WO2015107967A1 - 磁気特性に優れる無方向性電磁鋼板 - Google Patents

磁気特性に優れる無方向性電磁鋼板 Download PDF

Info

Publication number
WO2015107967A1
WO2015107967A1 PCT/JP2015/050317 JP2015050317W WO2015107967A1 WO 2015107967 A1 WO2015107967 A1 WO 2015107967A1 JP 2015050317 W JP2015050317 W JP 2015050317W WO 2015107967 A1 WO2015107967 A1 WO 2015107967A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
flux density
magnetic flux
Prior art date
Application number
PCT/JP2015/050317
Other languages
English (en)
French (fr)
Inventor
尾田 善彦
中西 匡
新司 小関
智幸 大久保
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580003118.2A priority Critical patent/CN105829566A/zh
Priority to KR1020167014607A priority patent/KR20160081955A/ko
Priority to MX2016008882A priority patent/MX2016008882A/es
Priority to US15/111,310 priority patent/US20160351308A1/en
Priority to EP15737102.2A priority patent/EP3095887B1/en
Priority to BR112016013844-9A priority patent/BR112016013844B1/pt
Publication of WO2015107967A1 publication Critical patent/WO2015107967A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties, particularly magnetic flux density.
  • the iron core material used for the induction motor is required to have a low excitation effective current at the designed magnetic flux density in order to reduce the copper loss by lowering the excitation effective current.
  • the excitation current it is effective to increase the magnetic flux density of the iron core material.
  • drive motors for hybrid vehicles and electric vehicles that are rapidly spreading are required to have a high torque at the time of starting and accelerating, and thus further improvement in magnetic flux density is desired.
  • Patent Document 1 discloses a non-oriented electrical steel sheet in which 0.1 to 5 mass% of Co is added to steel with 4 mass% or less of Si.
  • Patent Document 1 since the technique disclosed in Patent Document 1 is a very expensive element, there is a problem that when it is applied to a general motor, the raw material cost is significantly increased. Therefore, development of a technique for increasing the magnetic flux density of the electrical steel sheet without causing a significant increase in raw material cost is desired.
  • the present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a non-oriented electrical steel sheet having high magnetic flux density and low iron loss at low cost and stably. .
  • the inventors have intensively studied to solve the above problems. As a result, in steel to which Al is reduced and P is added, it is found that the magnetic flux density can be significantly increased by reducing Se inevitably mixed into the steel, and the present invention is developed. It came.
  • the present invention includes C: 0.010 mass% or less, Si: 1 to 4 mass%, Mn: 0.05 to 3 mass%, Al: 0.004 mass% or less, N: 0.005 mass% or less, P: 0.00.
  • a non-oriented electrical steel sheet comprising: 03 to 0.20 mass%, S: 0.01 mass% or less and Se: 0.002 mass% or less, with the balance being composed of Fe and inevitable impurities is there.
  • the non-oriented electrical steel sheet of the present invention further includes one or two selected from Sn: 0.001 to 0.1 mass% and Sb: 0.001 to 0.1 mass%. It is characterized by containing.
  • non-oriented electrical steel sheet of the present invention may be one or two selected from Ca: 0.001 to 0.005 mass% and Mg: 0.001 to 0.005 mass% in addition to the above component composition. It contains seeds.
  • the non-oriented electrical steel sheet of the present invention is characterized in that the plate thickness is 0.05 to 0.30 mm.
  • a non-oriented electrical steel sheet having a high magnetic flux density can be provided inexpensively and stably, a high-efficiency induction motor and a drive motor for a hybrid vehicle and an electric vehicle that require high torque, It can be suitably used as a core material for a high-efficiency generator that requires high power generation efficiency.
  • test pieces having a width of 30 mm and a length of 280 mm with the length direction being the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction) were collected from each direction.
  • the magnetic flux density B 50 was measured by the 25 cm Epstein method described in JIS C2550, and the results are shown in FIG. 1 as the relationship with the P content. From FIG. 1, in the Al-added steel, the magnetic flux density is not improved even if the P content is increased, but in the Al-less steel, the magnetic flux density is improved as the P content is increased. You can see that
  • a test piece having a width of 30 mm and a length of 280 mm was taken from the cold-rolled annealed plate thus obtained, and the magnetic flux density B 50 was measured in the same manner as in the above experiment.
  • the result is shown in FIG. 2 as the relationship with the Se content. It was shown to. From FIG. 2, it was found that when the Se addition amount exceeds 0.0020 mass%, the magnetic flux density decreases, and therefore, the Se content needs to be limited to 0.0020 mass% or less.
