレフタレートもしくはポリアルキレンナフタレートを60重量%以上98重量%以下、および特定のホスフィン酸塩もしくはジホスフィン酸塩を2重量%以上40重量%以下含有する難燃性二軸配向ポリエステルフィルムによって得られる。

Description

難燃性二軸配向ポリエステルフィルム
 本発明は難燃性を有する二軸配向ポリエステルフィルムに関するものであり、更に詳しくは、難燃性に優れるとともに、従来の難燃ポリエステルフィルムよりも優れた耐加水分解性を備え、さらに金属層と貼り合せて用いられた際にも高い難燃性を示す難燃性二軸配向ポリエステルフィルムに関する。
 ポリエステルフィルム、特にポリエチレンテレフタレートやポリエチレンナフタレートの二軸延伸フィルムは、優れた機械的性質、耐熱性、耐薬品性を有するため、磁気テープ、写真フィルム、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、金属ラミネート用フィルムおよび保護用フィルム等の素材として広く用いられている。
 近年、製造物責任法の施行に伴い、火災に対する安全性を確保するために樹脂の難燃化が強く要望されている。
 従来用いられている有機ハロゲン化合物、ハロゲン含有有機リン化合物等のハロゲン系難燃剤は、難燃効果は高いものの、成形・加工時にハロゲンが遊離し、腐食性のハロゲン化水素ガスを発生して、成形・加工機器を腐食させる可能性、また作業環境を悪化させる可能性が指摘されている。また前記難燃剤は、火災などの燃焼に際してハロゲン化水素等のガスを発生する可能性が指摘されている。そのため、近年ハロゲン系難燃剤に替わり、ハロゲンを含まない難燃剤を用いることが強く要望されている。
 ハロゲンを含まない難燃剤による難燃化方法の1つとして種々のリン系化合物が検討されているが、例えばリン酸エステル化合物を用いた難燃化方法は、ポリエステルに対して多量に添加するとブリードアウトが増えたり、融点低下を伴うことがあった。
 また、ポリエステル樹脂の難燃化方法の1つとして、リン化合物をポリエステルに共重合化させる方法が検討されており、例えば特開2007-9111号公報(特許文献1)には、カルボキシホスフィン酸成分の中でも特定のカルボキシホスフィン酸成分を用いることにより、他のリン化合物を併用しなくても少量でポリエチレン-2,6-ナフタレンジカルボキシレートに高い難燃性を付与できることが開示されている。しかしながら、特許文献1のようなカルボキシホスフィン酸化合物を含有する層を有する積層フィルムは、フィルムの状態では高い難燃性が発現するものの、フラットケーブルなどの用途に加工した後の難燃性についてはフィルムの難燃性が再現されないことがあった。
 その他のリン系難燃剤として、例えば特開2009-179037号公報(特許文献2)、特開2010-89334号公報(特許文献3)にはホスフィン酸金属塩などといった無機金属のリン酸系誘導体を含む難燃層をポリエステルフィルムに積層させた積層フィルムが提案されている。しかしながら提案されている積層フィルムは、多孔質基材フィルムのフィルム内部のボイド構造により燃焼性が高いことを鑑み、基材フィルム上に難燃剤と硬化剤とを用いた難燃層を設ける技術であった。また特開2010-229390号公報(特許文献4)には無機金属のリン酸系誘導体を配合した組成物および難燃被覆電線が記載されているが、熱可塑性エラストマー樹脂を難燃化させる技術であり、熱可塑性エラストマー樹脂は伸度が高い樹脂であるため、難燃剤添加に伴う物性低下はあまり問題とならない。
 このように、ポリエチレンテレフタレートやポリエチレンナフタレートといったポリエステルの基材層そのものをリン系難燃剤で難燃化し、さらにこれら難燃剤による耐加水分解性の低下を伴うことなく、さらに金属層と貼り合せて用いられた際にもフィルムと同様の高い難燃性を示す難燃性二軸配向ポリエステルフィルムはいまだ提案されていない状況である。
特開2007-9111号公報 特開2009-179037号公報 特開2010-89334号公報 特開2010-229390号公報
 本発明の目的は、かかる従来技術の課題を解消し、ポリアルキレンテレフタレートやポリアルキレンナフタレートといったポリエステルの基材層そのものをリン系難燃剤で難燃化し、さらにこれら難燃剤による耐加水分解性低下が抑制された難燃性二軸配向ポリエステルフィルムを提供することにある。
 また本発明の第2の目的は、ポリエステルの基材層そのものをリン系難燃剤で難燃化し、さらにこれら難燃剤により耐加水分解性低下が抑制され、同時に反射率特性にも優れる難燃性二軸配向ポリエステルフィルムを提供することにある。
 本発明の第3の目的は、ポリエステルの基材層そのものをリン系難燃剤で難燃化し、さらにこれら難燃剤による耐加水分解性低下が抑制され、特に金属層と積層して使用される用途に加工した際にも難燃性二軸配向ポリエステルフィルムそのものと同様の高い難燃性を示す難燃性二軸配向ポリエステルフィルム積層体を提供することにある。
 本発明者らは、前記課題を解決するために鋭意検討した結果、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステルフィルムにおいて、難燃成分としてホスフィン酸金属塩を用いることにより、従来の他の添加型リン系成分または共重合型リン系成分に比べて、多量にリン系成分を添加してもポリエステルの耐加水分解性を損ねることがないとの知見を得た。
 かかる知見をもとに、従来のリン系難燃剤に比べてこれらポリエステルへの物性低下の影響が少ないことから、ポリエステル基材層に多量の難燃成分を添加することができ、難燃性と耐加水分解性とを兼ね備える難燃性二軸配向ポリエステルフィルムが得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の目的は、難燃基材層を含む難燃性ポリエステルフィルムであり、該難燃基材層が該層の重量を基準としてポリアルキレンテレフタレートもしくはポリアルキレンナフタレートを60重量%以上98重量%以下、および下記式(1)で表されるホスフィン酸塩もしくは式(2)で表されるジホスフィン酸塩を2重量%以上40重量%以下含有する難燃性二軸配向ポリエステルフィルム(項1)によって達成される。
Figure JPOXMLDOC01-appb-C000003
(式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基であり、Mは金属、mはMの価数をそれぞれ表す)
Figure JPOXMLDOC01-appb-C000004
(式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基、Rは炭素数1~6のアルキレン基または炭素数6~10のアリーレン基、アルキルアリーレン基もしくはアリールアルキレン基であり、Mは金属、nはMの価数をそれぞれ表す)
 また本発明の難燃性二軸配向ポリエステルフィルムは、その好ましい態様として以下の態様も包含し、さらに本発明の難燃性二軸配向ポリエステルフィルムと金属層とが積層された難燃性二軸配向ポリエステルフィルム積層体も本発明に含まれる。
項2. 該難燃基材層中のリン原子濃度が難燃基材層の重量を基準として1重量%以上8重量%以下である項1に記載の難燃性二軸配向ポリエステルフィルム。
項3. 該難燃基材層の厚みが2μm以上200μm以下である項1または2に記載の難燃性二軸配向ポリエステルフィルム。
項4. 121℃、2気圧の飽和水蒸気中で10時間処理した後のポリエステルフィルム引張強度保持率が50%以上である項1~3のいずれかに記載の難燃性二軸配向ポリエステルフィルム。
項5. 400~700nmに波長における該ポリエステルフィルムの平均反射率が75%以上100%以下である項1~4のいずれかに記載の難燃性二軸配向ポリエステルフィルム。
項6. フィルム密度が0.7g/cm3以上1.3g/cm3以下である項1~5のいずれかに記載の難燃性二軸配向ポリエステルフィルム。
項7. 該難燃基材層の表面粗さRaが0.1μm以上2μm以下である項1~6のいずれかに記載の難燃性二軸配向ポリエステルフィルム。
項8. フレキシブルプリント回路、フラットケーブル、太陽電池バックシートあるいは反射板として用いられる、項1~7のいずれかに記載の難燃性二軸配向ポリエステルフィルム。
項9. 難燃基材層の少なくとも片面にヒートシール層を有する項1~8のいずれかに記載の難燃性二軸配向ポリエステルフィルム。
項10. 項1~9のいずれかに記載の難燃性二軸配向ポリエステルフィルムと金属層とが積層された難燃性二軸配向ポリエステルフィルム積層体。
項11. 項1~9のいずれかに記載の難燃性二軸配向ポリエステルフィルムを用いた難燃性フラットケーブル。
