WO2012073896A1 - 熱間鍛造用圧延棒鋼または線材 - Google Patents

熱間鍛造用圧延棒鋼または線材 Download PDF

Info

Publication number
WO2012073896A1
WO2012073896A1 PCT/JP2011/077407 JP2011077407W WO2012073896A1 WO 2012073896 A1 WO2012073896 A1 WO 2012073896A1 JP 2011077407 W JP2011077407 W JP 2011077407W WO 2012073896 A1 WO2012073896 A1 WO 2012073896A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
fatigue strength
content
steel bar
rolled steel
Prior art date
Application number
PCT/JP2011/077407
Other languages
English (en)
French (fr)
Inventor
大藤 善弘
秀樹 今高
雅之 堀本
聡 志賀
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to KR1020137013666A priority Critical patent/KR20130108403A/ko
Priority to US13/989,847 priority patent/US9200354B2/en
Priority to JP2012546863A priority patent/JP5333682B2/ja
Priority to CN201180057448.1A priority patent/CN103228810B/zh
Publication of WO2012073896A1 publication Critical patent/WO2012073896A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention is a rolled steel bar or wire rod for hot forging, which is a material for parts such as gears and pulleys. More specifically, a rolled steel bar for hot forging that is roughly formed by hot forging with excellent machinability before carburizing or carbonitriding, and excellent bending fatigue strength and surface fatigue strength of parts after carburizing or carbonitriding. Or about a wire.
  • steel parts such as gears and pulleys of automobiles and industrial machines are hot forged or cooled using hot rolled steel bars or wires of JIS standard SCr420, SCM420, SNCM420, etc. After rough forming by hot forging, after normalizing as necessary, cutting is performed, then carburizing quenching or carbonitriding quenching is performed, and then tempering at 200 ° C. or less is further performed. According to the above, it is manufactured by subjecting to shot peening treatment, and the properties required for each part such as contact fatigue strength, bending fatigue strength and wear resistance have been ensured.
  • contact fatigue includes “face fatigue”, “line fatigue” and “point fatigue”, but in practice, there is almost no “line” contact or “point” contact. Handles “surface fatigue strength” as strength.
  • pitching is one of the forms of fracture of surface fatigue, and the form of damage of surface fatigue on the gear teeth, pulleys, etc. is mainly pitching. For this reason, improving the pitching strength corresponds to the improvement of the above-mentioned surface fatigue strength. Therefore, “pitting” as “surface fatigue” will be described below.
  • JP-A-60-21359, JP-A-7-242994, and JP-A-7-126803 propose improvement of gear steel.
  • Japanese Patent Application Laid-Open No. 60-21359 discloses a gear that provides a high-strength, tough and highly reliable gear that defines Si: 0.1% or less, P: 0.01% or less, and the like. Steel for use is disclosed.
  • Japanese Patent Laid-Open No. 7-242994 discloses Cr: 1.50 to 5.0%, and further 7.5%> 2.2 ⁇ Si (%) + 2.5 ⁇ Mn (%) + Cr as required.
  • a gear steel with excellent tooth surface strength such as (%) + 5.7 ⁇ Mo (%) or Si: 0.40 to 1.0%
  • a gear a gear
  • a method for manufacturing the gear in JP-A-7-126803, Si: 0.35 to 3.0% or less, V: 0.05 to 0.5%, etc. are prescribed.
  • a steel for carburized gears suitable for obtaining a gear excellent in surface fatigue strength is disclosed.
  • the object of the present invention is to achieve both a high level of machinability and bending / surface fatigue strength of parts after carburizing and quenching or carbonitriding and quenching. It is to provide a wire rod.
  • the rolled steel bar or wire for hot forging according to the present invention is, in mass%, C: 0.1 to 0.25%, Si: 0.01 to 0.10%, Mn: 0.4 to 1.0%, S: 0.003 to 0.05%, Cr: 1.60 to 2.00%, Mo: 0.10% or less (including 0%), Al: 0.025 to 0.05%, N: 0 0.010 to 0.025%, and the Cr and Mo contents satisfy the following condition: 1.82 ⁇ fn1 ⁇ 2.10 with the value of fn1 represented by the following formula (1): Fe, impurities, and P, Ti, and O in the impurities, respectively, P: 0.025% or less, Ti: 0.003% or less, O (oxygen): 0.002% or less , Ferrite pearlite structure, ferrite pearlite bainite structure, or ferrite bainite structure Rannahli, in cross-section, of the random 15 when field observation measuring the area per field as 62500Myuemu 2, maximum / minimum values of the
  • the rolled steel bar or wire rod for hot forging according to the present invention can achieve both machinability and bending / surface fatigue strength of parts after carburizing or carbonitriding at a high level.
  • the rolled steel bar or wire rod for hot forging according to the present invention may contain Nb: 0.08% or less in mass% instead of part of Fe.
  • the rolled steel bar or wire for hot forging according to the present invention may contain at least one of Cu: 0.4% or less and Ni: 0.8% or less in mass%, instead of a part of Fe. Good.
  • FIG. 1 is a side view showing the dimensional shape of a roller pitching small roller test piece produced in the example.
  • FIG. 2 is a side view showing the dimensional shape of the notched Ono type rotating bending fatigue test piece produced in the example.
  • FIG. 3 is a diagram illustrating carburizing and quenching conditions in the examples.
  • FIG. 4 is a front view showing the size and shape of a large roller used in the roller pitching test in Examples.
  • Chemical composition C 0.1 to 0.25% C is an essential element for securing the core strength of the carburized or carbonitrided and quenched parts. If its content is less than 0.1%, it is insufficient. On the other hand, when the content of C exceeds 0.25%, the amount of deformation of the parts increases when carburizing and quenching or carbonitriding and quenching. Therefore, the C content is set to 0.1 to 0.25%.
  • the C content is preferably 0.18% or more, and more preferably 0.23% or less.
  • Si 0.01 to 0.10%
  • Si is an element having an effect of improving hardenability.
  • Si causes an increase in the grain boundary oxide layer during carburizing or carbonitriding.
  • the content exceeds 0.10%, the grain boundary oxide layer is greatly increased, the bending fatigue strength is lowered, and the target value in the present invention is not satisfied.
  • the Si content is set to 0.01 to 0.10%.
  • the Si content is preferably 0.06 to 0.10%.
  • Mn 0.4 to 1.0%
  • Mn has a large effect of improving hardenability, and is an essential element for securing the core strength of the parts subjected to carburizing and quenching or carbonitriding. If its content is less than 0.4%, it is insufficient. On the other hand, when the content of Mn exceeds 1.0%, not only the effect is saturated, but also the machinability after hot forging becomes remarkable. Therefore, the Mn content is set to 0.4 to 1.0%.
  • the Mn content is preferably 0.5% or more, and more preferably 0.6% or more.
  • the Mn content is preferably 0.9% or less.
  • S 0.003 to 0.05% S combines with Mn to form MnS and is an element effective for improving the machinability. If the content is less than 0.003%, it is difficult to obtain the above effect. On the other hand, when the content of S increases, coarse MnS tends to be generated, and the fatigue strength tends to be reduced. When the content exceeds 0.05%, the fatigue strength decreases significantly. Therefore, the S content is set to 0.003 to 0.05%.
  • the S content is preferably 0.01% or more, and preferably 0.02% or less.
  • Cr 1.60 to 2.00% Cr has a large effect of enhancing hardenability and temper softening resistance, and is an element effective in improving bending fatigue strength and surface fatigue strength. If the content is less than 1.60%, even if Mo is contained in 0.10%, the target bending fatigue strength and surface fatigue strength cannot be obtained. On the other hand, if the Cr content exceeds 2.00%, a bainite structure is likely to be generated after hot forging or after normalization, and machinability is reduced. Therefore, the Cr content is set to 1.60 to 2.00%. The Cr content is preferably 1.80% or more, and preferably 1.90% or less.
  • Mo 0.10% or less (including 0%)
  • Mo does not need to be added, it has a great effect of enhancing hardenability and temper softening resistance, and is an element effective for improving bending fatigue strength and surface fatigue strength.
  • the target bending fatigue strength and surface fatigue strength can be obtained by containing Mo such that “Cr% + 2 ⁇ Mo%” is 1.82 or more.
  • the Mo content exceeds 0.10%, the formation of a bainite structure is promoted after hot forging or after normalizing, and the machinability is lowered. Therefore, the Mo content is set to 0.10% or less (including 0%). In order to reliably obtain the above-described effects, the preferable Mo content is 0.02% or more.
  • Al 0.025 to 0.05%
  • Al is an element that has a deoxidizing action and is easily combined with N to form AlN and is effective in preventing austenite grain coarsening during carburizing heating.
  • the Al content is less than 0.025%, the austenite grains cannot be stably coarsened, and if they are coarsened, the bending fatigue strength decreases.
  • the Al content exceeds 0.05%, it becomes easy to form a coarse oxide and the bending fatigue strength decreases. Therefore, the Al content is set to 0.025 to 0.05%.
  • the Al content is preferably 0.030% or more, and preferably 0.040% or less.
  • N 0.010 to 0.025%
  • N is an element that is easily bonded to Al and Nb to form AlN and NbN.
  • AlN and NbN are effective for preventing coarsening of austenite grains during carburizing heating. If the N content is less than 0.010%, the austenite grains cannot be prevented from coarsening. On the other hand, if the N content exceeds 0.025%, it is difficult to stably produce in mass production in the steel making process. Therefore, the N content is set to 0.010 to 0.025%. The N content is preferably 0.018% or less.
  • the balance of the chemical composition of the rolled steel bar or wire rod for hot forging according to the present invention consists of Fe and impurities.
  • the impurities referred to here are ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process.
