WO2012086534A1 - 無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2012086534A1
WO2012086534A1 PCT/JP2011/079150 JP2011079150W WO2012086534A1 WO 2012086534 A1 WO2012086534 A1 WO 2012086534A1 JP 2011079150 W JP2011079150 W JP 2011079150W WO 2012086534 A1 WO2012086534 A1 WO 2012086534A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
annealing
rolling
Prior art date
Application number
PCT/JP2011/079150
Other languages
English (en)
French (fr)
Inventor
善彰 財前
尾田 善彦
広朗 戸田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112013015464-0A priority Critical patent/BR112013015464B1/pt
Priority to CN2011800613433A priority patent/CN103270179A/zh
Priority to CA2821087A priority patent/CA2821087C/en
Priority to EP11850539.5A priority patent/EP2657355B1/en
Priority to KR1020137012663A priority patent/KR101508082B1/ko
Priority to MX2013006979A priority patent/MX351017B/es
Priority to RU2013127572/02A priority patent/RU2534638C1/ru
Priority to US13/992,011 priority patent/US20130263981A1/en
Publication of WO2012086534A1 publication Critical patent/WO2012086534A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a method for producing a non-oriented electrical steel sheet, and specifically to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties in the rolling direction.
  • non-oriented electrical steel sheets have a high magnetic flux density by optimizing the cold rolling reduction ratio by optimizing the alloying elements to be added and increasing the crystal grain size before cold rolling as much as possible.
  • the alloying elements By adding an alloying element that increases resistance or reducing the plate thickness, the iron loss is reduced and the magnetic properties are improved.
  • a split core is beginning to be adopted from the viewpoint of improving the yield when manufacturing a motor core from a steel plate.
  • This split core is not punched as a whole from the raw steel plate as in the past, but the core is divided into a plurality of segments, and the teeth of each segment are punched in the rolling direction of the steel plate, This is a technique for improving the motor characteristics by combining these to form a core.
  • the magnetic characteristics in the rolling direction of the electromagnetic steel plate as the material are extremely important.
  • materials having excellent magnetic properties in the rolling direction include grain-oriented electrical steel sheets with the Goss orientation aligned in the rolling direction.
  • the manufacturing cost is high, and it is necessary to adopt it. There's a problem. Therefore, if the non-oriented electrical steel sheet can improve the magnetic flux density in the rolling direction, it can be considered as an optimum material for the split core.
  • Patent Document 1 and Patent Document 2 As a material suitable for such a split core, for example, in Patent Document 1 and Patent Document 2, the grain size after hot-rolled sheet annealing is coarsened, and the surface ratio is controlled by controlling the reduction rate of cold rolling. A method for obtaining excellent magnetic properties in the inner rolling direction and the perpendicular direction is disclosed.
  • Patent Document 1 since the crystal grain size before cold rolling is set to 300 ⁇ m or more, it is necessary to reduce the impurities of the steel to a very small amount or to increase the hot-rolled sheet annealing temperature. Therefore, there are problems in terms of manufacturability and cost. Moreover, since the technique of patent document 2 needs to make a crystal grain coarse by hot-rolled sheet annealing, there exists a problem in terms of manufacturing cost.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to have excellent magnetic properties in the rolling direction of a steel sheet, specifically, a non-directional electromagnetic having a high magnetic flux density.
  • the object is to propose an inexpensive method for manufacturing a steel sheet.
  • the inventors have intensively studied to solve the above problems.
  • the crystal grain size before cold rolling is set to 100 ⁇ m or less, and at the time of finish annealing
  • the inventors have newly found that the magnetic properties in the rolling direction are remarkably improved by heating the temperature rising rate more rapidly than before, and the present invention has been developed.
  • the present invention includes C: 0.03 mass% or less, Si: 4 mass% or less, Mn: 0.03 to 3 mass%, Al: 3 mass% or less, S: 0.005 mass% or less, and N: 0.005 mass% or less.
  • the crystal grain size before cold rolling is This is a method for producing a non-oriented electrical steel sheet that is subjected to finish annealing that is 100 ⁇ m or less and is rapidly heated up to a recrystallization temperature or higher at an average heating rate of 100 ° C./sec or higher.
  • the steel material in the production method of the present invention preferably further contains 0.005 to 0.5 mass% of any one or two of Sn and Sb in addition to the above component composition.
  • the production method of the present invention is preferably decarburized and annealed after the rapid heating.
  • a non-oriented electrical steel sheet having excellent magnetic properties in the rolling direction can be provided at low cost, and can be suitably used as a core material such as a split core or a transformer core.
  • FIG. 1 is a graph showing the influence of the temperature increase rate of finish annealing on the magnetic flux density in the rolling direction.