 本発明の難燃性二軸配向ポリエステルフィルムは、ポリアルキレンテレフタレートもしくはポリアルキレンナフタレートといったポリエステルが有する耐加水分解性を低下させることなく、高い難燃性を備えており、例えばフレキシブルプリント回路基板、フラットケーブル、太陽電池バックシートあるいは反射板などに好適に用いることができる。
 以下、本発明を詳しく説明する。
 <難燃性二軸配向ポリエステルフィルム>
 本発明の難燃性二軸配向ポリエステルフィルムは、難燃基材層を含む難燃性二軸配向ポリエステルフィルムであり、該難燃基材層が該層の重量を基準としてポリアルキレンテレフタレートもしくはポリアルキレンナフタレートを60重量%以上98重量%以下、および下記式(1)で表されるホスフィン酸塩もしくは式(2)で表されるジホスフィン酸塩を2重量%以上40重量%以下含有する難燃性二軸配向ポリエステルフィルムである。
Figure JPOXMLDOC01-appb-C000005
(式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基であり、Mは金属、mはMの価数をそれぞれ表す)
Figure JPOXMLDOC01-appb-C000006
(式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基、Rは炭素数1~6のアルキレン基または炭素数6~10のアリーレン基、アルキルアリーレン基もしくはアリールアルキレン基であり、Mは金属、nはMの価数をそれぞれ表す)
 [難燃基材層]
 本発明の難燃基材層は、ポリマー成分としてポリアルキレンテレフタレートもしくはポリアルキレンナフタレートを該難燃基材層に対して60重量%以上98重量%以下の範囲で含有し、また難燃成分として上述の式(1)で表されるホスフィン酸塩もしくは式(2)で表されるジホスフィン酸塩を該難燃基材層に対して2重量%以上40重量%以下の範囲で含有する。
 (ポリエステル)
 本発明におけるポリアルキレンテレフタレートとして、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートが例示され、これらの中でもポリエチレンテレフタレートが好ましい。また、本発明におけるポリアルキレンナフタレートとして、ポリエチレンナフタレート、ポリトリメチレンナフタレート、ポリブチレンナフタレートが例示され、これらの中でもポリエチレンナフタレートが好ましく、さらに、ポリエチレン-2,6-ナフタレートが好ましい。
 これらポリエステルの含有量の下限値は、該難燃基材層の重量を基準として65重量%であることが好ましく、70重量%であることがより好ましく、75重量%であることがさらに好ましく、80重量%であることが特に好ましい。
 また、これらポリエステルの含有量の上限値は、後述する難燃成分の含有量との関係で96重量%であることが好ましく、より好ましくは94重量%、さらに好ましくは90重量%、特に好ましくは85重量%である。
 これらポリエステルの含有量が下限値に満たないとフィルム製膜性に乏しくなり、一方、これらポリエステルの含有量が上限値を超えると相対的に難燃成分の含有量が少なく、十分な難燃性が発現しない。
 本発明のポリアルキレンテレフタレートもしくはポリアルキレンナフタレートは、本発明の目的を損なわない範囲で主成分以外の成分(以下、共重合成分と称することがある)を有する共重合体であってもよく、好ましくはこれらポリエステルの全繰り返し単位のモル数を基準として25mol%未満の範囲で共重合成分を用いることができ、より好ましくは20mol%以下、さらに好ましくは15mol%以下である。
 かかる共重合成分として、例えば蓚酸、アジピン酸、フタル酸、セバシン酸、ドデカンジカルボン酸、イソフタル酸、テレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ジフェニルジカルボン酸、フェニルインダンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等のジカルボン酸、p-オキシ安息香酸、p-オキシエトキシ安息香酸などのオキシカルボン酸、あるいはエチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンジメタノール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコールなどのジオールが例示され、これらの中から主成分以外の成分を好ましく用いることができる。これらの共重合成分は、1種または2種以上用いてもよい。
 これらの共重合成分は、モノマー成分として共重合化されたものでもよく、また他のポリエステルとのエステル交換反応により共重合化されたものでもよい。
 また、本発明のポリアルキレンテレフタレートもしくはポリアルキレンナフタレートは、本発明の目的を損なわない範囲で少なくとも2種のポリエステルのブレンド、またはポリエステル以外の熱可塑性樹脂とのブレンドであってもよい。これら他の成分は、難燃基材層の重量を基準として20重量%以下の範囲で用いることができ、より好ましくは15重量%以下、さらに好ましくは10重量%以下である。ポリエステル以外の熱可塑性樹脂として、例えばポリオレフィン系樹脂、ポリスチレン系樹脂、ポリイミド系樹脂などが例示される。
 これらポリエステルの固有粘度は、ο-クロロフェノールを溶媒とし、25℃にて測定された固有粘度が、0.4dl/g以上1.5dl/g以下であることが好ましく、さらに0.5dl/g以上1.2dl/g以下であることが好ましい。
 (難燃成分)
 本発明は、難燃成分として下記式(1)で表されるホスフィン酸塩もしくは式(2)で表されるジホスフィン酸塩を用いる。以下、これらを総称してホスフィン酸塩類と称することがある。
Figure JPOXMLDOC01-appb-C000007
(式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基であり、Mは金属、mはMの価数をそれぞれ表す)
Figure JPOXMLDOC01-appb-C000008
(式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基、Rは炭素数1~6のアルキレン基または炭素数6~10のアリーレン基、アルキルアリーレン基もしくはアリールアルキレン基であり、Mは金属、nはMの価数をそれぞれ表す)
 かかるホスフィン酸塩はホスフィン酸金属塩とも称される化合物であり、R、Rとして、水素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、フェニル基、が例示される。またMとしてアルミニウム、マグネシウム、カルシウムが例示され、価数mは2~4の整数である。
 具体的には、ジメチルホスフィン酸カルシウム、メチルエチルホスフィン酸カルシウム、ジエチルホスフィン酸カルシウム、フェニルホスフィン酸カルシウム、ビフェニルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、メチルエチルホスフィン酸マグネシウム、ジエチルホスフィン酸マグネシウム、フェニルホスフィン酸マグネシウム、ビフェニルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、メチルエチルホスフィン酸アルミニウム、ジエチルホスフィン酸アルミニウム、フェニルホスフィン酸アルミニウム、ビフェニルホスフィン酸アルミニウム、が挙げられる。
 また、ジホスフィン酸塩のうち、R、Rとして、水素、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、フェニル基、が例示され、Rとしてメチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、フェニレン基が例示される。またMとしてアルミニウム、マグネシウム、カルシウムが例示され、価数nは2~4の整数である。
 式(2)で表わされるジホスフィン酸塩として、エタン-1,2-ビス(ホスフィン酸)カルシウムなどのアルカンビスホスフィン酸カルシウム、エタン-1,2-ビス(メチルホスフィン酸)カルシウムなどのアルカンビス(アルキルホスフィン酸)カルシウム、アルカンビスホスフィン酸マグネシウム、アルカンビス(アルキルホスフィン酸)マグネシウム、アルカンビスホスフィン酸アルミニウム、アルカンビス(アルキルホスフィン酸)アルミニウムなどが挙げられる。
 これらのホスフィン酸塩類の中でも、ジエチルホスフィン酸アルミニウムが特に好ましい。
