WO2012073726A1 - 減速機、減速機を備える電動パワーステアリング装置、減速機の製造方法 - Google Patents

減速機、減速機を備える電動パワーステアリング装置、減速機の製造方法 Download PDF

Info

Publication number
WO2012073726A1
WO2012073726A1 PCT/JP2011/076694 JP2011076694W WO2012073726A1 WO 2012073726 A1 WO2012073726 A1 WO 2012073726A1 JP 2011076694 W JP2011076694 W JP 2011076694W WO 2012073726 A1 WO2012073726 A1 WO 2012073726A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
preload
fit
side end
fitting
Prior art date
Application number
PCT/JP2011/076694
Other languages
English (en)
French (fr)
Inventor
九郎丸 善和
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to CN201180057657.6A priority Critical patent/CN103260998B/zh
Publication of WO2012073726A1 publication Critical patent/WO2012073726A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/039Gearboxes for accommodating worm gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • F16H57/022Adjustment of gear shafts or bearings
    • F16H2057/0221Axial adjustment

Definitions

  • the present invention relates to a speed reducer, an electric power steering equipped with a speed reducer, and a method of manufacturing the speed reducer.
  • the worm shaft 120 and the rolling bearing 130 are accommodated in the speed reducer housing 110.
  • the worm shaft 120 is connected to the output shaft 101 of the electric motor 100.
  • the rolling bearing 130 supports the worm shaft 120 rotatably.
  • An opening 111 is provided in the housing 110.
  • the opening 111 is provided with a worm shaft 120 and a worm wheel 140.
  • the worm shaft 120 and the worm wheel 140 are meshed with each other.
  • a preload applying member 150 is attached to the housing 110.
  • a male screw 151 is formed on the outer peripheral surface of the preload applying member 150.
  • An internal thread 112 is formed in the housing 110.
  • the male screw 151 of the preload applying member 150 is screwed into the female screw 112 of the housing 110.
  • the preload applying member 150 applies a preload to the rolling bearing 130 by pushing the outer ring 131 of the rolling bearing 130.
  • a fixing nut 160 is screwed into the preload applying member 150.
  • the fixing nut 160 suppresses loosening of the preload applying member 150 with respect to the housing 110. At this time, the fixing nut 160 is in contact with the end surface 113 of the housing 110.
  • the preload of the rolling bearing 130 is adjusted as follows.
  • the operator rotates the worm shaft 120 after screwing the preload applying member 150 by a predetermined amount.
  • the operator measures the rotational torque of the worm shaft 120.
  • the operator determines that the adjustment of the preload of the rolling bearing 130 has been completed, and ends the adjustment of the preload.
  • the operator determines that the adjustment of the preload of the rolling bearing 130 has not been completed.
  • the operator further screws the preload applying member 150 by a predetermined amount and measures the rotational torque again.
  • the measured rotational torque falls within the predetermined range, the operator finishes the preload adjustment.
  • the operator repeats screwing of the preload applying member 150 and measurement of the rotational torque until the rotational torque falls within the predetermined range.
  • An object of the present invention is to provide a speed reducer that can reduce the time required for adjusting the preload of the rolling bearing, an electric power steering apparatus including the speed reducer, and a method of manufacturing the speed reducer.
  • a shaft connected to an output shaft of a drive mechanism, a rolling bearing that rotatably supports the shaft, and a preload application that applies preload to the rolling bearing.
  • a speed reducer comprising a member is provided.
  • the speed reducer has a press-fit portion into which the preload applying member is press-fitted.
  • the side where the drive mechanism is arranged in the axial direction of the shaft is the input side
  • the side opposite to the input side in the axial direction of the shaft is the output side
  • the end on the input side of the press-fitted part is the input side end A
  • press-fitting The output side end of the part is the output side end B
  • the input side end of the preload application member is the input side end C
  • the output side end of the preload application member is the output side end D
  • press fit The length in the axial direction from the input side end A to the output side end B of the portion is the first length
  • the axial length from the input side end C to the output side end D of the preload applying member is the first length.
  • the first length is set to be larger than the second length
  • the input side end C is arranged on the output side than the input side end A
  • the output side end D is set on the output side. It arrange
  • the first length is longer than the second length.
  • both the input side end C and the output side end D of the preload apply member are connected to the input side end A and the output side end B of the press-fit portion (First press-fitted state).
  • the magnitude of the press-fit load is constant even if the position of the preload applying member with respect to the press-fitted portion changes.
  • the output-side end portion D comes into contact with the end face of the rolling bearing (second press-fitted state).
  • the output side end D is in contact with the end face of the rolling bearing. For this reason, as the press-fit load increases, the preload amount of the rolling bearing also increases.
  • the magnitude of the press-fit load at this time is mainly determined by the load X1 and the load X2.
  • the load X1 is a load required to move the preload applying member with respect to the press-fitted portion.
  • the load X2 is a load required to press the rolling bearing by the preload applying member.
  • the contact state between the preload application member and the press-fitted portion is substantially the same in the first press-fitted state and the second press-fitted state.
  • the load X1 is the same as the press-fit load in the first press-fit state. Therefore, the preload amount of the rolling bearing can be managed on the basis of the press-fit load in the first press-fit state. In other words, the preload amount of the rolling bearing can be adjusted to a required size without measuring the preload amount of the rolling bearing after the operation of applying the preload. Therefore, the time required for adjusting the preload of the rolling bearing can be shortened.
  • the “press-fit load” is a load required for press-fitting the pre-load applying member into the press-fit portion.
  • the “press-fit position” is the position of the preload application member with respect to the press-fit portion.
  • the speed reducer includes an input gear that rotates together with the shaft, and an output gear that meshes with the input gear.
  • the meshing portion of the input gear and the output gear serves as a meshing portion.
  • the second rolling bearing is preferably provided on the output side of the shaft meshing portion, and is provided on the input side of the shaft meshing portion.
  • both end portions of the shaft are supported by the first rolling bearing and the second rolling bearing, respectively. For this reason, compared with the structure which supports only one edge part of a shaft with a rolling bearing, a shaft can be supported stably.
  • an electric power steering apparatus including a steering shaft that changes a steering angle and a speed reducer that applies torque to the steering shaft.
  • the steering shaft is provided as an output shaft of the speed reducer.
  • the load when the preload application member is press-fitted into the press-fit portion is the press-fit load
  • the position of the pre-load application member with respect to the press-fit portion is the press-fit position
  • the output side end D is in a non-contact state with the rolling bearing
  • the press-fit position is defined as a press-fit position range where the press-fit load is constant with respect to changes in the press-fit position, and a press-fit position range where the output side end D is in contact with the rolling bearing is a second press fit range.
  • the press-fit load is detected as the reference press-fit load
  • the press-fit position is the second press-fit range
  • the press-fit load is greater than or equal to the judgment load greater than the reference press-fit load, End press-fitting.
  • the dimensions of the press-fitted part and each part of the preload application member differ from part to part due to processing errors. For this reason, the magnitude of the press-fit load required for setting the preload amount of the rolling bearing to the target value also differs for each part.
  • a method based on the correlation between the press-fitting load and the preload amount of the rolling bearing is conceivable as a method of press-fitting the preload applying member to apply the preload to the rolling bearing. Specifically, it is conceivable that when the press-fit load increases from “0” and reaches a predetermined value, it is estimated that the preload amount of the rolling bearing has reached the target value and the press-fit is terminated.
  • this method it is difficult to adjust the preload amount of the rolling bearing appropriately because it is affected by variations in the press-fit load generated for each part.
  • the preload amount can be managed based on the press-fit load (reference press-fit load) detected in the first press-fit state. For this reason, even when the press-fit load for applying preload to the rolling bearing is different for each part, the preload amount of the rolling bearing can be adjusted appropriately.
  • FIG. 3 is an enlarged cross-sectional view showing the vicinity of a first ball bearing along line 3-3 in FIG. 2;
  • FIGS. 3A to 3C are cross-sectional views taken along line 3-3 in FIG.
  • the graph which shows the relationship between the press-fitting distance and press-fitting load of a press-fitting jig.
  • Sectional drawing of the reduction gear of another example Sectional drawing of the conventional speed reducer.
  • the electric power steering apparatus 1 is provided with a steering angle transmission mechanism 10.
  • the steering angle transmission mechanism 10 transmits the rotation of the steering 2 to the steered wheels 3.
  • An actuator 20 is connected to the steering angle transmission mechanism 10.
  • the actuator 20 applies a force (hereinafter referred to as “assist force”) for assisting the operation of the steering 2 to the steering angle transmission mechanism 10.
  • the steering angle transmission mechanism 10 is provided with a steering shaft 11 that rotates together with the steering 2.
  • the steering shaft 11 is connected to a steered shaft 13 via a rack and pinion mechanism 12.
  • the steered shaft 13 is connected to the steered wheel 3 via a tie rod 14 and a knuckle (not shown).
  • the actuator 20 is provided with an electric motor 21 as a drive source and a speed reducer 22.
  • the reducer 22 decelerates the rotation of the electric motor 21 and transmits it to the steering shaft 11.
  • the speed reducer 22 is connected to the steering shaft 11.
  • the steering shaft 11 When the driver rotates the steering wheel 2, the steering shaft 11 also rotates together with the steering wheel 2. At this time, the electric motor 21 is driven. The driving force of the electric motor 21 is applied to the steering shaft 11 via the speed reducer 22 as an assist force. The rotation of the steering shaft 11 is converted into a reciprocating linear motion of the steered shaft 13 by the rack and pinion mechanism 12. Then, the rudder angle of the steered wheels 3 is changed by the reciprocating linear motion of the steered shaft 13.
  • the actuator 20 includes a housing 23 for housing the speed reducer 22.
  • An electric motor 21 is attached to the housing 23.
  • the speed reducer 22 is provided with a worm shaft 31 and a worm wheel 32 that meshes with the worm shaft 31.
  • the worm shaft 31 is connected to the output shaft 21A of the electric motor 21 through a cylindrical shaft coupling 21B.
  • the worm wheel 32 rotates together with the steering shaft 11.
  • the axial direction of the worm shaft 31 is referred to as “axial direction”, and the radial direction of the worm shaft 31 is referred to as “radial direction”.
  • a direction toward the electric motor 21 with respect to the worm shaft 31 is referred to as a “base end direction”, and a direction opposite to the “base end direction” is referred to as a “tip direction”.
  • the direction toward the axis of the worm shaft 31 is “inward”, and the direction away from the axis of the worm shaft 31 is “outward”.