  • FIG. 2 is a graph showing the influence of the grain size before cold rolling and the heating rate on the magnetic flux density in the rolling direction.
  • Steel material (C: 0.0025 mass%, Si: 3.3 mass%, Mn: 0.16 mass%, Al: 0.001 mass%, N: 0.0019 mass%, and S: 0.0010 mass%) Slab) is heated at 1100 ° C. for 30 minutes, and then hot-rolled to form a hot-rolled sheet having a thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 950 ° C. for 30 seconds, followed by one cold A cold-rolled sheet having a final sheet thickness of 0.35 mm was obtained by rolling. Thereafter, the above-mentioned cold-rolled sheet is heated to 740 ° C.
  • FIG. 1 shows the result of the above experiment as the relationship between the heating rate and the magnetic flux density in the rolling direction.
  • ⁇ 111 ⁇ grains ⁇ 111 ⁇ oriented grains
  • etc. the recrystallization behavior changes greatly when rapidly heated. Therefore, the influence of the crystal grain size before cold rolling on the magnetic properties (magnetic flux density in the rolling direction) was investigated.
  • hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.0 mm.
  • the annealing temperature was changed in the temperature range of 850 to 1100 ° C. to this hot-rolled sheet, and the hot-rolled sheet was annealed under the condition of holding for 30 seconds, thereby changing the crystal grain size before cold rolling.
  • the hot-rolled sheet is made into a cold-rolled sheet having a final sheet thickness of 0.35 mm by one cold rolling, and then heated at a heating rate of 20 ° C./sec or 300 ° C./sec in a direct current heating furnace. After heating to 10 ° C., further heating to 1020 ° C. at 30 ° C./sec, holding soak for 10 seconds, and then finishing annealing was performed for cooling. From this cold-rolled annealed plate, a L direction sample having a length of 180 mm ⁇ width of 30 mm with the rolling direction (L direction) as the length direction is cut out, a single plate magnetic test is performed, and a magnetic flux density B 50 at a magnetizing force of 5000 A / m is obtained. It was measured.
  • FIG. 2 shows the result of the experiment. From FIG. 2, when rapidly heated at 300 ° C./sec, the magnetic flux density in the rolling direction is improved in the region where the particle size before cold rolling is 100 ⁇ m or less. It can be seen that it has dropped. The reason for this is not clear at this time, but is considered as follows. When the hot-rolled sheet annealing temperature is low and the crystal grains before cold rolling are small, ⁇ 111 ⁇ grains preferentially grow in recrystallization annealing after cold rolling. Therefore, ⁇ 111 ⁇ grains develop when the rate of temperature increase in finish annealing is slow as in normal annealing.
  • the grain size before cold rolling should be 100 ⁇ m or less, and heating in finish annealing should be rapidly heated at a temperature increase rate of 100 ° C./sec or more.
  • a particle size here means the average crystal grain size calculated
  • the particle size before cold rolling is more preferably 90 ⁇ m or less.
  • C 0.03 mass% or less C dissolves in steel and fixes dislocations introduced during cold rolling to facilitate formation of a deformation band.
  • This deformation band has the effect of preferentially growing Goss oriented grains ⁇ 110 ⁇ ⁇ 001> during recrystallization during finish annealing and improving the magnetic properties in the rolling direction.
  • C exceeds 0.03 mass%, decarburization described later may be insufficient, and therefore, in the present invention, the upper limit of C in the steel material is set to 0.03 mass%.
  • C is present in the product stage in an amount of 0.005 mass% or more, magnetic aging occurs and the magnetic properties deteriorate.
  • C in the material steel exceeds 0.005 mass%, it is preferable to decarburize and anneal before making the product to reduce the C in steel to 0.005 mass% or less.
  • the decarburization annealing may be performed at any time as long as it is after rapid heating in finish annealing.
  • C after decarburizing is 0.003 mass% or less.
  • C is inevitably contained, it may be 0 mass% in principle.
  • Si 4 mass% or less Si is an element that has an effect of increasing the specific resistance of steel and reducing iron loss. However, if added over 4 mass%, the steel becomes hard and difficult to manufacture by rolling. Therefore, the upper limit of Si is 4 mass%. In addition, when importance is attached to iron loss characteristics, it is preferable to add 1.0 mass% or more.
  • Mn 0.03 to 3 mass% Mn is an element necessary for preventing hot brittleness due to S and improving hot workability. However, if the amount is less than 0.03 mass%, the above effect is small. On the other hand, the addition exceeding 3 mass% only saturates the above effect and increases the raw material cost. Therefore, Mn is set to a range of 0.03 to 3 mass%.
  • Al 3 mass% or less
  • Al is an element that has the effect of increasing the specific resistance of steel and reducing iron loss.
  • addition exceeding 3 mass% deteriorates the rollability, so 3 mass% is added as the upper limit.
  • the effect of improving the magnetic flux density in the rolling direction of the present invention was more noticeable when Al was 0.01 mass% or less. Therefore, when the effect of reducing the iron loss of Al is not used, it should be 0.01 mass% or less.
  • Al is inevitably contained by being added as a deoxidizing agent, but may be 0 mass% in principle.