 本発明は、難燃成分としてかかるホスフィン酸塩類を用いることにより、従来のリン系難燃剤に比べて、ポリアルキレンテレフタレートもしくはポリアルキレンナフタレートといった強度の高いポリエステルへの物性低下の影響が少ないことから、今まで添加できなかった程度にまで多量の難燃成分を添加することができるという特徴を有する。そのため、例えば金属層と積層して使用される用途に加工した際に、難燃性ポリエステルフィルムそのものと同様の高い難燃性が得られる特徴を有する。
 また、本発明の難燃性二軸配向ポリエステルフィルムは、かかるホスフィン酸塩類を含み、かつ二軸延伸されることにより、高い反射率特性が発現する。
 かかるホスフィン酸塩類の含有量は、難燃基材層の重量を基準として2重量%以上40重量%以下である。またかかるホスフィン酸塩類の含有量の下限値は、好ましくは4重量%、より好ましくは6重量%、さらに好ましくは10重量%、特に好ましくは15重量%である。また、該ホスフィン酸塩類の含有量の上限値は、好ましくは35重量%、より好ましくは30重量%、さらに好ましくは25重量%、特に好ましくは20重量%である。ホスフィン酸塩類の含有量が下限値に満たないと難燃性が十分でなく、一方、ホスフィン酸塩類の含有量が上限値を越えるとフィルム製膜性が低下する。
 かかるホスフィン酸塩類の平均粒子径は0.1μm以上35μm以下であることが好ましい。平均粒子径が下限に満たないとフィルム製膜時の取り扱い性が低下することがある。また上限を超える平均粒子径になると、フィルム強度が低下したり破断しやすくなることがある。
 また、本発明のホスフィン酸塩類がかかる平均粒子径を有することにより、二軸延伸によってホスフィン酸塩類とポリエステル相との界面にボイドが生じやすく、得られた二軸配向ポリエステルフィルムの反射率が高くなる傾向にあり、難燃効果とともに反射率特性も発現する。さらに平均粒子径がより小さい方が後述するように反射率が高くなる傾向にある。
 (リン原子濃度)
 本発明におけるリン原子濃度は、難燃基材層の重量を基準として1重量%以上8重量%以下であることが好ましい。またかかるリン原子濃度の下限値は、より好ましくは1.5重量%、さらに好ましくは2.0重量%、特に好ましくは2.5重量%、特に好ましくは3.0重量%である。一方かかるリン原子濃度の上限値は、より好ましくは7.0重量%、さらに好ましくは6.5重量%である。
 本発明は、ポリアルキレンテレフタレートもしくはポリアルキレンナフタレートといった強度の高いポリエステルに対して本発明のホスフィン酸塩類を用いることにより、従来の添加型リン系成分または共重合型リン系成分に比べてポリエステルの耐加水分解性を損ねない点に特徴がある。そのため、これらポリエステルに対して多量に添加することができ、従来のリン系成分では得ることのできなかった程度にまで難燃基材層中のリン原子濃度を高めることができる。
 一方で上限値を超えるリン原子濃度にまで高めようとすると、添加するホスフィン酸塩類の量が多すぎてフィルム製膜性に乏しくなる。また、リン原子濃度の下限値に近い範囲、すなわち従来のリン系成分の含有量に近い範囲においても、ホスフィン酸塩類を構成する金属成分によるラジカルトラップ効果により、他のリン系成分にくらべて高い難燃性が発現すると考えられ、金属層と積層して使用される用途に加工した際にも難燃性ポリエステルフィルムそのものと同様の高い難燃性が再現される特徴を有する。
 (他添加剤)
 本発明の難燃性二軸配向ポリステルフィルムには、フィルムの取り扱い性を向上させるため、発明の効果を損なわない範囲で不活性粒子などが添加されていても良い。かかる不活性粒子としては、例えば、周期律表第IIA、第IIB 、第IVA 、第IVBの元素を含有する無機粒子(例えばカオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素など)、架橋シリコーン樹脂、架橋ポリスチレン、架橋アクリル樹脂粒子等の耐熱性の高いポリマーよりなる粒子が挙げられる。
 不活性粒子を含有させる場合、不活性粒子の平均粒子径は、0.001~5μmの範囲が好ましく、難燃基材層を基準として0.01~10重量%の範囲で含有されることが好ましく、さらに好ましくは0.05~5重量%、特に好ましくは0.05~3重量%である。
 本発明の難燃性二軸配向ポリステルフィルムには、さらに必要に応じて熱安定剤、酸化防止剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤などの添加剤を、本発明の目的を損なわない範囲で配合することができる。
 (層厚み)
 本発明における難燃基材層の厚みは、2μm以上200μm以下であることが好ましい。従来は、ポリエステル基材層にリン系難燃剤を添加する方法で難燃化させようとすると、基材層の機械的特性や耐加水分解性の低下を引き起こすため、ポリエステル基材層そのものをリン系難燃剤で難燃化するのではなく、難燃剤を含む他層を基材層に積層させる手法がとられていたのに対し、本発明はかかる厚みを有するポリエステル基材層そのものにリン系難燃剤を添加できる特徴を有するものである。
 難燃基材層の厚みは、上述する範囲内で用途に応じて調整することができる。例えばフラットケーブル用途の場合、より好ましくは2~100μm、さらに好ましくは5~75μm、特に好ましくは10~50μmである。またフレキシブルプリント回路基板用途の場合、より好ましくは2~150μm、さらに好ましくは5~100μm、特に好ましくは10~75μm、太陽電池バックシート用途の場合、より好ましくは5~200μm、さらに好ましくは10~150μm、特に好ましくは20~100μm、反射板用途の場合、より好ましくは50~200μm、さらに好ましくは100~200μm、特に好ましくは150~200μmである。
 [ヒートシール層]
 本発明の難燃性二軸配向ポリエステルフィルムは、難燃基材層の少なくとも片面にヒートシール層を有することが好ましい。かかるヒートシール層は、熱融着型の接着剤を塗布した層であってもよく、また難燃基材層よりも低融点のポリマーで構成される層であってもよい。
 熱融着型の接着剤はホットメルト型接着剤とも称し、公知のものを使用することができる。例えばセメダイン株式会社製の製品名「HM326」、日本マタイ株式会社製の製品名「エルファンPH」が例示される。
 また、難燃基材層よりも低融点のポリマーで構成される層として、例えば共重合ポリエステルを用いた層が例示される。
 かかる共重合ポリエステルの主たる成分は、難燃基材層に記載された種類のポリエステルを用いることができる。中でもエチレンテレフタレートまたはエチレンナフタレートであることが好ましい。共重合ポリエステルの主たる成分量は、ヒートシール層を構成するポリエステルの全繰り返し単位を基準として50mol%を超えることが好ましく、さらに好ましく60mol%以上である。
 また、かかる共重合ポリエステルを構成する従たる成分は、難燃基材層のポリエステルの全共重合量より多く、かつヒートシール層のポリエステルの全繰り返し単位を基準として50mol%未満であることが好ましい。かかる共重合ポリエステルは、難燃基材層のポリエステルよりも相対的に融点が低いため、本発明の難燃性ポリエステルフィルムのヒートシール層面を貼り合せる相手材、具体的には後述する導線などの金属層等と対向させ、ヒートシール層の融点以上、難燃基材層の融点より低い温度で熱プレス処理を施すことにより、溶融状態のヒートシール層を相手材と熱融着させて接着することができる。
 かかる共重合ポリエステルを構成する従たる成分として、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、2,7-ナフタレンジカルボン酸、p-オキシ安息香酸などのジカルボン酸成分、トリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物などのジオール成分のうち、主たる成分以外の成分が好ましく例示される。
 かかるヒートシール層は、フラットケーブル、あるいは太陽電池バックシートとして用いられる場合に設けられることが好ましい。
 <耐加水分解性>
 本発明の難燃性二軸配向ポリエステルフィルムは、121℃、2気圧の飽和水蒸気中で10時間処理した後のポリエステルフィルム引張強度保持率が50%以上であることが好ましい。かかるフィルム引張強度保持率は、さらに好ましくは60%以上である。かかる引張強度保持率はポリエステルフィルムのフィルム連続製膜方向(以下、長手方向、縦方向、MD方向と称することがある)またはその直交方向(以下、幅方向、横方向、TD方向と称することがある)の少なくとも一方向における引張強度保持率を指し、両方向とも満たすことがさらに好ましい。
 本発明の難燃性二軸配向ポリエステルフィルムは、難燃成分として本発明のホスフィン酸塩類を用いることにより、難燃性に優れると同時に優れた耐加水分解性をも有しており、湿熱処理後も高いフィルム引張強度保持率を維持することができる。