  • a first ball bearing 33 is attached to the base end of the worm shaft 31.
  • a second ball bearing 34 is attached to the tip of the worm shaft 31.
  • the first and second ball bearings 33 and 34 support the worm shaft 31 so as to be rotatable with respect to the housing 23.
  • the first ball bearing 33 includes an inner ring 33A, an outer ring 33B, and a rolling element 33C.
  • the second ball bearing 34 includes an inner ring 34A, an outer ring 34B, and a rolling element 34C.
  • the inner rings 33A and 34A are press-fitted into both end portions of the worm shaft 31.
  • the outer rings 33 ⁇ / b> B and 34 ⁇ / b> B are inserted into a space in the housing 23.
  • the rolling element 33C is supported so as to be able to rotate and revolve between the inner ring 33A and the outer ring 33B.
  • the rolling element 34C is supported so as to be capable of rotating and revolving between the inner ring 34A and the outer ring 34B.
  • the end surface of the base end portion of the outer ring 33B is referred to as “base end surface 33D of the first ball bearing 33”.
  • the end surface of the tip portion of the inner ring 33A is referred to as “tip surface of the first ball bearing 33”.
  • the end surface of the front end portion of the outer ring 34B is referred to as “a front end surface 34D of the second ball bearing 34”.
  • the end surface of the base end portion of the inner ring 34A is referred to as “the base end surface of the second ball bearing 34”.
  • a preload applying member 35 for applying a preload to the first and second ball bearings 33 and 34 is attached to the housing 23.
  • the preload imparting member 35 is disposed in the proximal direction relative to the first ball bearing 33.
  • the preload applying member 35 is in contact with the base end surface 33 ⁇ / b> D of the first ball bearing 33. Thereby, the preload applying member 35 applies preload to each of the first and second ball bearings 33 and 34.
  • the preload applying member 35 is provided with a cylindrical portion 61, a contact portion 62, and a bent portion 63.
  • the contact portion 62 contacts the base end surface 33 ⁇ / b> D of the first ball bearing 33.
  • the bent portion 63 connects the cylindrical portion 61 and the contact portion 62.
  • the contact portion 62 extends inward from the inner end portion of the bent portion 63 along the radial direction.
  • the end surface of the base end portion of the cylindrical portion 61 is referred to as “base end surface 61A of the cylindrical portion 61”
  • the end surface of the tip end portion of the contact portion 62 is referred to as “front end surface 62A of the contact portion 62”.
  • the worm shaft 31 is provided with a gear portion 41 that meshes with the worm wheel 32.
  • the end surface of the base end portion of the gear portion 41 is referred to as “base end surface of the gear portion 41”
  • the end surface of the tip portion of the gear portion 41 is referred to as “the front end surface of the gear portion 41”.
  • a first attachment portion 42 having a smaller outer diameter than the gear portion 41 is provided at the base end portion of the worm shaft 31.
  • a second attachment portion 43 having an outer diameter larger than that of the gear portion 41 is provided at the tip portion of the worm shaft 31.
  • the first mounting portion 42 is provided with a first fixing portion 44 and a second fixing portion 45.
  • the first fixed portion 44 is press-fitted into the inner ring 33 ⁇ / b> A of the first ball bearing 33.
  • the second fixing portion 45 is fixed to the shaft coupling 21B.
  • the second mounting portion 43 is press-fitted into the inner ring 34 ⁇ / b> A of the second ball bearing 34.
  • the proximal end surface of the gear portion 41 is in contact with the distal end surface of the first ball bearing 33.
  • the proximal end surface of the second ball bearing 34 is in contact with the distal end surface of the gear portion 41.
  • the gear part 41 is provided with a gear forming part 41A.
  • the gear forming portion 41A is formed with a gear having effective tooth depth.
  • Round-up portions 41B are formed at both ends of the gear forming portion 41A.
  • the round-up portion 41B is formed continuously with the gear forming portion 41A.
  • a hob cutter (not shown) for forming a gear is rounded up by the round-up portion 41B.
  • a gear smaller than the effective tooth depth is formed in the round-up portion 41B.
  • the gear portion 41 has an effective meshing length T2, a distal end length T3, and a proximal end length T4.
  • the meshing effective length T2 is a length in the axial direction in which the gear portion 41 and the worm wheel 32 mesh.
  • the tip length T3 is the length from the tip of the portion corresponding to the meshing effective length T2 of the gear portion 41 to the base end of the rounded-up portion 41B adjacent thereto.
  • the base end length T4 is the length from the base end of the portion corresponding to the meshing effective length T2 of the gear portion 41 to the tip of the rounded-up portion 41B adjacent thereto.
  • the total length of the meshing effective length T2, the distal end length T3, and the proximal end length T4 corresponds to the axial length T1 of the gear forming portion 41A.
  • the base end surface 45A of the worm shaft 31 and the front end surface 21C of the output shaft 21A of the electric motor 21 are close to each other.
  • a distance (movement allowable distance D1) between the base end face 45A of the second fixing portion 45 and the front end face 21C of the output shaft 21A satisfies the following calculation formula.
  • the right side of the calculation formula is an axial distance from the gear forming portion 41A to the rounded portion 41B adjacent to the tip of the gear forming portion 41A.
  • the housing 23 is provided with a worm shaft accommodating portion 51.
  • a worm shaft 31 and first and second ball bearings 33 and 34 are housed in the worm shaft housing 51.
  • the worm shaft accommodating portion 51 is provided with a worm wheel accommodating portion 52 in which the worm wheel 32 is accommodated.
  • the worm wheel housing portion 52 is adjacent to the worm shaft housing portion 51 in the radial direction.
  • An opening is provided at the base end of the worm shaft housing 51.
  • An electric motor 21 is attached to the opening.
  • the inner peripheral surface of the worm shaft housing 51 is divided into a first inner peripheral surface 53, a second inner peripheral surface 54, and a third inner peripheral surface 55.
  • the first inner peripheral surface 53 is in contact with the outer peripheral surface 64 of the cylindrical portion 61 of the preload applying member 35.
  • the outer peripheral surface of the outer ring 33 ⁇ / b> B of the first ball bearing 33 is in contact with the second inner peripheral surface 54.
  • the outer peripheral surface of the outer ring 34 ⁇ / b> B of the second ball bearing 34 is in contact with the third inner peripheral surface 55.
  • a portion corresponding to the first inner peripheral surface 53 of the housing 23 constitutes a “press-fit portion”.
  • the inner diameter of the portion corresponding to the first inner peripheral surface 53 of the worm shaft accommodating portion 51 is larger than the inner diameter of the portion corresponding to the second inner peripheral surface 54 of the worm shaft accommodating portion 51.
  • the inner diameter of the portion corresponding to the second inner peripheral surface 54 of the worm shaft accommodating portion 51 is larger than the inner diameter of the portion corresponding to the third inner peripheral surface 55 of the worm shaft accommodating portion 51.
  • the first inner peripheral surface 53 and the second inner peripheral surface 54 are connected to each other by a connecting surface 56.
  • the connecting surface 56 extends in the radial direction.
  • the base end portion of the first inner peripheral surface 53 of the worm shaft accommodating portion 51 is 53A
  • the tip end portion of the first inner peripheral surface 53 is 53B
  • the connecting portion between the cylindrical portion 61 and the bent portion 63 of the preload applying member 35 corresponds to the tip portion 61B of the cylindrical portion 61.
  • the axial length from the base end portion 53A (input side end portion A) of the first inner peripheral surface 53 to the front end portion 53B (output side end portion B) is defined as a first length L1
  • the cylindrical portion 61 A length in the axial direction from the base end surface 61A (input side end C) to the tip end 61B (output side end D) is defined as a second length L2.
  • the first length L1 is longer than the second length L2 (L1> L2).
  • a preload is applied to each of the first and second ball bearings 33 and 34 by the preload applying member 35.
  • the front end surface 62 ⁇ / b> A of the contact portion 62 is pressed in the front end direction and pressed against the base end surface 33 ⁇ / b> D of the first ball bearing 33.
  • the base end surface 61 ⁇ / b> A of the cylindrical portion 61 is located in the front end direction with respect to the base end portion 53 ⁇ / b> A of the first inner peripheral surface 53.
  • the distal end portion 61B of the cylindrical portion 61 is located in the proximal direction with respect to the distal end portion 53B of the first inner peripheral surface 53.
  • press-fit position P The position of the front end surface 62A of the contact portion 62 with respect to the housing 23 is referred to as a “press-fit position P”.
  • the press-fit position P changes from the first position P1 to the fourth position P4.
  • the distance that the preload applying member 35 moves between the first position P1 and the fourth position P4 is referred to as a “press-fit distance”.
  • the force by which the press-fitting machine (not shown) pushes the preload applying member 35 is referred to as “press-fit load”.
  • the distal end surface 62A of the contact portion 62 and the proximal end portion 53A of the first inner peripheral surface 53 of the worm shaft housing portion 51 are arranged at the same position in the axial direction.
  • the base end surface 61A (see FIG. 2) of the cylindrical portion 61 and the base end portion 53A of the first inner peripheral surface 53 are arranged at the same position in the axial direction.
  • the distal end surface 62A of the contact portion 62 and the proximal end surface 33D of the first ball bearing 33 to which no preload is applied are disposed at the same position in the axial direction.
  • the distal end surface 62A of the contact portion 62 and the proximal end surface 33D of the first ball bearing 33 to which preload is applied are arranged at the same position in the axial direction.
  • first press-fit range R1 the movement range of the press-fit position P from the first position P1 to the second position P2
  • second press-fit range R2 the movement range of the press-fit position P from the second position P2 to the third position P3
  • third press-fit range R3 the range of movement of the press-fit position P from the third position P3 to the fourth position P4 is referred to as “third press-fit range R3”.
  • the housing 23 accommodates the worm shaft 31 together with the first and second ball bearings 33 and 34.
  • the preload application member 35 is pressed from the first position P ⁇ b> 1 toward the distal end by the press-fitting jig 70 of the press-fitting machine and press-fitted into the housing 23.
  • the outer peripheral surface 64 of the cylindrical portion 61 and the first inner peripheral surface 53 of the housing 23 as the preload applying member 35 moves in the distal direction along the first inner peripheral surface 53. Increases the contact area.
  • the preload applying member 35 is further pressed from the second position P2 in the distal direction by a press-fitting machine. As a result, the preload application member 35 moves from the first press-fitting range R1 to the second press-fitting range R2 (see FIG. 3).
  • the entire outer peripheral surface 64 of the cylindrical portion 61 is press-fitted into the housing 23. For this reason, the contact area between the outer peripheral surface 64 of the cylindrical portion 61 and the first inner peripheral surface 53 is constant while the preload imparting member 35 moves in the distal direction along the first inner peripheral surface 53.
  • the preload applying member 35 is further pressed from the third position P3 toward the distal end by a press-fitting machine. As a result, the preload application member 35 moves from the second press-fitting range R2 to the third press-fitting range R3 (see FIG. 3). At the same time, the preload application member 35 applies a preload to each of the first and second ball bearings 33 and 34. At this time, the base end surface 33 ⁇ / b> D of the first ball bearing 33 is located in the base end direction with respect to the connection surface 56 of the housing 23. For this reason, a gap is formed between the contact portion 62 and the connecting surface 56.