  • S 0.005 mass% or less
  • N 0.005 mass% or less
  • S and N are unavoidable impurities that deteriorate the magnetic properties, and thus are limited to 0.005 mass% or less. These elements may also be 0 mass% in principle.
  • the grain-oriented electrical steel sheet of the present invention can further contain Sn and Sb within the following ranges.
  • Sn, Sb 0.005 to 0.5 mass% each Sn and Sb not only improve the texture and improve the magnetic flux density, but also prevent the oxidation and nitridation of the steel sheet surface layer, and suppress the generation of surface fine grains accompanying it, thereby improving the magnetic properties. It is an element.
  • Sn and Sb contents exceed 0.5 mass%, crystal grain growth during finish annealing may be hindered, leading to a decrease in magnetic properties. Therefore, Sn and Sb are preferably added in the range of 0.005 to 0.5 mass%, respectively. In addition, it does not refuse to contain Sn and / or Sb of less than 0.005 mass% as impurities.
  • the balance of the components other than the above is Fe and inevitable impurities.
  • addition of components other than those described above is not rejected as long as the effects of the present invention are not impaired.
  • harmful elements include Ti, V, Nb and the like of 0.003 mass% or more.
  • 0.2 mass% or less P etc. are illustrated.
  • the non-oriented electrical steel sheet of the present invention is obtained by melting a steel having the above composition suitable for the present invention by a generally known refining process using a converter, an electric furnace, a vacuum degassing apparatus, etc.
  • a steel material (slab) is produced by the ingot-bundling rolling method, and the slab is hot-rolled by a generally known method, followed by hot-rolled sheet annealing and cold-rolling as necessary under the conditions described below. It is manufactured by finishing annealing or further decarburizing annealing.
  • Hot-rolled sheet annealing is performed so that the steel sheet structure after hot rolling and before cold rolling becomes a preferred sized and fine-grained recrystallized structure.
  • this hot-rolled sheet annealing is performed under conditions of high temperature and long time as in the prior art, when the crystal grains become coarser than 100 ⁇ m and rapidly heated by finish annealing, the magnetic flux density in the rolling direction decreases. To come. Therefore, in the present invention, when hot-rolled sheet annealing is performed, it is preferable to perform annealing at a low temperature for a short time because the crystal grain size is 100 ⁇ m or less, specifically, at a soaking temperature of 800 to 950 ° C.
  • both the magnetic flux density and the iron loss after finish annealing can be made favorable characteristics.
  • the subsequent cold rolling may be one cold rolling, or may be two or more cold rolling sandwiching the intermediate annealing.
  • the cold rolling reduction rate should just be the same conditions as manufacture of a normal non-oriented electrical steel sheet, and there is no restriction
  • finish annealing after cold rolling, it is necessary to rapidly heat up to the recrystallization temperature or higher at an average temperature increase rate of 100 ° C./sec or higher.
  • the end point temperature of the said rapid heating is so preferable that it is high temperature, but when it exceeds 850 degreeC, the installation load required for a heating will become large too much and installation cost will also increase. . Therefore, the end point temperature of rapid heating is preferably 850 ° C. or less, and more preferably 740 ° C. or less.
  • the soaking temperature is preferably in the range of 850 to 1100 ° C.
  • the soaking time is preferably in the range of 5 to 60 sec. This is because if the soaking temperature is less than 850 ° C. or the holding time is less than 5 seconds, the grain growth does not proceed.
  • the soaking temperature exceeds 1100 ° C. or the holding time exceeds 60 seconds, the annealing equipment is burdened. More preferable soaking conditions are desirably maintained at a temperature of 900 to 1050 ° C. for 10 to 40 seconds.
  • a method such as direct current heating or induction heating can be used, and there is no particular limitation.
  • Decarburization annealing When the soaking annealed steel plate has a material C higher than 0.005 mass%, in order to prevent magnetic aging in the product plate, decarburization annealing is performed to reduce the C content to 0.005 mass% or less. It is preferable to reduce, and it is more preferable to reduce to 0.003 mass% or less. Note that this decarburization annealing may be performed at any time as long as it is a stage after the rapid heating. Further, decarburization may be performed under generally known conditions. For example, a condition of 850 ° C. ⁇ 30 sec can be exemplified in an oxidizing atmosphere with a dew point of 30 ° C.
  • the finish-annealed steel sheet is then formed into a product plate by applying an insulating coating as necessary.
  • the finish annealing which cools was given.
  • decarburization annealing is performed at 850 ° C. for 30 seconds in an atmosphere with a dew point of 30 ° C. After reducing to 0030 mass% or less, the temperature was raised to a soaking temperature.
  • the crystal grain size was changed by changing the annealing time of hot-rolled sheet annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