  • the contents of P, Ti and O (oxygen) as impurity elements are limited as follows.
  • P 0.025% or less
  • P is an element that easily segregates at the grain boundaries and embrittles the grain boundaries. If the P content exceeds 0.025%, the fatigue strength decreases. Therefore, the content of P is set to 0.025% or less.
  • the P content is preferably 0.020% or less.
  • Ti 0.003% or less Ti easily bonds to N to form hard and coarse TiN, and this TiN causes a decrease in fatigue strength. When the Ti content exceeds 0.003%, the fatigue strength is significantly reduced.
  • the content of Ti as an impurity element is desirably as small as possible, but considering the cost in the steelmaking process, it is preferably 0.002% or less.
  • O oxygen
  • 0.002% or less O tends to bond with Al to form hard oxide inclusions, and this oxide inclusions cause a decrease in bending fatigue strength.
  • the fatigue strength is significantly reduced.
  • fn1 Cr + 2 ⁇ Mo: 1.82 to 2.10
  • Nb 0.08% or less Nb easily forms NbC, NbN, Nb (C, N) by combining with C, N, and is effective in supplementing the prevention of austenite grain coarsening during carburizing heating with AlN. Element.
  • the Nb content exceeds 0.08%, the effect of preventing austenite grain coarsening is rather lowered. Therefore, the Nb content is set to 0.08% or less. In order to reliably obtain this effect, it is preferable to contain 0.01% or more of Nb. A preferable Nb content is 0.05% or less.
  • the steel bar or wire according to the present embodiment may further contain one or more of Cu and Ni instead of part of Fe. Both Cu and Ni increase hardenability and increase fatigue strength.
  • Cu 0.4% or less Cu has an effect of improving hardenability, and is an element effective for increasing fatigue strength. Therefore, Cu may be contained as necessary. However, when the Cu content exceeds 0.4%, the hot ductility is lowered, and the hot workability is significantly lowered. Therefore, the Cu content when contained is set to 0.4% or less. When Cu is contained, the content of Cu is preferably 0.3% or less. The minimum of preferable Cu content is 0.1% or more.
  • Ni 0.8% or less Ni has an effect of improving the hardenability and is an element effective for increasing the fatigue strength. Therefore, Ni may be contained as necessary. However, when the Ni content exceeds 0.8%, the effect of increasing the fatigue strength by improving the hardenability is saturated. Further, the machinability after hot forging is significantly reduced and the alloy cost is also increased. Therefore, the Ni content when contained is set to 0.8% or less. When Ni is contained, the content of Ni is preferably 0.6% or less. The minimum of preferable Ni content is 0.1% or more.
  • the reason why the ferrite grain size is selected is that, compared with pearlite or bainite, the grain boundary of ferrite can be easily observed by etching, and if the ferrite grain size is used, the uniformity of the structure can be easily evaluated.
  • the reason why the maximum value / minimum value is used as an index is that fracture occurs starting from the portion with the lowest fatigue strength, and is considered more suitable than the standard deviation as an index.
  • the structure was composed of a ferrite / pearlite structure, a ferrite / pearlite / bainite structure, or a ferrite / bainite structure, and the transverse cross section was measured at 15 views randomly with an area per view of 62500 ⁇ m 2 .
  • the maximum value / minimum value of the average ferrite grain size in each field of view is 2.0 or less, the bending fatigue strength and the surface fatigue strength can be increased after carburizing and quenching.
  • “Ferrite / pearlite structure” here means a two-phase structure composed of ferrite and pearlite.
  • the “ferrite / pearlite / bainite structure” means a three-phase structure composed of ferrite, pearlite, and bainite.
  • the “ferrite bainite structure” means a two-phase structure composed of ferrite and bainite.
  • the structure is various mixed structures including the above ferrite structure and the maximum value / minimum value of the average ferrite particle diameter is 2.0 or less, the rolled steel bar or wire rod for hot forging (unrolled material) ), There is little variation in the crystal grain size in the cross section, and it becomes possible to increase the bending fatigue strength and the surface fatigue strength after carburizing and quenching.
  • the “phase” in the above structure is, for example, a test in which a section (cross section) perpendicular to the longitudinal direction of the rolled steel bar or wire for hot forging and including the center portion is cut out and then mirror-polished and corroded with nital.
  • a piece can be identified by observing 15 fields at random with a magnification of 400 times and a field size of 250 ⁇ m ⁇ 250 ⁇ m.
  • the maximum value / minimum value is calculated from the ferrite average particle diameter of each visual field obtained by performing image analysis by a usual method for each visual field.
  • the maximum value / minimum value is preferably 1.6 or less.
  • the manufacturing method for obtaining the hot forging rolled steel bar or wire of the present invention the case where steel having the chemical composition shown in the above (A) is used will be described below.
  • the manufacturing method of the hot forging rolled steel bar or wire rod of the present invention is not limited to this.
  • finishing temperature of hot rolling is set to 900 to 1000 ° C.
  • water cooling before finish rolling is not performed, and after finish rolling, cooling below air cooling (hereinafter simply referred to as “cooling”) is performed. Cool to a temperature below 600 ° C. at a rate.
  • the reduction rate of the cross section from the steel slab to the steel bar and the wire is set to 87.5% or more.
  • the heating temperature means the average value of the furnace temperature of the heating furnace
  • the heating time means the in-furnace time.
  • the finishing temperature of hot rolling refers to the surface temperature of the steel bar and wire immediately after finish rolling, and the cooling rate after finishing also refers to the surface cooling rate of the steel bar and wire.
  • the rolled steel bar or wire rod for hot forging according to the present invention can achieve both machinability and bending / surface fatigue strength of parts at a high level.
  • the microstructure did not include a martensite structure and consisted of any one of a ferrite / pearlite structure, a ferrite / pearlite / bainite structure, and a ferrite / bainite structure.
  • roller pitching test was performed under the conditions shown in Table 3 using a combination of the above-described small roller test piece and a large roller having the shape shown in FIG. 4 (units of dimensions in the drawing are mm).
  • the large roller pitching test roller is made by a general manufacturing process using steel satisfying the standard of JIS standard SCM420H. That is, it was produced by the steps of “normalizing, specimen processing, eutectoid carburizing with a gas carburizing furnace, low temperature tempering and polishing”.
  • the number of tests in the roller pitching test was six.
  • An SN diagram was created with the surface pressure on the vertical axis and the number of repetitions until the occurrence of pitching on the horizontal axis, and the highest surface pressure was found when no pitching occurred up to 2.0 ⁇ 10 7 repetitions. It was defined as surface fatigue strength.
  • the maximum area was 1 mm 2 or more was determined to be pitching.
  • the number of tests in the Ono rotary bending fatigue test was eight.
  • the rotation speed was set at 3000 rpm, and the others were tested by a normal method, and the fracture was not repeated until 1.0 ⁇ 10 4 times and 1.0 ⁇ 10 7 times.
  • the fatigue strength and the high cycle rotational bending fatigue strength were used.
  • the target value of the surface fatigue strength in the roller pitching test should be standardized with the surface fatigue strength of test number 1 carburized steel A satisfying the standard of JIS standard SCr420H as a general-purpose steel grade as 100, and exceed 20% or more. It was.
  • the target value of Ono-type rotary bending fatigue strength was normalized by setting the medium-cycle and high-cycle rotary bending fatigue strength of test number 1 carburized steel A as 100, and both exceeded 15% or more.
  • the 70 mm diameter rolled steel bar for hot forging produced by the above hot rolling was heated at 1200 ° C. for 30 minutes, hot forged at a finishing temperature of 950 ° C. or higher, and a round bar having a diameter of 50 mm was obtained. Obtained.
  • a test material having a diameter of 46 mm and a length of 400 mm was obtained from this round bar by machining. Using this test material, a cutting test was performed under the following conditions.
  • Cutting test (turning) Insert Base material Carbide grade P20 grade, coating None Conditions: peripheral speed 200m / min, feed 0.30mm / rev, cutting 1.5mm, water-soluble cutting oil used Measurement item: flank after 10 minutes of cutting time Main cutting edge wear amount
  • Table 4 summarizes the above test results.
  • the target value in the cutting test is normalized by setting the main cutting edge wear amount of the flank of test number 2 carburized steel B satisfying the standard of JIS standard SCM822H, which is a general high-strength material, to 100%. It was decided to fall below.
  • the steels D to T having the chemical components shown in Table 5 were adjusted in a 70-ton converter and then continuously cast to obtain a 400 mm ⁇ 300 mm square bloom and cooled to 600 ° C. or lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 部品の曲げ・面疲労強度と被削性とを高いレベルで両立することができる、熱間鍛造用圧延棒鋼または線材を提供する。本発明による熱間鍛造用圧延棒鋼または線材は、質量%で、C:0.1~0.25%、Si:0.01~0.10%、Mn:0.4~1.0%、S:0.003~0.05%、Cr:1.60~2.00%、Mo:0.10%以下(0%を含む)、Al:0.025~0.05%、N:0.010~0.025%、を含有し、(1)式で表されるfn1が1.82≦fn1≦2.10を満たし、不純物中のP、TiおよびOがそれぞれ、P:0.025%以下、Ti:0.003%以下、O(酸素):0.002%以下、であり、横断面において、1視野あたりの面積を62500μmとして、ランダムに15視野観察測定したときの、フェライト平均粒径の最大値/最小値が2.0以下である。 fn1=Cr+2×Mo ・・・(1)