  • the entire outer peripheral surface 64 of the cylindrical portion 61 is press-fitted into the housing 23 as in the second press-fitting range R2. For this reason, the contact area between the outer peripheral surface 64 of the cylindrical portion 61 and the first inner peripheral surface 53 is constant while the preload imparting member 35 moves in the distal direction along the first inner peripheral surface 53.
  • the change of the press-fit load with respect to the first press-fit range R1 to the third press-fit range R3 will be described.
  • the vertical axis indicates the press-fitting load
  • the horizontal axis indicates the press-fitting distance.
  • the outer peripheral surface 64 of the cylindrical part 61 and the first inner peripheral surface 53 of the housing 23 are not in contact with each other at the first position P1 in the first press-fitting range R1. For this reason, the press-fit load is “0”. Thereafter, as the press-fit position P changes from the first position P1 to the second position P2, the contact area between the outer peripheral surface 64 of the cylindrical portion 61 and the first inner peripheral surface 53 gradually increases. For this reason, the press-fit load also increases.
  • the press-fitting load value actually changes slightly. This is because the roundness of the first inner peripheral surface 53 and the roundness and cylindricity of the cylindrical portion 61 (see FIG. 4) vary depending on the position in the axial direction.
  • the change in the press-fit load in the second press-fit range R2 is very small compared to the change in the press-fit load in the first press-fit range R1 and the third press-fit range R3. For this reason, it is considered that the press-fitting load is constant in the second press-fitting range R2.
  • the press-fitting position P changes from the third position P3 to the fourth position P4.
  • the contact area between the outer peripheral surface 64 of the cylindrical portion 61 and the first inner peripheral surface 53 is constant, the contact portion 62 moves in the distal direction and presses the outer ring 33B of the first ball bearing 33.
  • the press-fit load increases as the press-fit position P changes from the third position P3 to the fourth position P4.
  • the degree of increase of the press-fit load with respect to the press-fit distance in the third press-fit range R3 is larger than the degree of increase of the press-fit load in the first press-fit range R1.
  • the distal end surface 62A of the contact portion 62 is in contact with the proximal end surface 33D of the first ball bearing 33.
  • the magnitude of the press-fit load at this time is mainly determined by the first load and the second load.
  • the first load is a load required for sliding the preload applying member 35 with respect to the first inner peripheral surface 53.
  • the second load is a load required to press the first ball bearing 33 by the preload applying member 35.
  • the contact state between the preload application member 35 and the first inner peripheral surface 53 is substantially the same in the second press-fitting range R2 and the third press-fitting range R3.
  • the first load is the same as the press-fit load when the press-fit position P is in the second press-fit range R2. Therefore, the preload amounts of the first and second ball bearings 33 and 34 can be managed based on the press-fit load when the press-fit position P is in the second press-fit range R2.
  • the control device of the press-fitting machine stores a map that defines the relationship between the preload amount of the first and second ball bearings 33 and 34 and the press-fit load.
  • the press-fit load (bearing press-fit load) is calculated according to the amount of preload required for the first and second ball bearings 33 and 34.
  • the control device always measures the press-fit load.
  • the control device calculates the press-fit load in the second press-fit range R2 as the reference press-fit load TK.
  • the control device adds the bearing press-fit load to the reference press-fit load TK to obtain the “target press-fit load MK”.
  • the “target press-fit load MK” corresponds to the determination load.
  • the control device determines that the press-fit load is constant with respect to the press-fit distance. Then, the control device calculates an average value of the press-fit loads at a predetermined press-fit distance as the reference press-fit load TK. When the press-fit load reaches the target press-fit load MK in the third press-fit range R3, the control device stops the pressing of the preload application member 35. Thereby, application of the preload of the first and second ball bearings 33 and 34 is completed.
  • the reference press-fit load TK is set larger than the component force in the proximal direction of the meshing force between the worm shaft 31 and the worm wheel 32 (see FIG. 2).
  • the reference press-fit load TK is the difference between the outer diameter of the cylindrical portion 61 before being press-fitted into the housing 23 and the outer diameter of the cylindrical portion 61 after being press-fitted into the housing 23, and the cylindrical portion 61 and the first inner circumference. It is set based on the contact area with the surface 53.
  • the first length L1 of the first inner peripheral surface 53 is longer than the second length L2 of the cylindrical portion 61. For this reason, it is possible to manage the preload amounts of the first and second ball bearings 33 and 34 based on the reference press-fit load TK that is a press-fit load when the press-fit position P is in the second press-fit range R2. That is, the preload amount of the first and second ball bearings 33 and 34 is adjusted to a necessary size without measuring the preload amount of the first and second ball bearings 33 and 34 after the work of applying the preload. be able to. Therefore, the time required for adjusting the preload of the first and second ball bearings 33 and 34 can be shortened.
  • Both end portions of the meshing portion between the gear portion 41 and the worm wheel 32 are supported by the first and second ball bearings 33 and 34. According to this configuration, the worm shaft 31 can be stably supported as compared with the structure in which only the base end portion or the distal end portion of the worm shaft 31 is supported by the ball bearing.
  • the preload amount can be managed based on the reference press-fit load TK detected in the second press-fit range R2. For this reason, even if the press-fit load for applying preload to the first and second ball bearings 33 and 34 is different for each product, the preload amount of the first and second ball bearings 33 and 34 is appropriately set. Can be adjusted.
  • the preload is applied to the rolling bearing 130 by screwing the preload applying member 150 into the housing 110.
  • the process of screwing the preload applying member 150 into the housing 110 and the process of measuring the rotational torque of the worm shaft 120 are provided as one work process. Further, when the rotational torque of the worm shaft 120 is out of the predetermined range, it is necessary to repeat the above work process until the rotational torque is within the predetermined range. For this reason, the time required for adjusting the preload of the rolling bearing 130 becomes longer.
  • the application of the preload to the first and second ball bearings 33 and 34 is completed on condition that the press-fitting load of the press-fitting machine has reached the target press-fitting load MK. For this reason, the process of measuring the rotational torque of the worm shaft 31 can be omitted. Further, unlike the conventional method, it is not necessary to repeat the screwing of the preload applying member 150 and the measurement of the rotational torque. Further, it is possible to automate the application of the preload to the first and second ball bearings 33 and 34 by the press-fitting machine. Therefore, the time required for applying the preload to the first and second ball bearings 33 and 34 can be shortened.
  • the preload applying member 35 is provided with a bent portion 63. For this reason, when the preload applying member 35 is press-fitted into the housing 23, the cylindrical portion 61 comes into contact with the first inner peripheral surface 53 after being guided by the bent portion 63. Therefore, the preload application member 35 can be easily pressed into the housing 23.
  • the reference press-fit load TK is set larger than the component force in the proximal direction of the meshing force between the worm shaft 31 and the worm wheel 32. For this reason, the movement to the base end direction of the preload provision member 35 can be suppressed, without using a fixing member. Therefore, the number of parts can be reduced as compared with the conventional speed reducer shown in FIG.
  • the second ball bearing 34 may be omitted.
  • a cylindrical slide bearing surrounding the outer periphery of the second mounting portion 43 may be used instead of the second ball bearing 34.
  • a pivot bearing may be used instead of the second ball bearing 34.
  • the worm shaft 31 is rotatably supported by the inner end surface of the worm shaft housing portion 51 facing the front end surface of the second mounting portion 43.
  • both the contact portion 62 and the bent portion 63 may be omitted from the preload applying member 35.
  • the inner diameter of the portion corresponding to the first inner peripheral surface 53 of the housing 23 and the inner diameter of the portion corresponding to the second inner peripheral surface 54 are made the same.
  • the outer diameter of the outer peripheral surface 64 of the cylindrical portion 61 is set so as to have an interference fit relationship with the first inner peripheral surface 53 and the second inner peripheral surface 54.
  • the preload application member 35 may be changed to a preload application member 80 shown in FIG.
  • the preload application member 80 includes a cylindrical portion 81, an arm portion 82, and a contact portion 83.
  • the cylindrical portion 81 is press-fitted into the housing 23.
  • the arm part 82 is inclined inwardly toward the tip.
  • the contact portion 83 contacts the base end surface 33 ⁇ / b> D of the first ball bearing 33.
  • the proximal end portion of the arm portion 82 is connected to the distal end portion of the cylindrical portion 81.
  • the outer end portion of the contact portion 83 is connected to the distal end portion of the arm portion 82.
  • the cylindrical portion 81 and the first inner peripheral surface 53 satisfy the following relationship. That is, the axial length L3 of the cylindrical portion 81 is smaller than the first length L1 of the first inner peripheral surface 53 (L3 ⁇ L1).
  • a proximal end surface 81 ⁇ / b> A of the cylindrical portion 81 is disposed in a distal direction with respect to the proximal end portion 53 ⁇ / b> A of the first inner peripheral surface 53.
  • the distal end portion 81 ⁇ / b> B of the cylindrical portion 81 is disposed in the proximal direction relative to the distal end portion 53 ⁇ / b> B of the first inner peripheral surface 53.
  • the preload applying member 35 is press-fitted directly into the housing 23.
  • a member separate from the housing 23 is press-fitted into the housing 23, and the preload applying member 35 is press-fitted inside the member. May be.
  • the axial length between the proximal end surface 61A and the distal end portion 61B of the cylindrical portion 61 of the preload imparting member 35 is the second length L2, but is not limited thereto.
  • the second length L2 may be an axial length between the proximal end surface 61A of the cylindrical portion 61 and the distal end surface 62A of the contact portion 62.
  • rolling bearings are used for the first ball bearing 33 and the second ball bearing 34, but other rolling bearings such as roller bearings may be used.
  • the present invention may be applied to a speed reducer other than the speed reducer 22 of the electric power steering apparatus 1, for example, a speed reducer of a power window driving gear unit. Further, the present invention may be applied to a reduction gear that does not use the worm shaft 31 and the worm wheel 32, for example, a reduction gear that uses other gears such as a spur gear and a helical gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Steering Mechanism (AREA)
  • Gear Transmission (AREA)
  • General Details Of Gearings (AREA)

