WO2012081431A1 - 擬ポリロタキサン水性分散体の製造方法 - Google Patents

擬ポリロタキサン水性分散体の製造方法 Download PDF

Info

Publication number
WO2012081431A1
WO2012081431A1 PCT/JP2011/078021 JP2011078021W WO2012081431A1 WO 2012081431 A1 WO2012081431 A1 WO 2012081431A1 JP 2011078021 W JP2011078021 W JP 2011078021W WO 2012081431 A1 WO2012081431 A1 WO 2012081431A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudopolyrotaxane
aqueous dispersion
dispersion
particles
producing
Prior art date
Application number
PCT/JP2011/078021
Other languages
English (en)
French (fr)
Inventor
山崎 智朗
慎哉 岡崎
宏紀 岡崎
茂生 濱本
長明 趙
Original Assignee
住友精化株式会社
アドバンスト・ソフトマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, アドバンスト・ソフトマテリアルズ株式会社 filed Critical 住友精化株式会社
Priority to US13/994,551 priority Critical patent/US9475908B2/en
Priority to KR1020137018516A priority patent/KR101840504B1/ko
Priority to JP2012548736A priority patent/JP6013191B2/ja
Priority to CA2821905A priority patent/CA2821905C/en
Priority to ES11848859.2T priority patent/ES2559226T3/es
Priority to CN201180056264.3A priority patent/CN103221430B/zh
Priority to EP11848859.2A priority patent/EP2653479B1/en
Publication of WO2012081431A1 publication Critical patent/WO2012081431A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides

Definitions

  • the present invention relates to a method for producing a pseudopolyrotaxane aqueous dispersion.
  • a “ringing gel” has been proposed as a new type of gel that is not classified as either a physical gel or a chemical gel, and a crosslinked polyrotaxane has attracted attention as a compound used in such a ringing gel.
  • Cross-linked polyrotaxane has viscoelasticity because the cyclic molecule that is skewered through the linear molecule can move along the linear molecule (pulley effect), and even if tension is applied, the pulley effect Since the tension can be evenly dispersed, it has excellent characteristics not found in conventional crosslinked polymers, such as being less prone to cracks and scratches.
  • Such a cross-linked polyrotaxane is a straight chain so that the cyclic molecule is not detached in the pseudo polyrotaxane in which the opening of the cyclic molecule is inserted in a skewered manner with the linear molecule and the linear molecule is included in the cyclic molecule. It can be obtained by crosslinking a plurality of polyrotaxanes having blocking groups at both ends of the molecule.
  • the pseudo polyrotaxane used for the production of the crosslinked polyrotaxane is usually produced by mixing polyethylene glycol and cyclodextrin in an aqueous medium, it is obtained as an aqueous dispersion.
  • Patent Document 1 polyethylene glycol having an amino group at the terminal with an average molecular weight of 2000 and ⁇ -cyclodextrin are dissolved in distilled water and stirred at 80 ° C. for 1 hour to obtain a transparent solution. It is disclosed that a white gel-like pseudopolyrotaxane aqueous dispersion can be obtained by cooling the obtained transparent solution in a refrigerator (5 ° C.) overnight.
  • Patent Document 3 polyethylene glycol having a carboxyl group at the terminal and ⁇ -cyclodextrin are dissolved in warm water of 70 ° C. prepared separately, and then mixed together, and then in a refrigerator (4 ° C.). It is disclosed that a creamy pseudopolyrotaxane aqueous dispersion can be obtained by standing overnight.
  • the present inventors have industrially advantageously produced a pseudopolyrotaxane having a high inclusion rate by drying the pseudopolyrotaxane aqueous dispersion by spray drying or thin-film formation when the pseudopolyrotaxane aqueous dispersion is dried as it is.
  • the pseudo-polyrotaxane aqueous dispersion obtained in the prior art has a very low fluidity or a non-flowable gel, so that the pseudo-polyrotaxane aqueous dispersion can be sprayed or uniformly thinned. There was a problem that it was difficult.
  • the pseudopolyrotaxane aqueous dispersion obtained in the prior art is in a gel form with extremely low fluidity or no fluidity, a blocking agent is added to the pseudopolyrotaxane aqueous dispersion as it is, and both ends of the pseudopolyrotaxane are added.
  • a blocking agent is added to the pseudopolyrotaxane aqueous dispersion as it is, and both ends of the pseudopolyrotaxane are added.
  • the present invention provides a pseudopolyrotaxane aqueous dispersion capable of solving the above-mentioned problems, producing a pseudopolyrotaxane aqueous dispersion having good fluidity and excellent dispersion stability of pseudopolyrotaxane particles by an industrially advantageous method. It aims to provide a method.
  • the present invention is a method for producing a pseudopolyrotaxane aqueous dispersion containing pseudopolyrotaxane particles in which polyethylene glycol is skewered in the opening of a cyclodextrin molecule, wherein the polyethyleneglycol and cyclodextrin are mixed with an aqueous medium.
  • a method for producing a pseudopolyrotaxane aqueous dispersion comprising: a mixing step of preparing a mixed solution by dissolving in a solution; and a cooling step of depositing pseudopolyrotaxane particles by cooling the mixed solution continuously or intermittently while flowing. is there.
  • the present invention is described in detail below.
  • the method for producing an aqueous pseudopolyrotaxane dispersion of the present invention has a mixing step of preparing a mixed solution by dissolving PEG and cyclodextrin in an aqueous medium.
  • the weight ratio of PEG to cyclodextrin is preferably 1: 2 to 1: 5, more preferably 1: 2.5 to 1: 4.5, and 1: 3 to 1 : 4 is more preferable. If the weight of cyclodextrin is less than twice the weight of PEG, the number of cyclodextrins that include PEG (inclusion amount) may decrease. Even if the weight of cyclodextrin exceeds 5 times the weight of PEG, the amount of inclusion is not increased and it is not economical.
  • the mixture is usually heated and dissolved at 50 to 100 ° C., preferably 60 to 90 ° C., more preferably 70 to 80 ° C.
  • a transparent mixed solution can be obtained.
  • the cooling rate in the cooling step is preferably 0.01 to 30 ° C./min, more preferably 0.05 to 20 ° C./min, and further preferably 0.05 to 10 ° C./min. preferable. If the cooling rate is less than 0.01 ° C./minute, the deposited pseudopolyrotaxane particles are too fine, and the fluidity of the resulting pseudopolyrotaxane aqueous dispersion may be reduced. When the cooling rate exceeds 30 ° C./min, the pseudopolyrotaxane particles become large, so that the dispersion stability is lowered and the sedimentation may be separated.
  • pseudopolyrotaxane particles are more completely precipitated, so that it can be intermittently cooled, and the cooling rate and the flow state of the mixed solution can be changed during the cooling process. .
  • the time for maintaining the fluid state of the obtained pseudopolyrotaxane aqueous dispersion is usually several seconds to one week, preferably several hours to 3 days.
  • the cooling step when the mixed solution is cooled, stirring with a stirring blade, ultrasonic irradiation, or the like can be used as a method for flowing the mixed solution.
  • the degree to which the mixed solution is fluidized is not particularly limited and can be arbitrarily selected from the degree that the mixed solution slightly flows by gentle stirring to the intense fluid state by strong stirring with a homogenizer or the like.
  • the volume average particle size of the particles in the pseudo-polyrotaxane aqueous dispersion varies depending on the cooling rate, the temperature reached after cooling, the flow state of the mixed solution at the time of cooling, etc.
  • the volume average particle diameter of the particles in the dispersion is in a specific range, the fluidity is good, the fluidity does not decrease over time, and the particles are not separated and settled. It has been found that a pseudo-polyrotaxane aqueous dispersion having both stability and stability can be obtained.
  • the volume average particle diameter of the particles in the pseudopolyrotaxane aqueous dispersion is preferably 1 to 200 ⁇ m, more preferably 1 to 100 ⁇ m, and still more preferably 1 to 50 ⁇ m.
  • the volume average particle diameter of the particles in the pseudopolyrotaxane aqueous dispersion is less than 1 ⁇ m, the fluidity of the dispersion may be reduced or may not show fluidity.
  • the volume average particle diameter of the particles in the pseudopolyrotaxane aqueous dispersion exceeds 200 ⁇ m, the particles in the pseudopolyrotaxane aqueous dispersion may precipitate and separate.
  • the volume average particle size of the particles in the pseudopolyrotaxane aqueous dispersion can be analyzed by a laser diffraction particle size distribution analyzer.
  • the concentration of pseudopolyrotaxane in the pseudopolyrotaxane aqueous dispersion is preferably 5 to 25% by weight, more preferably 5 to 20% by weight, and 10 to 20% by weight. % Is more preferable.
  • solid content concentration of the pseudo-polyrotaxane aqueous dispersion is less than 5% by weight, it is not economical.