  • the present invention is based on the above novel findings.
  • C 0.010 mass% or less Since C is a harmful element that deteriorates iron loss, the smaller the C, the better. When C exceeds 0.010 mass%, an increase in iron loss due to magnetic aging becomes significant, so the upper limit of C is set to 0.010 mass%. Preferably, it is 0.005 mass% or less. The lower limit is not particularly limited because C is preferably as small as possible.
  • Si 1 to 4 mass% Si is an element that is generally added as a deoxidizer for steel. However, in an electrical steel sheet, Si is an important element that has the effect of increasing electrical resistance and reducing iron loss at high frequencies. In order to obtain 1 mass% or more, addition of 1 mass% or more is required. However, if it exceeds 4 mass%, the excitation effective current increases remarkably, so the upper limit is set to 4 mass%. Preferably, it is in the range of 1.0 to 3.5 mass%.
  • Mn 0.05-3 mass%
  • Mn has the effect of preventing the occurrence of surface flaws by preventing red hot brittleness during hot rolling of steel, so 0.05% by mass or more is added.
  • the Mn content is increased, the magnetic flux density and the saturation magnetic flux density are decreased, so the upper limit of the Mn content is 3 mass%.
  • it is in the range of 0.1 to 1.7 mass%.
  • Al 0.004 mass% or less
  • the texture of the finish-annealed plate can be improved and the magnetic flux density can be increased.
  • reduction of Al is essential. The above effect cannot be obtained when it exceeds 0.004 mass%. Therefore, the upper limit of Al is set to 0.004 mass%. Preferably it is 0.002 mass% or less.
  • the lower limit is not particularly limited because Al is preferably as small as possible.
  • N 0.005 mass% or less N generates nitrides and deteriorates magnetic properties, so is limited to 0.005 mass% or less. Preferably it is 0.002 mass% or less.
  • the lower limit is not particularly limited because it is preferably as small as possible.
  • P 0.03-0.20 mass% P is one of the important elements in the present invention.
  • Al-less steel has the effect of segregating at the grain boundaries and increasing the magnetic flux density. The said effect is acquired by addition of 0.03 mass% or more.
  • P exceeds 0.20 mass%, it is difficult to cold-roll. Therefore, in the present invention, the addition amount of P is set in the range of 0.03 to 0.20 mass%. Preferably, it is in the range of 0.05 to 0.10 mass%.
  • S 0.01 mass% or less Since S is an element that forms a sulfide such as MnS and degrades the magnetic properties of the product, it is preferably as small as possible. Therefore, in the present invention, the upper limit of S is set to 0.01 mass% in order not to deteriorate the magnetic characteristics. From the viewpoint of promoting grain boundary segregation of P, it is preferably 0.005 mass% or less, more preferably 0.001 mass% or less. In addition, about a lower limit, since it is so preferable that it is small, it does not specifically limit.
  • Se 0.002 mass% or less
  • Se is a harmful element that suppresses grain boundary segregation of P and lowers the magnetic flux density by segregating at the grain boundary earlier than P. Therefore, Se needs to be reduced as much as possible.
  • the upper limit is limited to 0.002 mass%. Preferably it is 0.001 mass% or less.
  • the upper limit of Se can be expanded to 0.003 mass%. In this case, Se is preferably 0.0025 mass% or less.
  • the non-oriented electrical steel sheet according to the present invention may contain one or more selected from Sn, Sb, Ca and Mg in the following range, in addition to the essential components.
  • Sn 0.001 to 0.1 mass%
  • Sn is an element that segregates at the grain boundary, but has little effect on the segregation of P. Rather, it has the effect of increasing the magnetic flux density by promoting the formation of deformation bands within the grain. The said effect is acquired by addition of 0.001 mass% or more.
  • addition exceeding 0.1 mass% embrittles the steel and increases surface defects such as plate breakage and hege in the manufacturing process. Therefore, when adding Sn, it is preferable to be in the range of 0.001 to 0.1 mass%. More preferably, it is in the range of 0.001 to 0.06 mass%.
  • Sb 0.001 to 0.1 mass%
  • Sb is an element that segregates at the grain boundary, but has a small effect on the segregation of P. Rather, it has the effect of improving magnetic properties by suppressing nitriding during annealing. The said effect is acquired by addition of 0.001 mass% or more. On the other hand, addition exceeding 0.1 mass% embrittles the steel and increases surface defects such as plate breakage and hege in the manufacturing process. Therefore, when Sb is added, it is preferably in the range of 0.001 to 0.1 mass%. More preferably, it is in the range of 0.001 to 0.06 mass%.
  • Ca 0.001 to 0.005 mass%
  • Ca has the effect of coarsening sulfides and reducing iron loss, so 0.001 mass% or more can be added.