Description

熱間鍛造用圧延棒鋼または線材
 本発明は歯車、プーリーなどの部品の素材となる熱間鍛造用圧延棒鋼または線材である。より詳しくは、浸炭または浸炭窒化前の被削性に優れ、かつ浸炭または浸炭窒化後の部品の曲げ疲労強度および面疲労強度に優れた、熱間鍛造で粗成形される熱間鍛造用圧延棒鋼または線材に関する。
 従来、自動車や産業機械の歯車、プーリーなどの鋼製の部品は、JIS規格のSCr420、SCM420やSNCM420などの機械構造用合金鋼の熱間圧延棒鋼または線材を素材として、熱間鍛造、あるいは冷間鍛造により粗成形された後、必要に応じて焼きならしを行った後、切削加工を施し、その後、浸炭焼入れ又は浸炭窒化焼入れを施し、その後、200℃以下の焼戻しを行い、更に、必要に応じてショットピーニング処理を施すことにより製造され、接触疲労強度、曲げ疲労強度や耐摩耗性など、それぞれの部品に要求される特性を確保することがなされていた。
 しかしながら、近年、自動車の燃費向上やエンジンの高出力化への対応のために部品の軽量・小型化が進み、これに伴って、部品にかかる負荷が増加する傾向にある。一方、コスト低減の観点から浸炭焼入れ後のショットピーニングなどの付加的な表面処理を省略したい、との要望も大きい。また部品の加工費用に占める切削加工コストの割合が大きいため、被削性の向上の要望も大きい。
 部品の疲労強度を向上させるためには、一般に合金元素を多く添加することが多いが、そうすると被削性が低下することが多い。従って、部品の曲げ・接触疲労強度と被削性とを高いレベルで両立することが望まれている。
 なお上記の「接触疲労」には「面疲労」、「線疲労」及び「点疲労」が含まれるが、実際には「線」接触や「点」接触になることはほとんどないため、接触疲労強度として「面疲労強度」を取り扱う。
 なお、「ピッチング」は、面疲労の破壊形態の一つであり、歯車の歯面、プーリー等における面疲労の損傷形態は主にピッチングである。このため、ピッチング強度を向上させることが、上記の面疲労強度の向上に対応することになるので、以下、「面疲労」としての「ピッチング」について説明し、「ピッチング強度」を「面疲労強度」という。
 特開昭60-21359号公報、特開平7-242994号公報、及び、特開平7-126803号公報は、歯車用鋼の改善について提案している。具体的には、特開昭60-21359号公報には、Si:0.1%以下、P:0.01%以下などを規定した、強度が高く、強靭で信頼性の高い歯車を与える歯車用鋼が開示されている。また、特開平7-242994号公報には、Cr:1.50~5.0%、さらに必要に応じて7.5%>2.2×Si(%)+2.5×Mn(%)+Cr(%)+5.7×Mo(%)、又はSi:0.40~1.0%などを規定した歯面強度の優れた歯車用鋼、歯車および歯車の製造方法が開示されている。また、特開平7-126803号公報には、Si:0.35~3.0%以下、V:0.05~0.5%などを規定した、曲げ疲労強度に加えて、耐摩耗性と面疲労強度に優れた歯車を得るのに好適な浸炭歯車用鋼が開示されている。
 しかしながら、特開昭60-21359号公報では、面疲労強度について配慮されていないため、面疲労強度が不十分である。特開平7-242994号公報では、曲げ疲労強度について配慮されていないため、曲げ疲労強度が不十分である。また、被削性についても不十分である。特開平7-126803号公報では、曲げ疲労強度について十分には配慮されていないため、曲げ疲労強度が不十分である。また、V添加は熱間鍛造後の硬さを大幅に増加させるため、被削性についても不十分である。
 特開昭60-21359号公報、特開平7-242994号公報、及び、特開平7-126803号公報にも示されるとおり、Si、およびCr含有量の調整などによって、浸炭、あるいは浸炭窒化後の曲げ、および面疲労強度の優れた鋼材については従来から知られていた。しかし、一般には相反する曲げ・面疲労強度と被削性を高いレベルで両立することはできていなかった。
 本発明の目的は被削性と浸炭焼入れまたは浸炭窒化焼入れ後の部品の曲げ・面疲労強度とを高いレベルで両立することができる、熱間鍛造で粗成形される熱間鍛造用圧延棒鋼または線材を提供することである。
課題を解決するための手段及び発明の効果
 本発明による熱間鍛造用圧延棒鋼または線材は、質量%で、C:0.1~0.25%、Si:0.01~0.10%、Mn:0.4~1.0%、S:0.003~0.05%、Cr:1.60~2.00%、Mo:0.10%以下(0%を含む)、Al:0.025~0.05%、N:0.010~0.025%、を含有するとともに、CrおよびMoの含有量が、下記の(1)式で表されるfn1の値で、1.82≦fn1≦2.10を満たし、残部がFeおよび不純物からなり、不純物中のP、TiおよびOがそれぞれ、P:0.025%以下、Ti:0.003%以下、O(酸素):0.002%以下、である組成を有し、フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、またはフェライト・ベイナイト組織からなり、横断面において、1視野あたりの面積を62500μmとしてランダムに15視野観察測定したときの、フェライト平均粒径の最大値/最小値が2.0以下である。
 fn1=Cr+2×Mo ・・・(1)
但し、(1)式中の元素記号は、その元素の質量%での含有量を表す。
 本発明による熱間鍛造用圧延棒鋼または線材は、被削性と浸炭焼入れまたは浸炭窒化焼入れ後の部品の曲げ・面疲労強度を高いレベルで両立することができる。
 本発明による熱間鍛造用圧延棒鋼または線材は、Feの一部に代えて、質量%で、Nb:0.08%以下を含有してもよい。
 本発明による熱間鍛造用圧延棒鋼または線材は、Feの一部に代えて、質量%で、Cu:0.4%以下及びNi:0.8%以下のうち1種以上を含有してもよい。
図1は、実施例で作製したローラーピッチング小ローラー試験片の寸法形状を示す側面図である。 図2は、実施例で作製した切欠き付き小野式回転曲げ疲労試験片の寸法形状を示す側面図である。 図3は、実施例における浸炭焼入れ条件を示す図である。 図4は、実施例におけるローラーピッチング試験で使用した、大ローラーの寸法形状を示す正面図である。
 上述のとおり、SiおよびCr含有量の調整などによって、浸炭または浸炭窒化後の曲げ・面疲労強度に優れた鋼材が得られることが知られていた。しかし、一般には相反する曲げ・面疲労強度と被削性とを高いレベルで両立することはできていなかった。そこで、曲げ・面疲労強度と被削性とを高いレベルで両立することのできる、熱間鍛造用圧延棒鋼または線材の開発を目標に調査・研究を重ね、その結果、下記の知見を得た。
(a)曲げ疲労強度を高めるためには、Si含有量を低減することが有効であるが、それだけでは不十分であり、Cr,Moの含有量を高める必要がある。