  • solid content concentration of the pseudopolyrotaxane aqueous dispersion exceeds 25% by weight, the fluidity of the pseudopolyrotaxane aqueous dispersion may be lowered.
  • the viscosity of the pseudopolyrotaxane aqueous dispersion is preferably 10,000 mPa ⁇ s or less, more preferably 7000 mPa ⁇ s or less, and further preferably 5000 mPa ⁇ s or less.
  • the viscosity of the pseudopolyrotaxane aqueous dispersion exceeds 10,000 mPa ⁇ s, the fluidity of the pseudopolyrotaxane aqueous dispersion is poor, solid-liquid separation on an industrial scale, uniform stirring and mixing, transfer between facilities, Spray drying of the pseudopolyrotaxane aqueous dispersion becomes difficult.
  • the viscosity of the pseudopolyrotaxane aqueous dispersion can be analyzed using a Brookfield viscometer under the conditions of 10 ° C. and 6 rpm.
  • an aqueous pseudopolyrotaxane dispersion having excellent fluidity can be produced.
  • the resulting pseudopolyrotaxane aqueous dispersion can be easily separated into solid and liquid by centrifugation, filtration, etc., spray dried or dried into a thin film, or transferred between facilities.
  • the pseudopolyrotaxane aqueous dispersion obtained by the method for producing a pseudopolyrotaxane aqueous dispersion of the present invention is excellent in dispersion stability of the pseudopolyrotaxane particles, and therefore the reaction is uniform when introducing blocking groups at both ends of the pseudopolyrotaxane. Can proceed to.
  • Example 1 In a 1 L flask equipped with a stirrer, add 520 mL of water, add 16 g of PEG having a carboxyl group at both ends prepared in Production Example 1 and 64 g of ⁇ -cyclodextrin, and stir at a rotational speed of 250 rpm using a stirring blade. While heating to 75 ° C., it was dissolved. The stirring blade was rotated at a rotational speed of 650 rpm (tip peripheral speed 2.5 m / sec) and cooled to 5 ° C. at a cooling rate of 0.4 ° C./min while stirring at the same rotational speed.
  • the fluidity of the pseudopolyrotaxane aqueous dispersion was maintained, and the viscosity of the pseudopolyrotaxane aqueous dispersion was measured by the same method and found to be 240 mPa ⁇ s. Moreover, even after standing overnight, no sedimentation of particles was observed, and the dispersion stability was good.
  • Example 2 In a 1 L flask equipped with a stirrer, add 520 mL of water, add 16 g of PEG having a carboxyl group at both ends prepared in Production Example 1 and 64 g of ⁇ -cyclodextrin, and stir at a rotational speed of 250 rpm using a stirring blade. While heating to 75 ° C., it was dissolved. The rotation speed of the stirring blade was set to 650 rpm (tip peripheral speed 2.5 m / sec), and the mixture was cooled to 20 ° C. at a cooling rate of 0.4 ° C./min while stirring at the same rotation rate. For 30 minutes, and then cooled again to 5 ° C.
  • the prepared pseudopolyrotaxane aqueous dispersion is a fluid emulsion, and the viscosity and particle size were measured in the same manner as in Example 1.
  • the viscosity of the pseudopolyrotaxane aqueous dispersion was 240 mPa ⁇ s
  • the volume average particle diameter of the particles in the aqueous polyrotaxane dispersion was 7 ⁇ m.
  • Example 3 Pseudopolyrotaxane aqueous dispersion in the same manner as in Example 1 except that the amount of water for dissolving PEG having a carboxyl group at both ends and ⁇ -cyclodextrin was 400 ml (solid content concentration of pseudopolyrotaxane aqueous dispersion was 17% by weight). Got the body.
  • the prepared pseudopolyrotaxane aqueous dispersion was a fluid emulsion, and the viscosity and particle size were measured in the same manner as in Example 1.
  • the pseudopolyrotaxane aqueous dispersion had a viscosity of 500 mPa ⁇ s, The volume average particle diameter of the particles in the polyrotaxane aqueous dispersion was 16 ⁇ m. After standing overnight, the fluidity of the pseudopolyrotaxane aqueous dispersion was maintained, and the viscosity of the pseudopolyrotaxane aqueous dispersion was measured by the same method and found to be 600 mPa ⁇ s. Moreover, even after standing overnight, no sedimentation of particles was observed, and the dispersion stability was good.
  • Example 4 A pseudo polyrotaxane aqueous dispersion was obtained in the same manner as in Example 1 except that the stirring speed of the stirring blade during cooling was 550 rpm (tip peripheral speed 2.1 m / sec) and the cooling speed was 0.1 ° C./min. It was.
  • the prepared pseudopolyrotaxane aqueous dispersion is an emulsion having good fluidity.
  • the pseudopolyrotaxane aqueous dispersion has a viscosity of 190 mPa ⁇ s, and the pseudopolyrotaxane The volume average particle diameter of the particles in the aqueous dispersion was 19 ⁇ m.
  • the fluidity of the pseudopolyrotaxane aqueous dispersion was maintained, and the viscosity of the pseudopolyrotaxane aqueous dispersion was measured by the same method and found to be 210 mPa ⁇ s. Moreover, even after standing overnight, no sedimentation of particles was observed, and the dispersion stability was good.
  • Example 5 A pseudo polyrotaxane aqueous dispersion was obtained in the same manner as in Example 1 except that the stirring speed of the stirring blade during cooling was 550 rpm (tip peripheral speed 2.1 m / sec) and the cooling speed was 10 ° C./min.
  • the prepared pseudopolyrotaxane aqueous dispersion is an emulsion having good fluidity.
  • the viscosity of the pseudopolyrotaxane aqueous dispersion was 180 mPa ⁇ s, and the pseudopolyrotaxane was The volume average particle diameter of the particles in the aqueous dispersion was 34 ⁇ m.
  • Example 6 A pseudo polyrotaxane aqueous dispersion was obtained in the same manner as in Example 1 except that the stirring speed of the stirring blade during cooling was 100 rpm (tip peripheral speed 0.4 m / sec) and the cooling speed was 0.1 ° C./min. It was.
  • Example 8 Heated to 70 ° C and dissolved with an aqueous solution of PEG having a carboxyl group at both ends and ⁇ -cyclodextrin, and a double-pipe cooling tube with a cooling medium of 5 to 70 ° C flowing in the outer layer with a roller pump Pseudopolyrotaxane was used in the same manner as in Example 1 except that the solution was fed, cooled to 5 ° C. while being repeatedly circulated (cooling rate 0.4 ° C./min), and further continued to circulate at the same temperature for 10 hours. An aqueous dispersion was obtained.
  • the pseudopolyrotaxane aqueous dispersion After standing for a whole day and night, the pseudopolyrotaxane aqueous dispersion showed fluidity, and the viscosity of the pseudopolyrotaxane aqueous dispersion was measured by the same method and found to be 3000 mPa ⁇ s. Moreover, even after standing overnight, no sedimentation of particles was observed, and the dispersion stability was good.
  • Example 1 A pseudopolyrotaxane aqueous dispersion was obtained in the same manner as in Example 1 except that the mixture was cooled while standing without being stirred (cooling rate: 0.4 ° C./min).
  • the prepared pseudopolyrotaxane aqueous dispersion had a slight fluidity and was in the form of a paste.
  • the viscosity of the pseudopolyrotaxane aqueous dispersion was 90,000 mPa ⁇ s. there were. Further, although the particle size was measured by a laser diffraction particle size measuring apparatus, an accurate particle size could not be measured.
  • the viscosity of the pseudopolyrotaxane aqueous dispersion was measured by the same method and found to be 100,000 mPa ⁇ s or more (above the upper limit of measurement).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Colloid Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明は、流動性がよく、擬ポリロタキサン粒子の分散安定性に優れる擬ポリロタキサン水性分散体を工業的に有利な方法で製造することができる擬ポリロタキサン水性分散体の製造方法を提供することを目的とする。 本発明は、シクロデキストリン分子の開口部にポリエチレングリコールが串刺し状に包接された擬ポリロタキサン粒子を含有する擬ポリロタキサン水性分散体を製造する方法であって、ポリエチレングリコールとシクロデキストリンとを、水性媒体中に溶解して混合溶液を調製する混合工程と、前記混合溶液を流動させながら連続的または断続的に冷却して擬ポリロタキサン粒子を析出させる冷却工程とを有する擬ポリロタキサン水性分散体の製造方法である。