 <フィルムの反射率特性>
 本発明の難燃性二軸配向ポリエステルフィルムは、難燃性と優れた耐加水分解性とを有しているとともに、高い反射特性を同時に備えている。具体的には、400~700nmに波長における該ポリエステルフィルムの平均反射率は70%以上100%以下であることが好ましく、さらに75%以上100%以下が好ましく、特に好ましくは80%以上100%以下である。かかる反射率特性を有することによって、例えば難燃性と反射特性とを備える反射板として好適に用いることができる。
 かかる反射率特性は、従来の難燃性反射板においては、基板に反射率を高める白色粒子、あるいはマトリックス樹脂と非相溶な樹脂を用い、さらに難燃剤を含む層を積層する方法で得られていたところ、本発明においては、本発明のホスフィン酸塩類を基材層に含有させ、二軸延伸することによって効率的にボイドを形成でき、難燃性を得ながら反射率が向上するものである。
 また、本発明のホスフィン酸塩類の中でも、1μm以上10μm以下、さらには1μm以上5μm以下の平均粒子径のものを用いることにより、さらに反射率特性を高めることができる。
 <フィルム密度>
 本発明の難燃性二軸配向ポリエステルフィルムは、さらに一般的なポリエステルフィルムに比べてフィルム密度が小さい特徴も備えている。
 具体的には、フィルム密度が0.7g/cm3以上1.3g/cm3以下であることが好ましく、さらに好ましくは0.8g/cm3以上1.2g/cm3以下、特に好ましくは0.8g/cm3以上1.1g/cm3以下である。かかるフィルム密度は、上述した平均粒子径を有するホスフィン酸塩類を特定量用い、ポリエステルフィルムを二軸延伸することにより、ホスフィン酸塩類とポリエステル相との界面にボイドが生じることにより得られる。
 かかるフィルム密度を有することにより、上述した反射率特性が向上する他、ホスフィン酸塩類を多量に含む状態であってもフィルムの折り曲げ特性や打ち抜き性に優れる難燃性二軸配向ポリエステルフィルムが得られ、本発明の各種用途の形状に打ち抜き加工がしやすい。一方で、ホスフィン酸塩類の含有量が増えるほど密度が低くなるものの、折り曲げ特性が求められる場合は、密度の下限が0.8g/cm3であることが好ましい。
 本発明の難燃性二軸配向ポリエステルフィルムは、難燃性、耐加水分解性とともに優れた折り曲げ特性も備えるため、フレキシブル性が求められるフレキシブルプリント回路、フラットケーブルなどに好適に用いられる。
 <基材層の表面粗さ>
 本発明の難燃基材層の表面粗さRaは0.1μm以上2μm以下であることが好ましく、より好ましくは0.2μm以上1.5μm以下、さらに好ましくは0.5μm以上1.5μm以下である。かかる表面粗さは、基材層中に上述した平均粒子径を有するホスフィン酸塩類を特定量用いることによって得られる。
 難燃基材層がかかる粗い表面であることにより、ヒートシール層や接着層などを介して他層と積層させる場合の接着性が向上し、例えばフラットケーブル、太陽電池バックシートなどの用途に好適に用いることができる。
 <フィルム製造方法>
 本発明の難燃性二軸配向ポリエステルフィルムを製造する方法として、基材層を構成するポリエステルを溶融押出し、固化成形したシートを二方向に延伸するフィルム製造方法が挙げられる。
 フィルム製膜方法は、公知の製膜方法を用いて製造することができ、例えばホスフィン酸塩を含むポリエステルを十分に乾燥させた後、融点~(融点+70)℃の温度で押出機内で溶融し、Tダイを通じて溶融押出し、フィルム状溶融物を冷却ロール(キャスティングドラム)上で急冷して未延伸フィルムとし、次いで該未延伸フィルムを逐次または同時二軸延伸し、熱固定する方法で製造することができる。逐次二軸延伸により製膜する場合、未延伸フィルムを縦方向に60~170℃で2.3~5.5倍、より好ましくは2.5~5.0倍の範囲で延伸し、次いでステンターにて横方向に80~170℃で2.3~5.0倍、より好ましくは2.5~4.8倍の範囲で延伸する。
 熱固定は、180~260℃、より好ましくは190~240℃の温度で緊張下又は制限収縮下で熱固定するのが好ましく、熱固定時間は1~1000秒が好ましい。また同時二軸延伸の場合、上記の延伸温度、延伸倍率、熱固定温度等を適用することができる。また、熱固定後に弛緩処理を行ってもよい。
 また、ヒートシール層として難燃基材層よりも低融点のポリマーで構成される層を設ける場合、難燃基材層と異なる押出機に供給し、融点~(融点+70)℃の温度で溶融し、両層用の溶融樹脂をダイ内部で積層する方法、例えばマルチマニホールドダイを用いた同時積層押出法により、積層された未延伸フィルムを得る方法が挙げられる。その後の延伸方法については上述の方法を用いることができる。
 また、ヒートシール層として熱融着型の接着剤を塗布した層を設ける場合は、得られた基材層上に接着剤を塗布する方法が挙げられる。
 <難燃性二軸配向ポリエステルフィルム積層体>
 本発明の難燃性二軸配向ポリエステルフィルムは、金属層と積層された難燃性二軸配向ポリエステルフィルム積層体として用いることができる。ここで金属層には、フィルム上に層状に形成された形状のもの、導線などの形状のもの、回路など一定のパターン形状のものなどが含まれる。
 難燃性二軸配向ポリエステルフィルムを金属層と積層するにあたり、難燃性二軸配向ポリエステルフィルムのヒートシール層上に積層することが好ましい。ヒートシール層を介して金属層と積層することにより、簡便な方法で難燃性二軸配向ポリエステルフィルム積層体を得ることができる。
 かかる難燃性二軸配向ポリエステルフィルム積層体は、難燃性や耐加水分解性が求められる用途に好適に用いることができ、例えば、フラットケーブルやフレキシブルプリント回路基板などといった用途が例示される。また、金属層と貼り合わせる他の用途にも用いることができる。
 (フラットケーブル)
 本発明の難燃性二軸配向ポリエステルフィルムおよびその積層体はフラットケーブルの被覆材として使用することができる。フラットケーブルは、導線の形状の金属層が電気絶縁性被覆材でサンドイッチ状に被覆されたフラットな形状のケーブルである。
 本発明の難燃性二軸配向ポリエステルフィルムを用いてフラットケーブルを作成する場合、ヒートシール層を有する難燃性二軸配向ポリエステルフィルムを2枚用いてヒートシール層同士を対向させ、その間に複数本の導線を間隔をあけて平行に配列し、その後、ヒートシール層の融点以上、難燃基材層の融点未満の温度範囲でヒートシール層を溶融状態でプレスして熱融着させることにより、難燃性のフラットケーブルを作成することができる。
 導線としては、フラットケーブルに使用される通常の導線を使用でき、例えば銅、メッキされた銅、銀などが挙げられる。導線は箔状や平角状であり、所定の間隔をもって並列に配置される。
 本発明の難燃性二軸配向ポリエステルフィルム積層体を用いて得られたフラットケーブルは、基材層自体の難燃性が非常に高く、金属層と積層して使用されるフラットケーブル用途に加工した際にも難燃性二軸配向ポリエステルフィルムそのものと同様の高い難燃性が発現し、しかも十分な耐加水分解性も備えることから、フラットケーブルとしての長期耐久性にも優れている。また、本発明の難燃性二軸配向ポリエステルフィルムは、難燃性と折り曲げ性とを両立できるため、フレキシブル性の高い難燃性フラットケーブルが得られる。
 さらに本発明の難燃性二軸配向ポリエステルフィルムは表面が粗く、ヒートシール層等の接着層との密着性が高くなる効果も有するものである。
 (フレキシブルプリント回路基板)
 本発明の難燃性二軸配向ポリエステルフィルムおよびその積層体はフレキシブルプリント回路基板に用いることができる。
 かかる用途に用いる場合、難燃性二軸配向ポリエステルフィルムの一方の面に金属層が積層され、フレキシブルプリント回路基板として用いられることが好ましい。本用途において用いられる金属層としては銅箔が例示される。金属層の接合手段や形状の具体的手段としては特に制限はなく、例えば金属層を難燃性二軸配向ポリエステルフィルムに積層させた後、金属層をパターンエッチングするいわゆるサブトラクティブ法、難燃性二軸配向ポリエステルフィルム上に金属をパターン状にメッキするアディティブ法、パターン状に打ち抜いた金属層を難燃性二軸配向ポリエステルフィルムに貼り合せるスタンピングホイルなどを利用することができる。
 本発明の難燃性二軸配向ポリエステルフィルム積層体を用いて得られたフレキシブルプリント回路基板は、基材層自体の難燃性が非常に高く、金属層と積層して使用されるフレキシブルプリント回路基板用途に加工した際にも難燃性二軸配向ポリエステルフィルムそのものと同様の高い難燃性が発現し、しかも十分な耐加水分解性も備えることから、フレキシブルプリント回路基板としての長期耐久性にも優れている。また、本発明の難燃性二軸配向ポリエステルフィルムは折り曲げ性にも優れるため、フレキシブルプリント回路基板に加工する際の打ち抜き性に優れており、さらに難燃性と折り曲げ性とを両立できるため、フレキシブル性の高いフレキシブルプリント回路基板が得られる。