(b)面疲労強度を高めるためには、Cr,Moの含有量を高める必要がある。
(c)Mo含有量を高めると、熱間鍛造後、あるいはさらに焼きならしを行った後もフェライト組織、パーライト組織に加えてベイナイト組織の生成が促進されて、硬くなるため、被削性が低下する。またMoを添加しない場合でもCr含有量が多くなり過ぎると、同様にベイナイト組織の生成が促進されて、被削性が低下する。
(d)曲げ疲労強度、面疲労強度及び被削性のすべてを高い次元で両立できる成分範囲は狭く、Si、Cr及びMoの各含有量の限定に加えて、「Cr%+2×Mo%」の範囲を限定する必要がある。
(e)熱間鍛造用圧延棒鋼または線材中の結晶粒径が不均一な場合、曲げ疲労強度及び面疲労強度ともに低下する傾向があった。結晶粒径の不均一性は、フェライト粒径で評価できた。
 本発明の熱間鍛造用圧延棒鋼または線材は、上述の知見に基づいて完成されたものである。以下、本発明について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。
(A)化学組成
 C:0.1~0.25%
 Cは浸炭焼入れまたは浸炭窒化焼入れされた部品の芯部強度を確保するために必須の元素である。その含有量が0.1%未満では不十分である。一方、Cの含有量が0.25%を超えると、浸炭焼入れ、あるいは浸炭窒化焼入れしたときの部品の変形量の増加が顕著になる。したがって、Cの含有量を0.1~0.25%とした。Cの含有量は、0.18%以上とするのが好ましく、また、0.23%以下とするのが好ましい。
 Si:0.01~0.10%
 Siは、焼入れ性を高める作用を有する元素である。一方、Siは、浸炭処理或いは浸炭窒化処理の際、粒界酸化層の増加を引き起こす。特に、その含有量が0.10%を超えると、粒界酸化層が大幅に増加して曲げ疲労強度が低下して、本発明での目標値を満たさない。Siの含有量が0.01%未満では、焼入れ性を高める効果が不十分である。したがって、Siの含有量を0.01~0.10%とした。Siの含有量は0.06~0.10%とすることが好ましい。
 Mn:0.4~1.0%
 Mnは、焼入れ性を高める効果が大きく、浸炭焼入れまたは浸炭窒化焼入れされた部品の芯部強度を確保するために必須の元素である。その含有量が0.4%未満では不十分である。一方、Mnの含有量が1.0%を超えると、その効果が飽和するだけでなく、熱間鍛造後の被削性の低下が顕著になる。したがって、Mnの含有量を0.4~1.0%とした。Mnの含有量は、0.5%以上とするのが好ましく、0.6%以上とするのがより好ましい。Mnの含有量は、0.9%以下とするのが好ましい。
 S:0.003~0.05%
 SはMnと結合してMnSを形成し、切削加工性の向上に有効な元素である。その含有量が0.003%未満では、前記の効果が得難い。一方、Sの含有量が多くなると、粗大なMnSを生成しやすくなり、疲労強度を低下させる傾向がある。その含有量が0.05%を超えると、疲労強度低下が顕著になる。したがって、Sの含有量を0.003~0.05%とした。Sの含有量は、0.01%以上とするのが好ましく、また、0.02%以下とするのが好ましい。
 Cr:1.60~2.00%
 Crは、焼入れ性及び焼戻し軟化抵抗を高める効果が大きく、曲げ疲労強度及び面疲労強度の向上に有効な元素である。その含有量が1.60%未満では、Moを0.10%含有していても、目標とする曲げ疲労強度、および面疲労強度が得られない。一方、Crの含有量が2.00%を超えると、熱間鍛造後や焼きならし後にベイナイト組織が生成しやすくなり、被削性が低下する。したがって、Crの含有量を1.60~2.00%とした。Crの含有量は、1.80%以上とするのが好ましく、また、1.90%以下とするのが好ましい。
 Mo:0.10%以下(0%を含む)
 Moは、添加しなくてもよいが、焼入れ性、焼戻し軟化抵抗を高める効果が大きく、曲げ疲労強度、面疲労強度の向上に有効な元素である。Cr含有量が1.82%未満の場合、「Cr%+2×Mo%」が1.82以上になるようにMoを含有することによって、目標とする曲げ疲労強度および面疲労強度が得られる。一方、Moの含有量が0.10%を超えると、熱間鍛造後や焼きならし後にベイナイト組織の生成が促進され、被削性が低下する。したがって、Moの含有量を0.10%以下(0%を含む)とした。上述の効果を確実に得るために、好ましいMoの含有量は、0.02%以上である。
 Al:0.025~0.05%
 Alは、脱酸作用を有すると同時に、Nと結合してAlNを形成しやすく、浸炭加熱時のオーステナイト粒粗大化防止に有効な元素である。しかしAlの含有量が0.025%未満では、安定してオーステナイト粒の粗大化を防止できず、粗大化した場合は、曲げ疲労強度が低下する。一方、Alの含有量が0.05%を越えると、粗大な酸化物を形成しやすくなり、曲げ疲労強度が低下する。したがって、Alの含有量を0.025~0.05%とした。Alの含有量は、0.030%以上とするのが好ましく、また、0.040%以下とするのが好ましい。
 N:0.010~0.025%
 Nは、Al、Nbと結合してAlN、NbNを形成しやすい元素である。本発明では、AlN及びNbNは浸炭加熱時のオーステナイト粒の粗大化防止に有効である。Nの含有量が0.010%未満では、安定してオーステナイト粒の粗大化を防止できない。一方、N含有量が0.025%を越えると、製鋼工程において量産で安定して製造することが難しい。したがって、Nの含有量を0.010~0.025%とした。Nの含有量は、0.018%以下とするのが好ましい。
 本発明による熱間鍛造用圧延棒鋼または線材の化学組成の残部は、Fe及び不純物からなる。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップ、あるいは製造過程の環境等から混入する元素をいう。本発明においては、不純物元素としてのP、Ti及びO(酸素)の含有量を下記のとおりに制限する。
 P:0.025%以下
 Pは粒界偏析して粒界を脆化させやすい元素である。Pの含有量が0.025%を超えると、疲労強度が低下する。したがって、Pの含有量を0.025%以下とした。Pの含有量は、0.020%以下とするのが好ましい。
 Ti:0.003%以下
 Tiは、Nと結合して硬質で粗大なTiNを形成しやすく、このTiNは疲労強度低下の原因となる。Tiの含有量が0.003%を越えると、疲労強度の低下が著しくなる。不純物元素としてのTiの含有量はできる限り少なくすることが望ましいが、製鋼工程でのコストを考慮すると、0.002%以下にすることが好ましい。
 O(酸素):0.002%以下