Description

擬ポリロタキサン水性分散体の製造方法
本発明は、擬ポリロタキサン水性分散体の製造方法に関する。
近年、物理ゲル、化学ゲルのいずれにも分類されない新しい種類のゲルとして、「環動ゲル」が提案されており、このような環動ゲルに用いられる化合物として、架橋ポリロタキサンが注目を集めている。
架橋ポリロタキサンは、直鎖状分子に串刺し状に貫通されている環状分子が、当該直鎖状分子に沿って移動可能(滑車効果)なために粘弾性を有し、張力が加わっても滑車効果によりその張力を均一に分散させることができるため、クラックや傷が生じにくいなど、従来の架橋ポリマーにない優れた特性を有している。このような架橋ポリロタキサンは、環状分子の開口部を直鎖状分子で串刺し状に貫通して直鎖状分子を環状分子で包接した擬ポリロタキサンにおいて、環状分子が脱離しないように直鎖状分子の両末端に封鎖基を配置して成るポリロタキサンを複数架橋することにより、得ることができる。
架橋ポリロタキサンの製造に用いられる擬ポリロタキサンは、通常、ポリエチレングリコールとシクロデキストリンとを水性媒体中で混合することにより生成するため、水性分散体として得られる。
特許文献1には、平均分子量が2000の末端にアミノ基を有するポリエチレングリコールとα-シクロデキストリンを、蒸留水に溶解し、80℃で1時間攪拌し、透明の溶液を得た後、得られた透明溶液を冷蔵庫(5℃)内で一晩冷却することにより、白色ゲル状の擬ポリロタキサン水性分散体が得られることが開示されている。
特許文献2には、数平均分子量2万のポリエチレングリコールビスアミンとα-シクロデキストリンとを水中で80℃に加熱して溶解させ、得られた溶液を冷却し5℃で16時間静置することにより、白いペースト状の擬ポリロタキサン水性分散体が得られることが開示されている。
特許文献3には、末端にカルボキシル基を有するポリエチレングリコールとα-シクロデキストリンとをそれぞれ別々に用意した70℃の温水に溶解させた後、両者を混合し、その後、冷蔵庫(4℃)中で一晩静置することにより、クリーム状の擬ポリロタキサン水性分散体が得られることが開示されている。
特開2006-316089号公報 特開2008-310286号公報 国際公開第05/080469号パンフレット
効率よく、しかも化学的に安定な結合により擬ポリロタキサンの両末端に封鎖基を導入してポリロタキサンを得るには、ポリエチレングリコール(以下、PEGともいう)の両末端を-COOH基とし、封鎖基を該-COOH基と反応する基、例えば-NH基、-OH基などとして反応させることが有効である。
しかしながら、このような擬ポリロタキサンの両末端に封鎖基を導入する反応においては系内の水分が反応を失活させるため、反応を効率よく進行させるには、反応系中に水が存在しないかまたは水分量を極めて微量に制御する必要があり、擬ポリロタキサン水性分散体を遠心分離、濾過などにより固液分離した後、または水性分散体をそのまま乾燥し、充分に水を除去する必要があった。
特許文献1~3に開示されているような従来技術では、極めて流動性の低いペースト状やクリーム状、または流動性のないゲル状の擬ポリロタキサン水性分散体が得られる。ペースト状やクリーム状で得られた擬ポリロタキサン水性分散体であっても経時的に流動性を失うため、工業的には、乾燥する前に擬ポリロタキサン水性分散体を遠心分離、濾過などにより固液分離することが極めて難しいという問題があった。
また、本発明者らは、擬ポリロタキサン水性分散体をそのまま乾燥する場合、擬ポリロタキサン水性分散体を噴霧乾燥または薄膜状にして乾燥することにより高い包接率を有する擬ポリロタキサンを工業的に有利に製造できることを見出しているが、従来技術において得られた擬ポリロタキサン水性分散体は極めて流動性が低いか、流動性のないゲル状であるため、擬ポリロタキサン水性分散体を噴霧したり均一に薄膜化したりすることが難しいという問題があった。
さらに、従来技術において得られた擬ポリロタキサン水性分散体では、極めて流動性が低いか、流動性のないゲル状であるため、擬ポリロタキサン水性分散体にそのまま封鎖剤を添加し、擬ポリロタキサンの両末端に封鎖基を導入しようとする場合、均一な攪拌混合が困難であり、反応が均一に進行しないなどの課題があった。
加えて、従来技術において得られた擬ポリロタキサン水性分散体では、例えば、擬ポリロタキサン水性分散体の調製槽から乾燥機への移送など、設備間の移送が困難であるなど、ポリロタキサンの工業的規模での生産において多くの不具合をもたらす。
擬ポリロタキサン水性分散体の流動性を改善するため、分散媒を追加して混合し、擬ポリロタキサン水性分散体に占める擬ポリロタキサンの濃度を低下させることも考えられるが、このような方法では、生産性が低下し、経済的でないばかりでなく、シクロデキストリンの遊離を誘発し、擬ポリロタキサンの包接率を低下させる場合があった。
なお、本明細書において前記包接率とは、PEGへのシクロデキストリンの最大包接量に対するPEGを包接しているシクロデキストリンの包接量の割合であり、PEGとシクロデキストリンの混合比、水性媒体の種類などを変化させることにより、任意に調整することが出来る。また、前記最大包接量とは、PEG鎖の繰り返し単位2つに対し、シクロデキストリンが1つ包接された最密包接状態とした場合のシクロデキストリンの個数をいう。
本発明は、上記の課題を解決し、流動性がよく、擬ポリロタキサン粒子の分散安定性に優れる擬ポリロタキサン水性分散体を工業的に有利な方法で製造することができる擬ポリロタキサン水性分散体の製造方法を提供することを目的とする。
本発明は、シクロデキストリン分子の開口部にポリエチレングリコールが串刺し状に包接された擬ポリロタキサン粒子を含有する擬ポリロタキサン水性分散体を製造する方法であって、ポリエチレングリコールとシクロデキストリンとを、水性媒体中に溶解して混合溶液を調製する混合工程と、前記混合溶液を流動させながら連続的または断続的に冷却して擬ポリロタキサン粒子を析出させる冷却工程とを有する擬ポリロタキサン水性分散体の製造方法である。
以下に本発明を詳述する。
本発明者らは、PEGとシクロデキストリンとを、水性媒体中に溶解して混合溶液を調製した後、前記混合溶液を流動させながら連続的または断続的に冷却し、擬ポリロタキサン粒子を析出させることにより、流動性および擬ポリロタキサン粒子の分散安定性に優れた擬ポリロタキサン水性分散体を工業的に有利な方法で製造することができることを見出し、本発明を完成させるに至った。
本発明の擬ポリロタキサン水性分散体の製造方法は、PEGとシクロデキストリンとを、水性媒体中に溶解して混合溶液を調製する混合工程を有する。
前記PEGの重量平均分子量は1000~50万であることが好ましく、1万~30万であることがより好ましく、1万~10万であることがさらに好ましい。前記PEGの重量平均分子量が1000未満であると、得られる架橋ポリロタキサンが特性の低いものとなることがある。前記PEGの重量平均分子量が50万を超えると、擬ポリロタキサン水性分散体の流動性が低くなる場合がある。
なお、本明細書において、前記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリエチレングリコール換算により求められる値である。GPCによってポリエチレングリコール換算による重量平均分子量を測定する際のカラムとしては、例えば、TSKgel SuperAWM-H(東ソー社製)などが挙げられる。
前記PEGは、両末端に反応性基を有することが好ましい。前記反応性基は、従来公知の方法によりPEGの両末端に導入することが出来る。
前記PEGの両末端に有する反応性基は、採用する封鎖基の種類により適宜変更することができ、特に限定されないが、水酸基、アミノ基、カルボキシル基、チオール基などが挙げられ、とりわけ、カルボキシル基が好ましい。前記PEGの両末端にカルボキシル基を導入する方法としては、例えば、TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)と次亜塩素酸ナトリウムとを用いてPEGの両末端を酸化させる方法などが挙げられる。
前記混合工程において、PEGとシクロデキストリンとの重量比は1:2~1:5であることが好ましく、1:2.5~1:4.5であることがより好ましく、1:3~1:4であることがさらに好ましい。シクロデキストリンの重量がPEGの重量の2倍未満であると、PEGを包接するシクロデキストリンの個数(包接量)が低下する場合がある。シクロデキストリンの重量がPEGの重量の5倍を超えても、包接量は増加せず経済的でない。
前記シクロデキストリンとしては、例えば、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、およびこれらの誘導体などが挙げられる。とりわけ、包接性の観点より、α-シクロデキストリンが好ましい。これらのシクロデキストリンは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
前記水性媒体としては、例えば、水、水とDMF、DMSOなどの水性有機溶媒との水性混合物などが挙げられ、とりわけ水が好ましく用いられる。
前記混合工程におけるPEGとシクロデキストリンとを水性媒体に溶解させて混合する際には、通常50~100℃、好ましくは60~90℃、より好ましくは70~80℃に加熱、溶解することによりほぼ透明な混合溶液を得ることが出来る。
本発明の擬ポリロタキサン水性分散体の製造方法は、前記混合溶液を流動させながら連続的または断続的に冷却して擬ポリロタキサン粒子を析出させる冷却工程を有する。前記冷却工程を行うことにより、PEGとシクロデキストリンからなる擬ポリロタキサン粒子が析出し、概ね白色状の擬ポリロタキサン水性分散体が得られる。