  • the upper limit is made 0.005 mass%. More preferably, it is in the range of 0.001 to 0.003 mass%.
  • Mg 0.001 to 0.005 mass%
  • Mg like Ca
  • the upper limit is made 0.005 mass%. More preferably, it is in the range of 0.001 to 0.003 mass%.
  • the balance other than the above components in the non-oriented electrical steel sheet of the present invention is Fe and inevitable impurities. However, addition of other components is not rejected as long as the effects of the present invention are not impaired.
  • the thickness of the non-oriented electrical steel sheet of the present invention is preferably 0.30 mm or less from the viewpoint of reducing iron loss at high frequencies.
  • the plate thickness is preferably in the range of 0.05 to 0.30 mm. More preferably, it is in the range of 0.10 to 0.20 mm.
  • the manufacturing method of the non-oriented electrical steel sheet of this invention is described.
  • a known method for producing a non-oriented electrical steel sheet can be used.
  • the following method that is, a steel adjusted to the above-mentioned predetermined component composition by a refining process such as a converter or an electric furnace is melted, secondarily refined with a degassing facility, and continuously cast. Steel slab, hot rolled, hot-rolled sheet annealed as necessary, pickled, cold rolled, finish annealed, and then applied and baked insulation coating it can.
  • the soaking temperature is preferably in the range of 900 to 1200 ° C. If it is less than 900 ° C., the effect of hot-rolled sheet annealing cannot be sufficiently obtained, and the magnetic properties are not improved. This is because it becomes coarse and cracks may occur during cold rolling.
  • the cold rolling from the hot rolled sheet to the final sheet thickness is preferably performed once or twice or more with intermediate annealing interposed therebetween.
  • the final cold rolling is a warm rolling in which the plate temperature is rolled at a temperature of about 200 ° C., which has a large effect of improving the magnetic flux density. If it is, it is preferable to carry out warm rolling.
  • the finish annealing applied to the cold-rolled sheet having the final thickness is preferably continuous annealing at 900 to 1150 ° C. for 5 to 60 seconds. If the soaking temperature is less than 900 ° C., recrystallization does not proceed sufficiently and good magnetic properties cannot be obtained. On the other hand, when the temperature exceeds 1150 ° C., crystal grains become coarse, and iron loss particularly in a high frequency region increases.
  • the steel sheet after the finish annealing is preferably coated with an insulating coating on the steel sheet surface in order to reduce iron loss.
  • an insulating coating it is desirable to apply a semi-organic coating containing a resin in order to ensure good punchability.
  • the non-oriented electrical steel sheet produced as described above may be used without being subjected to strain relief annealing, or may be used after being subjected to strain relief annealing. Moreover, after shaping through the punching step, strain relief annealing may be performed. Here, the strain relief annealing is generally performed under conditions of about 750 ° C. ⁇ 2 hours.
  • the slab After melting steel containing the various component compositions shown in Table 1 and the balance being Fe and inevitable impurities and continuously casting it into a steel slab, the slab was heated at a temperature of 1140 ° C. for 1 hr. Hot rolling is performed at a finish rolling finishing temperature of 800 ° C. and a coiling temperature of 610 ° C. to form a hot rolled sheet having a thickness of 1.6 mm. After hot rolling of 1000 ° C. for 30 seconds, cold rolling is performed. Thus, a cold-rolled sheet having the thickness shown in Table 1 was obtained. Next, the cold-rolled sheet was subjected to finish annealing that was held for 10 seconds at the temperature shown in Table 1 to obtain a cold-rolled sheet (non-oriented electrical steel sheet).
  • Epstein test pieces having a width of 30 mm and a length of 280 mm with the length direction being the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction) were taken from each direction.
  • Magnetic flux density B 50 (T) and iron loss W 10/400 (W / kg) were measured by the 25 cm Epstein method described in JIS C2550, and the measurement results are also shown in Table 1.
  • the non-oriented electrical steel sheet of the example of the present invention in which the steel components are controlled in the range of Al, P and Se suitable for the present invention has a higher magnetic flux density than the steel sheet of the comparative example deviating from the above range. Moreover, it turns out that it is excellent in an iron loss characteristic.
  • the non-oriented electrical steel sheet of the present invention can be applied to an electric power steering motor, a hard disk motor for information equipment, and the like.