 Oは、Alと結合して硬質な酸化物系介在物を形成しやすく、この酸化物系介在物は曲げ疲労強度低下の原因となる。O含有量が0.002%を越えると、疲労強度の低下が著しくなる。不純物元素としてのO含有量はできる限り少なくすることが望ましいが、製鋼工程でのコストを考慮すると、0.001%以下にすることが好ましい。
 fn1=Cr+2×Mo:1.82~2.10
 CrおよびMoは、前述したように焼入れ性、焼戻し軟化抵抗を高める効果が大きく、曲げ疲労強度、面疲労強度の向上に有効な元素である。MoはCrの半分の含有量で、Crと同等の効果があったため、fn1=Cr+2×Moと定義した。fn1中の各元素記号(Cr、Mo)には、その元素の質量%での含有量を代入する。fn1の値が1.82未満の場合、目標とする曲げ疲労強度、および面疲労強度が得られない。fn1の値が2.10を超えると、熱間鍛造後や焼きならし後にベイナイト組織の生成が促進され、被削性が低下する。したがって、fn1の値を1.82~2.10とした。fn1の値の好ましい上限は、2.00未満である。
 本発明において、より優れた特性を得るためには、下記の元素を添加してもよい。
 Nb:0.08%以下
 NbはC,Nと結合してNbC,NbN,Nb(C,N)を形成しやすく、前述したAlNによる浸炭加熱時のオーステナイト粒粗大化防止を補完するのに有効な元素である。一方、Nbの含有量が0.08%を超えると、オーステナイト粒粗大化防止の効果がむしろ低下する。したがって、Nbの含有量を0.08%以下とした。この効果を確実に得るためには、Nbを0.01%以上含有するのが好ましい。好ましいNbの含有量は、0.05%以下である。
 本実施の形態による棒鋼又は線材はさらに、Feの一部に代えて、Cu及びNiのうち一種以上を含有しても良い。Cu及びNiはいずれも焼入れ性を高め、疲労強度を高める。
 Cu:0.4%以下
 Cuは,焼入れ性を高める効果があり、より疲労強度を高めるために有効な元素であるので、必要に応じて含有させてもよい。しかしながら、Cuの含有量が0.4%を超えると、熱間延性を低下させて、熱間加工性の低下が顕著となる。したがって、含有させる場合のCu含有量を0.4%以下とした。含有させる場合のCuの含有量は0.3%以下であることが好ましい。好ましいCu含有量の下限は0.1%以上である。
 Ni:0.8%以下
 Niは、焼入れ性を高める効果があり、より疲労強度を高めるために有効な元素であるので、必要に応じて含有させてもよい。しかしながら、Niの含有量が0.8%を超えると、焼入れ性の向上による疲労強度を高める効果が飽和する。さらに、熱間鍛造後の被削性の低下が顕著になる上、合金コストも高くなる。したがって、含有させる場合のNiの含有量を0.8%以下とした。含有させる場合のNiの含有量は0.6%以下であることが好ましい。好ましいNi含有量の下限は、0.1%以上である。
(B)ミクロ組織
 熱間圧延材(熱間圧延まま材)の段階での結晶粒径の不均一性は、熱間鍛造、さらに浸炭焼入れ後にも傾向としては引き継がれ、曲げ疲労強度、面疲労強度に影響すると予想される。そのため、熱間圧延材での結晶粒径の不均一性と浸炭焼入れ後の曲げ疲労強度、面疲労強度との関係について調査した。結晶粒径の不均一性の評価の指標は、各視野での平均フェライト粒径の最大値/最小値とした。フェライト粒径を選定したのは、パーライトやベイナイトと比較して、フェライトはエッチングにより粒界を容易に観察でき、フェライト粒径を利用すれば、組織の均一性を評価しやすいためである。最大値/最小値を指標としたのは、疲労強度が最も低い部分を起点として破壊が発生するため、標準偏差を指標とするより適していると考えられるためである。
 このため、ミクロ組織を適正なものにする必要がある。すなわち、熱間圧延在において、組織がフェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、またはフェライト・ベイナイト組織で構成され、横断面を1視野あたりの面積を62500μmとしてランダムに15視野観察測定したときの、各視野のフェライト平均粒径の最大値/最小値が2.0以下の場合に、浸炭焼入れ後に曲げ疲労強度、面疲労強度を高くすることができる。
 ここでいう「フェライト・パーライト組織」は、フェライトとパーライトとからなる2相組織を意味する。「フェライト・パーライト・ベイナイト組織」は、フェライトと、パーライトと、ベイナイトとからなる3相組織を意味する。「フェライト・ベイナイト組織」は、フェライトとベイナイトとからなる2相組織を意味する。
 組織中にマルテンサイトを含む場合には、マルテンサイトが硬質で延性が低いことに起因して、熱間圧延棒鋼または線材の矯正や運搬時に割れが発生しやすくなる。
 なお、組織が上記のフェライト組織を含む各種混合組織であって、前記のフェライト平均粒径の最大値/最小値が2.0以下であれば、熱間鍛造用圧延棒鋼または線材(圧延まま材)の段階での断面内の結晶粒径のバラツキが少なく、浸炭焼入れ後に曲げ疲労強度、面疲労強度を高めることが可能になる。
 上記の組織における「相」は、例えば、熱間鍛造用圧延棒鋼または線材の長手方向に垂直、かつ、中心部を含む断面(横断面)を切り出した後、鏡面研磨してナイタールで腐食した試験片について、倍率400倍で、視野の大きさを250μm×250μmとしてランダムに各15視野観察することによって同定することができる。上記の各視野について通常の方法による画像解析を行って求めた各視野のフェライト平均粒径から、最大値/最小値を算出する。前記最大値/最小値は1.6以下であることが好ましい。上述の横断面からフェライト平均粒径を測定するとき、横断面のうち、表層の脱炭層を除いた領域で観察する。
 本発明の熱間鍛造用圧延棒鋼または線材を得るための製造方法の一例として、以下、上記(A)で示す化学組成を有する鋼を用いた場合について示す。本発明の熱間鍛造用圧延棒鋼または線材の製造方法は、これに限るものではない。
 上記化学組成の鋼を溶製し、鋳片を製造する。このとき、凝固途中の鋳片に圧下を加える。製造された鋳片を分塊圧延し、鋼片を製造する。このとき、鋳片に加熱温度1250~1300℃、かつ、加熱時間10時間以上の加熱を施してから分塊圧延する。製造された鋼片を熱間圧延して熱間鍛造用圧延棒鋼または線材を製造する。このとき、鋼片の加熱温度を1150~1200℃、かつ、加熱時間を1.5時間以上の加熱を施してから熱間圧延する。また、熱間圧延の仕上げ温度を900~1000℃とし、仕上げ圧延前の水冷を行わず、且つ仕上げ圧延後は、大気中での放冷(以下、単に「放冷」という。)以下の冷却速度で600℃以下の温度まで冷却する。また、鋼片から棒鋼、線材への断面減少率({1-(棒鋼、線材の断面積/鋼片の断面積)}×100)を87.5%以上にする。
 熱間圧延における仕上げ圧延後は放冷以下の冷却速度で室温まで冷却する必要はなく、600℃以下の温度に至った時点で、空冷、ミスト冷却、水冷など、適宜の手段で冷却してもよい。