前記混合溶液を冷却する際に、静置下で冷却して擬ポリロタキサン粒子を析出させる従来の方法では、極めて流動性の低いペースト状やクリーム状、または流動性のないゲル状の擬ポリロタキサン水性分散体が得られるが、本発明の擬ポリロタキサン水性分散体の製造方法では、混合溶液を流動させながら連続的または断続的に冷却し、擬ポリロタキサン粒子を析出させることにより、流動性がよく、経時的に流動性が低下しない擬ポリロタキサン水性分散体を得ることができる。
本明細書において流動性とは、例えば、擬ポリロタキサン水性分散体を容器に入れた状態で、当該容器を傾けたとき擬ポリロタキサン水性分散体が自重で流れる、流れ易さを示しており、流動性を評価する指標の一つとして後述する擬ポリロタキサン分散体の粘度が挙げられる。
前記冷却工程における到達温度は、0~30℃であることが好ましく、5~20℃であることがより好ましく、5~15℃であることがさらに好ましい。前記混合溶液を0℃未満まで冷却した場合、凍結などにより得られる擬ポリロタキサン水性分散体の流動性が低下することがある。前記到達温度が30℃を超える場合、擬ポリロタキサン粒子が充分に析出しないことがある。
前記冷却工程における冷却速度は、0.01~30℃/分であることが好ましく、0.05~20℃/分であることがより好ましく、0.05~10℃/分であることがさらに好ましい。前記冷却速度が0.01℃/分未満であると、析出する擬ポリロタキサン粒子が微細となりすぎるため、得られる擬ポリロタキサン水性分散体の流動性が低下する場合がある。前記冷却速度が30℃/分を超えると、擬ポリロタキサン粒子が大きくなるため分散安定性が低下し、沈降分離する場合がある。
また、上述したように、擬ポリロタキサン粒子をより完全に析出させるため、断続的に冷却することも可能であり、冷却の過程で冷却速度や前記混合溶液の流動状態を変化させることも可能である。
前記混合溶液を冷却し、所望の温度に到達した後、得られた擬ポリロタキサン水性分散体の流動状態を保持する時間は、通常数秒~1週間、好ましくは数時間~3日である。
前記冷却工程において、前記混合溶液を冷却する際に、混合溶液を流動させる方法としては、攪拌翼による攪拌、超音波照射などを使用することができる。また、外層に冷却媒体を流した二重管式冷却管などの冷却管に、ローラー式ポンプなどのポンプにて前記混合溶液を送液し、これを繰り返し循環させながら冷却する方法を使用することもできる。
前記混合溶液を流動させる程度は特に限定されず、緩やかな攪拌により混合溶液が僅かに流動する程度からホモジナイザーなどでの強攪拌による激しい流動状態まで任意に選択することが出来るが、過小な流動状態では析出する擬ポリロタキサン粒子が大きくなるため分散安定性が低下し、沈降分離する場合があり、過大な流動状態では析出する擬ポリロタキサン粒子が微細となりすぎ、得られる擬ポリロタキサン水性分散体の流動性が低下する場合があるため、後述する擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が特定の範囲となるように前記混合溶液を冷却する際の流動状態を調整することが好ましい。
例えば、攪拌翼による攪拌にて前記混合溶液を流動させる場合、攪拌翼の先端周速は0.1~50m/秒であることが好ましく、1~30m/秒であることがより好ましい。
前記擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は、冷却速度、冷却後の到達温度、冷却する際の混合溶液の流動状態などにより変化するが、本発明者らは、前記擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が特定の範囲にある場合、流動性がよく、経時的に流動性が低下せず、粒子の沈降分離が生じない、という良好な流動性と優れた分散安定性とを共に備えた擬ポリロタキサン水性分散体が得られることを見出した。
前記擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は、1~200μmであることが好ましく、1~100μmであることがより好ましく、1~50μmであることがさらに好ましい。擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が1μm未満であると、分散体の流動性が低下するか流動性を示さない場合がある。擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が200μmを超えると、擬ポリロタキサン水性分散体中の粒子が沈降分離することがある。
なお、本明細書において前記擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は、レーザー回折式粒度分布測定装置により分析することが出来る。
前記擬ポリロタキサン水性分散体に占める擬ポリロタキサンの濃度(以下、固形分濃度ともいう)は、5~25重量%であることが好ましく、5~20重量%であることがより好ましく、10~20重量%であることがさらに好ましい。前記擬ポリロタキサン水性分散体の固形分濃度が5重量%未満であると、経済的でない。前記擬ポリロタキサン水性分散体の固形分濃度が25重量%を超えると、擬ポリロタキサン水性分散体の流動性が低下する場合がある。
前記擬ポリロタキサン水性分散体の粘度は、1万mPa・s以下であることが好ましく、7000mPa・s以下であることがより好ましく、5000mPa・s以下であることがさらに好ましい。
前記擬ポリロタキサン水性分散体の粘度が1万mPa・sを超える場合、前記擬ポリロタキサン水性分散体の流動性が悪く、工業的規模での固液分離、均一な攪拌混合、設備間での移送、擬ポリロタキサン水性分散体の噴霧乾燥などが困難となる。
なお、本明細書において擬ポリロタキサン水性分散体の粘度は、ブルックフィールド粘度計を用い、10℃、6rpmの条件により分析することができる。
本発明によれば、流動性に優れる擬ポリロタキサン水性分散体を製造することができる。その結果、得られる擬ポリロタキサン水性分散体は、遠心分離、濾過などにより固液分離したり、噴霧乾燥または薄膜状にして乾燥したり、設備間で移送したりすることが容易なものとなる。
また、本発明の擬ポリロタキサン水性分散体の製造方法により得られる擬ポリロタキサン水性分散体は、擬ポリロタキサン粒子の分散安定性に優れるため、擬ポリロタキサンの両末端に封鎖基を導入する際に反応を均一に進行させることができる。
以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されない。以下、PEGを酸化して両末端にカルボキシル基を有するPEGの製造方法について、国際公開第05/052026号パンフレットに記載された方法を参考にして行った。
(製造例1)
500mL容のフラスコ内で、PEG(重量平均分子量35000)16g、TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)0.16g、臭化ナトリウム1.6gを水160mLに溶解させた。次いで、次亜塩素酸ナトリウム水溶液(有効塩素濃度5%)8mLを添加し、室温で30分間撹拌した。余った次亜塩素酸ナトリウムを分解させるために、エタノールを8mL添加して反応を終了させた。
分液ロートを用い、80mLの塩化メチレンを用いた抽出を3回繰り返して有機層を分取した後、エバポレーターで塩化メチレンを留去し、400mLの温エタノールに溶解させてから冷凍庫(-4℃)中で一晩静置し、両末端にカルボキシル基を有するPEGのみを析出させ、回収し、減圧乾燥することにより両末端にカルボキシル基を有するPEG16gを得た。
(製造例2)
500mL容のフラスコ内で、高分子量PEG(重量平均分子量10万)16g、TEMPO(2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)0.16g、臭化ナトリウム1.6gを水160mLに溶解させた。次いで、次亜塩素酸ナトリウム水溶液(有効塩素濃度5%)8mLを添加し、室温で30分間撹拌した。余った次亜塩素酸ナトリウムを分解させるために、エタノールを8mL添加して反応を終了させた。
分液ロートを用い、80mLの塩化メチレンを用いた抽出を3回繰り返して有機層を分取した後、エバポレーターで塩化メチレンを留去し、400mLの温エタノールに溶解させてから冷凍庫(-4℃)中で一晩静置し、両末端にカルボキシル基を有するPEGのみを析出させ、回収し、減圧乾燥することにより両末端にカルボキシル基を有するPEG16gを得た。
(実施例1)
攪拌機付きの1L容のフラスコ内に、水520mLを加え、製造例1で調製した両末端にカルボキシル基を有するPEG16gおよびα-シクロデキストリン64gを加え、攪拌翼を用いて、250rpmの回転速度で攪拌しながら、75℃まで加熱し、溶解させた。
攪拌翼の回転速度を650rpm(先端周速2.5m/秒)とし、同回転速度で攪拌しながら、0.4℃/分の冷却速度にて5℃まで冷却し、さらに同温度にて10時間攪拌し続けることにより、流動性のよい乳液状の擬ポリロタキサン水性分散体(固形分濃度13重量%)を得た。ブルックフィールド粘度計BL型(スピンドルNo.4)を用い、10℃、6rpmの条件で得られた擬ポリロタキサン水性分散体の粘度を測定した結果、220mPa・sであった。
また、レーザー回折式粒径測定装置を用いて測定した結果、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は9μmであった。一昼夜静置後、擬ポリロタキサン水性分散体の流動性は維持されており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、240mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例2)