Abstract

mass%で、C:0.010%以下、Si:1~4%、Mn:0.05~3%、Al:0.004%以下、N:0.005%以下、P:0.03~0.20%、S:0.01%以下およびSe:0.002%以下を含有する、あるいは、C:0.01%以下、Si:1~4%、Mn:0.05~3%、Al:0.004%以下、N:0.005%以下、P:0.03~0.20%、S:0.01%以下およびSe:0.003%以下を含有し、さらに、Sn:0.001~0.1%およびSb:0.001~0.1%のうちから選ばれる1種または2種を含有する高磁束密度で低鉄損の無方向性電磁鋼板。

Description

磁気特性に優れる無方向性電磁鋼板
 本発明は、磁気特性、特に磁束密度に優れる無方向性電磁鋼板に関するものである。
 近年、省エネルギーに対するニーズへの高まりから、高効率誘導モータが使用されるようになってきている。この高効率誘導モータでは、効率を高めるために、鉄心の積層厚を厚くしたり、巻線の充填率を高くしたり、鉄心に用いる電磁鋼板を、従来の低グレード材から、より鉄損の低い高グレード材に変更することが行われている。
 また、上記の誘導モータに用いる鉄心材料には、低鉄損であることに加えて、励磁実効電流を低くして銅損を低減するため、設計磁束密度での励磁実効電流が低いことが要求されている。励磁電流を低減するには、鉄心材料の磁束密度を高めることが有効である。さらに、昨今、急速に普及が進んでいるハイブリッド自動車や電機自動車の駆動モータでは、発進時や加速時に高トルクが必要となることから、磁束密度のより一層の向上が望まれている。
 磁束密度を高めた電磁鋼板としては、例えば、特許文献1に、Siが4mass%以下の鋼に、Coを0.1~5mass%添加した無方向性電磁鋼板が開示されている。
特開2000-129410号公報
 しかしながら、特許文献1に開示の技術は、Coが非常に高価な元素であるため、一般のモータに適用すると、著しい原料コストの上昇を招くという問題がある。そのため、著しい原料コストの上昇を招くことなく、電磁鋼板の磁束密度を高める技術の開発が望まれている。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、高磁束密度でかつ低鉄損の無方向性電磁鋼板を安価にかつ安定して提供することにある。
 発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、Alを低減し、Pを添加した鋼において、不可避的に混入してくるSeを極微量に低減することにより、磁束密度を大幅に高めることができることを見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.010mass%以下、Si:1~4mass%、Mn:0.05~3mass%、Al:0.004mass%以下、N:0.005mass%以下、P:0.03~0.20mass%、S:0.01mass%以下およびSe:0.002mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする無方向性電磁鋼板である。
 本発明の無方向性電磁鋼板は、上記成分組成に加えてさらに、Sn:0.001~0.1mass%およびSb:0.001~0.1mass%のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明の無方向性電磁鋼板は、上記成分組成に加えてさらに、Ca:0.001~0.005mass%およびMg:0.001~0.005mass%のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明の無方向性電磁鋼板は、板厚が0.05~0.30mmであることを特徴とする。
 本発明によれば、磁束密度の高い無方向性電磁鋼板を、安価にかつ安定して提供することができるので、高効率誘導モータや高トルクが要求されるハイブリッド自動車および電気自動車の駆動モータ、高い発電効率が要求される高効率発電機のコア材料として好適に用いることができる。
Pの含有量が仕上焼鈍後の磁束密度B50に及ぼす影響を示すグラフである。 Seの含有量が仕上焼鈍後の磁束密度B50に及ぼす影響を示すグラフである。
 本発明を開発する契機となった実験について説明する。
<実験1>
 まず、磁束密度に及ぼすPの影響を調査するため、C:0.0020mass%、Si:3.07mass%、Mn:0.24mass%、Al:0.001mass%、N:0.0021mass%、P:0.01mass%、S:0.0021mass%のAlレス鋼と、C:0.0022mass%、Si:2.70mass%、Mn:0.24mass%、Al:0.30mass%、N:0.0018mass%、P:0.01mass%およびS:0.0013mass%のAl添加鋼において、Pの添加量をtr.~0.16mass%の範囲で種々に変化させた鋼を実験室で溶解し、鋼塊とした後、熱間圧延し、板厚1.6mmの熱延板とした。次いで、上記熱延板に、980℃×30秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して板厚0.20mmの冷延板とし、その後、20vol%H-80vol%N雰囲気下で1000℃×10秒の仕上焼鈍を施し、冷延焼鈍板とした。
 斯くして得た冷延焼鈍板から、長さ方向を圧延方向(L方向)および圧延方向に直角方向(C方向)とする幅30mm×長さ280mmの試験片を、それぞれの方向から採取し、JIS C2550に記載の25cmエプスタイン法で磁束密度B50を測定し、その結果を、Pの含有量との関係として図1に示した。図1から、Al添加鋼では、Pの含有量が増加しても、磁束密度の向上は認められないが、Alレス鋼では、Pの含有量が増加するのにともなって、磁束密度が向上していることがわかる。
 上記のように、Alレス鋼でP含有量の増加に伴って磁束密度が向上する理由については、現在、まだ明らかとなっていないが、Alが冷延前のPの偏析挙動に何らかの影響を及ぼし、Alを含まないことによって、Pの拡散速度が大きくなり、結晶粒界へのPの偏析が促進され、集合組織が改善されるためであると考えられる。