Abstract

 減速機(22)は、ウォーム軸(31)と、ウォーム軸(31)を回転可能に支持する第1及び第2玉軸受(33,34)と、第1及び第2玉軸受(33,34)に予圧を付与するための予圧付与部材(35)とを備えている。予圧付与部材(35)の円筒部(61)は、第1内周面(53)に圧入される。第1内周面(53)の第1長さ(L1)は、円筒部(61)の第2長さ(L2)よりも長く設定されている。予圧付与部材(35)が第1及び第2玉軸受(33,34)に予圧を付与する場合、円筒部(61)の基端面(61A)は、第1内周面(53)の基端部(53A)よりも先端方向に配置され、かつ円筒部(61)の先端部(61B)は、第1内周面(53)の先端部(53B)よりも基端方向に配置されている。

Description

減速機、減速機を備える電動パワーステアリング装置、減速機の製造方法
 本発明は、減速機、減速機を備える電動パワーステアリング、減速機の製造方法に関する。
 上記減速機として、例えば、特許文献1に記載の電動パワーステアリング装置の減速機が知られている。以下、図7を参照して、従来の減速機の構成について説明する。
 減速機のハウジング110には、ウォーム軸120、及び転がり軸受130が収容されている。ウォーム軸120は、電動モータ100の出力軸101に連結されている。転がり軸受130は、ウォーム軸120を回転可能に支持する。ハウジング110には、開口部111が設けられている。開口部111には、ウォーム軸120、及びウォームホイール140が設けられている。ウォーム軸120及びウォームホイール140は互いに噛み合わせられている。
 ハウジング110には、予圧付与部材150が取り付けられている。予圧付与部材150の外周面には、雄ねじ151が形成されている。ハウジング110には、雌ねじ112が形成されている。ハウジング110の雌ねじ112には、予圧付与部材150の雄ねじ151がねじ込まれている。予圧付与部材150は、転がり軸受130の外輪131を押すことにより、転がり軸受130に対し予圧を付与する。予圧付与部材150には、固定ナット160がねじ込まれている。固定ナット160は、ハウジング110に対する予圧付与部材150の緩みを抑制する。このとき、固定ナット160は、ハウジング110の端面113に接触している。
 転がり軸受130の予圧は、次のように調整される。作業者は、予圧付与部材150を所定量だけねじ込んだ後、ウォーム軸120を回転させる。そして、作業者は、ウォーム軸120の回転トルクを測定する。測定した回転トルクが所定範囲内である場合、作業者は、転がり軸受130の予圧の調整が完了したと判定し、予圧の調整を終了する。一方、測定した回転トルクが所定範囲外である場合、作業者は、転がり軸受130の予圧の調整が完了していないと判定する。この場合、作業者は、予圧付与部材150を所定量だけ更にねじ込み、回転トルクを再度測定する。測定した回転トルクが所定範囲内に収まった時点で、作業者は、予圧の調整を終了する。一方、測定した回転トルクが依然として所定範囲外である場合、作業者は、回転トルクが所定範囲内になるまで、予圧付与部材150のねじ込みと回転トルクの測定とを繰り返す。
 ところで、上記のように予圧を調整する場合、予圧付与部材150のねじ込みと、ウォーム軸120の回転トルクの測定との2つの工程が必要となる。このため、予圧の調整に要する時間が長くなる。このような問題は、電動パワーステアリング装置の減速機において転がり軸受の予圧を調整する際に限定されるものではない。上記の問題は、シャフトを転がり軸受により回転可能に支持する減速機であれば、電動パワーステアリング装置の場合と同様に生じる。
特開2002―211418号公報
 本発明の目的は、転がり軸受の予圧の調整に要する時間を短縮することのできる減速機、減速機を備える電動パワーステアリング装置、減速機の製造方法を提供することにある。
 上記課題を解決するため、本発明の第一の態様によれば、駆動機構の出力軸に連結されるシャフトと、シャフトを回転可能に支持する転がり軸受と、転がり軸受に予圧を付与する予圧付与部材とを備える減速機が提供される。減速機は、予圧付与部材が圧入される圧入部分を有している。シャフトの軸方向において駆動機構が配置される側を入力側とし、シャフトの軸方向において入力側とは反対側を出力側とし、圧入部分の入力側の端部を入力側端部Aとし、圧入部分の出力側の端部を出力側端部Bとし、予圧付与部材の入力側の端部を入力側端部Cとし、予圧付与部材の出力側の端部を出力側端部Dとし、圧入部分の入力側端部Aから出力側端部Bまでの軸方向の長さを第1長さとし、予圧付与部材の入力側端部Cから出力側端部Dまでの軸方向の長さを第2長さとした場合、第1長さは、第2長さよりも大きく設定され、入力側端部Cは、入力側端部Aよりも出力側に配置され、出力側端部Dは、出力側端部Bよりも入力側に配置され、出力側端部Dは、転がり軸受に接触する。
 この構成によれば、第1長さが第2長さよりも長くなっている。このため、予圧付与部材が圧入部分に圧入される過程で、予圧付与部材の入力側端部C及び出力側端部Dの両方を、圧入部分の入力側端部Aと出力側端部Bとの間に配置することができる(第1圧入状態)。第1圧入状態では、圧入部分に対する予圧付与部材の位置が変化しても、圧入荷重の大きさは一定である。予圧付与部材が第1圧入状態から更に圧入されると、出力側端部Dが転がり軸受の端面に接触する(第2圧入状態)。
 第2圧入状態では、出力側端部Dが転がり軸受の端面に接触している。このため、圧入荷重の増大に伴い、転がり軸受の予圧量も増大する。このときの圧入荷重の大きさは、主に、荷重X1と、荷重X2とにより決定される。荷重X1は、予圧付与部材を圧入部分に対し移動させるのに要する荷重である。荷重X2は、予圧付与部材により転がり軸受を押圧するのに要する荷重である。一方、予圧付与部材と圧入部分との接触状態は、第1圧入状態と第2圧入状態とで実質的に同じである。このため、荷重X1は、第1圧入状態のときの圧入荷重と同じである。よって、転がり軸受の予圧量は、第1圧入状態のときの圧入荷重を基準として管理することができる。即ち、予圧を付与する作業の後に転がり軸受の予圧量を測定しなくても、転がり軸受の予圧量を必要な大きさに調整することができる。従って、転がり軸受の予圧の調整に要する時間を短くすることができる。なお、「圧入荷重」は、予圧付与部材を圧入部分に圧入するのに要する荷重である。「圧入位置」は、圧入部分に対する予圧付与部材の位置である。
 上記の減速機において、シャフトと共に回転する入力ギヤ、及び入力ギヤに噛み合わされる出力ギヤを備え、入力ギヤと出力ギヤとの噛み合い部分を噛合部分とし、一対の転がり軸受のうち第1転がり軸受は、シャフトの噛合部分よりも入力側に設けられ、第2転がり軸受は、シャフトの噛合部分よりも出力側に設けられていることが好ましい。
 この構成によれば、シャフトの両端部がそれぞれ、第1転がり軸受及び第2転がり軸受により支持されている。このため、シャフトの一方の端部のみを転がり軸受により支持する構造と比較して、シャフトを安定的に支持することができる。
 上記課題を解決するため、本発明の第二の態様によれば、操舵角を変更するステアリングシャフトと、ステアリングシャフトにトルクを付与する減速機とを備えた電動パワーステアリング装置が提供される。ステアリングシャフトは、上記の減速機の出力軸として設けられている。
 上記課題を解決するため、本発明の第三の態様によれば、上記の減速機の製造方法が提供される。この製造方法では、予圧付与部材を圧入部分に圧入するときの荷重を圧入荷重とし、圧入部分に対する予圧付与部材の位置を圧入位置とし、出力側端部Dが転がり軸受と非接触状態で、かつ圧入位置の変化に対して圧入荷重が一定である圧入位置の範囲を第1圧入範囲とし、出力側端部Dが転がり軸受と接触している圧入位置の範囲を第2圧入範囲として、圧入位置が第1圧入範囲である場合、圧入荷重を基準圧入荷重として検出し、圧入位置が第2圧入範囲であり、かつ圧入荷重が基準圧入荷重よりも大きい判定荷重以上である場合、予圧付与部材の圧入を終了する。