攪拌機付きの1L容のフラスコ内に、水520mLを加え、製造例1で調製した両末端にカルボキシル基を有するPEG16gおよびα-シクロデキストリン64gを加え、攪拌翼を用いて、250rpmの回転速度で攪拌しながら、75℃まで加熱し、溶解させた。
攪拌翼の回転速度を650rpm(先端周速2.5m/秒)とし、同回転速度で攪拌しながら、0.4℃/分の冷却速度にて20℃まで冷却し、同回転速度で20℃を30分間保持した後、0.4℃/分の冷却速度にて5℃まで再度冷却し、さらに同温度にて10時間攪拌し続けることにより、擬ポリロタキサン水性分散体(固形分濃度13重量%)を得た。
調製した擬ポリロタキサン水性分散体は、流動性のある乳液状であり、実施例1と同様の方法にて、粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は240mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は7μmであった。一昼夜静置後、擬ポリロタキサン水性分散体の流動性は維持されており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、260mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例3)
両末端にカルボキシル基を有するPEGおよびα-シクロデキストリンを溶解させる水の量を400ml(擬ポリロタキサン水性分散体の固形分濃度17重量%)とした以外は実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、流動性のある乳液状であり、実施例1と同様の方法にて、粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は500mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は16μmであった。一昼夜静置後、擬ポリロタキサン水性分散体の流動性は維持されており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、600mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例4)
冷却する際の攪拌翼の攪拌速度を550rpm(先端周速2.1m/秒)、冷却速度を0.1℃/分とした以外は、実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、流動性のよい乳液状であり、実施例1と同様の方法にて粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は190mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は19μmであった。一昼夜静置後、擬ポリロタキサン水性分散体の流動性は維持されており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、210mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例5)
冷却する際の攪拌翼の攪拌速度を550rpm(先端周速2.1m/秒)、冷却速度を10℃/分とした以外は、実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、流動性のよい乳液状であり、実施例1と同様の方法にて粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は180mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は34μmであった。一昼夜静置後、擬ポリロタキサン水性分散体の流動性は維持されており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、200mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例6)
冷却する際の攪拌翼の攪拌速度を100rpm(先端周速0.4m/秒)、冷却速度を0.1℃/分とした以外は、実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、流動性のよい乳液状であり、実施例1と同様の方法にて粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は160mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は47μmであった。一昼夜静置後、擬ポリロタキサン水性分散体の流動性は維持されており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、190mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例7)
冷却する際の攪拌翼の攪拌速度を7500rpm(先端周速29m/秒)、冷却速度を22℃/分とした以外は、実施例2と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、流動性のある乳液状であり実施例1と同様の方法にて粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は940mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は2μmであった。一昼夜静置後、擬ポリロタキサン水性分散体は流動性を示しており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、1000mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例8)
70℃まで加熱し、溶解させた両末端にカルボキシル基を有するPEGとα-シクロデキストリンの水溶液を、外層に5~70℃の冷却媒体を流した二重管式冷却管にローラー式ポンプにて送液し、これを繰り返し循環させながら5℃まで冷却し(冷却速度0.4℃/分)、さらに同温度にて10時間循環し続けたこと以外は、実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、流動性のある乳液状であり、実施例1と同様の方法にて、粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は200mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は12μmであった。一昼夜静置後、擬ポリロタキサン水性分散体の流動性は維持されており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、220mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(実施例9)
製造例1で調製した両末端にカルボキシル基を有するPEGに代えて、製造例2で調製した両末端にカルボキシル基を有するPEGを使用した以外は、実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、流動性のある乳液状の分散体であり、実施例1と同様の方法にて粘度、粒子径を測定した結果、擬ポリロタキサン水性分散体の粘度は2800mPa・s、擬ポリロタキサン水性分散体中の粒子の体積平均粒子径は13μmであった。一昼夜静置後、擬ポリロタキサン水性分散体は流動性を示しており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、3000mPa・sであった。また、一昼夜静置後においても、粒子の沈降は見られず、分散安定性は良好であった。
(比較例1)
攪拌することなく静置下で冷却した(冷却速度0.4℃/分)以外は、実施例1と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、僅かな流動性しかなく、ペースト状であり、実施例1と同様の方法にて粘度を測定した結果、擬ポリロタキサン水性分散体の粘度は9万mPa・sであった。また、レーザー回折式粒径測定装置により粒子径を測定したが正確な粒子径を測定することが出来なかった。
一昼夜静置後、流動性はほとんど無くなっており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、10万mPa・s以上(測定上限以上)であった。
(比較例2)
攪拌することなく静置下で冷却した(冷却速度0.4℃/分)以外は、実施例9と同様にして擬ポリロタキサン水性分散体を得た。調製した擬ポリロタキサン水性分散体は、全く流動性を示さず、実施例1と同様の方法にて粘度を測定した結果、擬ポリロタキサン水性分散体の粘度は10万mPa・sであった。また、レーザー回折式粒径測定装置により粒子径を測定したが正確な粒子径を測定することが出来なかった。
一昼夜静置後、やや弾性のあるゲル状となっており、同様の方法にて擬ポリロタキサン水性分散体の粘度を測定したところ、10万mPa・s以上(測定上限以上)であった。
本発明によれば、流動性がよく、擬ポリロタキサン粒子の分散安定性に優れる擬ポリロタキサン水性分散体を工業的に有利な方法で製造することができる擬ポリロタキサン水性分散体の製造方法を提供することができる。