C:0.03mass%以下、Si:4mass%以下、Mn:0.03~3mass%、Al:3mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する方法において、冷間圧延前の結晶粒径を100μm以下とし、再結晶温度以上までを平均昇温速度100℃/sec以上で急速加熱する仕上焼鈍を施すことによって、鋼板の圧延方向に高い磁束密度を有する無方向性電磁鋼板を製造する。

Description

無方向性電磁鋼板の製造方法
 本発明は、無方向性電磁鋼板の製造方法に関し、具体的には、圧延方向の磁気特性に優れる無方向性電磁鋼板を製造する方法に関するものである。
 近年、地球環境の保護を考慮した省エネルギー化という世界的な流れの中で、電気機器の分野においても、省エネルギー化を目的として高効率化や小型化が強く望まれている。そのため、電気機器の鉄心材料として広く使用されている無方向性電磁鋼板には、磁気特性の向上、すなわち、高磁束密度化、低鉄損化が強く望まれるようになってきている。
 従来、無方向性電磁鋼板は、添加する合金元素を適正化し、冷延前の結晶粒径をできる限り大きくした上で、冷延圧下率を最適化することで高磁束密度化し、また、固有抵抗を高める合金元素を添加したり、板厚を低減したりすることで低鉄損化して、磁気特性の向上が図られている。
 ところで、ハイブリッド自動車用の駆動モータ等では、鋼板からモータコアを製造する際の歩留まりを向上する観点から、分割コアが採用されはじめている。この分割コアは、従来のように、素材の鋼板からコア全体を一体として打ち抜くのではなく、コアを複数のセグメントに分割し、それぞれのセグメントのティース部が鋼板の圧延方向となるように打ち抜き、これを組み合わせてコアを構成することで、モータの特性向上を図る技術である。
 この分割コアにおいては、磁束が集中するティース部の長さ方向が、鋼板の圧延方向となるため、素材となる電磁鋼板の圧延方向の磁気特性が極めて重要となってくる。圧延方向の磁気特性に優れた材料としては、圧延方向にGoss方位を揃えた方向性電磁鋼板が挙げられるが、二次再結晶プロセスが必要となるため、製造コストが高く、採用することには問題がある。したがって、無方向性電磁鋼板で、圧延方向の磁束密度を向上させることができれば、分割コアの最適材料となり得ると考えられる。
 このような分割コアに好適な材料としては、例えば、特許文献1および特許文献2には、熱延板焼鈍後の結晶粒径を粗大化し、冷間圧延の圧下率を制御することによって、面内圧延方向と垂直方向に優れた磁気特性を得る方法が開示されている。
特開2004-332042号公報 特開2008-127600号公報
 しかしながら、特許文献1の方法は、冷間圧延前の結晶粒径を300μm以上とするため、鋼の不純物を極微量まで低減する必要があったり、熱延板焼鈍温度を高温にする必要があったりするため、製造性、コスト面で問題がある。また、特許文献2の技術も、熱延板焼鈍で結晶粒を粗大化させる必要があるため、製造コスト面で問題がある。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、鋼板の圧延方向に優れた磁気特性を有する、具体的には、高い磁束密度を有する無方向性電磁鋼板の安価な製造方法を提案することにある。
 発明者らは、上記課題を解決するべく鋭意検討を重ねた。その結果、従来と同じ熱間圧延し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する方法において、冷間圧延前の結晶粒径を100μm以下とし、かつ、仕上焼鈍時の昇温速度を従来よりも急速加熱することで、圧延方向の磁気特性が著しく向上することを新規に見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.03mass%以下、Si:4mass%以下、Mn:0.03~3mass%、Al:3mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する方法において、冷間圧延前の結晶粒径を100μm以下とし、再結晶温度以上までを平均昇温速度100℃/sec以上で急速加熱する仕上焼鈍を施す無方向性電磁鋼板の製造方法である。
 本発明の製造方法における鋼素材は、上記成分組成に加えてさらに、SnおよびSbのうちのいずれか1種または2種をそれぞれ0.005~0.5mass%含有することが好ましい。
 また、本発明の製造方法は、上記急速加熱した後、脱炭焼鈍することが好ましい。
 本発明によれば、圧延方向に優れた磁気特性を有する無方向性電磁鋼板を安価に提供することが可能となるので、分割コアやトランスコアなどの鉄心材料として、好適に用いることができる。
図1は、仕上焼鈍の昇温速度が、圧延方向の磁束密度に及ぼす影響を示すグラフである。 図2は、圧延方向の磁束密度に及ぼす冷間圧延前の粒径および昇温速度の影響を示すグラフである。
 まず、本発明を開発する契機となった実験について説明する。
 C:0.0025mass%、Si:3.3mass%、Mn:0.16mass%、Al:0.001mass%、N:0.0019mass%およびS:0.0010mass%を含有する成分組成の鋼素材(スラブ)を1100℃×30分の加熱後、熱間圧延して板厚2.0mmの熱延板とし、次いで、950℃×30秒の熱延板焼鈍を施してから、1回の冷間圧延で最終板厚が0.35mmの冷延板とした。その後、上記冷延板を直接通電加熱炉で、昇温速度を30~300℃/secの範囲で変えて740℃まで加熱し、その後、30℃/secにて1000℃まで加熱し、10sec間均熱保持し、冷却する仕上焼鈍を施した。上記仕上焼鈍後の鋼板から、圧延方向(L方向)を長さ方向とする長さ180mm×幅30mmのL方向サンプルを切り出し、単板磁気試験を行い、磁化力5000A/mにおける磁束密度B50を測定した。
 図1に、上記実験の結果を、昇温速度と圧延方向の磁束密度との関係として示したが、昇温速度100℃/sec以上で急速加熱して仕上焼鈍することで、圧延方向の磁束密度が高い電磁鋼板が得られていることがわかる。この理由は、以下のように考えられる。