<実験2>
 次に、P添加鋼の製造安定性を調査するため、C:0.0018mass%、Si:3.10mass%、Mn:0.20mass%、Al:0.001mass%、N:0.0015mass%、P:0.06mass%およびS:0.0014mass%を含有するAlレス鋼を10チャージ出鋼し、熱間圧延して板厚1.6mmの熱延板とした。次いで、これらの熱延板に、980℃×30秒の熱延板焼鈍を施し、酸洗し、冷間圧延して板厚0.20mmの冷延板とした後、20vol%H-80vol%N雰囲気下で1000℃×10秒の仕上焼鈍を施し、冷延焼鈍板とした。
 斯くして得た冷延焼鈍板について上記実験と同様にして磁束密度B50を測定したところ、測定結果が大きくばらつくことが明らかになった。そこで、磁束密度が低い鋼板についての成分分析を行ったところ、Seが0.0022~0.0035mass%含まれていることがわかった。この結果から、Seが粒界に偏析することによって、Pの粒界偏析が抑制され、磁束密度が低下したものと推察された。Seは、スクラップ等に含まれる元素であり、近年のスクラップ使用比率の高まりによって不可避的に混入してきたものと考えられる。
<実験3>
 そこで、磁束密度に及ぼすSeの影響を調査するため、C:0.0013mass%、Si:3.21mass%、Mn:0.15mass%、Al:0.002mass%、N:0.0018mass%、P:0.05massおよびS:0.0009mass%の成分組成を有し、Se添加量をtr.~0.007mass%の範囲で種々に変化させた鋼を実験室で溶解し、鋼塊とした後、熱間圧延し、板厚1.6mmの熱延板とし、次いで、上記熱延板に1000℃×30秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して板厚0.20mmの冷延板とし、その後、20vol%H-80vol%N雰囲気下で1000℃×10秒の仕上焼鈍を施し、冷延焼鈍板とした。
 斯くして得た冷延焼鈍板から幅30mm×長さ280mmの試験片を採取し、上記実験と同様にして磁束密度B50を測定し、その結果を、Se含有量との関係として図2に示した。図2から、Seの添加量が0.0020mass%を超えると、磁束密度が低下すること、したがって、Seの含有量は0.0020mass%以下に制限する必要があることがわかった。
 本発明は、上記の新規な知見に基くものである。
 次に、本発明の無方向性電磁鋼板における成分組成の限定理由を説明する。
C:0.010mass%以下
 Cは、鉄損を劣化させる有害元素であるので少ないほど好ましい。Cが0.010mass%を超えると、磁気時効による鉄損増加が顕著となることから、Cの上限は0.010mass%とする。好ましくは、0.005mass%以下である。なお、下限については、Cは少なければ少ないほど好ましいので、とくに限定しない。
Si:1~4mass%
 Siは、一般に、鋼の脱酸剤として添加される元素であるが、電磁鋼板においては、電気抵抗を高めて高周波数での鉄損を低減する効果を有する重要な元素であり、斯かる効果を得るためには1mass%以上の添加を必要とする。しかし、4mass%を超えると、励磁実効電流が著しく増大するため、上限は4mass%とする。好ましくは1.0~3.5mass%の範囲である。
Mn:0.05~3mass%
 Mnは、鋼の熱間圧延時の赤熱脆性を防止することにより、表面疵の発生を防止する効果があるため、0.05mass%以上を添加する。一方、Mn含有量が多くなると、磁束密度や飽和磁束密度が低下するため、Mn含有量の上限は3mass%とする。好ましくは0.1~1.7mass%の範囲である。
Al:0.004mass%以下
 Alは、低減することによって、仕上焼鈍板の集合組織を改善し、磁束密度を高めることができる。また、Pの粒界偏析を促進し、磁束密度を高めるためにも、Alの低減は必須である。上記効果は、0.004mass%を超えると得られなくなる。よって、Alの上限は0.004mass%とする。好ましくは0.002mass%以下である。なお、下限については、Alは少ないほど好ましいので、とくに限定しない。
N:0.005mass%以下
 Nは、窒化物を生成し、磁気特性を劣化させるので、0.005mass%以下に制限する。好ましくは0.002mass%以下である。下限については、少ないほど好ましいので、とくに限定しない。
P:0.03~0.20mass%
 Pは、本発明における重要元素の一つであり、図1に示したように、Alレス鋼においては、粒界に偏析して磁束密度を高める効果がある。上記効果は0.03mass%以上の添加で得られる。一方、Pが0.20mass%を超えると、冷間圧延することが困難となる。よって、本発明では、Pの添加量を0.03~0.20mass%の範囲とする。好ましくは0.05~0.10mass%の範囲である。
S:0.01mass%以下
 Sは、MnS等の硫化物を形成し、製品の磁気特性を劣化させる元素であるので、少ないほど好ましい。そこで、本発明では、磁気特性を劣化させないため、Sの上限を0.01mass%とする。Pの粒界偏析を促進する観点からは、好ましくは0.005mass%以下、より好ましくは0.001mass%以下である。なお、下限については、少ないほど好ましいので、とくに限定しない。
Se:0.002mass%以下
 Seは、Pよりも早く粒界偏析することによって、Pの粒界偏析を抑制し、磁束密度を低下させる有害元素であるため、極力、低減する必要があり、本発明では、上限を0.002mass%に制限する。好ましくは0.001mass%以下である。
 ただし、後述するSnおよびSbには、上記Seの弊害を抑止する効果があるので、SnおよびSbを添加する場合には、Seの上限を0.003mass%まで拡大することができる。また、この場合のSeは0.0025mass%以下が好ましい。
 本発明の無方向性電磁鋼板は、上記必須とする成分に加えて、Sn,Sb,CaおよびMgのうちから選ばれる1種または2種以上を下記の範囲で含有していてもよい。