 本発明の難燃性二軸配向ポリエステルフィルムおよびその積層体は、反射率特性にも優れているため、LEDのフレキシブルプリント回路基板として用いることもできる。
 (太陽電池)
 本発明の難燃性二軸配向ポリエステルフィルムは太陽電池のバックシートに用いることができる。
 本発明の難燃性二軸配向ポリエステルフィルムを用いて得られた太陽電池バックシートは、難燃性にすぐれ、しかも十分な耐加水分解性も備えることから、太陽電池の長期耐久性を向上させることができる。
 また、本発明のホスフィン酸塩類をフィルム中に含有することにより、高い白色度が得られ、白色性が求められる太陽電池のバックシートとして用いることができる。
 さらに、本発明の難燃性二軸配向ポリエステルフィルムは表面が粗く、太陽電池の充填剤として用いられるEVAとの密着性も向上し、太陽電池としての長期耐久性をさらに高めることができる。
 (反射板)
 本発明の難燃性二軸配向ポリエステルフィルムは、難燃性と耐加水分解性を両立できることに加え、高い反射率特性を有するため、各種の反射板として用いることができる。具体的には、液晶表示装置の反射板、照明装置の反射板などが挙げられる。
 また、液晶表示装置用反射板として用いた場合に、本発明の表面粗さ特性により、隣接する部材とのはりつきが低減し、長期使用時に反射率特性の低下を抑制することができる。
 以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ重量部および重量%を意味する。
(1)ポリエステル成分の種類および含有量
 H-NMR測定、13C-NMR測定により、ポリエステルの成分および共重合成分および各成分量を特定した。
(2)リン成分の種類
 NMRおよびEPMAを用いてリン成分の種類を特定した。
(3)リン原子濃度
 難燃基材層について、リン原子濃度を蛍光X線の発光強度より算出した。
(4)各層厚み
 積層フィルムの各層厚みは、フィルムの小片をエポキシ樹脂(リファインテック(株)製の商品名「エポマウント」)中に包埋し、Reichert-Jung社製Microtome2050を用いて包埋樹脂ごと50nm厚さにスライスし、透過型電子顕微鏡(LEM-2000)により加速電圧100KVで測定して求めた。
(5)耐加水分解性
 フィルムを150mm長×10mm幅に切り出した短冊状の試料片を、121℃・2atm・濡れ飽和モード・100%RHに設定した環境試験機内にステンレス製のクリップで吊り下げる。その後、10時間経過後に環境試験機から試料片を取り出し、引張強度を測定する。フィルム長手方向を測定方向とし、測定は5回行い、その平均値を求めて以下の基準により耐加水分解性を評価した。測定装置としてオリエンテック社製テンシロンUCT-100型を用いた。
  引張強度保持率(%)=(処理後の引張強度X/初期の引張強度X0)×100
(式中、引張強度Xは、121℃、2atm、100%RHの条件で所定時間処理後の引張強度、引張強度X0は処理前の初期の引張強度をそれぞれ表す)
 〇: 10時間後の引張強度保持率が50%以上
 ×: 10時間後の引張強度保持率が50%未満
(6)燃焼性
 フィルムサンプルをUL-94VTM法に準拠して評価した。サンプルを20cm×5cmにカットし、23±2℃、50±5%RH中で48時間放置し、その後、試料下端をバーナーから10mm上方に離し垂直に保持した。該試料の下端を内径9.5mm、炎長19mmのブンゼンバーナーを加熱源とし、3秒間接炎した。VTM-0,VTM-1,VTM-2の評価基準に沿って難燃性を評価し、n=5の測定回数のうち、同じランクになった数の最も多いランクとした。
(7)フラットケーブルの燃焼性
 フィルムの片面にホットメルト接着剤(日本マタイ株式会社製、製品名「エルファンPH」)を約30μmの厚みとなるよう塗布したものを作成し、接着剤を塗布した面に、幅3mmにカットした35μm厚みの銅箔を並べて配置し、銅箔を挟んでヒートシール層が対向するよう2枚のフィルムを貼り合わせ、熱融着させてフラットケーブルサンプルを作製した。
 また共重合ポリエステル層からなるヒートシール層を有するフィルムについては、該ヒートシール層を対向させ、フィルムの間に幅3mmにカットした35μm厚みの銅箔を並べて配置して熱融着した。
 いずれの熱融着条件も、温度140℃、圧力は2.8kgf/cm、熱融着時間は2secであった。
 作製したフラットケーブルサンプルをUL-94V法に準拠して評価した。サンプルを13mm×125mmにカットし、50±5%RH中で48時間放置し、その後、試料下端をバーナーから10mm上方に離し垂直に保持した。該試料の下端を内径9.5mm、炎長19mmのブンゼンバーナーを加熱源とし、10秒間接炎した。離炎後の自己消火性を評価した。
 ○: 離炎後10秒以内に消火
 ×: 離炎後10秒を超えて燃える
(8)平均粒子径
 難燃基材層の断面について、株式会社ハイロックス デジタルマイクロスコープKH-3000を用いて、粒子20個について3500倍で測定し、平均値より平均粒子径を求めた。
(9)反射率
 分光光度計(島津製作所製UV-3101PC)に積分球を取り付け、BaSO白板を100%としたときのフィルム難燃層面の反射率を400~700nmにわたって測定し、その平均値よりフィルム厚み50μmでの平均反射率を求めた。下記基準により、反射率特性を評価した。
 ○: 75%以上100%以下
 △: 70%以上75%未満
 ×: 70%未満
(10)フィルム密度
 フィルムを10cm×10cmに切り出し、エレクトリックマイクロメーター(アンリツ製  K-402B)にて任意の箇所を10点厚み測定し平均値をフィルムの厚みとした後、フィルム重量を測定し、密度を算出した。
(11)難燃基材層の表面粗さRa
  株式会社小坂研究所製の触針式表面粗さ計(SURFCORDER  SE-30C)を用い、以下の条件で難燃基材層の表面について測定し、算出される中心線平均粗さをRa求め、4回測定した平均値を用いて下記評価基準に従って評価した。
<測定条件>  
測定長:2.5mm
カットオフ:0.25mm
測定環境:室温、大気中
<評価基準>
 ○: 0.2μm以上2μm以下
 △: 0.1μm以上0.2μm未満
 ×: 0.1μm未満
(12)耐折度
 MIT耐折度試験機を用い、JIS C5016に準じて、折り曲げ部極率半径0.38mm、荷重10N、折り曲げ速度175cpmにてフィルムサンプルが破断するまでの折り曲げ回数を測定し、以下の基準に従って評価した。
 ○: 2000回以上
 △: 500回以上2000回未満
 ×: 500回未満
 [実施例1]
 ポリエステルとして固有粘度0.60dl/g、末端カルボキシル基濃度25当量/tonのポリエチレンテレフタレート(エステル交換触媒:酢酸マンガン四水塩、重合触媒:三酸化アンチモン)を用い、ジメチルホスフィン酸アルミニウム(表1中、リン化合物Aと記載,平均粒子径2μm)を難燃基材層の重量を基準として15重量%含有させた組成物を170℃ドライヤーで3時間乾燥後、押出機に投入し、溶融温度280℃で溶融混練して280℃のダイスリットより押出した後、表面温度25℃に設定したキャスティングドラム上で冷却固化させて未延伸フィルムを作成した。
 この未延伸フィルムを100℃に加熱したロール群に導き、長手方向(縦方向)に3.5倍で延伸し、25℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、120℃に加熱された雰囲気中で長手方向に垂直な方向(横方向)に3.8倍で延伸した。その後、テンタ-内で230℃の熱固定を行い、180℃で幅方向に2%弛緩後、均一に徐冷して室温まで冷やし、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性に優れていた。また、本実施例のフィルムは反射率特性、折り曲げ特性にも優れていた。
 さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。また、作製したフラットケーブルを用い、難燃基材層とヒートシール層との接着性についてピール強度を測定したところ、比較例1よりも強度が向上した。
 [実施例2]