 一次再結晶は、転位の歪エネルギーを駆動力として起こる現象である。一般に、冷間圧延で導入される転位の蓄積エネルギー(歪エネルギー)は、結晶方位依存性があり、{111}>{110}>{100}となる。そのため、低速加熱した場合には、上記結晶方位依存性によって、蓄積エネルギーが高い{111}方位粒が優先的に再結晶を起こす。しかし、急速加熱した場合には、上記結晶方位依存性の拘束が外れて、他の方位も再結晶を起こすようになるため、{110}や{100}方位粒が増加し、その結果、L方向の磁気特性が向上するものと考えられる。
 ところで、従来の無方向性電磁鋼板の製造方法では、熱延板焼鈍を高温で行い、冷間圧延前の結晶粒径を大きくすることで、{111}方位粒(以下「{111}粒」等と略す)の発生を抑制し、磁気特性の向上を図っている。しかし、上述したように、急速加熱する場合には再結晶挙動も大きく変化する。そこで、冷間圧延前の結晶粒径の大きさが磁気特性(圧延方向の磁束密度)に及ぼす影響を調査した。
 C:0.0025mass%、Si:3.3mass%、Mn:0.15mass%、Al:0.001mass%、N:0.0022mass%およびS:0.0013mass%を含有するスラブを1100℃×30分加熱した後、熱間圧延して板厚2.0mmの熱延板とした。次いで、この熱延板に、焼鈍温度を850~1100℃の温度範囲で変化させ、30秒間保持する条件で熱延板焼鈍を施して、冷間圧延前の結晶粒径を変化させた。その後、この熱延板を1回の冷間圧延で最終板厚が0.35mmの冷延板とした後、直接通電加熱炉で昇温速度を20℃/secまたは300℃/secとして、740℃まで加熱し、その後さらに30℃/secで1020℃まで加熱し、10秒間均熱保持した後、冷却する仕上焼鈍を施した。この冷延焼鈍板から、圧延方向(L方向)を長さ方向とする長さ180mm×幅30mmのL方向サンプルを切り出し、単板磁気試験を行い、磁化力5000A/mにおける磁束密度B50を測定した。
 図2に上記実験結果を示した。図2から、300℃/secで急速加熱したときには、冷間圧延前の粒径が100μm以下の領域において、圧延方向の磁束密度が向上しているが、20℃/secの低速加熱では、逆に低下していることがわかる。この理由は、現時点で明確とはなっていないが、以下のように考えている。
 熱延板焼鈍温度が低く、冷間圧延前の結晶粒が小さい場合には、冷間圧延後の再結晶焼鈍においては{111}粒が優先的に成長する。そのため、仕上焼鈍における昇温速度が通常焼鈍のように遅いときには、{111}粒が発達する。しかし、前述したように、昇温速度を高めた場合には、{111}粒の再結晶が抑制され、{110}粒や{100}粒が相対的に増加する。さらに、{110}粒や{100}粒は、その後の均熱焼鈍時に{111}粒を蚕食して優先的に粒成長し、圧延方向の磁気特性が向上する。
 一方、熱延板焼鈍温度が高く、冷間圧延前の結晶粒が大きい場合は、前述したように、昇温速度を高めることによって{110}粒や{100}粒が再結晶し易くなる。しかし、冷間圧延前の粒径が大きいために、粒径が小さい場合と比較すると、再結晶後の{111}粒の割合が少なくなるため、その後の均熱焼鈍において、{110}粒や{100}粒が蚕食する{111}粒の割合が少なくなって、{110}粒や{100}粒が十分に発達せず、圧延方向の磁気特性の向上が認められなくなるものと考えられる。
 以上の実験結果から、圧延方向の磁束密度を改善するには、冷間圧延前の粒径を100μm以下とし、仕上焼鈍での加熱を、昇温速度を100℃/sec以上で急速加熱することが有効であることがわかった。なお、ここでいう粒径とは、L断面にて線分法で求めた平均結晶粒径のことをいう。冷間圧延前の粒径は、90μm以下とすることがより好ましい。
 本発明は、上記知見に基づき開発したものである。
 次に、本発明の無方向性電磁鋼板の成分組成について説明する。
C:0.03mass%以下
 Cは、鋼中に固溶し、冷間圧延時に導入された転位を固着して変形帯を形成しやすくする。この変形帯は、仕上焼鈍時の再結晶においてGoss方位粒{110}<001>を優先的に成長させ、圧延方向の磁気特性を向上する効果がある。しかし、Cが0.03mass%を超えると、後述する脱炭が不十分となるおそれがあるため、本発明では、素材の鋼中Cの上限は0.03mass%とする。
 一方、Cは、製品段階において0.005mass%以上存在すると、磁気時効を起こして磁気特性が低下する。したがって、素材の鋼中Cが0.005mass%を超えている場合には、製品とする前に脱炭焼鈍し、鋼中Cを0.005mass%以下に低減しておくのが好ましい。上記脱炭焼鈍は、仕上焼鈍における急速加熱後であれば、何時行っても構わない。なお、脱炭した後のCは、0.003mass%以下とするのがより好ましい。なお、Cは、不可避的に含有されるが、原理上は0mass%であってもよい。
Si:4mass%以下
 Siは、鋼の固有抵抗を高め、鉄損を低減する効果がある元素である。しかし、4mass%を超えて添加すると、鋼が硬質化し、圧延して製造することが困難となる。よって、Siの上限は4mass%とする。なお、鉄損特性を重視する場合は、1.0mass%以上添加するのが好ましい。
Mn:0.03~3mass%
 Mnは、Sによる熱間脆性を防止して、熱間加工性を改善するのに必要な元素である。しかし、0.03mass%未満では上記効果が小さく、一方、3mass%を超える添加は、上記効果が飽和し、原料コストが上昇するだけである。よって、Mnは0.03~3mass%の範囲とする。
Al:3mass%以下
 Alは、Siと同様、鋼の固有抵抗を高め、鉄損を低減する効果がある元素である。しかし、3mass%を超える添加は、圧延性を悪化させるので、3mass%を上限として添加する。なお、本発明の圧延方向の磁束密度改善効果は、Alが0.01mass%以下の場合により顕著に現れたため、Alの鉄損低減効果を利用しない場合には、0.01mass%以下とするのが好ましい。なお、Alは、脱酸剤として添加されることで、不可避的に含有されるが、原理上は0mass%であってもよい。
S:0.005mass%以下、N:0.005mass%以下
 SおよびNは、本発明においては、磁気特性を低下させる不可避的不純物であるので、それぞれ0.005mass%以下に制限する。これらの元素も、原理上は0mass%であってもよい。