 圧入部分及び予圧付与部材の各部分の寸法は、加工誤差により部品毎に異なる。このため、転がり軸受の予圧量を目標値に設定するのに必要な圧入荷重の大きさも、部品毎に異なる。一方、予圧付与部材を圧入して転がり軸受に予圧を付与する方法として、圧入荷重と転がり軸受の予圧量との間の相関に基づく方法が考えられる。具体的には、圧入荷重が「0」から増加して所定値に達したときに転がり軸受の予圧量が目標値に達していると推定し、圧入を終了する方法が考えられる。しかしながら、この方法では、部品毎に生じる圧入荷重のばらつきの影響を受けるため、転がり軸受の予圧量を適切に調整することが難しい。
 これに対し、本発明によれば、第1圧入状態にて検出される圧入荷重(基準圧入荷重)を基準として、予圧量を管理することができる。このため、転がり軸受への予圧の付与のための圧入荷重が部品毎に異なる場合であっても、転がり軸受の予圧量を適切に調整することができる。
本発明の電動パワーステアリング装置の全体構成を示す模式図。 電動パワーステアリング装置を構成する減速機の断面図。 図2の3-3線に沿った第1玉軸受付近を拡大して示す断面図。 (a)~(c)は図2の3-3線に沿った断面図。 圧入治具の圧入距離と圧入荷重との関係を示すグラフ。 別例の減速機の断面図。 従来の減速機の断面図。
 図1~図5を参照して、本発明の一実施形態について説明する。
 図1に示すように、電動パワーステアリング装置1には、操舵角伝達機構10が設けられている。操舵角伝達機構10は、ステアリング2の回転を転舵輪3に伝達する。操舵角伝達機構10には、アクチュエータ20が連結されている。アクチュエータ20は、ステアリング2の操作を補助するための力(以下、「アシスト力」)を、操舵角伝達機構10に付与する。
 操舵角伝達機構10には、ステアリング2と共に回転するステアリングシャフト11が設けられている。ステアリングシャフト11は、ラックアンドピニオン機構12を介して転舵シャフト13に接続されている。転舵シャフト13は、タイロッド14およびナックル(不図示)を介して転舵輪3に接続されている。
 アクチュエータ20には、駆動源としての電動モータ21と、減速機22とが設けられている。減速機22は、電動モータ21の回転を減速してステアリングシャフト11に伝達する。減速機22は、ステアリングシャフト11に連結されている。
 電動パワーステアリング装置1の動作について説明する。
 運転者がステアリング2を回転させると、ステアリング2と共にステアリングシャフト11も回転する。このとき、電動モータ21が駆動する。電動モータ21の駆動力は、アシスト力として、減速機22を介しステアリングシャフト11に付与される。ステアリングシャフト11の回転は、ラックアンドピニオン機構12により、転舵シャフト13の往復直線運動に変換される。そして、転舵シャフト13の往復直線運動により、転舵輪3の舵角が変更される。
 図2に示すように、アクチュエータ20は、減速機22を収容するためのハウジング23を備えている。ハウジング23には、電動モータ21が取り付けられている。減速機22には、ウォーム軸31と、ウォーム軸31と噛み合うウォームホイール32とが設けられている。ウォーム軸31は、円筒形状の軸継手21Bを介して、電動モータ21の出力軸21Aに連結されている。ウォームホイール32は、ステアリングシャフト11と共に回転する。
 以下、ウォーム軸31の軸線方向を「軸方向」とし、ウォーム軸31の径方向を「径方向」とする。また、軸方向において、ウォーム軸31に対し電動モータ21に向かう方向を「基端方向」とし、「基端方向」と反対方向を「先端方向」とする。また、径方向において、ウォーム軸31の軸線に向かう方向を「内方」とし、ウォーム軸31の軸線から離れる方向を「外方」とする。
 ウォーム軸31の基端部には、第1玉軸受33が取り付けられている。ウォーム軸31の先端部には、第2玉軸受34が取り付けられている。第1及び第2玉軸受33,34は、ウォーム軸31をハウジング23に対して回転可能にそれぞれ支持する。第1玉軸受33は、内輪33Aと、外輪33Bと、転動体33Cとを備えている。第2玉軸受34は、内輪34Aと、外輪34Bと、転動体34Cとを備えている。内輪33A,34Aは、ウォーム軸31の両端部のそれぞれに圧入されている。外輪33B,34Bは、ハウジング23内の空間に挿入されている。転動体33Cは、内輪33A及び外輪33B間において、自転及び公転可能に支持されている。転動体34Cは、内輪34A及び外輪34B間において、自転及び公転可能に支持されている。
 以下、外輪33Bの基端部の端面を「第1玉軸受33の基端面33D」とする。また、内輪33Aの先端部の端面を「第1玉軸受33の先端面」とする。また、外輪34Bの先端部の端面を「第2玉軸受34の先端面34D」とする。また、内輪34Aの基端部の端面を「第2玉軸受34の基端面」とする。
 ハウジング23には、第1及び第2玉軸受33,34に予圧を付与する予圧付与部材35が取り付けられている。予圧付与部材35は、第1玉軸受33よりも基端方向に配置されている。予圧付与部材35は、第1玉軸受33の基端面33Dに接触している。これにより、予圧付与部材35は、第1及び第2玉軸受33,34のそれぞれに対し予圧を付与している。
 予圧付与部材35には、円筒部61、接触部62、及び屈曲部63が設けられている。接触部62は、第1玉軸受33の基端面33Dに接触する。屈曲部63は、円筒部61と接触部62とを連結する。接触部62は、屈曲部63の内端部から径方向に沿って内側に延びている。以下では、円筒部61の基端部の端面を「円筒部61の基端面61A」とし、接触部62の先端部の端面を「接触部62の先端面62A」とする。
 ウォーム軸31には、ウォームホイール32と噛み合うギヤ部41が設けられている。以下、ギヤ部41の基端部の端面を「ギヤ部41の基端面」とし、ギヤ部41の先端部の端面を「ギヤ部41の先端面」とする。
 ウォーム軸31の基端部には、ギヤ部41よりも外径の小さい第1取付部42が設けられている。一方、ウォーム軸31の先端部には、ギヤ部41よりも外径の第2取付部43が設けられている。第1取付部42には、第1固定部44と、第2固定部45とが設けられている。第1固定部44は、第1玉軸受33の内輪33Aに圧入されている。第2固定部45は、軸継手21Bに固定されている。第2取付部43は、第2玉軸受34の内輪34Aに圧入されている。ギヤ部41の基端面には、第1玉軸受33の先端面が接触している。ギヤ部41の先端面には、第2玉軸受34の基端面が接触している。
 ギヤ部41には、歯車形成部41Aが設けられている。歯車形成部41Aには、有効歯たけを有する歯車が形成されている。歯車形成部41Aの両端部には、切り上げ部41Bがそれぞれ形成されている。切り上げ部41Bは、歯車形成部41Aに連続して形成されている。切り上げ部41Bによって、歯車を成形するためのホブカッター(不図示)が切り上げられる。切り上げ部41Bには、有効歯たけよりも小さい歯車が形成されている。
 ギヤ部41には、噛み合い有効長T2、先端長さT3、及び基端長さT4がそれぞれ設定されている。噛み合い有効長T2は、ギヤ部41とウォームホイール32とが噛み合う軸方向の長さである。先端長さT3は、ギヤ部41の噛み合い有効長T2に対応する部分の先端から、それに隣接する切り上げ部41Bの基端までの長さである。基端長さT4は、ギヤ部41の噛み合い有効長T2に対応する部分の基端から、それに隣接する切り上げ部41Bの先端までの長さである。噛み合い有効長T2と、先端長さT3と、基端長さT4との合計の長さが、歯車形成部41Aの軸方向の長さT1に相当する。
 軸継手21Bの内部では、ウォーム軸31の基端面45Aと、電動モータ21の出力軸21Aの先端面21Cとが近接している。第2固定部45の基端面45Aと出力軸21Aの先端面21Cとの間の距離(移動許容距離D1)は、下記計算式を満たしている。
  D1≦(T1-T2)/(T3/(T3+T4))
 ここで、上記計算式の右辺は、歯車形成部41Aから、歯車形成部41Aの先端に隣接する切り上げ部41Bまでの軸方向の距離である。