 難燃剤をジエチルホスフィン酸アルミニウム(表1中、リン化合物Bと記載,平均粒子径2μm)に変更した以外は実施例1と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性、折り曲げ特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。また、作製したフラットケーブルを用い、難燃基材層とヒートシール層との接着性についてピール強度を測定したところ、比較例1よりも強度が向上した。
 [実施例3]
 難燃剤の含有量を5重量%に変更した以外は実施例2と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、折り曲げ特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例4]
 難燃剤の含有量を30重量%に変更した以外は実施例2と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例5]
 難燃剤をエチルメチルホスフィン酸アルミニウム(表1中、リン化合物Cと記載,平均粒子径3μm)に変更した以外は実施例1と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性、折り曲げ特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例6]
 難燃剤をビフェニルホスフィン酸アルミニウム(表1中、リン化合物Dと記載,平均粒子径3μm)に変更し、含有量を難燃基材層の重量を基準として20重量%に変更した以外は実施例1と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例7]
 難燃剤をジメチルホスフィン酸カルシウム(表1中、リン化合物Eと記載,平均粒子径5μm)に変更した以外は実施例1と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性、折り曲げ特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例8]
 難燃剤をジエチルホスフィン酸カルシウム(表1中、リン化合物Fと記載,平均粒子径5μm)に変更した以外は実施例1と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性、折り曲げ特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例9]
 ポリエステルとして固有粘度0.57dl/g、末端カルボキシル基濃度25当量/tonのポリエチレン-2,6-ナフタレンジカルボキシレート(エステル交換触媒:酢酸マンガン四水塩、重合触媒:三酸化アンチモン)を用い、ジエチルホスフィン酸アルミニウム(リン化合物B)を難燃基材層の重量を基準として15重量%含有させた組成物を180℃ドライヤーで5時間乾燥後、押出機に投入し、溶融温度300℃で溶融混練して300℃のダイスリットより押出した後、表面温度60℃に設定したキャスティングドラム上で冷却固化させて未延伸フィルムを作成した。
 この未延伸フィルムを140℃に加熱したロール群に導き、長手方向(縦方向)に3.5倍で延伸し、60℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き、150℃に加熱された雰囲気中で長手方向に垂直な方向(横方向)に3.5倍で延伸した。その後、テンタ-内で230℃の熱固定を行い、180℃で幅方向に2%弛緩後、均一に除冷して室温まで冷やし、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性、折り曲げ特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例10]
 難燃剤の含有量を5重量%に変更した以外は実施例9と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、折り曲げ特性に優れていた。さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例11]
 ジエチルホスフィン酸アルミニウム(リン化合物B)を難燃基材層の重量を基準として20重量%含有させ、ポリエステルとしてポリエチレンテレフタレートを用いた組成物を170℃ドライヤーで3時間乾燥後、押出機に投入し、溶融温度280℃で溶融混練した。
 一方、ヒートシール層用に、イソフタル酸をヒートシール層のポリエステルの全繰り返し単位を基準として18mol%共重合した固有粘度0.59dl/gのイソフタル酸共重合ポリエチレンテレフタレートを170℃ドライヤーで3時間乾燥後、他方の押出機に投入し、溶融温度270℃で溶融した。
 それぞれ溶融した状態で2層に積層し(厚み比率 難燃基材層:ヒートシール層=4:1)、かかる積層構造を維持した状態でダイスリットより押出した後、表面温度25℃に設定したキャスティングドラム上で冷却固化させて2つの層からなる未延伸フィルムを作成した。この未延伸フィルムを実施例1と同様の方法で二軸延伸し、50μm厚み(難燃基材層:40μm,ヒートシール層:10μm)の二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本実施例のフィルムは、難燃性、耐加水分解性、反射率特性に優れていた。
 さらに銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [実施例12~14]
 ジエチルホスフィン酸アルミニウム(表1中、リン化合物Bと記載)として、表2に示す平均粒子径のものに変更した以外は実施例2と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表2に示す。本実施例のフィルムは、難燃性、耐加水分解性、折り曲げ特性に優れていた。また、反射率特性については、難燃剤の平均粒子径がより小さい方が高い反射率が得られた。
 さらに、銅箔を挟んで作製したフラットケーブルの状態でも難燃性に優れていた。
 [比較例1]
 難燃剤を添加しなかった以外は実施例1と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本比較例のフィルムは、耐加水分解性に優れるものの、フィルム、フラットケーブルの双方で難燃性が十分ではなかった。また反射率も低かった。
 [比較例2]
 難燃剤の含有量を45重量%に変更した以外は実施例2と同様の操作を行い、厚み50μmの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本比較例では製膜性が十分でなく、二軸延伸フィルムを得ることができなかった。
 [比較例3]
 テレフタル酸ジメチルエステル100重量部、エチレングリコール60重量部を、エステル交換触媒として酢酸マンガン四水塩0.03重量部を使用して、常法に従ってエステル交換反応させた後、エチレングリコールに分散させた平均粒径0.5μmの炭酸カルシウム粒子を0.4重量%(フィルムの重量基準)を添加した。ついで、2-カルボキシエチルメチルホスフィン酸2-ヒドロキシエチル(表1中、リン化合物Gと記載)10重量部を添加し、三酸化アンチモン0.03重量部を添加して、引き続き高温高真空下で常法にて重縮合反応を行い、固有粘度0.70dl/gのポリエステルを得た。得られたポリエステルを170℃ドライヤーで3時間乾燥後、押出機に投入し、260℃で溶融してダイスリットより押出した後、表面温度25℃に設定したキャスティングドラム上で冷却固化させて未延伸フィルムを作成した。
 この未延伸フィルムを100℃ で縦方向(連続製膜方向)に3.5倍延伸し、その後、130℃で横方向(幅方向)に3.8倍に逐次二軸延伸し、さらに230℃で熱固定処理し、200℃で横方向に2%弛緩後、均一に除冷して室温まで冷やし、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性を表1に示す。本比較例のフィルムは、フィルムでの難燃性に優れるものの、フラットケーブルの状態での難燃性が十分ではなかった。 また、耐加水分解性、反射率も実施例に比べて低下した。
Figure JPOXMLDOC01-appb-T000009
表1および表2において、PETはポリエチレンテレフタレート、PENはポリエチレン-2,6-ナフタレンジカルボキシレートを表す。
Figure JPOXMLDOC01-appb-T000010
 本発明の難燃性二軸配向ポリエステルフィルムは、ポリアルキレンテレフタレートもしくはポリアルキレンナフタレートといったポリエステルが有する耐加水分解性を低下させることなく、高い難燃性を備えており、例えばフレキシブルプリント回路基板、フラットケーブル、太陽電池バックシートあるいは反射板などに好適に用いることができる。