Sn:0.001~0.1mass%
 Snは、粒界に偏析する元素であるが、Pの偏析に及ぼす影響は小さく、むしろ、粒内の変形帯の形成を促進することによって、磁束密度を高める効果を有する。上記効果は、0.001mass%以上の添加で得られる。一方、0.1mass%を超える添加は、鋼が脆化し、製造工程での板破断やヘゲ等の表面欠陥を増加させる。よって、Snを添加する場合は0.001~0.1mass%の範囲とするのが好ましい。より好ましくは0.001~0.06mass%の範囲である。
Sb:0.001~0.1mass%
 Sbは、Snと同様、粒界に偏析する元素であるが、Pの偏析に及ぼす影響は小さく、むしろ、焼鈍時の窒化を抑制することによって、磁気特性を高める効果を有する。上記効果は、0.001mass%以上の添加で得られる。一方、0.1mass%を超える添加は、鋼が脆化し、製造工程での板破断やヘゲ等の表面欠陥を増加させる。よって、Sbを添加する場合は0.001~0.1mass%の範囲とするのが好ましい。より好ましくは0.001~0.06mass%の範囲である。
Ca:0.001~0.005mass%
 Caは、硫化物を粗大化し、鉄損を低減する効果を有するため、0.001mass%以上添加することができる。一方、過剰に添加しても、上記効果は飽和し、経済的に不利となるだけであるため、上限は0.005mass%とする。より好ましくは0.001~0.003mass%の範囲である。
Mg:0.001~0.005mass%
 Mgは、Caと同様、硫化物を粗大化し、鉄損を低減する効果を有するため、0.001mass%以上添加することができる。一方、過剰に添加しても、上記効果は飽和し、経済的に不利となるだけであるため、上限は0.005mass%とする。より好ましくは0.001~0.003mass%の範囲である。
 本発明の無方向性電磁鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を害しない範囲内であれば、他の成分の添加を拒むものではない。
 次に、本発明の無方向性電磁鋼板の板厚(製品板厚)について説明する。
 本発明の無方向性電磁鋼板の板厚は、高周波における鉄損を低減する観点から、0.30mm以下であることが好ましい。一方、板厚が0.05mm未満となると、鉄心製作に要する積層枚数が増加する他、鋼板の剛性が著しく低下し、モータの振動が大きくなる等の問題を生じる。よって、板厚は0.05~0.30mmの範囲が好ましい。より好ましくは0.10~0.20mmの範囲である。
 次に、本発明の無方向性電磁鋼板の製造方法について述べる。
 本発明の無方向性電磁鋼板は、その素材としてAl,PおよびSeの含有量が上記した適正範囲内のスラブを用いる限り、公知の無方向性電磁鋼板の製造方法を用いることができ、特に制限はないが、例えば、以下の方法、すなわち、転炉あるいは電気炉などの精錬プロセスで上記所定の成分組成に調整した鋼を溶製し、脱ガス設備等で二次精錬し、連続鋳造して鋼スラブとした後、熱間圧延し、必要に応じて熱延板焼鈍した後、酸洗し、冷間圧延し、仕上焼鈍した後、絶縁被膜を塗布・焼付ける方法を採用することができる。
 なお、上記の熱延板焼鈍を施す場合には、均熱温度は900~1200℃の範囲とするのが好ましい。900℃未満であると、熱延板焼鈍の効果が十分に得られず、磁気特性が向上せず、一方、1200℃を超えると、コスト的に不利となる他、熱延板の粒径が粗大となり、冷間圧延時に割れが生じるおそれがあるからである。
 また、熱延板から最終板厚とする冷間圧延は、1回または中間焼鈍を挟む2回以上とするのが好ましい。特に、最終の冷間圧延は、板温が200℃程度の温度で圧延する温間圧延とすることは、磁束密度を向上する効果が大きいので、設備上や生産制約上、コスト的に問題がければ、温間圧延とするのが好ましい。
 上記最終板厚とした冷延板に施す仕上焼鈍は、900~1150℃の温度で、5~60秒の均熱する連続焼鈍とするのが好ましい。均熱温度が900℃未満では、再結晶が十分に進行せず良好な磁気特性が得られない。一方、1150℃を超えると、結晶粒が粗大化し、特に高周波数域での鉄損が増加するからである。
 上記仕上焼鈍後の鋼板は、その後、鉄損を低減するため、鋼板表面に絶縁被膜を被成することが好ましい。上記絶縁被膜は、良好な打抜き性を確保するためには、樹脂を含有する半有機被膜を適用することが望ましい。
 以上のようにして製造した無方向性電磁鋼板は、歪取焼鈍を施さずに使用するか、あるいは、歪取焼鈍を施してから使用してもよい。また、打抜工程を経て整形した後に、歪取焼鈍を施してもよい。ここで、上記歪取焼鈍は、750℃×2時間程度の条件で施すのが一般的である。
 表1に示した各種成分組成を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、連続鋳造して鋼スラブとした後、該スラブを1140℃の温度で1hr加熱した後、仕上圧延終了温度を800℃、巻取温度を610℃とする熱間圧延して板厚1.6mmの熱延板とし、1000℃×30秒の熱延板焼鈍を施した後、冷間圧延して表1に示した板厚の冷延板とした。次いで、上記冷延板に、同じく表1に示した温度で10秒間保持する仕上焼鈍を施し、冷延焼鈍板(無方向性電磁鋼板)とした。
 斯くして得た冷延焼鈍板から、長さ方向を圧延方向(L方向)および圧延方向に直角方向(C方向)とする幅30mm×長さ280mmのエプスタイン試験片をそれぞれの方向から採取し、JIS C2550に記載の25cmエプスタイン法で、磁束密度B50(T)および鉄損W10/400(W/kg)を測定し、その測定結果を表1に併記した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 表1から、鋼成分を本発明に適合するAl,PおよびSeの範囲に制御した本発明例の無方向性電磁鋼板は、上記範囲から外れる比較例の鋼板と比較して、高磁束密度でかつ鉄損特性に優れていることがわかる。
 本発明の無方向性電磁鋼板は、電動パワーステアリングモータや情報機器用ハードディスクモータ等にも適用することができる。
 