 本明細書における加熱温度とは加熱炉の炉内温度の平均値、加熱時間とは在炉時間を意味する。熱間圧延の仕上げ温度とは、仕上げ圧延直後の棒鋼、線材の表面温度を指し、さらに、仕上げ加工後の冷却速度も、棒鋼、線材の表面冷却速度を指す。
 本発明による熱間鍛造用圧延棒鋼または線材は、被削性と部品の曲げ・面疲労強度とを高いレベルで両立することができる。
 以下、実施例により本発明をさらに詳しく説明する。
 表1に示す化学成分を有する鋼A~Cを70トン転炉で成分調整した後、連続鋳造を行って、400mm×300mm角のブルームを得て、600℃以下まで冷却した。
Figure JPOXMLDOC01-appb-T000001
 連続鋳造の凝固途中の段階で圧下を加えた。表2に示す条件でブルームを加熱した後、分塊圧延にて180mm×180mm角の鋼片を作製し、室温まで冷却した。次に、表2に示す条件で鋼片を加熱した後、表2に示す条件で熱間圧延を行い、直径50mm、および直径70mmの棒鋼を得た。
Figure JPOXMLDOC01-appb-T000002
 直径50mmの棒鋼の長手方向に垂直且つ中心部を含む断面(横断面)を切り出した後、鏡面に研磨した後、ナイタールで腐食した試験片について、倍率400倍で、ランダムに各15視野観察した。このとき、横断面のうち、表層の脱炭層を除いた領域から、ランダムに15視野観察した。各視野の大きさは250μm×250μmとした。各視野について通常の方法による画像解析によって、フェライトの平均粒径を求めた。すべての試料において、ミクロ組織は、マルテンサイト組織を含んでおらず、フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、及びフェライト・ベイナイト組織のいずれかからなっていた。
 表1の鋼を表2の条件で製造した直径50mmの熱間鍛造用圧延棒鋼を1200℃で30分加熱し、仕上げ温度を950℃以上として熱間鍛造して、直径35mmの丸棒を得た。次いで、機械加工により、図1に示すローラーピッチング小ローラー試験片、および図2に示す形状の切欠き付き小野式回転曲げ疲労試験片(図1及び図2ともに、図中の寸法の単位はmm)を作製した。上記の試験片に対し、ガス浸炭炉を用いて、図3に示す条件で浸炭焼入れを行い、次いで、170℃で1.5時間の焼戻しを行った。さらに、これらの試験片に対し、熱処理ひずみを除く目的で、つかみ部の仕上げ加工を行った。
 ローラーピッチング試験は、上記の小ローラー試験片と図4に示す形状の大ローラー(図中の寸法の単位はmm)の組み合わせで、表3に示す条件で行った。
Figure JPOXMLDOC01-appb-T000003
 上記ローラーピッチング試験用大ローラーは、JIS規格SCM420Hの規格を満たす鋼を用いて、一般的な製造工程で作成したものである。つまり、「焼きならし、試験片加工、ガス浸炭炉による共析浸炭、低温焼戻し及び研磨」の工程によって作製したものである。
 各試験番号について、ローラーピッチング試験における試験数は6とした。縦軸に面圧、横軸にピッチング発生までの繰り返し数をとったS-N線図を作成し、繰り返し数2.0×10回までピッチングが発生しなかった内、最も高い面圧を面疲労強度とした。小ローラーの試験部の表面が損傷している箇所のうち、最大のものの面積が1mm以上になった場合をピッチング発生と判定した。
 各試験番号について、小野式回転曲げ疲労試験での試験数は8とした。回転数3000rpmとし、その他は通常の方法により試験を行い、繰り返し数1.0×10回、および1.0×10回まで破断しなかった内、最も高い応力をそれぞれ、中サイクル回転曲げ疲労強度、および高サイクル回転曲げ疲労強度とした。
 後述の表4に、上記の各試験結果をまとめて示す。ローラーピッチング試験での面疲労強度の目標値は、汎用鋼種として一般的な、JIS規格SCr420Hの規格を満たす鋼Aを浸炭した試験番号1の面疲労強度を100として規格化し、20%以上上回ることとした。小野式回転曲げ疲労強度の目標値は、鋼Aを浸炭した試験番号1の中サイクル、高サイクルの回転曲げ疲労強度をそれぞれ100として規格化し、ともに15%以上上回ることとした。
 切削試験においては、上記の熱間圧延で作製した直径70mmの熱間鍛造用圧延棒鋼を1200℃で30分加熱し、仕上げ温度を950℃以上として熱間鍛造して、直径50mmの丸棒を得た。この丸棒から機械加工によって、直径46mm、長さ400mmの試験材を得た。この試験材を用いて、下記の条件で切削試験を行った。
切削試験(旋削)
 チップ:母材材質 超硬P20種グレード、コーティング なし
 条件:周速200m/分、送り0.30mm/rev、切り込み1.5mm、水溶性切削油を使用
 測定項目:切削時間10分後の逃げ面の主切刃摩耗量
 表4に、上記の各試験結果をまとめて示す。切削試験での目標値は、高強度材として一般的であるJIS規格SCM822Hの規格を満たす鋼Bを浸炭した試験番号2の逃げ面の主切刃摩耗量を100として規格化し、これを20%以上下回ることとした。
Figure JPOXMLDOC01-appb-T000004
 表4に示す通り、本発明で規定する条件から外れた試験番号の場合には、目標とする曲げ疲労強度、面疲労強度、及び被削性のいずれかが得られていない。
 本発明で規定する条件を満たす試験番号の場合には、目標とする曲げ疲労強度、面疲労強度、及び被削性が得られた。
 表5に示す化学成分を有する鋼D~Tを70トン転炉で成分調整した後、連続鋳造を行って、400mm×300mm角のブルームを得て、600℃以下まで冷却した。
Figure JPOXMLDOC01-appb-T000005
 なお連続鋳造の凝固途中の段階で圧下を加えた。表2に示す条件で鋳片を加熱した後、分塊圧延にて180mm×180mm角の鋼片を作製し、室温まで冷却した。次に表2に示す条件で鋼片を加熱した後、表2に示す条件で熱間圧延を行い、直径50mm、および直径70mmの棒鋼を得た。調査項目及び調査方法は、上記実施例1に記載の方法と同様とした。
 表6に、各試験結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す通り、本発明で規定する条件から外れた試験番号の場合には、目標とする曲げ疲労強度、面疲労強度、及び被削性のいずれかが得られていない。
 本発明で規定する条件を満たす試験番号の場合には、目標とする曲げ疲労強度、面疲労強度、及び被削性が得られた。Nbを含有している、試験番号31、および33は、目標を大きく上回った。また、Cu及びNiのうち一種以上を含有している、試験番号39~41は、目標を大きく上回った。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。