 本発明の方向性電磁鋼板は、上記成分に加えてさらに、SnおよびSbを下記の範囲で添加することができる。
Sn,Sb:それぞれ0.005~0.5mass%
 Sn,Sbは、集合組織を改善して磁束密度を向上させるだけでなく、鋼板表層の酸化や窒化を防止し、それに伴う表層微細粒の生成を抑制することによって、磁気特性を向上する作用のある元素である。かかる効果を発現するには、SnおよびSbのいずれか1種以上を0.005mass%以上添加するのが好ましい。一方、SnおよびSbの含有量が0.5mass%を超えると、仕上焼鈍時の結晶粒成長が阻害されて磁気特性の低下を招くおそれがある。よって、SnおよびSbは、それぞれ0.005~0.5mass%の範囲で添加するのが好ましい。
 なお、不純物として0.005mass%未満のSnおよび/またはSbを含有することを拒むものではない。
 本発明の方向性電磁鋼板は、上記以外の成分の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を害しない範囲であれば、上記以外の成分の添加を拒むものではない。有害な元素としては、0.003mass%以上のTi,V,Nb等が例示される。また、無害な元素としては、0.2mass%以下のP等が例示される。
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
 本発明の無方向性電磁鋼板は、本発明に適合する上記成分組成を有する鋼を転炉や電気炉、真空脱ガス装置などを用いた通常公知の精錬プロセスで溶製し、連続鋳造法あるいは造塊-分塊圧延法で鋼素材(スラブ)とし、上記スラブを通常公知の方法で熱間圧延した後、以下に説明する条件で、必要に応じて熱延板焼鈍し、冷間圧延し、仕上焼鈍し、あるいはさらに脱炭焼鈍して製造する。
熱延板焼鈍
 熱延板焼鈍は、熱間圧延後かつ冷延前の鋼板組織を好ましい整粒かつ細粒の再結晶組織とするため、施すものとする。しかし、この熱延板焼鈍は、従来技術のように高温・長時間の条件で行うと、結晶粒が100μmを超えて粗大化し、仕上焼鈍で急速加熱した場合に、圧延方向の磁束密度が低下するようになる。したがって、本発明においては、熱延板焼鈍を施す場合は、結晶粒径を100μm以下とするため、低温・短時間の焼鈍とすることが好ましく、具体的には均熱温度800~950℃で保持時間60sec以下の条件で行うのが好ましく、800℃以上920℃未満で60sec以下の条件で行うのがより好ましい。上記熱延板焼鈍により、仕上焼鈍後の磁束密度、鉄損共に良好な特性とすることができる。
冷間圧延
 続く冷間圧延は、1回の冷間圧延でもよく、また、中間焼鈍を挟む2回以上の冷間圧延でもよい。また、その冷延圧下率も、通常の無方向性電磁鋼板の製造と同様の条件であればよく、特に制限はない。
仕上焼鈍
 冷間圧延後の仕上焼鈍(再結晶焼鈍)では、再結晶温度以上までを平均昇温速度100℃/sec以上で急速加熱することが必要である。なお、上記急速加熱の終点温度は、短時間で再結晶を起こさせる必要があるため、高温であるほど好ましいが、850℃を超えると、加熱に要する設備負荷が大きくなり過ぎ、設備コストも嵩む。そのため、急速加熱の終点温度は850℃以下とするのが好ましく、740℃以下であればより好ましい。
 再結晶温度以上まで急速加熱した後は、さらに均熱温度まで加熱するが、この昇温速度については特に制限はない。また、均熱温度は850~1100℃の範囲とし、均熱保持時間は5~60secの範囲とするのが好ましい。均熱温度が850℃未満または保持時間が5sec未満では粒成長が進まず、一方、均熱温度が1100℃超えあるいは保持時間が60sec超えでは、焼鈍設備に負担がかかるからである。より好ましい均熱条件は、900~1050℃の温度で、10~40sec間保持するのが望ましい。
 なお、昇温速度を100℃/sec以上とする方法としては、例えば、直接通電加熱あるいは誘導加熱などの方法を用いることができ、特に制限はない。
脱炭焼鈍
 上記均熱焼鈍した鋼板は、素材Cが0.005mass%より高い場合には、製品板における磁気時効を防止するため、その後、脱炭焼鈍してC量を0.005mass%以下に低減するのが好ましく、0.003mass%以下に低減するのがより好ましい。なお、この脱炭焼鈍は、上記急速加熱後の段階であれば何時行ってもよい。また、脱炭は、通常公知の条件で行えばよく、例えば、露点を30℃とした酸化性雰囲気下で850℃×30secの条件を例示することができる。
 なお、均熱焼鈍した後、あるいはさらに脱炭焼鈍した後の冷却条件については特に制限はなく、例えば、30℃/sec以下のガス冷却としてもよい。
 また、仕上焼鈍した鋼板は、その後、必要に応じて絶縁被膜を被成して製品板とするのが好ましい。
 表1に示す成分組成からなるNo.1~34の鋼を溶製し、スラブとした。次いで、このスラブを1080℃×30分加熱した後、熱間圧延して板厚2.3mmの熱延板とした。次いで、上記熱延板に850℃~1100℃×30秒の熱延板焼鈍を施した後、1回の冷間圧延で最終板厚0.35mmの冷延板とした。その後、上記冷延板に、直接通電加熱炉で昇温速度および急速加熱の終点温度を表2に示したように変化させて加熱し、さらに、30℃/secで均熱温度まで加熱して10秒間保持後、冷却する仕上焼鈍を施した。なお、素材の鋼中Cが0.005%以上である鋼板に対しては、850℃まで加熱後、露点30℃の雰囲気下で850℃×30秒の脱炭焼鈍を施してCを0.0030mass%以下に低減した後、均熱温度まで昇温した。なお、一部の鋼板については、熱延板焼鈍の焼鈍時間を変えて結晶粒径を変化させた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記のようにして得た仕上焼鈍後の各冷延鋼板から、長さ180mm×幅30mmのL方向サンプルを切り出し、単板磁気試験を行って圧延方向の磁束密度(B50-L)を測定し、その結果を表2に併記した。
 表2から、冷間圧延前の結晶粒径を100μm以下に制御し、仕上焼鈍における昇温速度を100℃/sec以上とした本発明例の鋼板は、圧延方向の磁束密度B50-Lがいずれも1.74T以上の優れた磁気特性を有していることがわかる。