 

Claims (4)

  1. C:0.010mass%以下、Si:1~4mass%、Mn:0.05~3mass%、Al:0.004mass%以下、N:0.005mass%以下、P:0.03~0.20mass%、S:0.01mass%以下およびSe:0.002mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする無方向性電磁鋼板。
  2. 上記成分組成に加えてさらに、Sn:0.001~0.1mass%およびSb:0.001~0.1mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
  3. 上記成分組成に加えてさらに、Ca:0.001~0.005mass%およびMg:0.001~0.005mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。
  4. 板厚が0.05~0.30mmであることを特徴とする請求項1~3のいずれか1項に記載の無方向性電磁鋼板。
     
     
PCT/JP2015/050317 2014-01-14 2015-01-08 磁気特性に優れる無方向性電磁鋼板 WO2015107967A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580003118.2A CN105829566A (zh) 2014-01-14 2015-01-08 磁特性优异的无取向性电磁钢板
KR1020167014607A KR20160081955A (ko) 2014-01-14 2015-01-08 자기 특성이 우수한 무방향성 전기 강판
MX2016008882A MX2016008882A (es) 2014-01-14 2015-01-08 Lamina de acero electrico de grano no orientado que tiene excelentes propiedades magneticas.
US15/111,310 US20160351308A1 (en) 2014-01-14 2015-01-08 Non-oriented electrical steel sheet having excellent magnetic properties
EP15737102.2A EP3095887B1 (en) 2014-01-14 2015-01-08 Non-oriented electrical steel sheet having excellent magnetic properties
BR112016013844-9A BR112016013844B1 (pt) 2014-01-14 2015-01-08 Chapa de aço eletromagnética não direcional que tem excelentes propriedades magnéticas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014003983A JP2015131993A (ja) 2014-01-14 2014-01-14 磁気特性に優れる無方向性電磁鋼板
JP2014-003983 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015107967A1 true WO2015107967A1 (ja) 2015-07-23

Family

ID=53542857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050317 WO2015107967A1 (ja) 2014-01-14 2015-01-08 磁気特性に優れる無方向性電磁鋼板

Country Status (9)

Country Link
US (1) US20160351308A1 (ja)
EP (1) EP3095887B1 (ja)
JP (1) JP2015131993A (ja)
KR (1) KR20160081955A (ja)
CN (1) CN105829566A (ja)
BR (1) BR112016013844B1 (ja)
MX (1) MX2016008882A (ja)
TW (1) TWI532854B (ja)
WO (1) WO2015107967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395962A4 (en) * 2015-12-23 2018-10-31 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11142813B2 (en) * 2016-11-25 2021-10-12 Jfe Steel Corporation Non-oriented electrical steel sheet and manufacturing method therefor
US11649532B2 (en) 2018-05-21 2023-05-16 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451730B2 (ja) * 2016-01-15 2019-01-16 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6804291B2 (ja) * 2016-01-27 2020-12-23 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6724712B2 (ja) * 2016-10-18 2020-07-15 日本製鉄株式会社 無方向性電磁鋼板
JP6891682B2 (ja) * 2017-07-13 2021-06-18 日本製鉄株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JP6878351B2 (ja) * 2018-05-14 2021-05-26 Jfeスチール株式会社 モータ
BR112020026876A2 (pt) * 2018-11-02 2021-07-27 Nippon Steel Corporation chapa de aço elétrico não orientado