 ハウジング23には、ウォーム軸収容部51が設けられている。ウォーム軸収容部51内には、ウォーム軸31と、第1及び第2玉軸受33,34とが収容されている。ウォーム軸収容部51には、ウォームホイール32が収容されるウォームホイール収容部52が設けられている。ウォームホイール収容部52は、ウォーム軸収容部51に対し径方向に隣接している。ウォーム軸収容部51の基端部には、開口部が設けられている。開口部には、電動モータ21が取り付けられている。
 ウォーム軸収容部51の内周面は、第1内周面53、第2内周面54、及び第3内周面55に区分されている。第1内周面53には、予圧付与部材35の円筒部61の外周面64が接触している。第2内周面54には、第1玉軸受33の外輪33Bの外周面が接触している。第3内周面55には、第2玉軸受34の外輪34Bの外周面が接触している。ハウジング23の第1内周面53に対応する部分は、「圧入部分」を構成する。
 ウォーム軸収容部51の第1内周面53に対応する部位の内径は、ウォーム軸収容部51の第2内周面54に対応する部位の内径よりも大きい。ウォーム軸収容部51の第2内周面54に対応する部位の内径は、ウォーム軸収容部51の第3内周面55に対応する部位の内径よりも大きい。また、第1内周面53及び第2内周面54は、連結面56により互いに接続されている。連結面56は、径方向に延びている。
 予圧付与部材35とハウジング23の第1内周面53との関係について説明する。
 ここで、ウォーム軸収容部51の第1内周面53の基端部を53Aとし、第1内周面53の先端部を53Bとする。また、予圧付与部材35の円筒部61と屈曲部63との接続部分は、円筒部61の先端部61Bに相当する。また、第1内周面53の基端部53A(入力側端部A)から先端部53B(出力側端部B)までの軸方向の長さを第1長さL1とし、円筒部61の基端面61A(入力側端部C)から先端部61B(出力側端部D)までの軸方向の長さを第2長さL2とする。減速機22では、第1長さL1が第2長さL2よりも長い(L1>L2)。
 上述したように、予圧付与部材35により、第1及び第2玉軸受33,34のそれぞれには予圧が付与される。この状態で、接触部62の先端面62Aは、先端方向に押圧されて、第1玉軸受33の基端面33Dに押し付けられる。また、この状態で、円筒部61の基端面61Aは、第1内周面53の基端部53Aよりも先端方向に位置している。また、この状態で、円筒部61の先端部61Bは、第1内周面53の先端部53Bよりも基端方向に位置している。
 図3を参照して、予圧付与部材35がハウジング23内に圧入されるときの予圧付与部材35とハウジング23及び第1玉軸受33との位置関係について説明する。
 ハウジング23に対する接触部62の先端面62Aの位置を「圧入位置P」とする。予圧付与部材35がハウジング23内に圧入されるとき、圧入位置Pは、第1位置P1から第4位置P4に亘って変化する。また、第1位置P1から第4位置P4までの間に予圧付与部材35が移動した距離を「圧入距離」とする。また、圧入機(不図示)が予圧付与部材35を押す力を「圧入荷重」とする。
 第1位置P1では、接触部62の先端面62Aと、ウォーム軸収容部51の第1内周面53の基端部53Aとが、軸方向の同じ位置に配置されている。
 第2位置P2では、円筒部61の基端面61A(図2参照)と、第1内周面53の基端部53Aとが、軸方向の同じ位置に配置されている。
 第3位置P3では、接触部62の先端面62Aと、予圧が付与されていない第1玉軸受33の基端面33Dとが、軸方向の同じ位置に配置されている。
 第4位置P4では、接触部62の先端面62Aと、予圧が付与されている第1玉軸受33の基端面33Dとが、軸方向の同じ位置に配置されている。
 以下、第1位置P1から第2位置P2に至る圧入位置Pの移動範囲を「第1圧入範囲R1」とする。また、第2位置P2から第3位置P3に至る圧入位置Pの移動範囲を「第2圧入範囲R2」とする。また、第3位置P3から第4位置P4に至る圧入位置Pの移動範囲を「第3圧入範囲R3」とする。
 図4を参照して、予圧付与部材35のハウジング23への取付手順について説明する。
 図4(a)に示すように、ハウジング23には、第1及び第2玉軸受33,34と共にウォーム軸31が収容されている。この状態で、圧入機の圧入治具70により、予圧付与部材35を第1位置P1から先端方向に押圧し、ハウジング23内に圧入する。
 第1圧入範囲R1(図3参照)では、予圧付与部材35が第1内周面53に沿って先端方向に移動するに従い、円筒部61の外周面64とハウジング23の第1内周面53との接触面積が増大する。
 図4(b)に示すように、圧入機により、予圧付与部材35を第2位置P2から先端方向に更に押圧する。これにより、予圧付与部材35は、第1圧入範囲R1から第2圧入範囲R2(図3参照)へと移動する。
 第2圧入範囲R2では、円筒部61の外周面64の全体がハウジング23内に圧入されている。このため、予圧付与部材35が第1内周面53に沿って先端方向に移動している間、円筒部61の外周面64と第1内周面53との接触面積は一定である。
 図4(c)に示すように、圧入機により、予圧付与部材35を第3位置P3から先端方向に更に押圧する。これにより、予圧付与部材35は、第2圧入範囲R2から第3圧入範囲R3(図3参照)へと移動する。それと共に、予圧付与部材35は、第1及び第2玉軸受33,34のそれぞれに予圧を付与する。このとき、第1玉軸受33の基端面33Dは、ハウジング23の連結面56よりも基端方向に位置している。このため、接触部62と連結面56との間には、間隙が形成されている。
 第3圧入範囲R3では、第2圧入範囲R2と同様に、円筒部61の外周面64の全体がハウジング23内に圧入されている。このため、予圧付与部材35が第1内周面53に沿って先端方向に移動している間、円筒部61の外周面64と第1内周面53との接触面積は一定である。
 図5を参照して、第1圧入範囲R1~第3圧入範囲R3に対する圧入荷重の変化について説明する。図5のグラフでは、縦軸は圧入荷重を、横軸は圧入距離をそれぞれ示す。
 第1圧入範囲R1の第1位置P1では、円筒部61の外周面64とハウジング23の第1内周面53とが接触していない。このため、圧入荷重は「0」である。その後、第1位置P1から第2位置P2へと圧入位置Pが変化するにつれて、円筒部61の外周面64と第1内周面53との接触面積が徐々に増大する。このため、圧入荷重も増大する。
 第2圧入範囲R2では、第2位置P2から第3位置P3へと圧入位置Pが変化しても、円筒部61の外周面64と第1内周面53との接触面積は一定である。このため、圧入荷重は、第2位置P2から第3位置P3にかけて一定の値に維持される。
 しかしながら、第2圧入範囲R2において、実際には、圧入荷重の値は若干変化する。これは、第1内周面53の真円度や、円筒部61(図4参照)の真円度及び円筒度が、軸方向の位置によってばらついているためである。しかしながら、第2圧入範囲R2での圧入荷重の変化は、第1圧入範囲R1及び第3圧入範囲R3での圧入荷重の変化と比較して非常に小さくなっている。このため、第2圧入範囲R2では、圧入荷重が一定であるとみなす。
 第3圧入範囲R3では、第3位置P3から第4位置P4へと圧入位置Pが変化する。この場合、円筒部61の外周面64と第1内周面53との接触面積が一定であるものの、接触部62が先端方向に移動して第1玉軸受33の外輪33Bを押圧する。このため、第3位置P3から第4位置P4へと圧入位置Pが変化するに従い、圧入荷重も増大する。第3圧入範囲R3での圧入距離に対する圧入荷重の増大度合は、第1圧入範囲R1での圧入荷重の増大度合よりも大きい。
 次に、圧入機による第1及び第2玉軸受33,34の予圧量の管理方法について説明する。