Claims (11)

  1.  難燃基材層を含む難燃性二軸配向ポリエステルフィルムであり、該難燃基材層が該層の重量を基準としてポリアルキレンテレフタレートもしくはポリアルキレンナフタレートを60重量%以上98重量%以下、および下記式(1)で表されるホスフィン酸塩もしくは式(2)で表されるジホスフィン酸塩を2重量%以上40重量%以下含有することを特徴とする難燃性二軸配向ポリエステルフィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基であり、Mは金属、mはMの価数をそれぞれ表す)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、Rは水素、炭素数1~6のアルキル基および/またはアリール基、Rは炭素数1~6のアルキレン基または炭素数6~10のアリーレン基、アルキルアリーレン基もしくはアリールアルキレン基であり、Mは金属、nはMの価数をそれぞれ表す)
  2.  該難燃基材層中のリン原子濃度が難燃基材層の重量を基準として1重量%以上8重量%以下である請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  3.  該難燃基材層の厚みが2μm以上200μm以下である請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  4.  121℃、2気圧の飽和水蒸気中で10時間処理した後のポリエステルフィルム引張強度保持率が50%以上である請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  5.  400~700nmに波長における該ポリエステルフィルムの平均反射率が75%以上100%以下である請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  6.  フィルム密度が0.7g/cm3以上1.3g/cm3以下である請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  7.  該難燃基材層の表面粗さRaが0.1μm以上2μm以下である請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  8.  フレキシブルプリント回路、フラットケーブル、太陽電池バックシートあるいは反射板として用いられる、請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  9.  難燃基材層の少なくとも片面にヒートシール層を有する請求項1に記載の難燃性二軸配向ポリエステルフィルム。
  10.  請求項1~9のいずれかに記載の難燃性二軸配向ポリエステルフィルムと金属層とが積層された難燃性二軸配向ポリエステルフィルム積層体。
  11.  請求項1~9のいずれかに記載の難燃性二軸配向ポリエステルフィルムを用いた難燃性フラットケーブル。
PCT/JP2011/079183 2010-12-28 2011-12-16 難燃性二軸配向ポリエステルフィルム WO2012090732A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012550832A JP5480981B2 (ja) 2010-12-28 2011-12-16 難燃性二軸配向ポリエステルフィルム
CN201180063407.3A CN103261319B (zh) 2010-12-28 2011-12-16 阻燃性双轴取向聚酯膜
KR1020157001047A KR101555808B1 (ko) 2010-12-28 2011-12-16 난연성 2 축 배향 폴리에스테르 필름
KR1020137019642A KR101555770B1 (ko) 2010-12-28 2011-12-16 난연성 2 축 배향 폴리에스테르 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292556 2010-12-28
JP2010-292556 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090732A1 true WO2012090732A1 (ja) 2012-07-05