Claims (6)

  1. シクロデキストリン分子の開口部にポリエチレングリコールが串刺し状に包接された擬ポリロタキサン粒子を含有する擬ポリロタキサン水性分散体を製造する方法であって、
    ポリエチレングリコールとシクロデキストリンとを、水性媒体中に溶解して混合溶液を調製する混合工程と、
    前記混合溶液を流動させながら連続的または断続的に冷却して擬ポリロタキサン粒子を析出させる冷却工程とを有する
    ことを特徴とする擬ポリロタキサン水性分散体の製造方法。
  2. ポリエチレングリコールの重量平均分子量が、1000~50万である請求項1記載の擬ポリロタキサン水性分散体の製造方法。
  3. ポリエチレングリコールとシクロデキストリンとの重量比が1:2~1:5である請求項1または2記載の擬ポリロタキサン水性分散体の製造方法。
  4. 冷却工程における冷却速度が0.01~30℃/分である請求項1、2または3記載の擬ポリロタキサン水性分散体の製造方法。
  5. 擬ポリロタキサン水性分散体の固形分濃度が5~25重量%である請求項1、2、3または4記載の擬ポリロタキサン水性分散体の製造方法。
  6. 擬ポリロタキサン水性分散体中の粒子の体積平均粒子径が1~200μmである請求項1、2、3、4または5記載の擬ポリロタキサン水性分散体の製造方法。
PCT/JP2011/078021 2010-12-16 2011-12-05 擬ポリロタキサン水性分散体の製造方法 WO2012081431A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/994,551 US9475908B2 (en) 2010-12-16 2011-12-05 Method for producing pseudopolyrotaxane aqueous dispersion
KR1020137018516A KR101840504B1 (ko) 2010-12-16 2011-12-05 유사 폴리로탁산 수성 분산체의 제조 방법
JP2012548736A JP6013191B2 (ja) 2010-12-16 2011-12-05 擬ポリロタキサン水性分散体の製造方法
CA2821905A CA2821905C (en) 2010-12-16 2011-12-05 Method for producing pseudopolyrotaxane aqueous dispersion
ES11848859.2T ES2559226T3 (es) 2010-12-16 2011-12-05 Método para producir una dispersión acuosa de pseudopolirrotaxano
CN201180056264.3A CN103221430B (zh) 2010-12-16 2011-12-05 准聚轮烷水性分散体的制造方法
EP11848859.2A EP2653479B1 (en) 2010-12-16 2011-12-05 Method for producing pseudopolyrotaxane aqueous dispersion

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010280264 2010-12-16
JP2010-280264 2010-12-16
JP2010-280265 2010-12-16
JP2010280265 2010-12-16
JP2011-105253 2011-05-10
JP2011105253 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012081431A1 true WO2012081431A1 (ja) 2012-06-21

Family

ID=46244539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078021 WO2012081431A1 (ja) 2010-12-16 2011-12-05 擬ポリロタキサン水性分散体の製造方法

Country Status (8)

Country Link
US (1) US9475908B2 (ja)
EP (1) EP2653479B1 (ja)
JP (1) JP6013191B2 (ja)
KR (1) KR101840504B1 (ja)
CN (1) CN103221430B (ja)
CA (1) CA2821905C (ja)
ES (1) ES2559226T3 (ja)
WO (1) WO2012081431A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179257A (ja) * 2016-03-31 2017-10-05 積水化学工業株式会社 応力緩和剤、接続構造体組立用接着剤、接続構造体組立用接合材、半導体装置及び電子機器
US10308772B2 (en) 2015-01-09 2019-06-04 Sumitomo Seika Chemicals Co., Ltd. Method for producing pseudopolyrotaxane aqueous dispersion