Claims (3)

  1.  質量%で、
     C:0.1~0.25%、
     Si:0.01~0.10%、
     Mn:0.4~1.0%、
     S:0.003~0.05%、
     Cr:1.60~2.00%、
     Mo:0.10%以下(0%を含む)、
     Al:0.025~0.05%、
     N:0.010~0.025%、
     を含有するとともに、
     CrおよびMoの含有量が、下記の(1)式で表されるfn1の値で、1.82≦fn1≦2.10を満たし、
     残部がFeおよび不純物からなり、不純物中のP、TiおよびOがそれぞれ、
     P:0.025%以下、
     Ti:0.003%以下、
     O(酸素):0.002%以下、
    である組成を有し、
     フェライト・パーライト組織、フェライト・パーライト・ベイナイト組織、またはフェライト・ベイナイト組織からなり、
     横断面において、1視野あたりの面積を62500μmとして、ランダムに15視野観察測定したときの、フェライト平均粒径の最大値/最小値が2.0以下である、
    ことを特徴とする熱間鍛造用圧延棒鋼または線材。
     fn1=Cr+2×Mo ・・・(1)
    但し、(1)式中の元素記号は、その元素の質量%での含有量を表す。
  2.  Feの一部に代えて、質量%で、Nb:0.08%以下を含有する
    ことを特徴とする請求項1に記載の熱間鍛造用圧延棒鋼または線材。
  3.  Feの一部に代えて、質量%で、Cu:0.4%以下及びNi:0.8%以下のうち1種以上を含有する
    ことを特徴とする請求項1又は2に記載の熱間鍛造用圧延棒鋼または線材。
     
     
PCT/JP2011/077407 2010-11-29 2011-11-28 熱間鍛造用圧延棒鋼または線材 WO2012073896A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137013666A KR20130108403A (ko) 2010-11-29 2011-11-28 열간 단조용 압연 봉강 또는 선재
US13/989,847 US9200354B2 (en) 2010-11-29 2011-11-28 Rolled steel bar or wire for hot forging
JP2012546863A JP5333682B2 (ja) 2010-11-29 2011-11-28 熱間鍛造用圧延棒鋼または線材
CN201180057448.1A CN103228810B (zh) 2010-11-29 2011-11-28 热锻用轧制棒钢或线材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-265760 2010-11-29
JP2010265760 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073896A1 true WO2012073896A1 (ja) 2012-06-07

Family

ID=46171828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077407 WO2012073896A1 (ja) 2010-11-29 2011-11-28 熱間鍛造用圧延棒鋼または線材

Country Status (5)