Family

ID=46382845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079183 WO2012090732A1 (ja) 2010-12-28 2011-12-16 難燃性二軸配向ポリエステルフィルム

Country Status (4)

Country Link
JP (2) JP5480981B2 (ja)
KR (2) KR101555770B1 (ja)
CN (1) CN103261319B (ja)
WO (1) WO2012090732A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081272A (ja) * 2013-10-22 2015-04-27 三菱樹脂株式会社 難燃性ポリエステルフィルム
WO2015064469A1 (ja) 2013-10-28 2015-05-07 帝人デュポンフィルム株式会社 難燃性二軸配向ポリエステルフィルム、それからなる難燃性ポリエステルフィルム積層体およびフレキシブル回路基板
JP2016181602A (ja) * 2015-03-24 2016-10-13 帝人デュポンフィルム株式会社 フレキシブル回路基板用難燃性二軸配向ポリエステルフィルム、およびそれからなるフレキシブル回路基板
JP2019108484A (ja) * 2017-12-19 2019-07-04 三菱ケミカル株式会社 ポリエステルフィルム
US11007756B2 (en) 2015-08-06 2021-05-18 Fujimori Kogyo Co., Ltd. Hot-melt adhesive resin film and production method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158968A1 (ja) * 2015-03-30 2016-10-06 株式会社カネカ 光学フィルムの製造方法及び光学フィルム
WO2020196217A1 (ja) * 2019-03-25 2020-10-01 大日本印刷株式会社 化粧シート及び化粧板
US20230173731A1 (en) * 2020-03-25 2023-06-08 Toyobo Co., Ltd. Flame-retardant biaxially-oriented polyester film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320692A (ja) * 1993-05-14 1994-11-22 Mitsubishi Plastics Ind Ltd フラットケーブル用積層フィルム
JPH0873720A (ja) * 1994-08-31 1996-03-19 Hoechst Ag 防炎性ポリエステル成形材料
JPH10278206A (ja) * 1997-04-08 1998-10-20 Polyplastics Co 難燃性積層フィルムおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137930A1 (de) * 2001-08-07 2003-02-20 Basf Ag Halogenfreie flammgeschützte Polyester
JP5425403B2 (ja) * 2005-12-26 2014-02-26 ウィンテックポリマー株式会社 レーザー溶着における透過側部材用難燃性樹脂組成物
JP5221880B2 (ja) * 2007-02-06 2013-06-26 帝人デュポンフィルム株式会社 反射板用白色ポリエステルフィルム
JP5377869B2 (ja) * 2008-03-07 2013-12-25 ウィンテックポリマー株式会社 難燃性樹脂組成物及び被覆電線
JP5357505B2 (ja) * 2008-10-28 2013-12-04 三菱エンジニアリングプラスチックス株式会社 難燃性熱可塑性ポリエステル樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320692A (ja) * 1993-05-14 1994-11-22 Mitsubishi Plastics Ind Ltd フラットケーブル用積層フィルム
JPH0873720A (ja) * 1994-08-31 1996-03-19 Hoechst Ag 防炎性ポリエステル成形材料
JPH10278206A (ja) * 1997-04-08 1998-10-20 Polyplastics Co 難燃性積層フィルムおよびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081272A (ja) * 2013-10-22 2015-04-27 三菱樹脂株式会社 難燃性ポリエステルフィルム
JP6027260B2 (ja) * 2013-10-28 2016-11-16 帝人フィルムソリューション株式会社 難燃性二軸配向ポリエステルフィルム、それからなる難燃性ポリエステルフィルム積層体およびフレキシブル回路基板
CN105683286A (zh) * 2013-10-28 2016-06-15 帝人杜邦薄膜日本有限公司 阻燃性双轴取向聚酯膜、由其形成的阻燃性聚酯膜层合体和柔性电路基板
KR20160079783A (ko) 2013-10-28 2016-07-06 데이진 듀폰 필름 가부시키가이샤 난연성 2 축 배향 폴리에스테르 필름, 그것으로 이루어지는 난연성 폴리에스테르 필름 적층체 및 플렉시블 회로 기판
EP3064549A4 (en) * 2013-10-28 2016-11-16 Teijin Dupont Films Japan Ltd FLAME-RESILIENT BIAXIALLY ORIENTED POLYESTER FOIL AND LAYER BODIES OF FLAME-REDUCING POLYESTER FOIL AS WELL AS FLEXIBLE LADDER PLATE THEREWITH
WO2015064469A1 (ja) 2013-10-28 2015-05-07 帝人デュポンフィルム株式会社 難燃性二軸配向ポリエステルフィルム、それからなる難燃性ポリエステルフィルム積層体およびフレキシブル回路基板
JPWO2015064469A1 (ja) * 2013-10-28 2017-03-09 帝人フィルムソリューション株式会社 難燃性二軸配向ポリエステルフィルム、それからなる難燃性ポリエステルフィルム積層体およびフレキシブル回路基板
US10208175B2 (en) 2013-10-28 2019-02-19 Teijin Dupont Films Japan Limited Flame-retardant biaxially oriented polyester film, and flame-retardant polyester film laminate comprising the same and flexible circuit board
KR102378145B1 (ko) * 2013-10-28 2022-03-23 도요보 가부시키가이샤 난연성 2 축 배향 폴리에스테르 필름, 그것으로 이루어지는 난연성 폴리에스테르 필름 적층체 및 플렉시블 회로 기판
JP2016181602A (ja) * 2015-03-24 2016-10-13 帝人デュポンフィルム株式会社 フレキシブル回路基板用難燃性二軸配向ポリエステルフィルム、およびそれからなるフレキシブル回路基板
US11007756B2 (en) 2015-08-06 2021-05-18 Fujimori Kogyo Co., Ltd. Hot-melt adhesive resin film and production method thereof
US11904577B2 (en) 2015-08-06 2024-02-20 Fujimori Kogyo Co., Ltd. Hot-melt adhesive resin film and production method thereof
JP2019108484A (ja) * 2017-12-19 2019-07-04 三菱ケミカル株式会社 ポリエステルフィルム
JP7114895B2 (ja) 2017-12-19 2022-08-09 三菱ケミカル株式会社 ポリエチレンテレフタレートフィルム

Also Published As

Publication number Publication date
KR101555808B1 (ko) 2015-09-24
CN103261319A (zh) 2013-08-21
KR101555770B1 (ko) 2015-09-25
JP5480981B2 (ja) 2014-04-23
KR20150014533A (ko) 2015-02-06
KR20140005934A (ko) 2014-01-15
JP5680238B2 (ja) 2015-03-04
CN103261319B (zh) 2014-12-10
JPWO2012090732A1 (ja) 2014-06-05
JP2014088582A (ja) 2014-05-15

Similar Documents

Publication Publication Date Title
JP5680238B2 (ja) 難燃性二軸配向ポリエステルフィルム
JP6027260B2 (ja) 難燃性二軸配向ポリエステルフィルム、それからなる難燃性ポリエステルフィルム積層体およびフレキシブル回路基板
JP2005096455A (ja) 単層または多層ポリエステルフィルム及びその製造方法
JP2005096456A (ja) 多層ポリエステルフィルム及びその製造方法
JP4514546B2 (ja) 難燃フィルム、接着性難燃フィルム及びフラットケーブル
JP2011231174A (ja) 難燃性ポリエステルフィルムおよびそれからなる難燃性フラットケーブル
JP5679884B2 (ja) 難燃性ポリエステルフィルム
JP2016199625A (ja) 太陽電池用難燃性二軸配向ポリエステルフィルムおよびそれからなる太陽電池用保護膜
JP5739243B2 (ja) フラットケーブル用積層ポリエステルフィルムおよびそれからなるフラットケーブル
JP4817729B2 (ja) 難燃延伸ポリエステルフィルム
JP6437863B2 (ja) フレキシブル回路基板用難燃性二軸配向ポリエステルフィルム、およびそれからなるフレキシブル回路基板
JP2011230324A (ja) 難燃性積層ポリエステルフィルムおよびそれからなる難燃性フラットケーブル
JP2010120321A (ja) 積層フィルム
JP4528063B2 (ja) 難燃延伸ポリエステルフィルム
JP5405968B2 (ja) フラットケーブル用難燃性積層ポリエステルフィルム
JP2011175923A (ja) フラットケーブル用難燃性積層ポリエステルフィルムおよびそれからなる難燃性フラットケーブル
KR100801829B1 (ko) 난연성 열접착성 폴리에스테르 필름
JP2007050559A (ja) 難燃性ポリエステルフィルムおよびその製造方法
CN115298251A (zh) 阻燃性双轴取向聚酯薄膜
JP2015042706A (ja) 難燃性ポリエステルフィルム
JP2009079123A (ja) 難燃性ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019642

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11854290

Country of ref document: EP

Kind code of ref document: A1