 第3圧入範囲R3では、接触部62の先端面62Aが第1玉軸受33の基端面33Dに接触している。このため、圧入荷重の増大に伴い、第1及び第2玉軸受33,34の予圧量も増大する。このときの圧入荷重の大きさは、主に、第1荷重と、第2荷重とにより決定される。第1荷重は、予圧付与部材35を第1内周面53に対して摺動させるのに要する荷重である。第2荷重は、予圧付与部材35により第1玉軸受33を押圧するのに要する荷重である。一方、予圧付与部材35と第1内周面53との接触状態は、第2圧入範囲R2と第3圧入範囲R3とで実質的に同じである。このため、第1荷重は、圧入位置Pが第2圧入範囲R2であるときの圧入荷重と同じである。よって、第1及び第2玉軸受33,34の予圧量は、圧入位置Pが第2圧入範囲R2であるときの圧入荷重を基準として管理することができる。
 圧入機の制御装置には、第1及び第2玉軸受33,34の予圧量と圧入荷重との関係を定めたマップが記憶されている。圧入荷重(軸受圧入荷重)は、第1及び第2玉軸受33,34に必要な予圧量に応じて算出される。制御装置は、常時、圧入荷重を測定する。それと共に、制御装置は、第2圧入範囲R2での圧入荷重を基準圧入荷重TKとして算出する。そして、制御装置は、基準圧入荷重TKに軸受圧入荷重を加算して「目標圧入荷重MK」を得る。本実施形態において、「目標圧入荷重MK」が判定荷重に相当する。所定の圧入距離に対する圧入荷重の変動幅が所定範囲内であるとき、制御装置は、圧入距離に対して圧入荷重が一定であると判定する。そして、制御装置は、所定の圧入距離における圧入荷重の平均値を基準圧入荷重TKとして算出する。第3圧入範囲R3において圧入荷重が目標圧入荷重MKに達したとき、制御装置は、予圧付与部材35の押し付けを停止する。これにより、第1及び第2玉軸受33,34の予圧の付与が完了する。
 基準圧入荷重TKは、ウォーム軸31とウォームホイール32(図2参照)との噛み合いの力の基端方向への分力よりも大きく設定されている。基準圧入荷重TKは、ハウジング23内に圧入される前の円筒部61の外径とハウジング23内に圧入された後の円筒部61の外径との差、及び円筒部61と第1内周面53との接触面積に基づいて設定される。
 以下、本実施形態によれば、以下の効果を奏することができる。
 (1)図5に示す第2圧入範囲R2を形成するため、第1内周面53の第1長さL1が円筒部61の第2長さL2よりも長くなっている。このため、圧入位置Pが第2圧入範囲R2であるときの圧入荷重である基準圧入荷重TKを基準として、第1及び第2玉軸受33,34の予圧量を管理することができる。即ち、予圧を付与する作業の後に第1及び第2玉軸受33,34の予圧量を測定しなくても、第1及び第2玉軸受33,34の予圧量を必要な大きさに調整することができる。従って、第1及び第2玉軸受33,34の予圧の調整に要する時間を短くすることができる。
 (2)ギヤ部41とウォームホイール32との噛み合い部分の両端部が、第1及び第2玉軸受33,34により支持されている。この構成によれば、ウォーム軸31の基端部又は先端部のみを玉軸受により支持する構造と比較して、ウォーム軸31を安定的に支持することができる。
 (3)ハウジング23の第1内周面53に対応する部分の内径、及び円筒部61の外周面64に対応する部分の外径は、加工誤差に起因して、ハウジング23及び予圧付与部材35の製品毎に異なる。このため、第1及び第2玉軸受33,34への予圧の付与のための圧入機の圧入荷重は、その製品毎に異なる。このため、圧入機の圧入荷重が一定値に達したときに予圧付与部材35の圧入を完了させる場合、第1及び第2玉軸受33,34への予圧量は、その製品毎に異なる。即ち、製品毎に、第1及び第2玉軸受33,34の予圧量にばらつきが生じてしまう。
 これに対し、本実施形態によれば、第2圧入範囲R2において検出される基準圧入荷重TKを基準として、予圧量を管理することができる。このため、第1及び第2玉軸受33,34への予圧の付与のための圧入荷重が製品毎に異なる場合であっても、第1及び第2玉軸受33,34の予圧量を適切に調整することができる。
 (4)図7に示す従来の方法によれば、予圧付与部材150をハウジング110にねじ込むことにより、転がり軸受130に予圧が付与されている。この方法では、予圧付与部材150をハウジング110にねじ込む工程と、ウォーム軸120の回転トルクを測定する工程とを1つの作業工程として備えている。また、ウォーム軸120の回転トルクが所定範囲外であるとき、上記の作業工程を、回転トルクが所定範囲内になるまで繰り返す必要がある。このため、転がり軸受130の予圧の調整に要する時間が長くなる。
 これに対し、本実施形態によれば、圧入機の圧入荷重が目標圧入荷重MKに達したことを条件に、第1及び第2玉軸受33,34への予圧の付与が終了する。このため、ウォーム軸31の回転トルクを測定する工程を省略することができる。また、従来の方法のように、予圧付与部材150のねじ込みと、回転トルクの測定とを繰り返す必要もない。また、圧入機による第1及び第2玉軸受33,34への予圧の付与を自動化することができる。よって、第1及び第2玉軸受33,34の予圧の付与に要する時間を短くすることができる。
 (5)予圧付与部材35には、屈曲部63が設けられている。このため、ハウジング23内に予圧付与部材35を圧入する際、円筒部61は、屈曲部63により案内されてから、第1内周面53と接触するようになる。よって、ハウジング23内への予圧付与部材35の圧入を容易にすることができる。
 (6)基準圧入荷重TKは、ウォーム軸31とウォームホイール32との噛み合いの力の基端方向への分力よりも大きく設定されている。このため、固定部材を用いることなく、予圧付与部材35の基端方向への移動を抑制することができる。従って、図7に示す従来の減速機と比較して、部品点数を削減することができる。
 尚、上記実施形態を以下のように変更してもよい。
 ・上記実施形態において、第2玉軸受34を省略してもよい。
 ・上記実施形態において、第2玉軸受34に代えて、第2取付部43の外周を包囲する円筒形状のすべり軸受を用いてもよい。また、第2玉軸受34に代えて、ピボット軸受を用いてもよい。この場合、第2取付部43の先端面に対向するウォーム軸収容部51の内端面により、ウォーム軸31が回転可能に支持される。
 ・上記実施形態において、予圧付与部材35から、接触部62及び屈曲部63の両方を省略してもよい。このとき、ハウジング23の第1内周面53に対応する部分の内径と第2内周面54に対応する部分の内径とを同一にする。この場合、円筒部61の外周面64の外径寸法は、第1内周面53及び第2内周面54に対してしまりばめの関係を有するように設定される。
 ・上記実施形態において、予圧付与部材35を、図6に示す予圧付与部材80に変更してもよい。予圧付与部材80は、円筒部81、腕部82、及び接触部83を備えている。円筒部81は、ハウジング23内に圧入される。腕部82は、先端に向かうに従い内側に傾斜している。接触部83は、第1玉軸受33の基端面33Dに接触する。腕部82の基端部は、円筒部81の先端部に接続されている。接触部83の外端部は、腕部82の先端部に接続されている。
 円筒部81と第1内周面53とは、以下の関係を満たしている。即ち、円筒部81の軸方向の長さL3は、第1内周面53の第1長さL1よりも小さい(L3<L1)。円筒部81の基端面81Aは、第1内周面53の基端部53Aよりも先端方向に配置されている。円筒部81の先端部81Bは、第1内周面53の先端部53Bよりも基端方向に配置されている。
 ・上記実施形態において、ハウジング23内に直接予圧付与部材35を圧入したが、ハウジング23内に、ハウジング23とは別体の部材を圧入し、この部材の内側に、予圧付与部材35を圧入してもよい。
 ・上記実施形態において、予圧付与部材35の円筒部61の基端面61Aと先端部61Bとの間の軸方向の長さを第2長さL2としたが、これに限られない。第2長さL2は、円筒部61の基端面61Aと接触部62の先端面62Aとの間の軸方向の長さであってもよい。
 ・上記実施形態において、第1玉軸受33及び第2玉軸受34に転がり軸受を用いたが、ころ軸受等の他の転がり軸受を用いてもよい。
 ・本発明を、電動パワーステアリング装置1の減速機22以外の減速機、例えば、パワーウィンドウ駆動用のギヤユニットの減速機に適用してもよい。また、本発明を、ウォーム軸31及びウォームホイール32を用いない減速機、例えば、平歯車やはすば歯車等の他の歯車を用いた減速機に適用してもよい。