Claims (3)

  1. C:0.03mass%以下、Si:4mass%以下、Mn:0.03~3mass%、Al:3mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延し、熱延板焼鈍し、冷間圧延し、仕上焼鈍して無方向性電磁鋼板を製造する方法において、
    冷間圧延前の結晶粒径を100μm以下とし、
    再結晶温度以上までを平均昇温速度100℃/sec以上で急速加熱する仕上焼鈍を施す無方向性電磁鋼板の製造方法。
  2. 上記成分組成に加えてさらに、SnおよびSbのうちのいずれか1種または2種をそれぞれ0.005~0.5mass%含有する請求項1に記載の無方向性電磁鋼板の製造方法。
  3. 上記急速加熱した後、脱炭焼鈍する請求項1または2に記載の無方向性電磁鋼板の製造方法。
PCT/JP2011/079150 2010-12-22 2011-12-16 無方向性電磁鋼板の製造方法 WO2012086534A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112013015464-0A BR112013015464B1 (pt) 2010-12-22 2011-12-16 Método de produzir chapa de aço elétrica não orientada
CN2011800613433A CN103270179A (zh) 2010-12-22 2011-12-16 无方向性电磁钢板的制造方法
CA2821087A CA2821087C (en) 2010-12-22 2011-12-16 Method of producing non-oriented electrical steel sheet
EP11850539.5A EP2657355B1 (en) 2010-12-22 2011-12-16 Method of producing non-oriented electrical steel sheet
KR1020137012663A KR101508082B1 (ko) 2010-12-22 2011-12-16 무방향성 전기 강판의 제조 방법
MX2013006979A MX351017B (es) 2010-12-22 2011-12-16 Metodo para producir una lamina de acero electrico no orientado.
RU2013127572/02A RU2534638C1 (ru) 2010-12-22 2011-12-16 Способ получения листа из нетекстурированной электротехнической стали
US13/992,011 US20130263981A1 (en) 2010-12-22 2011-12-16 Method of producing non-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010285335A JP5668460B2 (ja) 2010-12-22 2010-12-22 無方向性電磁鋼板の製造方法
JP2010-285335 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012086534A1 true WO2012086534A1 (ja) 2012-06-28

Family

ID=46313806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079150 WO2012086534A1 (ja) 2010-12-22 2011-12-16 無方向性電磁鋼板の製造方法

Country Status (11)

Country Link
US (1) US20130263981A1 (ja)
EP (1) EP2657355B1 (ja)
JP (1) JP5668460B2 (ja)
KR (1) KR101508082B1 (ja)
CN (1) CN103270179A (ja)
BR (1) BR112013015464B1 (ja)
CA (1) CA2821087C (ja)
MX (1) MX351017B (ja)
RU (1) RU2534638C1 (ja)
TW (1) TWI490342B (ja)
WO (1) WO2012086534A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136095A1 (ja) * 2015-02-24 2016-09-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
US11114227B2 (en) * 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892327B2 (ja) 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
WO2014129034A1 (ja) * 2013-02-21 2014-08-28 Jfeスチール株式会社 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
JP5825494B2 (ja) * 2013-03-06 2015-12-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6057082B2 (ja) 2013-03-13 2017-01-11 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP2014177684A (ja) * 2013-03-15 2014-09-25 Jfe Steel Corp 高周波鉄損特性に優れる無方向性電磁鋼板
EP3162907B1 (en) * 2014-06-26 2021-05-26 Nippon Steel Corporation Electrical steel sheet
MX2017002066A (es) * 2014-08-20 2017-05-04 Jfe Steel Corp Lamina de acero electrico de grano no orientado que tiene excelentes propiedades magneticas.
KR101963056B1 (ko) * 2014-10-30 2019-03-27 제이에프이 스틸 가부시키가이샤 무방향성 전기 강판 및 무방향성 전기 강판의 제조 방법
JP6048699B2 (ja) 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
RU2686424C1 (ru) * 2015-08-04 2019-04-25 ДжФЕ СТИЛ КОРПОРЕЙШН Способ получения листа неориентированной электротехнической стали, имеющего превосходные магнитные свойства
US11225699B2 (en) 2015-11-20 2022-01-18 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet
JP6402865B2 (ja) * 2015-11-20 2018-10-10 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN105925884B (zh) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 一种高磁感、低铁损无取向硅钢片及其制造方法
CN109983143A (zh) * 2016-11-25 2019-07-05 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
JP6866696B2 (ja) * 2017-03-07 2021-04-28 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
KR102108231B1 (ko) 2017-12-26 2020-05-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2020094230A1 (de) * 2018-11-08 2020-05-14 Thyssenkrupp Steel Europe Ag Elektroband oder -blech für höherfrequente elektromotoranwendungen mit verbesserter polarisation und geringen ummagnetisierungsverlusten
EP4112755A1 (en) 2018-11-26 2023-01-04 JFE Steel Corporation Method of manufacturing non-oriented electrical steel sheet
EP3904551A4 (en) * 2018-12-27 2022-04-06 JFE Steel Corporation NON-ORIENTED ELECTRICAL STEEL SHEET AND PRODUCTION METHOD THEREOF
US20220186338A1 (en) * 2019-04-22 2022-06-16 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
US20220359108A1 (en) * 2019-07-11 2022-11-10 Jfe Steel Corporation Non-oriented electrical steel sheet, method for producing the same, and motor core
KR102325005B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055126A (ja) * 1991-03-15 1993-01-14 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JPH05214444A (ja) * 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd 磁気特性面内異方性の小さい無方向性電磁鋼板の製造法
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JPH06228644A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP2001316729A (ja) * 2000-04-28 2001-11-16 Kawasaki Steel Corp 鉄損が低くかつ磁束密度の高い無方向性電磁鋼板の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935038A (en) * 1971-10-28 1976-01-27 Nippon Steel Corporation Method for manufacturing non-oriented electrical steel sheet and strip having no ridging
US4898627A (en) * 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid annealing of nonoriented electrical steel
RU2085598C1 (ru) * 1994-01-31 1997-07-27 Акционерное общество "Новолипецкий металлургический комбинат" Способ получения изотропной электротехнической стали
US6139650A (en) * 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
US5955201A (en) * 1997-12-19 1999-09-21 Armco Inc. Inorganic/organic insulating coating for nonoriented electrical steel
DE69916743T2 (de) * 1998-10-27 2004-09-23 Jfe Steel Corp. Elektrostahlblech und dessen Herstellungsverfahren
US20040149355A1 (en) * 2001-06-28 2004-08-05 Masaaki Kohno Nonoriented electromagnetic steel sheet
US7011139B2 (en) * 2002-05-08 2006-03-14 Schoen Jerry W Method of continuous casting non-oriented electrical steel strip
JP2004315883A (ja) * 2003-04-15 2004-11-11 Nisshin Steel Co Ltd ブラウン管バンド用高強度高透磁率鋼板およびその製造法
JP2009518546A (ja) * 2005-12-27 2009-05-07 ポスコ カンパニーリミテッド 磁性に優れた無方向性電気鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055126A (ja) * 1991-03-15 1993-01-14 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
JPH05214444A (ja) * 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd 磁気特性面内異方性の小さい無方向性電磁鋼板の製造法
JPH06228645A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JPH06228644A (ja) * 1993-02-02 1994-08-16 Sumitomo Metal Ind Ltd 小型静止器用電磁鋼板の製造方法
JP2001316729A (ja) * 2000-04-28 2001-11-16 Kawasaki Steel Corp 鉄損が低くかつ磁束密度の高い無方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2657355A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136095A1 (ja) * 2015-02-24 2016-09-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JPWO2016136095A1 (ja) * 2015-02-24 2017-04-27 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN107208171A (zh) * 2015-02-24 2017-09-26 杰富意钢铁株式会社 无取向性电磁钢板的制造方法
US10316382B2 (en) 2015-02-24 2019-06-11 Jfe Steel Corporation Method for producing non-oriented electrical steel sheets
US11114227B2 (en) * 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet