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673511A (ja) * 1992-08-25 1994-03-15 Nkk Corp 高周波磁気特性に優れた無方向性電磁鋼板
JPH0860311A (ja) * 1994-08-22 1996-03-05 Nkk Corp 鉄損の低い薄物無方向性電磁鋼板およびその製造方法
JP2000129410A (ja) 1998-10-30 2000-05-09 Nkk Corp 磁束密度の高い無方向性電磁鋼板
JP2001192788A (ja) * 2000-01-12 2001-07-17 Sumitomo Metal Ind Ltd 加工性の優れた無方向性電磁鋼板とその製造方法
JP2001323344A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
JP2004292829A (ja) * 2003-02-06 2004-10-21 Sumitomo Metal Ind Ltd 無方向性電磁鋼板
JP2006104530A (ja) * 2004-10-06 2006-04-20 Jfe Steel Kk 磁気特性に優れた無方向性電磁鋼板の製造方法
JP2008231504A (ja) * 2007-03-20 2008-10-02 Jfe Steel Kk 無方向性電磁鋼板
JP2013189693A (ja) * 2012-03-15 2013-09-26 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300619A (ja) * 1994-03-07 1995-11-14 Nkk Corp 無方向性電磁鋼板の製造方法
US6139650A (en) * 1997-03-18 2000-10-31 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same
JPH10330893A (ja) * 1997-06-02 1998-12-15 Nkk Corp 低温短時間磁性焼鈍後の鉄損の低い無方向性電磁鋼板
JP4123662B2 (ja) * 1999-12-03 2008-07-23 Jfeスチール株式会社 小型電気機器用電磁鋼板およびその製造方法
CN1318627C (zh) * 2001-06-28 2007-05-30 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法
JP4240921B2 (ja) * 2002-06-25 2009-03-18 Jfeスチール株式会社 磁性焼鈍後の鉄損の低い無方向性電磁鋼板
KR100683471B1 (ko) * 2004-08-04 2007-02-20 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판의 제조방법, 및 무방향성 전자강판용의 소재 열연 강판
WO2007007423A1 (ja) * 2005-07-07 2007-01-18 Sumitomo Metal Industries, Ltd. 無方向性電磁鋼板およびその製造方法
JP5009514B2 (ja) * 2005-08-10 2012-08-22 Jfeスチール株式会社 無方向性電磁鋼板
KR101223113B1 (ko) * 2010-12-27 2013-01-17 주식회사 포스코 압연방향의 투자율이 우수한 저철손 고자속밀도 무방향성 전기강판 및 그 제조방법
CN102796948B (zh) * 2011-05-27 2014-03-19 宝山钢铁股份有限公司 极低Ti含量的无取向电工钢板及其冶炼方法
JP5263363B2 (ja) * 2011-10-11 2013-08-14 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP5273235B2 (ja) * 2011-11-29 2013-08-28 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6270305B2 (ja) * 2012-03-15 2018-01-31 Jfeスチール株式会社 モータコアの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673511A (ja) * 1992-08-25 1994-03-15 Nkk Corp 高周波磁気特性に優れた無方向性電磁鋼板
JPH0860311A (ja) * 1994-08-22 1996-03-05 Nkk Corp 鉄損の低い薄物無方向性電磁鋼板およびその製造方法
JP2000129410A (ja) 1998-10-30 2000-05-09 Nkk Corp 磁束密度の高い無方向性電磁鋼板
JP2001192788A (ja) * 2000-01-12 2001-07-17 Sumitomo Metal Ind Ltd 加工性の優れた無方向性電磁鋼板とその製造方法
JP2001323344A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性およびリサイクル性に優れた無方向性電磁鋼板
JP2004292829A (ja) * 2003-02-06 2004-10-21 Sumitomo Metal Ind Ltd 無方向性電磁鋼板
JP2006104530A (ja) * 2004-10-06 2006-04-20 Jfe Steel Kk 磁気特性に優れた無方向性電磁鋼板の製造方法
JP2008231504A (ja) * 2007-03-20 2008-10-02 Jfe Steel Kk 無方向性電磁鋼板
JP2013189693A (ja) * 2012-03-15 2013-09-26 Jfe Steel Corp 無方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3095887A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395962A4 (en) * 2015-12-23 2018-10-31 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11230745B2 (en) 2015-12-23 2022-01-25 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11142813B2 (en) * 2016-11-25 2021-10-12 Jfe Steel Corporation Non-oriented electrical steel sheet and manufacturing method therefor
US11649532B2 (en) 2018-05-21 2023-05-16 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
US11946123B2 (en) 2018-05-21 2024-04-02 Jfe Steel Corporation Method of producing a non-oriented electrical steel sheet

Also Published As

Publication number Publication date
CN105829566A (zh) 2016-08-03
EP3095887A4 (en) 2017-04-05
TW201534739A (zh) 2015-09-16
MX2016008882A (es) 2016-10-04
EP3095887A1 (en) 2016-11-23
BR112016013844B1 (pt) 2020-12-15
TWI532854B (zh) 2016-05-11
KR20160081955A (ko) 2016-07-08
EP3095887B1 (en) 2019-03-13
JP2015131993A (ja) 2015-07-23
US20160351308A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2015107967A1 (ja) 磁気特性に優れる無方向性電磁鋼板
JP5668460B2 (ja) 無方向性電磁鋼板の製造方法
KR101499371B1 (ko) 무방향성 전기 강판의 제조 방법
JP6057082B2 (ja) 磁気特性に優れる無方向性電磁鋼板
WO2014129034A1 (ja) 磁気特性に優れるセミプロセス無方向性電磁鋼板の製造方法
WO2013137092A1 (ja) 無方向性電磁鋼板の製造方法
JP6451873B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5825494B2 (ja) 無方向性電磁鋼板およびその製造方法
WO2013080891A1 (ja) 無方向性電磁鋼板の製造方法
JP6319574B2 (ja) 磁気特性に優れる無方向性電磁鋼板
WO2018135414A1 (ja) 無方向性電磁鋼板およびその製造方法
CN110678568A (zh) 无方向性电磁钢板及其制造方法
JP6319465B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2011132558A (ja) 無方向性電磁鋼板の製造方法
JP6270305B2 (ja) モータコアの製造方法
WO2016111088A1 (ja) 無方向性電磁鋼板およびその製造方法
JP6623795B2 (ja) 電磁鋼板、および電磁鋼板の製造方法
JP2014091850A (ja) 電磁鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167014607

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016013844

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/008882

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015737102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015737102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15111310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016013844

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160615