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081430A1 (ja) 2010-12-16 2012-06-21 住友精化株式会社 擬ポリロタキサンの製造方法
CA2821887C (en) * 2010-12-16 2018-07-10 Sumitomo Seika Chemicals Co., Ltd. Method for producing pseudopolyrotaxane
KR101817381B1 (ko) 2011-03-14 2018-01-11 스미또모 세이까 가부시키가이샤 친수성 수식 폴리로탁산의 제조 방법
US9238696B2 (en) 2011-03-14 2016-01-19 Sumitomo Seika Chemicals Co., Ltd. Production method for powdered hydrophilic modified polyrotaxane
JP2021130814A (ja) * 2020-02-20 2021-09-09 国立大学法人 東京大学 ポリマー−環状分子構造体及びその製造方法
CA3198795A1 (en) 2020-11-18 2022-05-27 Jeffrey Becker Complexing agent salt formulations of pharmaceutical compounds
CN113999609B (zh) * 2021-11-16 2022-08-19 四川大学 一种聚氨酯/环氧滑动环阻尼涂料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080469A1 (ja) * 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサンを有する化合物及びその製造方法
JP2005272664A (ja) * 2004-03-25 2005-10-06 Hitachi Ltd 可溶性シクロデキストリンポリマー及びその製造方法
JP2006316089A (ja) * 2005-05-10 2006-11-24 Jsr Corp 樹脂組成物
JP2008310286A (ja) * 2007-05-14 2008-12-25 Fujifilm Corp ポリロタキサンを含有する光学フィルム、反射防止フィルム、反射防止フィルムの製造方法、偏光板、それを用いた画像表示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762398B2 (ja) * 1990-02-15 1998-06-04 オルガノ株式会社 α―サイクロデキストリンの包接化合物及びα―サイクロデキストリンの分離精製法
JP3699141B2 (ja) 1994-09-24 2005-09-28 伸彦 由井 超分子構造の生体内分解性医薬高分子集合体及びその調製方法
DE19545257A1 (de) 1995-11-24 1997-06-19 Schering Ag Verfahren zur Herstellung von morphologisch einheitlichen Mikrokapseln sowie nach diesem Verfahren hergestellte Mikrokapseln
JP2972861B2 (ja) 1997-05-08 1999-11-08 北陸先端科学技術大学院大学長 超分子構造の血液適合性材料
DE19758118A1 (de) 1997-12-17 1999-07-01 Schering Ag Polyrotaxane
US6100329A (en) 1998-03-12 2000-08-08 Virginia Tech Intellectual Properties, Inc. Reversible, mechanically interlocked polymeric networks which self-assemble
JP2002508401A (ja) 1998-12-09 2002-03-19 シエーリング アクチエンゲゼルシヤフト ポリロタキサン
AU2001252644A1 (en) 2000-04-28 2001-11-12 Center For Advanced Science And Technology Incubation, Ltd. Compound comprising crosslinked polyrotaxane
WO2004039425A1 (ja) 2002-10-29 2004-05-13 Toray Industries, Inc. 血管塞栓材料
JP3854592B2 (ja) * 2003-09-02 2006-12-06 日本無線株式会社 蓄電器の充電装置
US7220755B2 (en) 2003-11-12 2007-05-22 Biosensors International Group, Ltd. 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
JP4461252B2 (ja) * 2003-11-28 2010-05-12 国立大学法人 東京大学 ポリロタキサン及びその製造方法
US7309500B2 (en) 2003-12-04 2007-12-18 The Board Of Trustees Of The University Of Illinois Microparticles
WO2005080470A1 (ja) 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサン及びその製造方法
CA2562179C (en) 2004-03-31 2013-07-23 The University Of Tokyo Polymeric material having polyrotaxane and process for producing the same
JP2007063412A (ja) 2005-08-31 2007-03-15 Nissan Motor Co Ltd 親水性修飾ポリロタキサン及び架橋ポリロタキサン
JP2007092024A (ja) 2005-09-02 2007-04-12 Univ Of Tokyo ポリロタキサンのポリマーブレンド及びその使用
DK1942163T3 (da) 2005-10-06 2012-01-09 Nissan Motor Materiale til hærdeligt, opløsningsmiddelbaseret topcoatingmateriale, og coatingmateriale og coatingfilm, som omfatter førnævnte eller er dannet deraf
DE102007055776A1 (de) 2007-12-12 2009-06-18 Wacker Chemie Ag Cyclodextrin-Silankomplexe
CA2821887C (en) 2010-12-16 2018-07-10 Sumitomo Seika Chemicals Co., Ltd. Method for producing pseudopolyrotaxane
WO2012081430A1 (ja) 2010-12-16 2012-06-21 住友精化株式会社 擬ポリロタキサンの製造方法
KR101840505B1 (ko) 2010-12-16 2018-03-20 스미또모 세이까 가부시키가이샤 정제 폴리로탁산의 제조 방법
US9238696B2 (en) 2011-03-14 2016-01-19 Sumitomo Seika Chemicals Co., Ltd. Production method for powdered hydrophilic modified polyrotaxane
KR101817381B1 (ko) 2011-03-14 2018-01-11 스미또모 세이까 가부시키가이샤 친수성 수식 폴리로탁산의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080469A1 (ja) * 2004-01-08 2005-09-01 The University Of Tokyo 架橋ポリロタキサンを有する化合物及びその製造方法
JP2005272664A (ja) * 2004-03-25 2005-10-06 Hitachi Ltd 可溶性シクロデキストリンポリマー及びその製造方法
JP2006316089A (ja) * 2005-05-10 2006-11-24 Jsr Corp 樹脂組成物
JP2008310286A (ja) * 2007-05-14 2008-12-25 Fujifilm Corp ポリロタキサンを含有する光学フィルム、反射防止フィルム、反射防止フィルムの製造方法、偏光板、それを用いた画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653479A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308772B2 (en) 2015-01-09 2019-06-04 Sumitomo Seika Chemicals Co., Ltd. Method for producing pseudopolyrotaxane aqueous dispersion
JP2017179257A (ja) * 2016-03-31 2017-10-05 積水化学工業株式会社 応力緩和剤、接続構造体組立用接着剤、接続構造体組立用接合材、半導体装置及び電子機器

Also Published As

Publication number Publication date
CN103221430B (zh) 2015-12-16
JPWO2012081431A1 (ja) 2014-05-22
ES2559226T3 (es) 2016-02-11
EP2653479B1 (en) 2015-12-02
KR101840504B1 (ko) 2018-03-20
CN103221430A (zh) 2013-07-24
KR20140034742A (ko) 2014-03-20
CA2821905C (en) 2018-07-10
EP2653479A4 (en) 2014-05-07
JP6013191B2 (ja) 2016-10-25
US20130296547A1 (en) 2013-11-07
EP2653479A1 (en) 2013-10-23
US9475908B2 (en) 2016-10-25
CA2821905A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP6013191B2 (ja) 擬ポリロタキサン水性分散体の製造方法
JP6111072B2 (ja) 精製ポリロタキサンの製造方法
CN103415537B (zh) 亲水性改性聚轮烷的制造方法
JP6013190B2 (ja) 擬ポリロタキサンの製造方法
JP6013189B2 (ja) 擬ポリロタキサンの製造方法
JP6013320B2 (ja) 親水性修飾ポリロタキサン組成物
WO2012124219A1 (ja) ポリロタキサン組成物
Han et al. Miktoarms hyperbranched polymer brushes: One-step fast synthesis by parallel click chemistry and hierarchical self-assembly
Wei et al. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin–(P (MEO 2 MA-co-PEGMA)) 21 copolymers
JP5167460B2 (ja) ポリロタキサン溶液及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548736

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2821905

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011848859

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137018516

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13994551

Country of ref document: US