Country Link
US (1) US9200354B2 (ja)
JP (1) JP5333682B2 (ja)
KR (1) KR20130108403A (ja)
CN (1) CN103228810B (ja)
WO (1) WO2012073896A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229475A (ja) * 2011-04-27 2012-11-22 Sumitomo Metal Ind Ltd 冷間鍛造用熱間圧延棒鋼または線材、および冷間鍛造用鋼線の製造方法
JP2013108144A (ja) * 2011-11-22 2013-06-06 Nippon Steel & Sumitomo Metal Corp 熱間鍛造用圧延棒鋼又は線材
JP2013151719A (ja) * 2012-01-25 2013-08-08 Nippon Steel & Sumitomo Metal Corp 熱間鍛造用圧延棒鋼または線材
JP2013227607A (ja) * 2012-04-25 2013-11-07 Honda Motor Co Ltd ベルト式cvtのプーリー用鋼及びベルト式cvtプーリー
JP2014047370A (ja) * 2012-08-30 2014-03-17 Nippon Steel & Sumitomo Metal 熱間圧延棒鋼または線材
JP2016183399A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 浸炭機械構造部品
CN114574751A (zh) * 2022-03-15 2022-06-03 建龙北满特殊钢有限责任公司 一种建筑用hrb400e抗震钢筋的生产方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279361B1 (en) * 2015-03-31 2020-04-29 Nippon Steel Corporation Hot rolled bar or hot rolled wire rod, component, and manufacturing method of hot rolled bar or hot rolled wire rod
RU2605034C1 (ru) * 2015-11-20 2016-12-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Горячекатаная сталь для горячей штамповки
WO2021260954A1 (ja) * 2020-06-26 2021-12-30 日本製鉄株式会社 鋼材及び浸炭鋼部品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256898A (ja) * 1993-03-03 1994-09-13 Daido Steel Co Ltd 浸炭窒化用鋼
JP2001152284A (ja) * 1999-09-16 2001-06-05 Mitsubishi Seiko Muroran Tokushuko Kk 浸炭及び浸炭窒化処理用高強度クロム鋼
JP2009249684A (ja) * 2008-04-07 2009-10-29 Sumitomo Metal Ind Ltd 肌焼鋼
JP2010180455A (ja) * 2009-02-06 2010-08-19 Sumitomo Metal Ind Ltd 肌焼鋼

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021359A (ja) 1983-07-15 1985-02-02 Daido Steel Co Ltd 歯車用鋼
JPH07126803A (ja) 1993-11-08 1995-05-16 Daido Steel Co Ltd 浸炭歯車用鋼
JP3308377B2 (ja) 1994-03-09 2002-07-29 大同特殊鋼株式会社 歯面強度の優れた歯車およびその製造方法
CN100584985C (zh) * 2006-11-24 2010-01-27 宝山钢铁股份有限公司 一种齿轮用合金钢及其制备方法
JP4888277B2 (ja) * 2007-08-24 2012-02-29 住友金属工業株式会社 熱間圧延棒鋼または線材
JP5332646B2 (ja) 2009-01-23 2013-11-06 Jfeスチール株式会社 冷間鍛造性に優れた浸炭用鋼の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256898A (ja) * 1993-03-03 1994-09-13 Daido Steel Co Ltd 浸炭窒化用鋼
JP2001152284A (ja) * 1999-09-16 2001-06-05 Mitsubishi Seiko Muroran Tokushuko Kk 浸炭及び浸炭窒化処理用高強度クロム鋼
JP2009249684A (ja) * 2008-04-07 2009-10-29 Sumitomo Metal Ind Ltd 肌焼鋼
JP2010180455A (ja) * 2009-02-06 2010-08-19 Sumitomo Metal Ind Ltd 肌焼鋼

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229475A (ja) * 2011-04-27 2012-11-22 Sumitomo Metal Ind Ltd 冷間鍛造用熱間圧延棒鋼または線材、および冷間鍛造用鋼線の製造方法
JP2013108144A (ja) * 2011-11-22 2013-06-06 Nippon Steel & Sumitomo Metal Corp 熱間鍛造用圧延棒鋼又は線材
JP2013151719A (ja) * 2012-01-25 2013-08-08 Nippon Steel & Sumitomo Metal Corp 熱間鍛造用圧延棒鋼または線材
JP2013227607A (ja) * 2012-04-25 2013-11-07 Honda Motor Co Ltd ベルト式cvtのプーリー用鋼及びベルト式cvtプーリー
JP2014047370A (ja) * 2012-08-30 2014-03-17 Nippon Steel & Sumitomo Metal 熱間圧延棒鋼または線材
JP2016183399A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 浸炭機械構造部品
CN114574751A (zh) * 2022-03-15 2022-06-03 建龙北满特殊钢有限责任公司 一种建筑用hrb400e抗震钢筋的生产方法

Also Published As

Publication number Publication date
CN103228810B (zh) 2015-09-23
CN103228810A (zh) 2013-07-31
US20130243641A1 (en) 2013-09-19
JP5333682B2 (ja) 2013-11-06
KR20130108403A (ko) 2013-10-02
US9200354B2 (en) 2015-12-01
JPWO2012073896A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5333682B2 (ja) 熱間鍛造用圧延棒鋼または線材
JP5397247B2 (ja) 熱間圧延棒鋼または線材
JP5742801B2 (ja) 熱間圧延棒鋼または線材
JP5858204B2 (ja) 熱間鍛造用鋼材およびその製造方法ならびにその鋼材を用いた熱間鍛造素形材の製造方法
JP5821771B2 (ja) 冷間鍛造用熱間圧延棒鋼または線材
JP5790517B2 (ja) 熱間鍛造用圧延棒鋼または線材
WO2018101451A1 (ja) 軟窒化用鋼および部品
JP5561436B2 (ja) 熱間鍛造用圧延棒鋼又は線材
JP6652019B2 (ja) 高周波焼入用の機械構造用鋼及び高周波焼入鋼部品
JP5949287B2 (ja) 冷間鍛造用鋼材
JP5799917B2 (ja) 熱間圧延棒鋼または線材
JP6458908B2 (ja) 軟窒化用非調質鋼、軟窒化部品、及び、軟窒化部品の製造方法
JPH10306343A (ja) 冷間鍛造性及び耐ピッチング性に優れた軟窒化用鋼
JP4464861B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼
JP6465206B2 (ja) 熱間圧延棒線材、部品および熱間圧延棒線材の製造方法
JP5440720B2 (ja) 浸炭または浸炭窒化用の鋼
WO2017069064A1 (ja) 機械構造用鋼及び高周波焼入鋼部品
JP7135485B2 (ja) 浸炭用鋼及び部品
JP7323850B2 (ja) 鋼材及び浸炭鋼部品
JP2023056778A (ja) 鋼材、及び、浸炭鋼部品
JP2022080398A (ja) 鋼材、及び、浸炭鋼部品
JP2022080369A (ja) 鋼材、及び、浸炭鋼部品
JP2023068554A (ja) 窒化用鋼及び窒化部品
JP2023056779A (ja) 鋼材、及び、浸炭鋼部品
JP2023097583A (ja) 鋼、および、浸炭焼入れ部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546863

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137013666

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13989847

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845598

Country of ref document: EP

Kind code of ref document: A1