Claims (4)

  1. 駆動機構の出力軸に連結されるシャフトと、前記シャフトを回転可能に支持する転がり軸受と、前記転がり軸受に予圧を付与する予圧付与部材とを備える減速機において、
     前記減速機は、前記予圧付与部材が圧入される圧入部分を有し、
     前記シャフトの軸方向において前記駆動機構が配置される側を入力側とし、
     前記シャフトの軸方向において前記入力側とは反対側を出力側とし、
     前記圧入部分の入力側の端部を入力側端部Aとし、
     前記圧入部分の出力側の端部を出力側端部Bとし、
     前記予圧付与部材の入力側の端部を入力側端部Cとし、
     前記予圧付与部材の出力側の端部を出力側端部Dとし、
     前記圧入部分の前記入力側端部Aから前記出力側端部Bまでの前記軸方向の長さを第1長さとし、
     前記予圧付与部材の前記入力側端部Cから前記出力側端部Dまでの前記軸方向の長さを第2長さとした場合、
     前記第1長さは、前記第2長さよりも大きく設定され、
     前記入力側端部Cは、前記入力側端部Aよりも前記出力側に配置され、
     前記出力側端部Dは、前記出力側端部Bよりも前記入力側に配置され、
     前記出力側端部Dは、前記転がり軸受に接触することを特徴とする減速機。
  2. 請求項1に記載の減速機において、
     前記シャフトと共に回転する入力ギヤ、及び
     前記入力ギヤに噛み合わされる出力ギヤを備え、
     前記入力ギヤと前記出力ギヤとの噛み合い部分を噛合部分とし、
     前記一対の転がり軸受のうち第1転がり軸受は、前記シャフトの前記噛合部分よりも前記入力側に設けられ、第2転がり軸受は、前記シャフトの前記噛合部分よりも前記出力側に設けられていることを特徴とする減速機。
  3. 電動パワーステアリング装置であって、
     操舵角を変更するステアリングシャフトと、
     前記ステアリングシャフトにトルクを付与する減速機とを備え、
     前記ステアリングシャフトは、請求項1又は2に記載の減速機の出力軸として設けられていることを特徴とする電動パワーステアリング装置。
  4. 請求項1又は2に記載の減速機の製造方法において、
     前記予圧付与部材を前記圧入部分に圧入するときの荷重を圧入荷重とし、
     前記圧入部分に対する前記予圧付与部材の位置を圧入位置とし、
     前記出力側端部Dが前記転がり軸受と非接触状態で、かつ前記圧入位置の変化に対して前記圧入荷重が一定である前記圧入位置の範囲を第1圧入範囲とし、
     前記出力側端部Dが前記転がり軸受と接触している前記圧入位置の範囲を第2圧入範囲として、
     前記圧入位置が前記第1圧入範囲である場合、前記圧入荷重を基準圧入荷重として検出し、
     前記圧入位置が前記第2圧入範囲であり、かつ前記圧入荷重が前記基準圧入荷重よりも大きい判定荷重以上である場合、前記予圧付与部材の圧入を終了することを特徴とする減速機の製造方法。
PCT/JP2011/076694 2010-12-03 2011-11-18 減速機、減速機を備える電動パワーステアリング装置、減速機の製造方法 WO2012073726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180057657.6A CN103260998B (zh) 2010-12-03 2011-11-18 减速机、带减速机的电动助力转向装置以及用于制造减速机的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010270525A JP5671984B2 (ja) 2010-12-03 2010-12-03 減速機、これを備える電動パワーステアリング装置、ならびに減速機の製造方法
JP2010-270525 2010-12-03

Publications (1)

Publication Number Publication Date
WO2012073726A1 true WO2012073726A1 (ja) 2012-06-07

Family

ID=46171670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076694 WO2012073726A1 (ja) 2010-12-03 2011-11-18 減速機、減速機を備える電動パワーステアリング装置、減速機の製造方法

Country Status (3)

Country Link
JP (1) JP5671984B2 (ja)
CN (1) CN103260998B (ja)
WO (1) WO2012073726A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349190B2 (ja) * 2014-07-31 2018-06-27 Kyb株式会社 ステアリング装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249844A (ja) * 2003-02-20 2004-09-09 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004301262A (ja) * 2003-03-31 2004-10-28 Koyo Seiko Co Ltd ウォーム支持装置及び電動パワーステアリング装置
JP2005297613A (ja) * 2004-04-06 2005-10-27 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2007290441A (ja) * 2006-04-21 2007-11-08 Jtekt Corp 電動パワーステアリング装置
JP2009299776A (ja) * 2008-06-12 2009-12-24 Nsk Ltd ウォーム減速機及び電動式パワーステアリング装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241266A (ja) * 1985-04-17 1986-10-27 Nippon Seiko Kk ラツクアンドピニオン形電気式動力舵取装置
FR2819774B1 (fr) * 2001-01-19 2006-09-29 Koyo Seiko Co Articulation et systeme de direction assistee l'utilisant
WO2003047948A1 (fr) * 2001-12-03 2003-06-12 Nsk Ltd. Dispositif de direction electrique
JP2006044430A (ja) * 2004-08-03 2006-02-16 Favess Co Ltd 電動パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249844A (ja) * 2003-02-20 2004-09-09 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004301262A (ja) * 2003-03-31 2004-10-28 Koyo Seiko Co Ltd ウォーム支持装置及び電動パワーステアリング装置
JP2005297613A (ja) * 2004-04-06 2005-10-27 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2007290441A (ja) * 2006-04-21 2007-11-08 Jtekt Corp 電動パワーステアリング装置
JP2009299776A (ja) * 2008-06-12 2009-12-24 Nsk Ltd ウォーム減速機及び電動式パワーステアリング装置

Also Published As

Publication number Publication date
CN103260998B (zh) 2015-11-25
JP5671984B2 (ja) 2015-02-18
JP2012116432A (ja) 2012-06-21
CN103260998A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
US6761244B2 (en) Electric power steering apparatus
JP5708981B2 (ja) 電動パワーステアリング装置
JP2012214208A (ja) 電動パワーステアリング装置
JP2002067992A (ja) 電動パワーステアリング装置
JP2008254495A (ja) 電動パワーステアリング装置
JP5678623B2 (ja) 減速機、これを備える電動パワーステアリング装置、ならびに減速機の製造方法
JP5984010B2 (ja) ステアリング装置
US11054007B2 (en) Lead screw structure and assembly and rear wheel steering apparatus using the same
WO2012073726A1 (ja) 減速機、減速機を備える電動パワーステアリング装置、減速機の製造方法
JP2012001050A (ja) 電動パワーステアリング装置
US20080128196A1 (en) Reduction gear mechanism and electric power steering apparatus
KR102303050B1 (ko) 마찰 파동 감속기
JP2007050845A (ja) 電動パワーステアリング装置
JP5316144B2 (ja) 伝達比可変装置
JP2012126338A (ja) 車両用操舵装置
JP4234867B2 (ja) 電動パワーステアリング装置
JP2012117649A (ja) 減速機、これを備える電動パワーステアリング装置、ならびに減速機の製造方法
JP4400369B2 (ja) ピニオン・アシスト式電動パワーステアリング装置
CN112770957B (zh) 准备转向传动机构以用于随后使用的方法和转向传动机构
JP2004320842A (ja) 電動パワーステアリング装置
JP4916273B2 (ja) スプライン結合構造及びスプライン装置
JP4186631B2 (ja) 電動式パワーステアリング装置
JP4899900B2 (ja) 作動特性測定装置
JPWO2016056633A1 (ja) ウォーム減速機およびウォーム減速機の組立方法
CN110809679A (zh) 蜗轮蜗杆减速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844430

Country of ref document: EP

Kind code of ref document: A1