Also Published As

Publication number Publication date
EP2657355B1 (en) 2015-12-09
CA2821087C (en) 2016-09-13
JP2012132070A (ja) 2012-07-12
BR112013015464B1 (pt) 2019-03-26
TWI490342B (zh) 2015-07-01
KR101508082B1 (ko) 2015-04-07
MX351017B (es) 2017-09-28
CA2821087A1 (en) 2012-06-28
EP2657355A1 (en) 2013-10-30
JP5668460B2 (ja) 2015-02-12
EP2657355A4 (en) 2014-07-09
CN103270179A (zh) 2013-08-28
BR112013015464A2 (pt) 2016-09-20
RU2534638C1 (ru) 2014-12-10
US20130263981A1 (en) 2013-10-10
KR20130101092A (ko) 2013-09-12
TW201233813A (en) 2012-08-16
MX2013006979A (es) 2013-07-29

Similar Documents

Publication Publication Date Title
JP5668460B2 (ja) 無方向性電磁鋼板の製造方法
JP5842400B2 (ja) 方向性電磁鋼板の製造方法
JP5854182B2 (ja) 無方向性電磁鋼板の製造方法
WO2013137092A1 (ja) 無方向性電磁鋼板の製造方法
JP5991484B2 (ja) 低鉄損方向性電磁鋼板の製造方法
JP7454646B2 (ja) 高磁気誘導方向性ケイ素鋼およびその製造方法
WO2014129034A1 (ja) 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
JPWO2016056501A1 (ja) 低鉄損方向性電磁鋼板およびその製造方法
WO2013080891A1 (ja) 無方向性電磁鋼板の製造方法
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
JP4258349B2 (ja) 方向性電磁鋼板の製造方法
WO2015107967A1 (ja) 磁気特性に優れる無方向性電磁鋼板
JP2019119933A (ja) 低鉄損方向性電磁鋼板とその製造方法
JP6160649B2 (ja) 方向性電磁鋼板の製造方法
JP6011063B2 (ja) 低鉄損方向性電磁鋼板の製造方法
JP5644154B2 (ja) 方向性電磁鋼板の製造方法
JP2013192417A (ja) モータコアおよびその製造方法
JP6623795B2 (ja) 電磁鋼板、および電磁鋼板の製造方法
JP4385960B2 (ja) 方向性電磁鋼板の製造方法
JP2011052302A (ja) 方向性電磁鋼板の製造方法
JP5741308B2 (ja) 方向性電磁鋼板の製造方法およびその素材鋼板
JP5712652B2 (ja) 方向性電磁鋼板の製造方法
JPWO2019131853A1 (ja) 低鉄損方向性電磁鋼板とその製造方法
WO2022210504A1 (ja) 方向性電磁鋼板の製造方法
JPH116015A (ja) 低鉄損方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137012663

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13992011

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2821087

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013127572

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/006979

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011850539

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015464

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013015464

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130619